高分子物理 结构与性能 第三章 结晶动力学与结晶热力学
《高分子热力学》课件
目录
• 高分子热力学的定义与重要性 • 高分子热力学的基本概念 • 高分子热力学的特性与规律 • 高分子热力学的实验研究方法 • 高分子热力学的应用实例
01
高分子热力学的定义与 重要性
高分子热力学的定义
高分子热力学是一门研究高分子 材料在热力学平衡态和近平衡态
行为的科学。
详细描述
高分子材料的热稳定性受到分子链的刚性和化学键能的影响。一些高分子材料在高温下容易发生氧化反应或降解 反应,导致性能下降。了解材料的热分解机理和动力学对于高分子材料的应用和设计具有重要意义。
高分子材料的热力学函数与状态方程
总结词
热力学函数和状态方程是描述高分子材料热力学行为 的工具,它们可以帮助我们了解材料在不同温度和压 力下的性质和行为。
从而优化材料的性能。
高分子热力学有助于理解高分 子材料在各种环境下的行为, 为材料的应用和开发提供理论
基础。
高分子热力学的应用领域
高分子材料科学
高分子热力学为高分子材料的设计、合成和加工提供了理 论基础,有助于开发高性能、功能化的高分子材料。
聚合物工程
高分子热力学在聚合物工程领域的应用广泛,如聚合反应 过程、聚合物分离和提纯、聚合物加工成型等。
它涉及到高分子材料的热力学性 质、相行为、聚集态结构和变化
规律等。
高分子热力学的基础理论包括热 力学第一定律、第二定律和第三 定律,以及高分子溶液的热力学
理论。
高分子热力学的重要性
高分子热力学为高分子材料的 设计、合成和加工提供了理论
指导。
通过高分子热力学,可以预 测高分子材料的热稳定性、 相分离行为和聚集态结构,
分子运动论概述
分子动理论的实验验证
13西安交大——高分子物理PPT第三章聚合物的分子运动
3.1.3 分子运动的温度依赖性
温度对高分子运动的两个作用: 1. 使运动单元动能增加,令其活化(使运动 单元活化所需要的能量
称为活化能)。当达到某一运动单元运动所需的能量时,就激发 这一运动单元的运动。 2. 温度升高,体积膨胀,提供了运动单元可以活动的自由空间(自 由体积)。当自由空间增加到某种运动单元所需的大小时,这一 运动单元便可自由运动。
模量-温度曲线
两种转变和三种力学状态
玻璃态转变为高弹态的转变称为玻璃化转变,转变温度,即链 段开始运动或冻结的温度称为玻璃化温度Tg。
高聚物由高弹态向粘流态的转变称为粘流转变,这个转变温度称 为粘流温度,用Tf表示。
为什么非晶态高聚物随温度变化出现三种力学状态和二个转变? 我们来看表,了解一下内部分子处于不同运动状态时的宏观表现
玻璃态 高弹态 粘流态
温度 运动单元
力学性质
Tg
以下
Tgf ~ T f
Tg ~ Tf
链段仍处于冻结状态,侧基、 受力变形很小(0.1~1%),
支链、链节等能够做局部运 去力后立即恢复(可逆),
动及键长、键角发生变化, 弹性(普弹性)模量:
而不能实现构象的。
109~1010Pa。
链段运动,不断改变构象, 但是整个分子链还仍处于被 “冻结”的状态。
●饱和主链
CH3 Si O
n CH3
硅橡胶 Tg = -123℃
CH2 O n
聚甲醛 Tg = -83℃
CH2
CH2 n
PE Tg=-68 ℃
●主链上有芳环、芳杂环:
CH3 O
高分子物理课件;第三章 高分子溶液及分子量
第一节 概述
一. 重要性 高分子溶液是生产实践和科学研究均要碰到的问题 生产实践中: ①浓溶液——油漆,涂料,胶粘剂,纺丝液,制备 复合材料用到的树脂溶液,高聚物/增塑剂浓溶液等。 ②稀溶液——分子量测定及分子量分级(分布)用 到的稀溶液。
3
第一节 概述
科学研究中: 由于高分子稀溶液是处于热力学平衡态的真溶液,所 以可以用热力学状态函数来描述,因此高分子稀溶液 已被广泛和深入的研究过,也是高分子领域中理论比 较成熟的一个领域,已经取得较大的成就。通过对高 分子溶液的研究,可以帮助了解高分子的化学结构, 构象,分子量,分子量分布;利用高分子溶液的特性 (蒸汽压,渗透压,沸点,冰点,粘度,光散射 等),建立了一系列高分子的测定手段,这在高分子 的研究工作和生产质量控制上都是必不可少的手段。
第三章 高分子溶液及分子量
重点:
溶度参数、高分子溶液的θ状态 分子量的表征方式及公式 高聚物溶解特征,溶剂对聚合物溶解能力的判定 试设计实验,测试聚乙烯醇的黏均分子量
1
高分子溶液
第一节 概述 第二节 高聚物的溶解
溶解过程 溶剂的选择 第三节 高分子溶液的热力学 理想溶液热力学 高分子溶液与理想溶液的偏差 高分子溶液理论
7
非晶高聚物的溶胀与溶解
溶胀又分为两种:
①无限溶胀:线型聚合物溶于良溶剂中,能无限制 吸收溶剂,直到溶解成均相溶液为止。所以溶 解也可看成是聚合物无限溶胀的结果。
例:天然橡胶在汽油中;PS在苯中 ②有限溶胀:对于交联聚合物以及在不良溶剂中的
线性聚合物来讲,溶胀只能进行到一定程度为 止,以后无论与溶剂接触多久,吸入溶剂的量 不再增加,而达到平衡,体系始终保持两相状 态。
4
第一节 概述
高分子物理化学 第三章
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
粘度法(粘均分子量)
该法是目前最常用的方法之一。 溶液的粘度除了与分子量有关,还取决 于聚合物分子的结构、形态和尺寸, 因此,粘度法测分子量只是一种相对 的方法。
根据上述关系由溶液的粘度计算聚合物 的分子量。
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
例如尼龙6:
H2N(CH2)5CO NH(CH2)5CO n NH(CH2)5COOH
COOH 一头 (中 NH2 ,一头 间已无这两种基团),可用酸碱滴 定来分析端氨基和端羧基,以计算 分子量。
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
计算公式:
W——试样质量 n——试样摩尔数 ne——试样中被分析的端基摩尔数 Z——每个高分子链中端基的个数
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
C —— 溶液的浓度
