2020年高考数学考点分析与突破性讲练专题30圆的方程理

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题30圆的方程

一、 考纲要求:

1. 掌握确定圆的几何要素,掌握圆的标准方程与一般方程

2. 初步了解用代数方法处理几何问题的思想. 二、 概念掌握和解题上注意点 : 1.

求圆的方程的两种方法

1直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程 2待定系数法:

① 若已知条件与圆心 a , b 和半径r 有关,则设圆的标准方程,依据已知条件列出关 于a , b , r 的方程组,从而求出 a , b , r 的值.

② 若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于

D, E , F 的方程组,进而求出 D, E , F 的值.

2. 与圆有关的最值问题的三种几何转化法

v — b

1形如口=

形式的最值问题可转化为动直线斜率的最值问题

x — a

2形如t = ax + by 形式的最值问题可转化为动直线截距的最值问题

3形如 m= x — a 2+ y — b 2形式的最值问题可转化为动点到定点的距离的平方 的最值问题.

3. 求与圆有关的轨迹问题的四种方法 1) 直接法:直接根据题设给定的条件列出方程求解 2) 定义法:根据圆的定义列方程求解

.

3) 几何法:利用圆的几何性质得出方程求解 .

4) 代入法 相关点法

:找出要求的点与已知点的关系,代入已知点满足的关系式

求解.

三、 高考考题题例分析

与该圆相交于A , B 两点,则△ ABC 的面积为

【答案】

例1. (2020天津卷) 已知圆x 2+y 2 - 2x=0的圆心为 C ,直线

,(t 为参数)

【解析】;圆梓诺-2E 化为标准方程是(x-1):坪也 圆心为C <1, 0)」半径Ej

化为普通方®S K +Y-2=0,

t

1 A-2X 2

-\AABC 的面积为 S=l.|AB|.d=i

2

故答叫•

例2. (2020江苏卷)在平面直角坐标系

xOy 中,A 为直线I : y=2x 上在第一象限内的点,

B(5, 0),以AB 为直径的圆C 与直线I 交于另一点D.若1=0,则点A 的横坐标为 ________________ . 【答案】3

【解析】:设A ( a , 2a ), a >0, ••• B (5, 0), ••• C ( ' , a ),

2

则圆 C 的方程为(x - 5) (x - a ) +y (y - 2a ) =0.

、Cx-5) (x-a)+y (y-2a)=C

联立

,解得D (1, 2).

屁厉二(5-& -2a>〔音L 2-Q 茲辿乜宀削

2

_ 2

= .

解得:a=3或a= - 1. 又 a > 0, • a=3. 即A 的横坐标为3. 故答案为:3.

例3.(2020高考山东卷)一条光线从点 2, 3射出,经y 轴反射后与圆

直线

y= L

则圆心f 到该宜线的距离为d Jl±0z2j_j/l ?

■二 2

Lx 逅X 唾丄・

2 2 2

V2

(jc+3 T + (v —21 =】

■相切,则反射光线所在直线的斜率为( )

(A) 5或3(B) 3或2(C) 5或4(D) 4

3 5 2 3

4

5 3或3

4

【答案】D

【解析】由光的反射原理知, 反射光线的反向延长线必过点 2, 3 ,设反射光线所在直线

整理:•…

■「一-,解得:k 4,或k 3 ,故选D.

3

4

6.直线x — 3y + 3 = 0与圆(x — 1)2+ (y — 3)2= 10相交所得弦长为

(

A.

30

C. 4 '2 【答案】A

|1 — 3X 3+ 3|

【解析】圆心(1,3)到直线的距离为件32

=

2 ,从而得所求弦长为

将两圆的方程相减得 AB 所在直线的方程为2y + 1 = 0,即y =—;

&在平面直角坐标系中,直线 y = ;'2x 与圆O x 2 + y 2= 1交于A, B 两点,a ,卩的始边 是x 轴的非负半轴,终边分别在射线 OA 和OBh,则tan( a +卩)的值为

( )

A. — 2 ..'2 C. 0 【答案】A

(

A.

;3

B. 1 y = —4

y = —

2 C.

3

D.

1

y =

__

—2

y = —

4

【答

案】

B

【解

析】

圆 2 2 (x — 1) + y = 1 的圆心为(1,0) ,半径 :为1,

7.过点(1 , — 2)作圆(x — 1)2 + y 2= 1的两条切线,切点分别为 以 1— 1 2+ — 2 — 0 2

= 2为直径的圆的方程为 (x — 1)2+ (y + 1)2= 1,

的斜率为k ,则反身光线所在直线方程为:

kx — V — 2 Ac — 3

= 0 ,即:

又因为光线与圆相切,

(x+3)a +(y-2):=l

所以,

A, B,则AB 所在直线的方程

B. — .2 D. 2 '2

相关文档
最新文档