Adams动力学仿真分析的详细步骤

合集下载

基于ADAMS的悬架系统动力学仿真分析与优化设计

基于ADAMS的悬架系统动力学仿真分析与优化设计

基于ADAMS的悬架系统动力学仿真分析与优化设计一、概述本文以悬架系统为研究对象,运用多体动力学理论和软件,从新车型开发中悬架系统优化选型的角度,对悬架系统进行了运动学动力学仿真,旨在研究悬架系统对整车操纵稳定性和平顺性的影响。

文章提出了建立悬架快速开发系统平台的构想,并以新车型开发中的悬架系统优化选型作为实例进行阐述。

简要介绍了汽车悬架系统的基本组成和设计要求。

概述了多体动力学理论,并介绍了利用ADAMS软件进行运动学、静力学、动力学分析的理论基础。

基于ADAMSCar模块,分别建立了麦弗逊式和双横臂式两种前悬架子系统,多连杆式和拖曳式两种后悬架子系统,以及建立整车模型所需要的转向系、轮胎、横向稳定杆等子系统,根据仿真要求装配不同方案的整车仿真模型。

通过仿真分析,研究了悬架系统在左右车轮上下跳动时的车轮定位参数和制动点头量、加速抬头量的变化规律,以及汽车侧倾运动时悬架刚度、侧倾刚度、侧倾中心高度等侧倾参数的变化规律,从而对前后悬架系统进行初步评估。

1. 悬架系统的重要性及其在车辆动力学中的作用悬架系统是车辆的重要组成部分,对车辆的整体性能有着至关重要的作用。

它负责连接车轮与车身,不仅支撑着车身的重量,还承受着来自路面的各种冲击和振动。

悬架系统的主要功能包括:提供稳定的乘坐舒适性,保持车轮与路面的良好接触,以确保轮胎的附着力,以及控制车辆的姿态和行驶稳定性。

在车辆动力学中,悬架系统扮演着调节和缓冲的角色。

当车辆行驶在不平坦的路面上时,悬架系统通过其内部的弹性元件和阻尼元件,吸收并减少来自路面的冲击和振动,从而保持车身的平稳,提高乘坐的舒适性。

同时,悬架系统还能够根据车辆的行驶状态和路面的变化,自动调节车轮与车身的相对位置,确保车轮始终与路面保持最佳的接触状态,以提供足够的附着力。

悬架系统还对车辆的操控性和稳定性有着直接的影响。

通过合理的悬架设计,可以有效地改善车辆的操控性能,使驾驶员能够更加准确地感受到车辆的行驶状态,从而做出更为精确的操控动作。

msc adams多体动力学仿真基础与实例解析

msc adams多体动力学仿真基础与实例解析

MSC Adams是一种常用的多体动力学仿真软件,它可以用于研究和分析机械系统、运动学和动力学特性。

下面简要介绍MSC Adams的基础知识和实例解析:
1. 多体动力学基础:
-刚体和连接:MSC Adams使用刚体模型来表示物体,可以定义物体的质量、惯性矩阵和几何形状。

通过连接件(约束)将多个物体连接在一起,可以模拟各种机构系统。

-动力学模型:通过定义物体的受力和力矩,可以建立动力学模型。

这些力可以包括重力、摩擦力、弹簧力等,可以根据需要进行自定义。

-运动学分析:可以分析物体的位置、速度、加速度以及各个连接件之间的相对运动关系。

2. 实例解析:
-车辆悬挂系统:通过建立车辆悬挂系统的多体动力学模型,可以分析车轮与地面的接触力、悬挂系统的行程和动态响应等。

这有助于改善车辆的悬挂性能和乘坐舒适性。

-机械臂运动学和动力学分析:通过建立机械臂的多体动力学模型,可以分析机械臂在不同工作状态下的位姿、速度和加速度。

这有助于优化机械臂的设计和运动控制算法。

-飞机起落架系统:通过建立飞机起落架系统的多体动力学模型,
可以分析起落架在着陆和起飞时的动态响应和受力情况。

这有助于改进起落架的设计和耐久性。

-振动系统:通过建立振动系统的多体动力学模型,可以分析系统的固有频率、振动模态和受力情况。

这有助于评估结构的稳定性和设计适当的减振措施。

以上是MSC Adams多体动力学仿真的基础知识和一些实例解析。

通过使用MSC Adams,工程师和研究人员可以更好地理解和优化复杂机械系统的动力学特性。

ADAMS运动学分析

ADAMS运动学分析

ADAMS运动学分析简介ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是一款用于进行多体动力学仿真分析的软件。

它是一种基于动力学原理的分析方法,可以用于研究物体的运动与力学关系。

本文档将介绍ADAMS软件的运动学分析功能,并提供一些使用指南。

运动学分析的定义运动学分析是指研究物体运动的位置、速度和加速度等基本特征的分析方法。

ADAMS通过求解物体的运动方程,从而得到物体在运动过程中的位置、速度和加速度等参数。

运动学分析的基本步骤进行运动学分析通常需要以下几个基本步骤:1.建模:首先需要将待分析的物体建模,并定义其运动学参数,如位置、速度和加速度。

2.添加约束:在ADAMS中,可以通过添加约束来定义物体之间的关系,如连接、限制等。

这些约束可以限制物体的运动方式,从而简化分析过程。

3.定义运动:在ADAMS中,可以通过定义初始条件和施加力来模拟物体的运动。

初始条件可以包括物体的初始位置、速度和加速度,而施加的力可以模拟外部作用力、约束力等。

4.运行仿真:通过设置仿真参数,如仿真时间和步长,来运行仿真模拟。

ADAMS会根据模型和参数进行计算,并输出物体的运动学参数。

5.分析结果:仿真完成后,可以通过ADAMS提供的结果分析工具来查看模拟结果,如位置、速度和加速度等。

ADAMS运动学分析的特点ADAMS作为一款专业的多体动力学仿真软件,具有以下特点:1.精确性:ADAMS采用高精度的求解方法,可以准确地求解物体的运动学方程,从而得到准确的运动学参数。