—— 溶剂的沸点升高常数
—— 溶剂的冰点降低常数
—— 溶质分子量
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
一些溶剂的沸点升高常数
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
一些溶剂的冰点降低常数
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
特 点
可证明测出的是 ; 对缩聚物的分子量分析 应用广泛; 分子量不可太大,否则 误差太大。
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
溶液依数性法
小分子:
稀溶液的依数性:稀溶液的 沸点升高、冰点下降、蒸汽压下 降、渗透压的数值等仅仅与溶液 中的溶质数有关,而与溶质的本 性无关的这些性质被称为稀溶液 的依数性。
高分子物理第2讲聚合物的结晶热力学精品PPT课件
随着结晶温度的增加, 聚合物的熔点逐渐升高
因为结晶温度越高, 晶片厚度越大, 结晶越完善, 结晶完全熔融的温度也越高
理论上将在熔点温度附近经长时间结晶得到的
晶体完全熔融的温度称之为该聚合物的平衡熔
点
T
0 m
影响聚合物熔点的因素
从热力学上讲, 在平衡熔点时, 聚合物的结晶过程 与熔融过程达到平衡
(A) 表面能(Surface energy) (B) 小的晶粒比大的晶粒具有更大的表面能
ΔH M=H c-H Missm aller
Tm
(C) (i) 结晶温度(P172) (D) 结晶温度越高, 结晶越完善, 熔点越高 (E) (ii) 晶片厚度 (F) 晶片厚度越大, 表面能越小, 熔点越高
l
France
液晶的化学结构与分类
不论高分子还是小分子液晶,形成有序流体都必须具 备一定条件,从结构上讲,称其为液晶基元
作为液晶基元的刚性结构部分大致可有三种不同的类 型,它们可以分别用我国的三种餐具来命名。
“筷型”(nematic) “碟型”(discotic) “碗型”
液晶的分类
按液晶基元所在位置分:
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
液晶态是物质的一种存在形态, 它具有晶体的 光学各向异性, 又具有液体的流动性质, 又称 之为介晶态
6.7.1 液晶聚合物的结构与性能
一些物质的结晶结构受热熔融或被溶剂溶解后, 表观上虽然变成了具有流动性的液体物质,但 结构上仍然保持着晶体结构特有的一维或二维 有序排列,形成一种兼有部分晶体和液体性质 的过渡状态,这种中间状态称为液晶态。其所 处状态的物质称为液晶。
5-2聚合物的结晶
X
v c
()-最终结晶度
X
v c
X
v c
()
-结晶程度
t -结晶时间 k-结晶速率常数
1
X
v c
X
v c
()
ht h h0 h
Vt V V0 V
n-Avrami指数,与成核机理与生长方式有关。
结晶速度的定量描述
1 X c exp(ktn ) X c ()
定义t1/2为
Xc 1 X c () 2
Cl
CH3
CH2
C n
CH3
H
OC n
H
另外还有聚酯(polyester),尼龙(nylon), 聚砜(PSF)等。
例4:支化越多,结晶能力下降 HDPE>LDPE(因为支化的分子链不
规整,难以结晶)
交联越多,结晶能力也下降 (因为交联的分子链不规整,难以结晶)
例5: 分子间氢键使结晶能力上升
恒温
聚合物+ 水银
不适于结晶速度较快的聚合物
t时刻结晶程度:
X
v c
X
v c
()
h0 ht h0 h
1
X
v c
X
v c
()
ht h0
h h
1
X
v c
X
v c
()
ht h0
h h
结晶速度:体积收缩一半时的时间的倒数 t1/2-1 :min-1, s-1
iii DSC法:
吸热
t0 t
t∞
Tm0
H S
平衡熔点很难测,可间接求出。
熔融热△H:分子或链段离开晶格所需吸收的能量,与分 子间作用力的强弱有关。
高分子物理教学中“结晶”概念的讲解
高分子物理教学中“结晶”概念的讲解高分子物理是一门研究高分子化合物的物理性质的学科,它通过研究高分子物质的结构、形态、动力学等方面,来深入了解高分子材料的性质和特性。
在高分子物理教学中,“结晶”概念是重要的一环,下面将从结晶的定义、产生机理、结晶速率与温度的关系以及高分子材料的晶体学等方面展开具体讲解。
首先说到结晶的定义,结晶是指高分子材料形成经典晶体的过程。
当高分子材料分子间的相互作用力已经超过了它们热运动所带来的热能,高分子材料会进入有序排列的状态,形成晶格结构。
高分子晶体可以看成不规则的、类似于几何体的平面毡球,其在的视角应始终保持正平视图,且其空间结构是有序的,表现出X射线衍射图案中的对称性,一般采用点群和空间群的符号来描述。
其次是结晶的产生机理。
高分子材料的结晶过程是一个动静态平衡的过程。
高分子分子在流动条件下呈链状展开的结构,但当高分子分子间的距离小到一定程度时,它们之间的链的空间位置相对固定,形成了一种有序排列的结构,也就是一定形态规则的晶体结构。
加入一些摩擦、外界因素的干扰,可以促进高分子有序排列的形成,形成不同形态的结晶。
同时,高分子材料在冷却过程中也会产生结晶。
一般情况下,随着温度的降低,高分子材料中分子的平均热能降低,使有序结构出现的自由能减少,从而促进结晶的形成。
再来看一下结晶速率与温度的关系。
在高分子物理实验中发现,结晶速率与温度有关联,温度越高,结晶速率就越快。
这是因为高分子分子在高温下具有较大的热运动能量,能够脱离有序排列结构,使结晶难以形成;而在低温条件下,高分子的分子热运动减弱,分子的有序结构应变化较小,从而有助于结晶的加速。
最后是高分子材料的晶体学问题。
高分子材料的晶体学分析是高分子物理中的一个重要领域。
晶体学主要解决了三个问题:一是晶体结构的解析分析,即确定每个分子的精确定位;二是晶体之间的相互作用问题,即利用X射线衍射技术和化学方法来确定精确的空间结构;三是晶体中分子的对称问题,即晶体对称性的问题。
第三章结晶动力学和热力学ppt课件
小分子晶体和高聚物晶体熔融过程 本质一样,过程不一样!
