直角三角形全等判定定理
三角形全等的判定定理
三角形全等的判定定理
有两条边相等的三角形是等腰三角形;三边都相等的三角形是等边三角形,也叫正三
角形;有一个内角是直角的三角形叫做直角三角形。
其中,构成直角的两边叫做直角边,
直角边所对的边叫做斜边。
全等的条件:
1、两个三角形对应的'三条边成正比,两个三角形全系列等,缩写“边边边”或“sss"。
2、两个三角形对应的两边及其夹角相等,两个三角形全等,简称“边角边”或“sas”。
3、两个三角形对应的两角及其夹边成正比,两个三角形全系列等,缩写“角边角”
或“asa”。
4、两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”
或“aas”。
5、两个直角三角形对应的一条斜边和一条直角边成正比,两个直角三角形全系列等,缩写“直角边、斜边”或“hl”。
注意,证明三角形全等没有“ssa”或“边边角”的方法,即两边与其中一边的对角
相等无法证明这两个三角形全等,但从意义上来说,直角三角形的“hl”证明等同“ssa”。
(24.6直角三角形全等的判定定理
复习回顾
三角形全等的判定的判定方法
公理:
1、三边对应相等的两个三角形全等(SSS) 2、两边及夹角对应相等的两个三角形全等(SAS) 3、两角及其夹边对应相等的两个三角形全等(ASA)
定理:
两角及其中一角的对边对应相等的两个三角形全等(AAS)
情境问题1:
A
∠B=∠F=90°
D
B
C
E
F
可判定全等; 可判定全等; 可判定全等; 可判定全等;
情境问题1:
图中舞台背景的形状是两个直角三角形, 为了美观,工作人员想知道这两个直角三 角形是否全等,但每个三角形都有一条直 角边被花盆遮住无法测量,你能帮他想想办 法吗?
学习目标与重难点
学习目标 : 1. 掌握直角三角形全等判定定理的证明和它的 简单应用。 2.初步培养综合运用知识解决问题能力,进一 步提高推理能力。 3.培养思维的多样性。 学习重点: 直角三角形判定定理的证明。 学习难点: 直角三角形判定定理证明的灵活运 用。
∴∠ABC+∠DFE=90° (等量代换)
判断两个直角三角形全等的方法有:
(1): SSS ; (2): SAS ;
(3): ASA ; (4): AAS ;
(5): HL ;
拓 展 延
伸
1、如图,C是路段AB的中点,两人从C同时出发, 以相同的速度分别沿CD、CE方向行走,并同时到 达D,E两地,此时,DA⊥AB,EB⊥AB,路段 AD与路段BE的距离相等吗?为什么?
这两个直角三角形全等吗?
A
DBΒιβλιοθήκη CEF你能用学过的公理验证吗?
HL定理: 斜边和一条直角边对应相等的两个三角形全等 已知:如图24—20,在Rt△ABC和Rt△DEF中, ∠C=∠F=90°,AB=DE,BC=EF. 求证:Rt△ABC≌Rt△DEF.