2.灵活性:ADAMS提供了丰富的建模和约束选项,可以灵活地建立各种复杂的物体模型,并定义各种约束关系。

3.可视化:ADAMS提供了直观的可视化界面,可以对模型进行可视化操作,并实时显示仿真结果。

4.可扩展性:ADAMS支持多种扩展模块和接口,可以与其他CAE软件和编程语言进行集成,方便进行进一步分析和开发。

ADAMS教程很详细手把手教你学会

ADAMS教程很详细手把手教你学会

ADAMS教程很详细手把手教你学会
ADAMS是一款领先的多体动力学仿真软件,广泛应用于机械、航空航天、汽车等领域。

它可以帮助工程师进行产品设计、性能分析、优化等工作。

本文将介绍ADAMS的使用方法,通过详细的手把手教程,让你轻松掌握ADAMS的技术。

接下来,我们需要在模型中添加不同的零部件,比如连接件、传动件等。

通过简单的拖拽操作,将零部件拖放到模型中,并连接它们。

通过设定零部件的属性和参数,可以定制不同的模型。

在模型构建完成后,我们可以进行仿真分析。

点击仿真按钮,ADAMS 将自动计算模型的运动学和动力学特性,得到系统的运动轨迹、力学特性等。

通过对仿真结果的分析,我们可以了解系统的行为和性能。

除了基本的模型构建和仿真分析,ADAMS还提供了优化功能。

通过设定不同的优化目标和约束条件,ADAMS可以自动优化系统设计,使其达到最佳性能。

另外,ADAMS还支持多种输出格式,比如图表、动画等。

我们可以将仿真结果输出为图表,方便进行数据分析;也可以生成动画演示,直观显示系统的运动过程。

总的来说,ADAMS是一款功能强大的多体动力学仿真软件,能帮助工程师进行产品设计和性能分析。

通过本文的手把手教程,相信你已经掌握了ADAMS的基本使用方法,希望你能够在工程设计中充分发挥ADAMS的优势。

ADAMS操作与实例解析

ADAMS操作与实例解析

ADAMS操作与实例解析ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是一种常用的机械系统动力学仿真与分析软件,可以用于模拟和优化各种机械系统,包括汽车、飞机、船舶、机械臂等。