现象:结晶高聚物在熔限范围内,边熔融边升温
理论解释:聚合物分子链结构具有多分散性,其次 结晶过程分子链的重排形式极其复杂,另外,降温 过程不是足够的慢,重排不充分,使得结晶中的晶 粒停留在不同的阶段。
结晶高聚物中含有完 善程度不同的晶体,
0
121℃ 123℃ 124℃ 125℃
200
400
600
800
1000
1200
Crystallization Time (s)
G R t
20
三、 Avrami方程
结晶过程
成核
增长
(1) 聚合物的等温结晶动力学
Avrami Equation
Vt -V = exp(-Kt n ) Avrami指数
R (m)
50
结晶速率
40
Tc=180C
190C
30
159.2C 200.5C
球晶半径随时 间线性增长
20
150.3C
112C
10
141C
00
1
2
3
4
时间(h)
结晶速度
单峰型
Tg
Tmax
Tm 结晶温度
29
(1)结晶温度Tc ≥ Tm,分子热运动能量太高,不能 形成稳定的晶核;
(2)结晶生长过程是链段的重排过程, 即Tc >Tg
聚三氟氯乙烯: 自由基聚合产物,具有不对称碳原子且无 规, 但由于氯原子与氟原子体积相差不大,仍具有较强的 结晶能力,结晶度可达90%。
6
(B)全顺式、全反式、双烯类1,4加成聚合物, 链结构规整,也可以结晶,但因为链柔性太大, Tm很低,结晶速度很小。 聚1,4—丁二烯
聚合物的结晶动力学
聚合物的结晶动⼒学聚合物的结晶动⼒学本节主要内容:讨论结晶的过程和速度问题,即结晶的动⼒学问题。
⽬的:了解聚合物的结构和外界条件对结晶速度和结晶形态的影响,进⽽通过结晶过程去控制结晶度和结晶形态,以达到控制最终产品性能的⽬的。
⼀、⾼分⼦结构与结晶的能⼒聚合物结晶过程能否进⾏,必须具备两个条件:1、聚合物的分⼦链具有结晶能⼒,分⼦链需具有化学和⼏何结构的规整性,这是结晶的必要条件——热⼒学条件。
2、给予充分的条件-适宜的温度和充分的时间——动⼒学条件。
(⼀)链的对称性⼤分⼦链的化学结构对称性越好,就越易结晶。
例如:聚⼄烯:主链上全部是碳原⼦,结构对称,故其结晶能⾼达95%;聚四氟⼄烯:分⼦结构的对称性好,具有良好的结晶能⼒;聚氯⼄烯:氯原⼦破坏了结构的对称性,失去了结晶能⼒;聚偏⼆氯⼄烯:具有结晶能⼒。
主链含有杂原⼦的聚合物,如聚甲醛、聚酯、聚醚、聚酰胺、聚砜等,虽然对称性有所降低,但仍属对称结构,都具有不同程度的结晶能⼒。
(⼆)链的规整性主链含不对称碳原⼦分⼦链,如具有空间构型的规整性,则仍可结晶,否则就不能结晶。
如⾃由基聚合制得的聚丙烯、聚苯⼄烯、聚甲基丙烯酸甲酯等为⾮晶聚合物,但由定向聚合得到的等规或间规⽴构聚合物则可结晶。
⼆烯类聚合物:全顺式或全反式结构的聚合物有结晶能⼒;顺式构型聚合物的结晶能⼒⼀般⼩于反式构型的聚合物。
反式对称性好的丁⼆烯最易结晶。
(三)共聚物的结晶能⼒⽆规共聚物:1、两种共聚单体的均聚物有相同类型的晶体结构,则能结晶,⽽晶胞参数随共聚物的组成⽽发⽣变化。
2、若两种共聚单元的均聚物有不同的晶体结构,但其中⼀种组分⽐例⾼很多时,仍可结晶;⽽两者⽐例相当时,则失去结晶能⼒,如⼄丙共聚物。
嵌段共聚物:各嵌段基本上保持着相对独⽴性,能结晶的嵌段可形成⾃⼰的晶区。
例如,聚酯—聚丁⼆烯—聚酯嵌段共聚物中,聚酯段仍可结晶,起物理交联作⽤,⽽使共聚物成为良好的热塑性弹性体。
影响结晶能⼒的其它因素:1、分⼦链的柔性:聚对苯⼆甲酸⼄⼆酯的结晶能⼒要⽐脂肪族聚酯低2、⽀化:⾼压聚⼄烯由于⽀化,其结晶能⼒要低于低压法制得的线性聚⼄烯3、交联:轻度交联聚合物尚能结晶,⾼度交联则完全失去结晶能⼒。
【研究生】青岛科技大学硕士研究生入学考试高分子化学考试大纲
【关键字】研究生青岛科技大学硕士研究生入学考试高分子化学考试大纲一、本高分子化学考试大纲适用于青岛科技大学高分子材料与工程类专业的硕士生入学考试。
2、考试内容:(一)自由基聚合1、连锁聚合的单体2、自由基聚合机理3、链引发反应4、聚合速率5、分子量和链转移反应6、阻聚和缓聚7、分子量分布8、聚合热力学9、原子转移自由基聚合(二)自由基共聚合1、共聚物的类型和命名2、二元共聚物的组成方程3、单体和自由基的活性4、Q-e概念(三)聚合方法1、本体聚合2、溶液聚合3、悬浮聚合4、乳液聚合(四)离子聚合与配位聚合1、阳离子聚合单体2、阳离子聚合引发剂3、阳离子聚合机理4、阴离子聚合单体5、阴离子聚合引发剂6、阴离子聚合机理7、阴离子聚合在高分子合成中的应用8、开环聚合的单体、引发剂和反应机理9、配位聚合的基本概念10、聚合物的立体异构现象11、Ziegler-Natta引发剂12、丙烯的配位聚合机理13、极性单体的配位聚合14、茂金属引发剂15、二烯烃配位聚合引发剂16、二烯烃配位定向聚合机理(五)逐步聚合1、缩聚反应2、线形缩聚反应机理3、线形缩聚动力学4、线形缩聚物的聚合度5、重要的线形缩聚物6、体形缩聚7、凝胶化作用和凝胶点(六)聚合物化学反应1、聚合物基团反应三、考试要求:(一)自由基聚合明确可以发生自由基聚合反应的烯类单体。
掌握自由基聚合基本概念,如链引发、链增长、链转移、链终止。