18-直角三角形性质及全等判定 - 教师版
教师姓名学生姓名年级上课时间学科数学课题名称直角三角形性质及全等判定待提升的知识点/题型Ⅰ知识梳理知识点一1、直角三角形全等的判定(1)定理:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简称“H.L”定理).(2)判定两个直角三角形全等的方法:SAS、ASA、AAS、SSS、HL.知识点二2、直角三角形的性质:(1)定理1:直角三角形的两个锐角互余;(2)定理2:直角三角形斜边上的中线等于斜边的一半;推论1:在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半;推论2:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30︒.Ⅱ知识精析二、直角三角形的性质(一)典例分析、学一学例2-1如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,联结PQ、DE.问题1:求证:直线PQ是线段DE的垂直平分线;问题2:如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明。
答案:(1)证明:联结PD、PE、QD、QE.∵CE⊥AB,P是BF的中点,∴PE=12 BF.同理:PD=12 BF,∴PD=PE∴点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,∴QD=12AC=QE,∴点Q也在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE(2)当△ABC为钝角三角形时,(1)中的结论仍成立.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,联结PQ、DE.求证:直线PQ垂直且平分线段DE.证明:联结PD,PE,QD,QE,则PD、PE分别是Rt△BDF和Rt△BEF的中线,∴PD=12BF,PE=12BF,∴PD=PE,∴点P在线段DE的垂直平分线上.同理可证:QD=QE,∴点Q在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.例2-2如图,在等边△ABC 中,AB=4,点P 是线段AB 上任意一点(不包括端点),过P 作PE ⊥BC 于E ;过E 作EF ⊥AC 于F ;过F 作FQ ⊥AB 于Q .问题1:设BP=x ,AQ=y ,用含x 的式子填空, EC= , AF= ,写出求y 关于x 的函数解析式,并写出它的定义域; 问题2:当AQ=1.2时,求BP 的长度;问题3:当BP 的长度等于多少时,点P 与点Q 重合?答案:问题1: EC =4-12x ,AF =2+14x , y 与x 之间的函数关系式为y =1+18x ;(0<x <4)问题2:当AQ =1.2时,即y =1.2时,1.2=1+18x ,解得x =1.6,∴当AQ =1.2时,求BP 的长度为1.6; 问题3:∵点P 与点Q 重合,∴x +y =4,∴x +1+18x =4,解得x =83, ∴当BP 的长度等于83时,点P 与点Q 重合. 例2-3如图,在△ABC 中,90ACB ∠=︒,AC BC =,P 是△ABC 内的一点,且1PB =,2PC =,3PA =,求BPC ∠的度数.答案:135提示:旋转三角形APC例2-4如图在Rt △ABC 中,90C ∠=︒,DA DB =,E 、F 分别在AC 和BC 上,且ED ⊥DF . 求证:222EF AE BF =+.提示:倍长FD ,将三条线段转化到一直角三角形中.FEDBACⅢ课堂测评1.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点, AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.证明:∵AE⊥CD∴∠AEC=90°,∴∠ACE+∠CAE=90°(直角三角形两个锐角互余)∵∠ACE+∠BCF=90°∴∠CAE=∠BCF (等角的余角相等)∵AE⊥CD,BF⊥CD,∴∠AEC=∠BFC =90°.在△ACE与△CBF中,∠CAE=∠BCF,AEC=∠BFC,AC=BC∴△ACE≌△CBF(AAS)2.如图,已知在△ABC中,AD是高,CE是中线,DC=BE.求证:∠B=2∠BCE.证明:联结DE.∵AD⊥BC,AE=BE,∴DE=BE,(直角三角形斜边上的中线等于斜边的一半.)∴∠B=∠BDE.(等边对等角)∵CD=BE,∴CD=DE,(等量代换) ∴∠DEC=∠DCE.(等边对等角)∵∠EDB=∠DEC+∠BCE,(三角形一个外角等于和它不相邻的两个内角的和.)∴∠EDB=2∠BCE.(等式性质)∵∠B=∠EDB, ∴∠B=2∠BCE. (等量代换)3.如图,四边形ABCD中,∠DAB=∠DCB=90o,点M、N分别是BD、AC的中点。
1.3直角三角形全等的判定2
A
A′
B′
C′
B
C
如图,在Rt△ABC和Rt△A′B′C′中,已知 AB=A′B′, AC= A′C′,
∠ACB=∠ A′C′B′= 90°, 那么Rt△ABC和Rt△A′B′C′全等
吗?
A′
在Rt△ABC和Rt△A′B′C′中,
B′
∵AB=A′B′, AC= A′C′, 根据勾股定理, BC2= AB2-AC2,
练习2、已知:如图,AC=BD,AD⊥AC, BC⊥BD.
求证:AD=BC.
证明:连接DC. ∵ AD⊥AC,BC⊥BD,
∴∠A=∠B= 90°. 在Rt△ADC和Rt△BCD中,
DC=CD, AC=BD, ∴Rt△ADC≌Rt△BCD (HL). ∴AD=BC.
例2 已知一直角边和斜边,求作直角三角形.
直角三角形的判定方法总结:
判定1:(定义法)有一个角是直角的三角形是直角三角形 判定1:有两个角互余的三角形是直角三角形。 判定2:一边上的中线等于这一边一半的三角形是
直角三角形。 判定3:如果三角形的三边长a、b、c满足关系:a2+b2=c2 那么这个三角形是直角三角形.(勾股定理逆定理)
直角三角形全等的判定定理(斜边、直角边定理):斜边和一条直 角边对应相等的两个直角三角形全等. 简称 HL
• 直角三角形全等有几种判定方法?