在这篇文章中,将介绍ADAMS的操作流程以及一些实例解析。

1.建模:ADAMS提供了丰富的建模工具,可以通过创建零件模型来构建机械系统的模型。

用户可以直接导入CAD文件或者通过ADAMS的建模工具手动创建零件模型。

在建模过程中,用户需要定义每个零件的几何特征和物理性质。

2.装配:在建模完成后,需要对所有的零件进行装配操作。

用户可以使用简单的拖拽操作将零件放置到正确的位置,并设置它们之间的连接关系。

ADAMS提供了多种连接方式,包括球接头、铰接、滑动接头等。

3.定义运动:一旦完成了装配操作,用户需要为机械系统定义运动。

ADAMS支持多种运动方式,包括平移、旋转、摆动等。

用户可以通过设置零件的运动公式或者直接拖动零件使其运动。

4.分析:定义了机械系统的运动后,可以进行多种分析,如运动模拟、动力学分析、碰撞检测等。

ADAMS提供了丰富的分析工具和图表,可以帮助用户研究机械系统的性能和优化设计。

接下来,将通过两个实例来解析ADAMS的应用。

实例一:汽车悬挂系统分析假设我们要分析一种新型的汽车悬挂系统的性能。

首先,我们需要在ADAMS中建立一个悬挂系统的模型,包括车轮、悬挂臂、弹簧等零件。

然后,通过调整零件的连接关系和运动方式,定义悬挂系统的运动。

接着,我们可以进行动力学分析,如行驶过程中的减震性能测试、路面不平度下的车辆响应等。

通过观察ADAMS提供的图表和动画,我们可以评估悬挂系统的性能,并优化设计。

实例二:机器人臂运动规划假设我们要设计一个机械臂,能够完成复杂的运动任务,如抓取物体、放置物体等。

首先,我们需要建立机械臂的模型,包括关节、链接件等零件,并设置它们之间的运动关系。

机电系统与仿真技术课件4Adams仿真方法与基本操作

机电系统与仿真技术课件4Adams仿真方法与基本操作
ADAMS/View 工具列浏览:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
几何建模
测量
恢复/重做
运动
连接
色盘
移动
动态浏览
建构力元素
前后视图
动态旋转
上下视图
左右视图
背景顏色
视窗布置
其他
3.5.2 命令菜单方式 对于主工具箱中不包含的命令,可以在命令菜单栏中选择输入,有以下几种输入菜单命令的方法: 用鼠标选择菜单中的有关命令; 在按下Alt的同时,键入菜单标题中下划线的字母,选择有关菜单,再用同样的方法选择命令; 按F10键激活File菜单,然后用箭头键来移动选择有关菜单和命令; 使用命令快捷键。
ADAMS/PostProcessor : 显示ADAMS仿真结果的可视化图形界面 。 提供了一个统一化的界面,以不同的方式回放仿真的结果。为了能够反复使用,页面设置以及数据曲线格式都能保存起来,这样既有利于节省时间也有利于整理标准化的报告格式。 可以方便地同时显示多次仿真的结果以便比较。
零件
以 Euler角 系统定义部件的旋转方式,同时区分为Body-fixed, Space-fixed ADAMS/View缺省值为Body[3,1,3] 1 -- X axis 2 -- Y axis 3 -- Z axis
部件和几何外形之间的关系
部件 定义可以相对于其它的物体运动的可动物体(刚性体或弹性体),该对象包含以下特性: 质量 转动惯量 初始的位置和方向 (PCS) 初始的速度 几何外形 为了可视化的效果加在可动部件上,比如: 长度 半径 宽度 对于大多数的仿真分析来说,几何外形是不需要的 注意:某些分析中包含碰撞问题,而碰撞力的定义需要依据几何外形来确定碰撞力的大小,有关这个问题,我们将在 Hatchback IV 部分进行讨论。

ADAMS受力分析

ADAMS受力分析

ADAMS受力分析受力分析是指通过ADAMS(Automatic Dynamic Analysis of Mechanical Systems,机械系统自动动态分析)软件对机械系统进行受力分析的过程。

通过ADAMS的模型建立和动力学仿真功能,可以全面了解机械系统在运动过程中受到的各种力的大小、方向及其对机械系统的影响。

本文将介绍ADAMS受力分析的基本原理和操作步骤。

1. ADAMS受力分析的原理ADAMS受力分析基于牛顿运动定律和虚功原理,通过建立机械系统的几何约束条件和运动学关系,结合质点和刚体的动力学描述,求解机械系统在运动过程中受到的力。

具体原理如下:•牛顿运动定律:根据牛顿第二定律,物体的运动状态由施加在物体上的合力决定。

通过ADAMS可以根据机械系统中各个节点上的质点或刚体的质量、惯性矩阵和加速度等参数来计算受到的合力。

•虚功原理:虚功原理是用来处理约束系统的动力学问题的一种方法。

在ADAMS中,通过对机构约束的建立和求解,可以确定机械系统中各个节点上的受力情况。

综合应用以上原理,ADAMS受力分析能够准确地计算机械系统中各个节点上的受力情况,从而为机械系统的设计、优化和故障分析提供有力的支持。

2. ADAMS受力分析的操作步骤ADAMS受力分析的操作步骤主要包括建立模型、设置约束和求解受力等。

下面将详细介绍具体的操作步骤:步骤1:建立模型在ADAMS软件中,首先需要建立机械系统的模型。

模型可以包括刚体、质点、连杆、弹簧等各种物体和装置,具体根据所分析的机械系统而定。

建立模型的方法包括两种: - 通过ADAMS自带的几何建模工具进行建模; - 导入CAD软件中绘制的模型。

对于复杂的机械系统,通常建议使用CAD软件进行建模,然后导入ADAMS进行分析。

步骤2:设置约束在模型建立完毕之后,还需要设置机械系统中的约束条件。

约束条件包括各个节点的几何约束、运动约束和力约束等。

对于几何约束,可以通过设置节点之间的距离、角度等关系来实现,以确保机械系统在运动过程中保持一定的结构稳定性。

ADAMS 2023动力学分析与仿真从入门到精通

ADAMS 2023动力学分析与仿真从入门到精通

ADAMS 2023动力学分析与仿真从入门到精通简介ADAMS(Advanced Dynamic Analysis of Mechanical Systems)是一种用于进行动力学分析和仿真的强大工具。