准确描述自由基聚合特征,如慢引发与快增长、分子量与聚合时间、分子量与动力学链长、自动加速现象与分子量、自由基寿命的关系。
掌握自由基聚合普适性方程并能够熟练运用该方程进行计算。
掌握无链转移时动力学链长的表达式。
掌握有链转移时聚合度的表达式。
了解阻聚与自阻聚现象。
准确写出自由基聚合各基元反应方程式。
掌握引发剂分解动力学方程、写出分解反应方程式。
了解聚合上限温度的含义及计算公式。
了解原子转移自由基聚合的引发剂类型、催化剂类型。
第三章 高分子的结构与性能(1)
高分子合成-加工-应用
合成:决定高聚物链结构 单体-聚合物元素组成 聚合方法及工艺-分子链原子间相对位置 关系,链的几何形状及大小 加工成型:确定聚合物链段间或分子间聚 集态结构 高分子链结构、聚集态结构等各种结构效 应:决定高分子材料性能。对聚合物进行 加工和利用的依据
3.1 高分子的链结构 -近程结构(一级结构)
2、键接结构:
结构单元在分子链中的连接方式,通过控制合成条件可改变
单烯类单体CH2=CHX聚合时,单体单元连接方式可有如下 三种:
CH 2 CH CH 2 CH X X
CH 2 CH CH CH 2 X X
CH CH 2 CH 2 CH X X
头-尾连接
链结构(单 个分子的结 构与形态)
液晶结构
3.1 高分子的链结构 -近程结构(一级结构)
1.结构单元的化学组成
碳链高分子:这类高聚物不易水解,易加工,易 燃烧,易老化,耐热性较差。一般用作通用塑料。 杂链高分子:主链带极性,易水解,醇解或酸解。 优点:耐热性好,强度高。这类聚合物主要用作 工程塑料 元素高分子:具有无机物的热稳定性,有机物的 弹性和塑性。但强度较低。
3.1 高分子的链结构 -近程结构(一级结构)
5、共聚物的序列结构 ● ● ● ●
无规共聚物 交替共聚物 嵌段共聚物 接枝共聚物
3.1 高分子的链结构 -近程结构(一级结构)
无规共聚
两种单体单元无规则地排列
ABAABABBAAABABBAAA
例1: PE,PP是塑料,但 乙烯与丙烯无规 共聚的产物为橡胶。 例2: PTFE(聚四氟乙烯)是塑料,不能 熔融加工,但四氟乙烯与六氟丙烯共聚物是 热塑性的塑料。
高分子物理总结
第三章 高聚物的分子运动3.1 高聚物的分子热运动1. 高分子热运动的特点1. 运动单元的多重性。
除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).2. 运动时间的依赖性。
高分子热运动是一个松驰过程。
在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作τ./0t x x e τ-= 当t=τ时, 10x x e -=式中0x 是外力未除去时塑料丝增加的长度,x (t)是外力除去后,在t 时间内测出塑料丝增加的长度,τ为常数。
因而松驰时间定义为: x 变到等于0x 的1e -时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小, τ不是单一值而是一个分布,称为”松弛时间谱”.3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。
②温度升高使高聚物发生体积膨胀。
升高温度加快分子运动,缩短松驰时间,即有/0E RT e ττ= 式中E 为活化能, 0τ为常数.如果高聚物体系的温度较低,运动单元的松驰时间τ就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间τ,就能在较短的时间内观察到松驰现象。
2. 高聚物的力学状态和热转变在一定的力学负荷下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)①线型非晶态高聚物的温度-形变曲线.线形非晶态聚合物的形变-温度曲线玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复.这种形变称为普弹形变.玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t 称为玻璃态转变温度(T g ).高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变.高弹态是高分子所特有的力学状态.流动温度:链段沿作用力方向的协同运动导致大分子的重心发生相对位移,聚合物呈现流动性,转变温度称为流动温度(T f ).粘流态:与小分子液体的流动相似,聚合物呈现粘性液体状,流动产生了不可逆变形.②交联高聚物的温度-形变曲线 交联度较小时,存在T g , 但T f 随交联度增加而逐渐消失.交联度较高时, T g 和T f 都不存在.③晶态聚合物的温度-形变曲线. 一般相对分子质量的晶态聚合物只有一个转变,即结晶的熔融,转变温度为熔点T m .当结晶度不高(X c <40%)时,能观察到非晶态部分的玻璃化转变,即有T g 和T m 两个转变.相对分子质量很大的晶态高聚物达到T m 后,先进入高弹态,在升温到T g 后才会进入粘流态,于是有两个转变.④增塑聚合物的温度-形变曲线 加入增塑剂一般使聚合物的T g 和T f 都降低,但对柔性链和刚性链,作用有所不同.对柔性链聚合物, T g 降低不多而T f 降低较多,高弹区缩小;对刚性链聚合物, T g 和T f 都显著降低,在增塑剂达到一定浓度时,由于增塑剂分子与高分子基团间的相互作用,使刚性链变为柔性链,此时T g 显著降低而T f 降低不大,即扩大了高弹区,称”增弹作用”,这点对生产上极为有用(如PVC 增塑后可作为弹性体用).3. 高聚物的松驰转变及其分子机理在T g 以下,链段是不能运动了,但较小的运动单元仍可运动,这些小运动单体从冻结到运动的变化过程也是松弛过程,称为次级松弛。