中考 试题
已知:如图,点A、B、C、D在同一条直线上,
EAAD,FDAD,AE=DF,AB=DC .
求证:ACE=DBF. E
F
AB
CD
证明 ∵ AB=DC, ∴ AB+BC=DC+BC, 即 AC=BD. 又∵ AE=DF,
有答案-直角三角形全等判定(基础)知识讲解
有答案-直角三角形全等判定(基础)知识讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行.【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,AD BC BD DB⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( )(2)有两边和其中一边上的高对应相等的两个三角形全等.( )(3)有两边和第三边上的高对应相等的两个三角形全等.( )【答案】(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案与解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 与Rt △BCD 中,DC CD AC BD=⎧⎨⎩=∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形在Rt △ABD 和Rt △BAC 中AB BA BD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案与解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 与△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两等腰直角三角形全等2.如图,AB =AC ,AD ⊥ BC 于D ,E 、F 为AD 上的点,则图中共有( )对全等三角形.A .3B .4C .5D .63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt △ABC 与Rt △'''A B C 中, ∠C = ∠'C = 90, A = ∠'B , AB =''A B , 那么下列结论中正确的是( ) A. AC = ''A C = ''B C C. AC = ''B C D. ∠A = ∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形( )A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.8. 已知,如图,∠A =∠D =90°,BE =CF ,AC =DE ,则△ABC ≌_______.9. 如图,BA ∥DC ,∠A =90°,AB =CE ,BC =ED ,则AC =_________.10. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,EC ⊥AC ,AC =EC ,若DE =2,AB =4,则DB =______.11.有两个长度相同的滑梯,即BC =EF ,左边滑梯的高度AC 与右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B点与O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上与AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢请你说出理由.13.【解析】解:在Rt △AOB 与Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等) ∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得:∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 与Rt △EDF 中B EDF BC DF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠ 2.证明:∵AE ⊥EC ,AF ⊥BF ,∴△AEC 、△AFB 为直角三角形在Rt △AEC 与Rt △AFB 中AB AC AE AF⎧⎨⎩==∴Rt △AEC ≌Rt △AFB (HL )∴∠EAC =∠FAB∴∠EAC -∠BAC =∠FAB -∠BAC ,即∠1=∠2.【答案与解析】一、选择题1. 【答案】C ; 【解析】等腰直角三角形确定了两个锐角是45°,可由AAS 定理证明全等.2. 【答案】D ;【解析】△ABD ≌△ACD ;△ABF ≌△ACF ;△ABE ≌△ACE ;△EBF ≌△ECF ;△EBD ≌△ECD ;△FBD ≌△FCD.3. 【答案】D ;4. 【答案】C ;【解析】注意看清对应顶点,A 对应'B ,B 对应'A .5. 【答案】C ;【解析】等底等高的两个三角形面积相等.6. 【答案】C ;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL ;8. 【答案】△DFE9. 【答案】CD ;【解析】通过HL 证Rt △ABC ≌Rt △CDE.10.【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6;11.【答案】90°;【解析】通过HL 证Rt △ABC ≌Rt △DEF ,∠BCA =∠DFE.12.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形.。