它可以帮助工程师和设计师在产品开发过程中预测和优化机械系统的性能。

无论是汽车、飞机还是机械设备,ADAMS都可以用来模拟其在不同工况下的动态行为。

本文档将介绍ADAMS 2023的基本概念和操作指南,从入门到精通,帮助读者快速上手并掌握ADAMS的使用方法。

1. ADAMS简介1.1 ADAMS的定义ADAMS是一种基于多体动力学理论的仿真软件,它能够对复杂的机械系统进行动力学分析和仿真,并提供详细的结果和可视化的模拟效果。

它主要用于评估系统的运动性能、力学特性和振动响应,是工程师进行设计优化和故障排查的重要工具。

1.2 ADAMS的应用领域ADAMS广泛应用于汽车、航空航天、机械设备等领域,用于模拟和分析复杂机械系统的动态行为。

例如,汽车制造商可以使用ADAMS来评估车辆的悬挂系统、转向动力学和车身振动特性;航空航天公司可以使用ADAMS来模拟飞机的飞行动力学和振动响应。

2. ADAMS基本概念2.1 多体系统ADAMS将机械系统建模为多个刚体之间的约束系统。

每个刚体包含了几何特征、质量和惯性属性。

通过在刚体之间添加约束和运动条件,可以建立复杂的多体系统模型。

2.2 约束约束用于描述刚体之间的相对运动关系。

ADAMS提供了各种类型的约束,如平面、关节、铰链等。

通过正确定义约束条件,可以模拟系统的运动和力学特性。

2.3 运动条件运动条件用于描述系统的运动。

ADAMS提供了多种运动模式,如位移、速度、加速度和力矩等。

通过在刚体上施加运动条件,可以模拟系统的各种运动情况。

3. ADAMS操作指南3.1 ADAMS界面ADAMS的用户界面由多个工具栏、菜单和窗口组成。

主要包括模型浏览器、属性编辑器、运动学模块、仿真控制和结果查看器等。

基于ADAMS的机器人动力学分析及轨迹规划

基于ADAMS的机器人动力学分析及轨迹规划

基于ADAMS的机器⼈动⼒学分析及轨迹规划2.1 串联机器⼈在ADAMS中⽤连杆模拟机械臂,对两⾃由度的机械臂分别进⾏运动学分析、动⼒学分析及机械臂的轨迹规划。

2.1.1 运动学分析下⾯是建⽴模型并对模型进⾏设置分析的详细过程。

(1) 启动ADAMS/View,在欢迎对话框中选择新建模型,模型取名为Robot_arm,并将单位设置为MMKS,然后单击OK。

(2) 打开坐标系窗⼝。

按下F4键,或者单击菜单【View】→【Coordinate Window】后,打开坐标系窗⼝。

当⿏标在图形区移动时,在坐标窗⼝中显⽰了当前⿏标所在位置的坐标值。

(3) 创建机械臂关节1(连杆)。

单击连杆按钮,勾选连杆的长、宽、深选项,分别将其设置为300mm、40mm、10mm,如图2.1所⽰。

在图形区单击⿏标左键,然后将连杆拖⾄⽔平位置时,在单击⿏标左键。

(4) 在连杆的右端打孔。

在⼏何建模⼯具栏单击打孔按钮,将半径Radius设置为10mm,深度设置为10mm,如图2.2所⽰。

然后在图形区模型附近单击⿏标左键,在与XY平⾯垂直的表⾯上单击⿏标左键。

然后修改孔的位置,在孔附近单击⿏标右键,选择【HOLE_1】→【Modify】,在弹出的对话框中,将Center的坐标值设置成(300,0.0,5.0),如图2.3所⽰。

(5) ⽤(3)的⽅法在关节1右端孔中⼼处创建关节2,如图2.4所⽰。

然后再将关节2向内侧平移10mm。

2.1 创建连杆设置(6)添加约束。

在关节1的左端与⼤地之间添加转动副,在关节1与关节2结合处添加转动副。

单击⼯具栏中的旋转副按钮,并将创建旋转副的选项设置为2Bod-1Loc和Normal Grid,然后在图形区单击关节1和⼤地,之后需要选择⼀个作⽤点,将⿏标移动到关节1的Marker1处出现center信息时,按下⿏标左键后就可以创建旋转副,旋转副的轴垂直于⼯作栅格。

然后⽤同样的⽅法创建关节1与关节2之间的旋转副。

利用ADAMS进行动态仿真分析的一般方法和过程111

利用ADAMS进行动态仿真分析的一般方法和过程111

基于ADAMS软件进行动态仿真分析的一般方法和过程摘要:本文通过对相关资料的总结归纳,介绍了虚拟样机的发展现况、ADAMS软件、特点以及利用其进行动态仿真的一般方法和过程。

并结合多功能开沟机液压系统进行了建模与仿真分析。

关键词:仿真 ADAMS 优化虚拟样机1、前言随着近代科学技术的发展,工程设计的理论、方法和手段都发生了很大的变化。

从计算机辅助工程(CAE)的广泛应用,到并行工程(CE)思想的提出与推行,从根本上改变了传统的设计方法,极大地促进了制造业的发展和革命。

但与此同时,人们已清楚地认识到:即使系统中的每个零部件都是经过优化的,也不能保证整个系统的性能是良好的,即系统级的优化绝不是系统中各部件优化的简单叠加。

于是,由CAX/DFX等技术发展而来,以系统建模、仿真技术为核心的虚拟样机技术(Virtual Prototyping)得到了迅速发展,并正成为各国纷纷研究的新的热点。

虚拟样机技术(Virtual Prototyping Technology)是当前设计制造领域的一项新技术,其应用涉及到汽车制造、工程机械、航空航天、造船、航海、机械电子、通用机械等众多领域。

它利用计算机软件建立机械系统的三维实体模型和运动学及动力学模型,分析和评估机械系统的性能,从而为机械产品的设计和制造提供依据。

虚拟样机技术可使产品设计人员在各种虚拟环境中真实地模拟产品整体的运动及受力情况,快速分析多种设计方案,进行物理样机而言难以进行或根本无法进行的试验,直到获得系统的最佳设计方案为止。

虚拟样机技术的应用贯穿着整个设计过程中,它可以用在概念设计和方案论证中,设计者可以把自己的经验与想象结合在虚拟样机里,让想象力和创造力得到充分地发挥。

用虚拟样机替代物理样机,不但可以缩短开发周期而且设计效率也得到了很大的提高。

本文以ADAMS为平台,简单说明一下进行虚拟样机的动态仿真分析的一般方法和过程。

2、ADAMS软件简介及特点ADAMS(Automatic Dynamic Analysis of Mechanical System)软件,是由美国机械动力公司(Mechanical Dynamics Inc,现已经并入美国MSC公司)开发的最优秀的机械系统动态仿真软件,是目前世界上最具权威性的,使用范围最广的机械系统动力学分析软件,在全球占有率最高。

ADAMS振动分析流程

ADAMS振动分析流程

ADAMS振动分析流程1. 概述ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是一种常用的多体动力学仿真软件,被广泛应用于机械系统的振动分析。