高分子物理结构与性能第三章结晶动力学与结晶热力学
Avrami指数——与成核机理和晶体生长方式有关的常数,等于生长的空间维数和成核过程的时间维数之和。
生长方式
均相成核
异相成核
三维生长(球晶)
n=3+1=4
n=3+0=3
二维生长(片晶)
n=2+1=3
n=2+0=2
一维生长(针状晶体)
n=1+1=2
n=1+0=1
不同成核方式和生长类型的Avrami指数
求平均值E(E是时间的函数)
设单位面积内的平均雨滴数为N,当时间由t增加到t+dt时,有效面积的增量为2πrdr,平均值E的增量为:
设水波前进速度(球晶生长速度)为v,则有:
1
对上式积分即可得到m的平均值E与t的关系:
2
—— 一次性成核且晶核密度为N时,结晶体系内的非晶部分与时间的关系
3
P
r
二次结晶——聚合物主期结晶结束后仍在进行的结晶 二次结晶进行的相当缓慢,可以延续几个月,甚至几年。在这段时间内,材料的热力学状态以及各种性质一直随二次结晶的进行而变化,因此会导致制品发生变形、开裂等问题,所以二次结晶是应该避免的。 避免二次结晶的措施: 对聚合物制品进行“退火”处理,即在较高的温度下对制品进行热处理,促进聚合物的二次结晶,使结晶尽早完成。
σ——侧表面自由能; σe——端表面自由能; bo——单分子层厚度; hf——单位体积理想聚合物晶体熔融热焓。
单击此处添加大标题内容
以 对 作图,可以得到:
与成核方式有关的参数Kg 与晶核生成速率相关的参数Go 可以求出σσe
LH(Lauritizen-Hoffmann )方程
急冷至结晶温度
高分子物理第三章
下,链段重排运动的启动或逐渐被抑制才可表现出 下,链段重排运动的启动或逐渐被抑制才可表现出 来,即测到的T 值高。 来,即测到的Tgg值高。
3.3.1玻璃化转变温度的测定
原理:聚合物发生玻璃化转变时,某些性
能发生急剧的变化,可以通过这些物理性 能发生急剧变化的温度来测定Tg。 ①利用体积随温度变化而变化的方法 测量聚合物体积或比容随温 度变化,得到体积(比容)-温 度曲线,确定Tg。 通常用膨胀计法测量,还有折 光指数法、扩散系数法、导热系 数法等.
粘流态
高弹态
同线型非结晶聚合物
3.2.5线性结晶聚合物的转变
次级转变
晶区、非晶区中
玻璃化转变 非晶区中,较弱 晶型转变 结晶预熔
晶区中由一种晶型转变为另一种晶型,聚 四氟乙烯119度,由三斜到六方晶型 晶体表面结构不太完整的部分熔融,其中链段 逐渐能重排运动,用Tc表示,Tc≈0.8~0.9Tm 结晶态与高弹态间的转变,晶格瓦解,由硬而 韧→富有弹性柔韧,晶区中链段重排运动逐渐 启动,特征温度Tm 高弹态与粘流态间的转变,特征温度
1、自由体积理论
T< Tg T=Tg
dV Vg = V0 + ( ) g T + V f g dT
dV VTg = V + V0 + ( ) g Tg dT
g f
dV Vr = VTg + ( ) r (T − Tg ) dT
T>Tg
1、自由体积理论
玻璃化转变时的自由体积分数:
fTg = V fg VTg
高分子物理
第三章 聚合物的分子运动与转变
3.1 聚合物的分子运动 3.2 聚合物的力学状态和转变 3.3 玻璃化转变
3.3玻璃化转变
高分子物理----高分子的热学性能
四、影响玻璃化转变温度的因素
Cl
[ CH2
T / oC:
CH ] Cl 87
n
[ CH2
C Cl -17
]n
F
[ CH2
T / oC:
CH ] F 40
n
[ CH2
C F度的因素
(3)分子间作用力(极性、氢键 、离子键)
a.极性
侧基的极性越强,分子间作用力越大,柔性越 差,Tg越高。
[ CH2
CH ] R CH3 R: H CH3 -20 CH2CHCH3 29 100 138
n
T / oC: -68
[ CH2
CH ]
n CH3 CH3 C CH3 CH3 43
COOR R: T / oC: CH2CH2CH3 -56 CH2CHCH3 -22
四、影响玻璃化转变温度的因素
b.侧基柔性
难易程度。
二、聚合物的力学状态与热转变
c. 脆化温度 (Tb) 在玻璃态,高聚物虽然很硬,但并不脆,因而可以
作为塑料被广泛使用,但当温度进一步降低,达到一定
的温度时,在外力作用下,高聚物大分子发生断裂,这
个温度称为脆化温度,是高分子所有性能的终止点。
二、聚合物的力学状态与热转变