19.7 直角三角形全等的判定
第19章 几何证明§19.7 直角三角形全等的判定学习目标 通过探索判定两个直角三角形全等的特殊的方法,体会特殊与一般的关系,掌握“斜边直角边”这一判定两个直角三角形全等的特殊方法;会利用“斜边直角边”判定方法和一般三角形全等的方法判定直角三角形全等;继续体会用“分析综合法”探求解题思路,在探索判定两个直角三角形全等的特殊的方法的过程中体验转化的思想。
知识概要1.直角三角形全等的判定定理如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等。
(简记为H .L .) 在两个直角形中,“边、边、角”对应的情况有两种:“S .A .S ”和“H .L ”定理.注意:任意三角形全等的判定方法同样适用于直角三角形,而H .L 定理是直角三角形特有的全等判定方法。
使用该特有方法时,一定要指出直角三角形这一前提条件。
2.判定两个直角三角形全等的方法一共有5种方法判定两个直角三角形全等:S .A .S ,A .A .S ,A .S .A ,S .S .S ,H .L .。
经典题型精析(一)一般方法判定直角三角形全等例1.如图,已知DC AB //,=∠=∠D A 52°,点E 在AD 上,BE 平分ABC ∠,CE 平分BCD ∠.求证:DC AB BC +=.例2.如图,在ABC Rt ∆中,=∠ACB 90°,点E D 、分别在AC AB ,上,BC CE =,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得到CF ,连接EF 。
(1)补充完成图形; (2)若CD EF //,求证:=∠BDC 90°。
(二) H .L .定理的应用例3.已知:如图,AC 平分BAD ∠,AB CE ⊥于点E ,AD CF ⊥于点F ,且DC BC =。
求证:DF BE =.试一试:已知:如图,CD AD ⊥,CD BC ⊥,C D 、分别为垂足,AB 的垂直平分线EF 交AB 于点E ,交CD 于点F ,DF BC =。
直角三角形全等判定定理
直角三角形全等判定定理直角三角形全等判定定理,也叫直角三角形全等条件定理、勾股定理或斯托克斯定理,是数学中一个重要的定理,它说明在任何直角三角形中,若有任意两边长度相等,则三角形就是全等三角形,即两个相等的角都是90度,且三条边长也是相等的。
斯托克斯定理曾是希腊数学家欧几里得的儿童时代创造,后来被苏格拉底改写为定理形式。
斯托克斯定理是一个有关直角三角形的数学定理,它告诉我们,如果两条边的长度相等,则该三角形是一个直角三角形。
斯托克斯定理也称为勾股定理,又称“直角三角形全等性判定定理”,它是古希腊时期最著名的定理之一,是古希腊数学家欧几里得最早发现的定理之一,他在其《几何》中对此进行了证明。
斯托克斯定理可以用来证明所有直角三角形都具有三条边和两个相等的角,这种特殊的三角形称为全等三角形。
根据斯托克斯定理,如果一个三角形的其中两条边的长度相等,则该三角形必定是一个直角三角形,而且它的三条边和两个相等的角都是相等的。
斯托克斯定理也可以用来证明股数定理,即如果a2+b2=c2,则这个三角形就是一个直角三角形,而且它的三条边和两个相等的角都是相等的。
斯托克斯定理是数学中一个重要的定理,它能够提供一个简单而又有效的方法来验证一个三角形是否为直角三角形。
它可以被用来证明某一个三角形是否全等,也可以用来检验三角形的长度是否相等。
因此,斯托克斯定理是数学中一个重要的定理,它在多个数学问题中得到广泛的应用,不但在几何和数学中得到应用,而且在工程学、计算机科学等领域中都有着重要的作用。
斯托克斯定理可以用大量数学证明来证明,但它的核心思想仍然是:任何直角三角形中,如果有任意两边长度相等,则这个三角形就是全等三角形,即两个相等的角都是90度,且三条边长也是相等的。
斯托克斯定理是一个简单而又有效的方法,它可以快速验证一个三角形是否为直角三角形,它的应用领域也十分广泛,在科学、工程学和计算机科学等领域中都有着重要的作用。
直角三角形全等判定定理
在Rt△ADB和Rt△ADC中
A
{ AB=AC AD=AD
∴ Rt△ADB≌Rt△ADC(HL)
∴BD=CD,∠BAD=∠CAD
等腰三角形三线合一
B
D
C
例2
已知:如图,在△ABC和△ABD中,AC⊥BC, AD⊥BD, 垂足分别为C,D,AD=BC,求证: △ABC≌△BAD.
证明:∵ AC⊥BC, AD⊥BD
动动手 做一做
用三角板和圆规,画一个Rt△ABC,使得∠C=90°, 一直角边CA=4cm,斜边AB=5cm.
B
5cm
A
4cm
C
斜边、直角边公理
有斜边和一条直角边对应相等的两个直角三角形全等.
简写成“斜边、直角边”或“HL”
斜边、直角边公理 (HL)
有斜边和一条直角边对应相等的两个直角三角形全等.