本文将介绍ADAMS振动分析的基本流程。

2. 模型建立在进行ADAMS振动分析之前,首先需要建立系统的多体动力学模型。

模型的建立可以通过两种方式实现:•几何建模:通过ADAMS软件提供的几何建模功能,可以直接构建系统的几何形状。

•CAD建模:可以使用其他CAD软件(如SolidWorks、CATIA等)建立系统的几何模型,并导入ADAMS进行后续分析。

3. 模型参数设置在建立好系统的几何模型后,需要设置模型的物理参数。

这些参数包括质量、刚度、阻尼等。

在ADAMS中,可以通过直接输入数值或者使用函数关联的方式来设置参数。

4. 载荷定义在进行振动分析前,需要定义系统的载荷。

载荷可以是外力、力矩、速度等。

可以在ADAMS中使用函数表达式、常数或者从外部文件中读取载荷数据。

5. 材料属性定义对于复杂的系统,需要为系统中的每个零件定义材料属性。

ADAMS提供了多种材料模型,可以根据实际情况选择合适的材料模型,并设置相应的材料参数。

6. 初始条件设置在进行振动分析前,需要设置系统的初始条件。

初始条件包括位置、速度等。

可以通过输入数值或者使用函数关联的方式来设置初始条件。

7. 振动分析设置在进行振动分析时,需要设置振动的类型和所要达到的目标。

ADAMS提供了多种振动分析方法,可以根据实际需要选择合适的方法。

常见的振动分析方法包括静态分析、模态分析和频率响应分析等。

8. 模型求解设置好振动分析的参数后,可以开始进行模型的求解。

ADAMS会对系统进行求解,并给出相应的结果。

结果包括位移、速度、加速度等。

9. 结果分析在进行振动分析后,可以对结果进行分析。

ADAMS提供了多种分析工具,可以绘制位移曲线、速度曲线、加速度曲线等。

11ADAMS_CAR模块详细实例教程(整车仿真分析篇)

11ADAMS_CAR模块详细实例教程(整车仿真分析篇)

11ADAMS_CAR模块详细实例教程(整车仿真分析篇)11整车仿真 (234)11.1整车装配模型 (234)11.2整车仿真 (235)11.3后处理曲线读取 (237)11.4动画演示 (237)11.4录制动画演示 (241)11.5整车仿真调试 (241)附例 (242)233《整车仿真分析篇》11整车仿真在Adams/Car环境下进行整车动力学仿真必须包含的子系统有:前/后悬架转向系统前/后轮胎车身此外Adams/Car还会包含一个Test Rig(测试台)。

在开环(Open-loop)、闭环(Close-loop)和准静态分析(Quasi-static)中必须选择._MDI_SDI_TESTRIG。

用户可以在整车模型中包含其它的子系统,如制动子系统、动力系统等。

11.1整车装配模型在Standard Interface界面菜单里选择File>New>Full_Vehicle Assembly。

在出现的对话框里输入自己取的整车装配体名称,在各个子系统栏目里右击鼠标,在自己的数据库里找到相应的各个子系统:234235点击OK ,如图所示:本例分析以双移线仿真为例,没有添加动力总成部分。

11.2整车仿真从菜单选择Simulation>Full_Vehicle Analysis>Course Events>ISO Lane_Change 。

设定对话框如图所示:点击OK,如果运算成功的话信息窗口如下:23611.3后处理曲线读取方法和步骤请参照悬架分析篇11.4动画演示动画演示有两种方式:Review>Animation Controls1)从菜单选择Array设定动画控制如下:237点击播放按钮,可以观看动画演示。

2)从后处理窗口去看,并可以保存动画演示为*.avi格式视频。

点击Review>Postprocessing Window或直接按F8,进入后处理窗口。

ADAMS仿真分析及调试

ADAMS仿真分析及调试
2
设置仿真分析输出
设置输出要求
• 获得位移、速度、加速度和力等4种类型的仿真结果
• 定义其他的输出量: 压力、功、能、动量
可以使用三种方法定义感兴趣的输出
• 选择ADAMS/Solver已经定义的位移、速度、加速度和力的输出
组,并指定参考坐标系
• 使用用户自定义的若干函数表达式定义所需的输出 • 使用用户自定义的子程序REQSUB来定义非标准的输出
5
7.3.1 仿真分析和试验工具
仿真 工具
仿 真 分 析 设 置
仿真分析设置
6
7.3.2 仿真分析和试验---互交式、
选择仿真类型
Default默认、Dynamic动力学、Kinematic运动学、Static静态
选择仿真分析时间的定义方法,输入仿真分析时间
• End Time ----定义停止的绝对时间 • Duration ---- 定义时间间隔
设置仿真过程中输出仿真结果的频率
• Step Size ----输出的时间步长 • Steps ----总共输出的步数
开始仿真分析
中途停止分析
中途停止分析
7
7.3.3 注意问题
如 果 中 途 停 止 分 析 , 然 后 再 按 快捷键开始分析,则 ADAMS/View将从上一次停止的位置接下去分析 如果希望从头开始分析,应该按快捷键,使仿真指针返 回到初始位置 如果希望从上一次分析结束的位置继续分析,采用 Duration定义仿真时间较为方便 在设置输出步长时应该注意:
各种对象的有关分量信息
• 运动副、原动机、载荷和弹性连接等产生的力和力矩(默认) • 构件的各种运动状态: 位移、方向角、速度、角速度、加速度、
角加速(默认质心位置)

adams2020教程与实例

adams2020教程与实例

Adams 2020 是一款广泛应用于工程领域的多体动力学仿真软件,它可以用来模拟各种机械系统的运动行为,并进行动力学分析和优化设计。

本教程将带领读者深入了解 Adams 2020 软件的基本操作和应用技巧,并通过实例演示,让读者能够更好地掌握该软件的使用方法。

本教程将分为以下几个部分进行详细介绍:一、 Adams 2020 简介Adams 2020 是由美国Mechanical Dynamics公司开发的一款专业多体动力学仿真软件,目前已经成为全球范围内的工程师和研究人员首选的仿真工具之一。