d. 分解温度 (Td) 分解温度是高聚物开始发生交联、降解等化学变 化的温度。在加工时不能超越这一温度。
玻璃化温度是指聚合物从玻璃态向高弹态转变的 温度,也是链段开始运动或被冻结的温度。
关于玻璃化温度的测试方法比较多,但大致可分
成下面四类方法。
三、聚合物的玻璃化转变
1. 利用体积的变化的方法 常采用膨胀计来测试。 2. 利用热力学性质变化的方法 ① 差热分析(DTA) ② 差示扫描量热仪(DSC)
结晶聚合物的熔融过程与熔点课件
Avrami Equation
次期(二次)结晶:偏离 Avrami方程的聚合物后期结晶
主期结晶:可用Avrami方程 定量描述的聚合物前期结晶
不同成核和生长类型的Avrami指数值
生长类型
均相成核 n=生长维数+1
三维生长(球状 晶体)
n=3+1=4
二维生长(片状 晶体)
n=2+1=3
一维生长(针状 晶体)
低温
高温
(2)压力、溶剂、杂质(添加剂)
压力、应力
eg:LDPE是在
加速结晶 高温高压下的得
到的
溶剂: 小分子溶剂诱导结晶
杂质(添加剂)
若起晶核作用,则促进结 晶,称为“成核剂”
若起隔阂分子作用,则 阻碍结晶生长
加入杂质可使聚合物熔点降低(相当于溶 剂的稀释作用)
(3) 分子量
分子量M小,结晶速度快 分子量M大,结晶速度慢
(B)聚异丁烯PIB, 聚偏二氯乙烯PVDC, 聚甲醛
POM
CH2
CH3
C
n
CH3
Cl
CH2 C
n
Cl
O
CH 2
n
结构简单,对称性好,均能结晶
(C)聚酯类、聚酰胺虽然结构复杂,但无不 对称碳原子,链呈平面锯齿状,还有氢键,也 易结晶 。如: PET,Nylon
(D) 定向聚合的聚合物具有结晶能力
分子量增大,链段运动能力降低,聚合物 结晶速度慢。
5.5 结晶热力学(或熔融热力学) Thermodynamics of crystallization
-
体 积 温 度 变 化 图
熔限:聚合物熔融 有一较宽的温度范 围,约10℃左右。
高分子材料的结晶和动力学研究
高分子材料的结晶和动力学研究一、前言高分子材料广泛应用于现代工业,因其良好的机械性能,化学稳定性和可塑性等特点。
然而,高分子材料内部多数为非晶态,其性质受结晶度影响很大。
因此,研究高分子材料的结晶及动力学行为对于掌握其性质和生产控制具有重要意义。
二、高分子材料的结晶1. 结晶的定义及分类高分子材料结晶是指在一定温度下,高分子链在分子间作用力的作用下,有序排列并逐渐形成规则的结晶区域。
常见的高分子结晶有三种类型:①单向拉伸结晶:高倍定向拉伸过程中,拉伸方向上的分子先形成结晶核心,然后逐渐沿着拉伸方向延伸。
②等温晶化结晶:高分子在等温条件下慢慢形成结晶。
③快速淬火结晶:高分子在快速冷却后形成临时性的结晶。
2. 影响高分子材料结晶的因素高分子材料结晶的过程涉及多种物理和化学变化,主要因素如下:①高分子本身的结晶度:其原子元素的排布方式影响材料的晶体结构。
②温度:高分子材料的结晶度和结晶率与温度有直接关系。
③溶液浓度:过饱和的溶剂中结晶率较高,但过度稀释的组成也会导致结晶度或结晶率不足。
④拉伸速度:一定速度下结晶越完善,另一些材料则相反,这与聚合物分子链结构有关系。
3. 结晶行为的表征高分子材料的结晶行为可以通过多种手段进行表征:①X射线衍射分析:一种直接的方法,可以确定聚合物的结晶结构和结晶度。
②差示扫描量热分析:通过测量反应热,表征聚合物晶化过程,并得到聚合物的结晶能和活化能等动力学参数。
③书面化学分析:通过核磁共振(NMR)技术和X射线光电子俄罗斯(ESCA)技术获得原子结构,研究结晶行为。
三、高分子材料的动力学行为高分子材料的分子链在空间中存在大量的运动,同时结晶与熔融的过程也行使分子链参与行动。
因而,高分子链的动力学行为对于聚合物材料的机械性能和物理性能的改变具有核心性影响。
1. 高分子材料分子链运动高分子链在空间中存在多种运动方式,如扭曲、摆动运动、爬行运动等。
其中,最主要的三种运动形式为:①自由扭曲运动:聚合物链在空间中翻,旋,摆,跳等自由的扭曲形变运动。
(完整版)高分子物理重要知识点
(完整版)⾼分⼦物理重要知识点⾼分⼦物理重要知识点第⼀章⾼分⼦链的结构1.1⾼分⼦结构的特点和内容⾼分⼦与低分⼦的区别在于前者相对分⼦质量很⾼,通常将相对分⼦质量⾼于约1万的称为⾼分⼦,相对分⼦质量低于约1000的称为低分⼦。
相对分⼦质量介于⾼分⼦和低分⼦之间的称为低聚物(⼜名齐聚物)。
⼀般⾼聚物的相对分⼦质量为104~106,相对分⼦质量⼤于这个范围的⼜称为超⾼相对分⼦质量聚合物。
英⽂中“⾼分⼦”或“⾼分⼦化合物”主要有两个词,即polymers和Macromolecules。
前者⼜可译作聚合物或⾼聚物;后者⼜可译作⼤分⼦。
这两个词虽然常混⽤,但仍有⼀定区别,前者通常是指有⼀定重复单元的合成产物,⼀般不包括天然⾼分⼦,⽽后者指相对分⼦质量很⼤的⼀类化合物,它包括天然和合成⾼分⼦,也包括⽆⼀定重复单元的复杂⼤分⼦。