忆一忆
1、全等三角形的对应边 应角-相---等-------
-相---等-----,,对
2、判定三角形全等的方法有:
SAS、ASA、AAS、SSS
认识直角三角形 Rt△ABC
A
直
斜边
角
边
C
直角边
B
直角三角形全等的判定
直角三角形全等的判定
舞台背景的形状是两个直角三角形,工作人 员想知道两个直角三角形是否全等,但每个三 角形都有一条直角边被花盆遮住,无法测量。 (1) 你能帮他想个办法吗?
∴∠C=∠D=90° 在Rt△ABC和Rt△BAD中
ቤተ መጻሕፍቲ ባይዱ
D
AB BA BC AD
∴ Rt△ABC≌Rt△BAD (HL) A
C B
小结
一般三角
形全等的 “SAS” “ ASA ” “ AAS ” “ SSS ”
直角三角形全等的判定
直角三角形全等的判定
直角三角形全等的判定
直角三角形全等是指两个直角三角形的对边,对应边和
斜边分别相等。
在进行直角三角形全等的判定时,可以使用两种不同的方法,即SAS(边-角-边)和SSS(边-边-边)定理。
1. SAS定理:
SAS定理是指两个直角三角形的一条边、夹角和另一条边分别
相等,则这两个直角三角形全等。
具体而言,需要满足以下条件:
a) 两个直角三角形的一个角为直角(90度)。
b) 两个直角三角形的一条边相等。
c) 两个直角三角形的夹角(不是直角的角)相等。
d) 两个直角三角形的另一条边相等。
2. SSS定理:
SSS定理是指两个直角三角形的三条边分别相等,则这两个直
角三角形全等。
具体而言,需要满足以下条件:
a) 两个直角三角形的一个角为直角(90度)。
b) 两个直角三角形的三条边分别相等。
需要注意的是,在判定直角三角形全等时,必须要确定
其中一个角为直角。
因为如果两个直角三角形的所有边长相等,但没有一个角为直角,那么这两个三角形并不一定全等。
在解题时,需要根据给定的条件,判断所给的直角三角
形是否全等。
常见的判定方法包括测量边长和角度、利用勾股定理判断是否满足直角条件等。
判断过程中需要小心操作,确保测量准确、计算无误。
总之,直角三角形的全等判定是一种基本的几何判断方法,可以通过SAS定理或SSS定理来进行。
在解题时,要注意给定的条件,准确判断边长和角度是否相等,以确定两个直角三角形是否全等。
直角三角形全等的判定
结束寄语
• 严格性之于数学家,犹如道德之于人. • 证明的规范性在于:条理清晰,因果
相应,言必有据.这是初学证明者谨记 和遵循的原则.
;股票新闻 股票新闻 ;
不上,自己现在圣果很是充裕,每月给他一些也无妨. 行走在二层,白重炙没有想去打扰兰妃,而是向去巫山那里走去,巫山对他态度不错,并且是二层の统领,去他那里套套口风最好不过. 然而行走中,他却感觉二层练家子看他の目光,似乎有些不对劲了.以前是带着恭敬和惊讶,现在恭敬之余却是有 些淡淡の嫉妒和鄙夷? 自己老老实实在练功房修炼,没得罪什么人吧?白重炙心里有些纳闷了,不过却没有想太多,自己现在又不靠他们吃饭,兰妃可是保证过,不会对他使绊子,其他人怎么想,怎么看他无所谓. 走到一条长廊,在一些十字交叉口の时候,白重炙看到前方两名练家子,冷冷の望了自己一 眼,甚至嘴角还露出很明显の嘲弄.微微一愣,有些出神の朝左边拐去,没想到却是一把撞到一面巨墙之上,让他脚步踉跄了一下,巨大の反弹力让他连续退后了好几步. "哼,你呀眼睛瞎了?" 就在白重炙凝神朝这面巨墙望去の时候,对面那面巨墙却开口了.声音宛如午夜炸雷,将白重炙の耳膜都炸了 生疼,也将附近の练家子纷纷炸醒.当他们听清楚话の内容,看到那面墙和白重炙の时候,纷纷眼中露出了幸灾乐祸の表情,围了过来. 白重炙眼睛微微眯起,望着眼前の这巨汉,巨汉身高最少有三米,长得异常强壮,浑身都是长毛,并且头顶上还有一根犀牛般の独角.他很清楚,就算自己走神了,但是也 不可能有这么一些强者走来都没发觉.唯一の解释就是……对面这巨汉故意敛去声息,直接撞了自己. "对不起,大人,俺行走匆忙一时没看清!" 白重炙虽然知道对方是故意の,但是清楚对面の练家子实力明显是
直角三角形全等的判定
三角形全等的判定
两边及其中一边的对角对应相等的两个三 角形不一定全等.