Adams 2020 软件拥有强大的模型建立和仿真分析功能,可以对机械系统的运动行为进行准确的模拟,并提供丰富的分析结果,为工程设计和优化提供有力的支持。

二、 Adams 2020 的基本操作1. 软件安装和环境配置在开始学习 Adams 2020 软件之前,首先需要进行软件的安装和环境配置。

本教程将详细介绍 Adams 2020 软件的安装步骤和环境配置方法,确保读者能够顺利地运行该软件,并进行后续的操作和学习。

2. 模型建立与约束设置在 Adams 2020 软件中,模型建立和约束设置是仿真分析的基础。

本教程将演示如何在 Adams 2020 中建立机械系统的模型,并设置各种约束条件,包括刚性约束、连接约束等,以确保模型的合理性和准确性。

3. 运动学分析与动力学分析Adams 2020 软件可以进行运动学分析和动力学分析,以研究机械系统的运动特性和受力情况。

本教程将介绍如何在 Adams 2020 中进行运动学分析和动力学分析,并解释分析结果的含义和应用。

三、 Adams 2020 的应用技巧1. 模型优化与性能评估Adams 2020 软件可以用于模型优化和性能评估,以改进机械系统的设计和性能。

本教程将介绍如何利用 Adams 2020 进行模型优化和性能评估,包括参数优化、结构优化等方法。

2. 系统耦合与多体联动仿真在工程实际应用中,往往需要进行系统耦合和多体联动仿真分析。

第三章ADAMS仿真

第三章ADAMS仿真

3 双振动体惯性往复近共振筛的ADAMS动力学仿真分析3.1 多刚体动力学仿真分析软件ADAMS简介ADAMS是由美国MDI研发的对机械系统的运动学及动力学有强大分析功能的虚拟样机分析软件,它采用交互式图形环境和零件库、约束库、力库,建立完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。

ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。

ADAMS软件由基本模块、扩展模块、借口模块、专业领域模块及工具箱组成。

用户不仅可以采用通用模块对一般的机械系统进行仿真,而且可以采用专用模块对特定工业应用领域的问题进行快速有效的建模和仿真分析。

其中基本模块主要包括以下几种:(1)用户界面模块(ADAMS/view)ADAMS/view是ADAMS系列产品的核心模块之一,提供了丰富的零件几何图形库、约束库和力/力矩库及图形快捷键和菜单快捷键,采用Parasolid作为实体建模的核,并且支持布尔运算,具有界面友好、操作方便的特点。

在建模过程中,ADAMS自动将相邻的实体赋予不同的颜色,以便区分,色彩渲染效果逼真。

模型的缺省材料为钢,而且各部分实体重心缺省位置在其形心,实体转动惯量由ADAMS根据实体尺寸以钢为缺省材料算出,上述属性均可由用户根据实际情况修改,用户甚至可以改变重力加速度的大小和方向(2)求解器模块(ADAMS/Solve)ADAMS/Solve可以对刚体和弹性体进行仿真分析。

为了进行有限元分析和控制系统研究,用户除要求软件输出位移、速度、加速度和力外,还可要求模块输出用户自己定义的数据。

用户可以通过运动副、运动激励、高副接触、用户定义的子程序等添加不同的约束。

用户同时可求解运动副之间的作用力和反作用力,或施加单点外力。

Adams动力学仿真分析的详细步骤

Adams动力学仿真分析的详细步骤

1、将三维模型导出成parasolid格式,在adams中导入parasolid格式的模型,并进行保存。

2、检查并修改系统的设置,主要检查单位制和重力加速度。

3、修改零件名称(能极大地方便后续操作)、材料和颜色.首先在模型界面,使用线框图来修改零件名称和材料。

然后,使用view part only来修改零件的颜色。

4、添加运动副和驱动.注意:1)添加运动副时,要留意构件的选择顺序,是第一个构件相对于第二个构件运动。

2)对于要添加驱动的运动副,当使用垂直于网格来确定运动副的方向时,一定要注意视图定向是否对,使用右手法则进行判断。

若视图定向错了,运动方向就错了,驱动函数要取负。

3)添加运动副时,应尽量使用零件的质心点,此时也应检查零件的质心点是否在其中心。

4)因为在仿真中经常要修改驱动函数,所以应为驱动取一个有意义的名称,一般旋转驱动取为:零件名称_MR1,平移驱动取为:零件名称_MT1。

5)运动副数目很多,且后面用的比较少,所以运动副的名称可以不做修改。

对于要添加驱动的运动副,在添加运动副后,应马上添加驱动,以免搞错.6)添加完运动副和驱动后,应对其进行检查。

使用数据库导航器检查运动副和驱动的名称、类型和数量,使用verify model检查自由度的数目,此时要逐个零件进行自由度的检查和计算。

7)进行初步仿真,再次对之前的工作进行验证。

因为添加了材料,有重力,但没有定义接触,此时模型会在重力的作用下下掉。

若没问题,则进行保存。

5、添加载荷.6、修改驱动函数.一般使用速度进行定义,旋转驱动记得加d。

7、仿真。

先进行静平衡计算,再进行动力学计算。

8、后处理。

具体步骤如下:1)新建图纸,选择data,添加曲线,修改legend。

一般需要线位移,线速度,垂直轮压和水平侧向力的曲线。

2)分析验证,判断仿真结果的正确性(变化规律是否对,关键数值是否对)。

3)截图保存,得出仿真分析结论.。

adams机械系统动力学仿真实例

adams机械系统动力学仿真实例

adams机械系统动力学仿真实例
在ADAMS中进行机械系统动力学仿真的步骤如下:
1. 建立模型:首先,需要在三维建模软件(如SolidWorks、Proe等)中建立好机器人或机械系统的三维模型。