与低分⼦相⽐,⾼分⼦化合物的主要结构特点是:(1)相对分⼦质量⼤,由很⼤数⽬的结构单元组成,相对分⼦质量往往存在着分布;(2)主链有⼀定的内旋⾃由度使分⼦链弯曲⽽具有柔顺性;(3)⾼分⼦结构不均⼀,分⼦间相互作⽤⼒⼤;(4)晶态有序性较差,但⾮晶态却具有⼀定的有序性。
(5)要使⾼聚物加⼯成为有⽤的材料,需加⼊填料、各种助剂、⾊料等。
⾼分⼦的结构是⾮常复杂的,整个⾼分⼦结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1⾼分⼦的结构层次及其研究内容由于⾼分⼦结构的如上特点,使⾼分⼦具有如下基本性质:⽐重⼩,⽐强度⾼,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。
此外,⾼分⼦不能⽓化,常难溶,粘度⼤等特性也与结构特点密切相关。
1.2⾼分⼦链的近程结构⾼分⼦链的化学结构可分为四类:(1)碳链⾼分⼦,主链全是碳以共价键相连:不易⽔解(2)杂链⾼分⼦,主链除了碳还有氧、氮、硫等杂原⼦:由缩聚或开环得到,因主链由极性⽽易⽔解、醇解或酸解(3)元素有机⾼分⼦,主链上全没有碳:具有⽆机物的热稳定性及有机物的弹性和塑性(4)梯形和螺旋形⾼分⼦:具有⾼热稳定性由单体通过聚合反应连接⽽成的链状分⼦,称为⾼分⼦链。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
vt
2 2
1 Vc exp( Nv t )
2 2
—— 一次性成核且晶核密度为N时,结晶体系内的 非晶部分与时间的关系
(2) 对于晶核不断生成的情况(雨滴不断落入) I——单位时间单位面积上产生的晶核数(晶核生 成速率); It——单位面积上从0到t时刻产生的晶核数(相当 于生成的水波数);
m
E e P(m) e m!
(m 0,1,2,3)
E——0到t时刻通过任意点P的水波数的平均值。
对于薄层熔体形成二维球晶的情况
雨水滴落到水面上相当于形成晶核,而水波 的扩展相当于二维球晶的生长。当m=0时,意味 着所有的球晶面都不经过P点。 即P点仍处于非晶态的几率为:
P(0) e
其它影响结晶能力的因素
链柔性——链柔性有利于晶体生长。
柔性链聚合物: 聚乙烯; 刚性链聚合物: PET,聚碳酸酯;
支化、交联 —— 支化和交联破坏了分子链的规整 性和对称性,限制了链段的运动, 从而阻碍结晶。
二、聚合物的结晶过程
聚合物的结晶包括晶核生成和晶体生长两个阶 段,晶核生成分为均相成核和异相成核两种方式: 均相成核——高分子熔体冷却过程中部分分子链依 靠热运动形成有序排列的链束成为晶核;
二次结晶 —— 聚合物主期结晶结束后仍在进行的 结晶
二次结晶进行的相当缓慢,可以延续几个月, 甚至几年。在这段时间内,材料的热力学状态以 及各种性质一直随二次结晶的进行而变化,因此 会导致制品发生变形、开裂等问题,所以二次结 晶是应该免的。
避免二次结晶的措施: 对聚合物制品进行“退火”处理,即在较高 的温度下对制品进行热处理,促进聚合物的二次 结晶,使结晶尽早完成。
V∞ ——结晶结束时聚合物的比容;
结晶完全时的最大体积收缩:ΔV∞ = V0 - V∞
t 时刻未收缩的体积: t 时刻未收缩的体积分数: ΔVt = Vt - V∞ ΔVt/ΔV∞
结晶速率与应该结晶但尚未结晶部分有关
(或者与应该收缩但尚未收缩体积有关),与结
晶时间t 有关,所以结晶速率可表示为:
d V kVt L dt
第三章 结晶动力学与结晶热力学
§3-1 聚合物的结晶过程
§3-2 聚合物结晶动力学 §3-3 聚合物结晶热力学
§3-1 聚合物的结晶过程
一、聚合物的结晶能力
——聚合物结晶的必要条件是链结构具有对称性和 规整性。分子链的对称性越高,规整性越好,越容 易进行规则排列,形成三维有序的结晶结构;而对 称性差、缺乏立构规整性的聚合物的分子链则不能 结晶。 原因——晶体是一种对称性的固体,对称、规整的 链结构容易满足晶体中三维有序排列的要求。
mW 开始结晶 t=0 结晶结束 t=t∞
基线
t
t /min
聚合物的DSC结晶曲线
ΔH∞——结晶开始到结晶完成的放热量; ΔHt ——从结晶开始到某时刻的放热量;
t
H t X (t ) H
o
o
dH dt dt dH dt dt
以ΔHt/ΔH∞对时间作图,可以得到结晶程度 与结晶时间的关系曲线。
4 3 3 E N 4r dr Nv t 3 0
2
vt
N——单位体积的 晶核数
(2) 对于晶核不断形成体系
r 34 2 E I (t )4r dr Iv t t 3 0
vt
I——单体时间单位 体积产生的晶核数
概括上述各种情况,可以用一个通式来表示 结晶过程中非晶部分含量与结晶时间的关系
§3-2 聚合物结晶动力学
一、等温结晶动力学
Avrami方程
1 X (t ) exp( Kt )
t——结晶时间; X(t)——t时间的结晶程度; K ——结晶速率常数;
n
n——Avrami指数;
Avrami方程的推导——方法(1)
V0—— 结晶开始时聚合物的比容;
Vt —— 结晶进行到 t 时刻聚合物的比容;
o e m
σ——侧表面自由能;
σe——端表面自由能;
bo——单分子层厚度; △hf——单位体积理想聚合物晶体熔融热焓。