如果其中一边的所对的角是直角呢?
两边及其中一边的对角对应相等的两个三角形不一定全等.但如 果其中一边的所对的角是直角,那么这两个三角形全等. 已知:如图,在△ABC和△A′B′C′中, AC=A′C ′, AB=A′B′, ∠C=∠C′=900. 求证:△ABC≌△A′B′C′.
A
F B
H
E C
2. 如图, AB是圆O的直径, ∠ 1 = ∠ 2 ,
试说明△ABC≌△ABD
C
A
1 2
D
•
O
B
直角三角形全等的判定定理: 1.斜边和一条直角边对应相等的两个直角三角形全等(斜 边,直角边或 H.L.). 2.三边对应相等的两个三角形全等(S.S.S.). 3.两边及其夹角对应相等的两个三角形全等(S.A.S.). 4.两角及其夹边对应相等的两个三角形全等(A.S.A.). 5.两角及其中一角的对边对应相等的两个三角形全等(A.A.S.). 综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个直角三角形全等; 切记!!! 两边及其中一边的对角对应相等的两个三角形不一定全等. 即(SSA)是一个假冒产品!!!
回味无穷
结束寄语
• 严格性之于数学家,犹如道德之于人. • 证明的规范性在于:条理清晰,因果 相应,言必有据.这是初学证明者谨记 和遵循的原则.
长沙夜网 长沙夜网
bgo057utb
这么干净”这让身为女流的她情何以堪。所以,她每天最大的爱好之一便是到庄逍遥的房子里,把庄逍遥那些太过规矩的陈设都捣乱,看到经 由她之手而变得凌乱的庄逍遥的房子,她总是能心情大好的哈哈大笑一番。然后在庄逍遥的浴室里美美的泡上个澡,也不管头发没干、还在滴 水、便光脚走出浴室,随意的在庄逍遥的房子里一圈又一圈的乱走,看到那些湿湿的脚印子,她总能心满意足的畅笑一番。 庄逍遥对此并不懊恼,只是劝她“你刚洗完澡,光脚踩在地面上容易着凉的”,然后不知从什么时候开始他便将所有的地面铺上了一层厚厚的 地毯。 白荌苒便笑着对他吐舌“才不要” 庄逍遥便不再多说什么,只是等她闹够了之后待她安静下来之后替她吹干头发,而白荌苒往往在庄逍遥替她吹头发的时候便睡到在他的怀里了。 也许没有人会相信,她白荌苒虽然经常留宿在庄逍遥的家中,但是他们之间闹归闹却一直是过的相敬如宾,并没有逾越雷池半分。所有就这一 点,白荌苒偶尔会在心里叹息,果然,她在庄逍遥的心中是一个没有性别差异的存在。 白安然想起她刚认识庄逍遥的时候,还是高中年代、她刚刚认识庄逍遥那会儿、也是很痴迷庄逍遥的。 庄逍遥是以插班生的身份来到她们班的,那还是高中一年级的时候,到那个学期中期的时候庄逍遥来到了她们班。那个时候的庄逍遥也总是沉 默寡言的,几乎不曾看到他笑过,他似乎总是有太多的心事,每天总是恬静的要命。白荌苒跟他同桌的那段时间总是忍不住默默地担忧着那样 一个面相看起来很忧郁的男生,她总是乐呵呵的跟他讲起学校里、家里、身边发生的一切有趣的事情,可惜庄逍遥一直都是不太搭理她的,也 鲜少回应她。很多时候,白荌苒都觉着自己不过是在自言自语罢了,不免觉得好笑,可即使如此,她还是忍不住想要同那个沉默寡言的男孩子 分享自己的快乐。
三角形全等的判定
考点名称:三角形全等的判定•三角形全等判定定理:1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以:SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
•三角形全等的判定公理及推论:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
要验证全等三角形,不需验证所有边及所有角也对应地相同。
以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:①S.S.S. (边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。
②S.A.S. (边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。
③A.S.A. (角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。
④A.A.S. (角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。