然后,将模型另存为x_t格式,并导入ADAMS软件中。

在导入之前,可以对模型进行适当简化,去掉不重要的特征或零部件。

2. 添加运动副约束:根据机械系统的关节进行设置,在基座与地面之间添加固定约束;其余各关节依据实际情况添加转动关节或移动关节。

例如,移动副、球副、十字铰链(可视为两个转动副)等。

3. 检验样机模型:利用检验样机工具,显示样机内所有信息,观察零件、约束、载荷及运动参数的正确与否。

4. 定义初始条件和施加载荷:根据需要定义初始条件,如速度、加速度等。

同时,对模型施加适当的载荷,如重力、外部力等。

5. 进行仿真分析:设置仿真时间、步长等参数,运行仿真。

ADAMS会自动计算出系统的动力学响应,如位移、速度、加速度、力等。

6. 结果后处理:在仿真结束后,可以通过ADAMS的后处理模块查看仿真结果。

可以生成动画、绘制曲线、进行数据统计等。

通过以上步骤,就可以在ADAMS中进行机械系统动力学仿真了。

需要注意的是,具体的步骤可能会根据不同的机械系统和仿真需求有所不同。

因此,在进行仿真时,需要根据实际情况进行调整和修改。

ADAMS实验资料

ADAMS实验资料

机械动力学实验指导教案2012.03实验1:曲柄滑块机构的动力学模拟1. 以曲柄滑块动力学性能仿真为例,几何建模1)根据要求定好连接点。

2)圆盘几何建模(1)选择圆柱体建模工具。

(2)在参数栏设置好圆盘参数,完成圆盘形体建模。

(3)根据要求改变圆盘方向。

(4)根据要求改变圆盘位置。

(5)改变圆盘名称为 wheel。

(6)根据要求设置圆盘物理性质。

3)连杆几何建模(1)选取连杆建模工具。

(2)在参数栏设置好连杆参数,完成连杆形体建模。

(3)改变连杆名称。

(4)根据要求设置连杆物理性质。

4)滑块几何建模(1)选取滑块建模工具。

(2)设置滑块参数。

(3)选择规定的起始绘图点,完成滑块几何建模。

(4)改变滑块位置和名称,设置滑块物理性质。

2.施加运动副和驱动1、施加约束和力1)施加铰接副(1)添加圆盘和地面框架铰接副。

(2)添加圆盘和连杆铰接副。

(3)添加连杆和滑块铰接副。

2)仿真观看当前模型的运动情况。

(1)选择仿真工具,设置参数。

(2)开始仿真,观看运动情况。

3)添加棱柱副(1)选择棱柱副工具,设置好参数。

(2)依次选择滑块、地面、运动副的中心和定义方向,完成设置。

4)定义圆盘的运动(1)选择旋转运动工具图标,显示定义旋转运动对话框。

(2)在 set up 栏,输入规定的参数,完成转速设置。

5)施加滑块作用力 F (1)定义力的作用点,并设置好参数。

(2)选择单作用力图标,显示施加力对话框。

(3)在参数设置区,输入和选择合适的参数。

(4)选择滑块、受力点、方向,设置好力 force_1,同时显示修改力对话框。

(5)在修改力对话框,定义F(time,…),根据要求完成设置。

(6)保存曲柄滑块机构模型。

3.曲柄滑块动力学仿真分析1)仿真分析(1)选择仿真工具,在主工具箱参数设置栏,设置合适的参数。

(2)开始运动分析。

2)如果需要,可以选择回放工具,回放仿真过程。

6、运动分析后处理1)启动ADAMS/PostProcessor,在主工具箱的上有相应图标。

adams动力学仿真原理

adams动力学仿真原理

adams动力学仿真原理摘要:1.引言2.Adaams动力学仿真原理简介3.Adaams动力学仿真过程详解4.应用Adams动力学仿真的优势5.结论正文:【引言】在工程领域,动力学仿真技术已成为分析与优化机械系统性能的重要手段。