ln G ln Go F / KTc K g / T Tc
以
ln G F / kTc 对 1/ TTc 作图,可以得到:
(1)与成核方式有关的参数Kg
(2) 与晶核生成速率相关的参数Go
共聚对聚合物结晶能力的影响
无规共聚 —— 使分子链对称性和规整性下降,聚 合物结晶能力降低。
交替共聚——与无规共聚相似。 嵌段共聚 —— 当嵌段长度较长时,不同链段基本 保持独立,嵌段共聚不影响原来的结晶能力。 接枝共聚 —— 支链对主链的规整结构起到了破坏 作用,导致主链结晶能力下降,下降的幅度取决于 支化度的高低。
r P
dr
设单位面积内的平均雨滴数为N,当时间由t增加到 t+dt时,有效面积的增量为2πrdr,平均值E的增量 为: dE N 2rdr 设水波前进速度(球晶生长速度)为v,则有:
r Vt
对上式积分即可得到m的平均值E与t的关系:
E dE N 2rdr Nv t
L——与成核机理和生长方式有关的参数 对上式积分可以得到:
Vt V 1 X (t ) exp( Kt n ) Vo V
Avrami方程的推导——方法(2)
水波扩展模型——雨水滴落在水面上将生成一个 个圆形水波,并且等速向外扩展。在水面上任意 一个点上,在时间从0 t的范围内通过该点的水 波数为m的几率P(m)为多少? 根据概率分析,当落下的雨滴数大于m时:
非等温结晶
晶态I
晶态II
晶态III
聚合物从熔体或从玻璃态结晶的示意图
结晶程度——结晶已完成部分占应该完成部分的分数
结晶程度X(t)与时间的关系曲线
结晶程度达到1/2时的时间——半结晶时间t1/2
三、聚合物结晶过程的研究方法
在聚合物结晶过程中,聚合物的一些物理性质 会发生相应的变化,并且伴有热效应。通过测量这 些性质随结晶时间的变化就可以对聚合物结晶过程 进行跟踪,并且研究其结晶动力学。
三维生长(球晶)
二维生长(片晶)
n=3+1=4
n=2+1=3
n=3+0=3
n=2+0=2
一维生长(针状晶体)
n=1+1=2
n=1+0=1
Avrami方程的应用:
lg ln1 X (t ) n lg t lg K
以等式左边对 lgt 作图可以得 到一条直线:
斜率——Avrami指数; 截距——结晶速率常数K; 半结晶时间——t1/2=(ln2/K)1/n 令X(t)对t的二阶导数为零可得 到达最大结晶速率的时间:
lg[-ln(1-X(t))]
t max
n 1 1/ n ( ) nK
lgt
Avrami方程应用时存在的问题
1 )测定出的 Avrami 指数 n 不是整数,因此失去了 原来的物理意义。造成n为非整数的原因主要有:
(A)存在对时间有依赖性的初期成核作用; (B)结晶过程中均相成核和异相成核同时存在; 2)用Avrami方程作图时,直线的最后部分往往与 实验点发生偏离。这种偏离可能是由于“二次 结晶”造成的。所以 Avrami 方程可以较好地描 述聚合物结晶的前期阶段——“主期结晶”,但 没有考虑“二次结晶”的情况。
1)体积或密度的变化——膨胀计方法
2)光学各向异性——偏光显微镜方法
3)热效应——示差扫描量热法(DSC) 另外还有小角激光散射法、动态X射线衍射法、 光学解偏振法等。
DSC方法
随结晶程度增加,放热量增多;随结晶速率 增加,放热速率增大。通过测量结晶放热速率随 时间的变化可以了解结晶过程的情况。
结 晶 放 热 速 率
1 Vc exp(kt )
n
1 X (t ) exp( Kt )
t——结晶时间; X(t)——t时间的结晶程度; K ——结晶速率常数;
n
n——Avrami指数;
Avrami 指数 —— 与成核机理和晶体生长方式有关 的常数,等于生长的空间维数和成核 过程的时间维数之和。 不同成核方式和生长类型的Avrami指数 生长方式 均相成核 异相成核
4、Mandelkern 方程
1)TF方程中△F值由WLF方程求出的假定太武断; 2)有些聚合物结晶体系的Tg不明确;
k T ED G Go exp( ) exp( ) R Tc Tc T
o 2 m
4bo e / h f k k2
ED——迁移活化能,R——气体常数,
E
假设此时球晶部分所占的体积分数为Vc,则有:
1 Vc P(0) e
E
求平均值E(E是时间的函数)
1. 一次性同时成核的情况——所有的雨滴同时落 入水面的情况。 假定——从0到t时刻水波前进 的距离为r, 那么,以P点为中心,以r为半 径的圆面内所有的雨滴所产生 的水波都将通过P点。这个圆 面积称为有效面积,通过P点 的水波数就等于在这个有效面 积内落入的雨滴数。
对应于时间增量dt,有效面 积增量仍为2πrdr。但是,并非 有效面积内“所有”的水波都能 够通过P点,能否通过P点与落 点到P点的距离以及产生的时间 有关,只有满足 t r / v 的条件 所产生的水波才能通过P点。
dr r P
因此:
r dE I (t ) 2rdr v
对上式积分:
对LH方程两边取对数:
Kg U ln G ln Go R(Tc T ) Tc T f
1 U 以 ln G 对 作图,可以得到: Tc T f R(Tc T )
(1) 与成核方式有关的参数Kg