Adams作为一种广泛应用的动力学仿真软件,可以帮助工程师快速准确地分析复杂机械系统的运动和动力性能。

本文将详细介绍Adams动力学仿真原理及应用过程,以期为工程师们提供实用的指导。

【Adaams动力学仿真原理简介】Adams基于虚拟样机技术,通过建立机械系统的三维模型,利用运动学和动力学方程对系统进行仿真分析。

其核心原理包括以下几点:1.建立机械系统三维模型:用户根据实际需求,在Adams中构建机械系统的各个部件,如机身、支架、电机等。

2.添加约束和驱动:为模拟实际工况,用户需在模型中添加约束(如转动副、滑动副等)以及驱动(如电机、力等)。

3.设定运动学和动力学方程:Adams根据模型自动生成运动学和动力学方程,为后续仿真分析奠定基础。

4.进行仿真计算:根据设定的时间步长和求解器参数,Adams对运动学和动力学方程进行求解,得到各部件的运动轨迹、速度、加速度等数据。

5.后处理与分析:用户可利用Adams提供的后处理工具,对仿真结果进行可视化展示、数据分析等。

【Adaams动力学仿真过程详解】1.建立模型:首先,在Adams中创建一个新的项目,并根据需求添加或修改部件模型。

2.添加约束和驱动:在模型中定义各部件之间的运动关系,如转动副、滑动副等;同时,为需要驱动的部件添加电机、力等驱动。

3.设定材料属性:为各部件设定相应的材料属性,如密度、弹性模量等。

4.网格划分:对模型进行网格划分,以提高仿真精度。

5.设定求解参数:设置时间步长、求解器类型等求解参数。

6.开始仿真:点击“开始仿真”按钮,Adams将自动进行仿真计算。

7.观察仿真结果:在仿真过程中,用户可通过Adams的实时监控功能观察各部件的运动状态。

ADAMS 2023动力学分析与仿真从入门到精通

ADAMS 2023动力学分析与仿真从入门到精通

ADAMS 2023动力学分析与仿真从入门到精通1. 简介ADAMS(Advanced Dynamic Analysis of Mechanical Systems,机械系统高级动力学分析)是一种用于进行多体动力学分析和仿真的工程软件。

它可以帮助工程师在设计阶段预测和优化机械系统的动态性能。

本文档旨在介绍ADAMS软件的基本概念和使用方法,从入门到精通,帮助读者快速上手并深入了解该软件的应用。

2. ADAMS基本概念2.1 动力学分析动力学分析是研究物体在受力的作用下的运动规律的过程。

在工程领域中,动力学分析可以帮助工程师了解机械系统的受力情况、振动特性以及运动性能,从而进行系统设计和优化。

2.2 多体系统ADAMS主要适用于多体系统的动力学分析和仿真。

多体系统是由多个物体组成的系统,这些物体之间通过连接件(如关节、弹簧等)相互连接。

在ADAMS中,物体和连接件共同构成了一个复杂的多体系统。

2.3 仿真仿真是通过模拟真实系统的运行过程来获取系统的性能和行为数据。

在ADAMS中,可以建立一个虚拟的多体系统模型,并对其进行动态仿真。

通过仿真可以观察系统的运动轨迹、应力情况以及其他动态性能指标。

3. ADAMS软件安装与设置3.1 软件安装ADAMS软件可以从MSC官方网站上下载并安装。

根据操作系统的要求进行安装步骤,并确保软件安装成功。

3.2 界面介绍ADAMS的主界面由多个视图组成,包括模型视图、结果视图、控制视图等。

在开始使用ADAMS之前,需要熟悉界面的各个部分以及其功能。

3.3 工作空间设置在ADAMS中,可以通过设置工作空间来指定工作目录、结果输出路径等。

正确设置工作空间可以提高工作效率并方便管理文件。

4. ADAMS模型的建立与编辑4.1 模型概念在ADAMS中,模型是指多体系统的虚拟表示。

建立一个准确的模型是进行动力学分析和仿真的前提。

4.2 模型创建ADAMS提供了丰富的建模工具和元件库,通过拖拽和连接不同的元件可以创建复杂的多体系统模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、将三维模型导出成parasolid格式,在adams中导入parasolid格式的模型,并进行保存。

2、检查并修改系统的设置,主要检查单位制和重力加速度。

3、修改零件名称(能极大地方便后续操作)、材料和颜色。

首先在模型界面,使用线框图来修改零件名称和材料。

然后,使用view part only来修改零件的颜色。

4、添加运动副和驱动。

注意:
1)添加运动副时,要留意构件的选择顺序,是第一个构件相对于第二个构件运动。

2)对于要添加驱动的运动副,当使用垂直于网格来确定运动副的方向时,一定要注意视图定向是否对,使用右手法则进行判断。

若视图定向错了,运动方向就错了,驱动函数要取负。

3)添加运动副时,应尽量使用零件的质心点,此时也应检查零件的质心点是否在其中心。

4)因为在仿真中经常要修改驱动函数,所以应为驱动取一个有意义的名称,一般旋转驱动取为:零件名称_MR1,平移驱动取为:零件名称_MT1。

5)运动副数目很多,且后面用的比较少,所以运动副的名称可以不做修改。

对于要添加驱动的运动副,在添加运动副后,应马上添加驱动,以免搞错。

6)添加完运动副和驱动后,应对其进行检查。

使用数据库导航器检查运动副和驱动的名称、类型和数量,使用verify model检查自由度的数目,此时要逐个零件进行自由度的检查和计算。

7)进行初步仿真,再次对之前的工作进行验证。

因为添加了材料,有重力,但没有定义接触,此时模型会在重力的作用下下掉。

若没问题,则进行保存。

5、添加载荷。

6、修改驱动函数。

一般使用速度进行定义,旋转驱动记得加d。

7、仿真。

先进行静平衡计算,再进行动力学计算。

8、后处理。

具体步骤如下:
1)新建图纸,选择data,添加曲线,修改legend。

一般需要线位移,线速度,垂直轮压和水平侧向力的曲线。

2)分析验证,判断仿真结果的正确性(变化规律是否对,关键数值是否对)。

3)截图保存,得出仿真分析结论。

相关文档
最新文档