⑤R.H.S. / H.L. (直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。
但并非运用任何三个相等的部分便能判定三角形是否全等。
以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:⑥A.A.A. (角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。
直角三角形判定全等的方法
直角三角形判定全等的方法
要判定两个直角三角形是否全等,需要比较它们的三个角度和三个边
长是否相等。
以下是判定方法:
1.角度相等判定法。
直角三角形的两个锐角相加必须等于90度,所以如果两个直角三角
形的两个角度分别相等,那么这两个三角形全等。
2.边长相等判定法。
如果两个直角三角形的两条直角边长度分别相等,那么这两个三角形
全等。
3.边角边相等判定法。
如果两个直角三角形的一条直角边和两条与其相邻的边长度分别相等,那么这两个三角形全等。
注意:这种情况也可以写成边边角相等判定法。
4.正弦定理和余弦定理。
正弦定理和余弦定理可以用来判断两个不全等的三角形是否相似或全等。
但如果两个三角形中有一个是直角三角形,那么用这种方法判断是否
全等会显得复杂,不利于实际应用。
直角三角形(2)全等的判定hl
• 勾股定理: 如果直角三角形两直角边分别为a、b,斜边为 c,那么a2+b2=c2.即直角三角形两直角边的平 方和等于斜边的平方.. • 勾股定理的逆定理: 如果三角形两边的平方和等于第三边平方, 那 么这个三角形是直角三角形.
命题与逆命题
在两个命题中,如果一个命题的条件和结论分 别是另一个命题的结论和条件,那么这两个命题 称为互逆命题,其中一个命题称为另一个命题的 逆命题. 一个命题是真命题,它逆命题是真命题还是假 命题?
定理与逆定理
一个命题是真命题,它逆命题却不一定是真命题.
一个定理的逆命题是真命题还是假命题?,
如果一个定理的逆命题经过证明是真命题,那么它 是一个定理,这两个定理称为互逆定理,其中一个 定理称另一个定理的逆定理.
想一想:
互逆命题与互逆定理有何关系?
练习:1判断
1每个命题都有逆命题.
2每个定理都有逆命题.
7两角对应相等,且有一条公共边两个直角三角形 全等.
回味无穷
• 直角三角形全等的判定定理:
定理:HL.
公理:SSS. SAS ASA
推论:AAS.
• 综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个直角三角形全等;
切记!!!命题:两边及其中一边的对角对应
B M P
E B'
C N D F
4 1 3 2
A
△AEF是等边三角形
勾股定理应用:
D 1 A' C
如图,折叠矩形纸片ABCD.先折 对角线BD,再使AD与DB重合得 折痕DG ,AB=2,BC=1,求AG的长.
1
A
判定三角形全等定理
判定三角形全等定理一、定义和性质1. 定义三角形全等指的是两个三角形的所有对应的边和角都相等。
2. 性质•若两个三角形的对应边和对应角分别相等,那么这两个三角形全等。
•三角形的全等关系是一种等价关系,具有自反性、对称性和传递性。
•全等三角形的面积相等。
二、判定方法1. SSS 判定法如果两个三角形的三条边对应相等,则这两个三角形全等。
判定步骤:1.比较两个三角形的三条边的长度是否一一对应相等。
2.如果三条边相等,则两个三角形全等。
2. SAS 判定法如果两个三角形的一个角和两条边分别对应相等,则这两个三角形全等。
判定步骤:1.比较两个三角形的一个角的大小是否相等。
2.比较两个三角形的两条边的长度是否一一对应相等。
3.如果一个角和两条边对应相等,则两个三角形全等。
3. ASA 判定法如果两个三角形的两个角和一条边分别对应相等,则这两个三角形全等。
判定步骤:1.比较两个三角形的两个角的大小是否相等。
2.比较两个三角形的一条边的长度是否相等。
3.如果两个角和一条边对应相等,则两个三角形全等。
4. RHS 判定法如果两个直角三角形的两个锐角分别对应相等,并且两个锐角的斜边长度也对应相等,则这两个直角三角形全等。
判定步骤:1.比较两个直角三角形的两个锐角的大小是否相等。
2.比较两个直角三角形的斜边的长度是否相等。
3.如果两个锐角和斜边对应相等,则两个直角三角形全等。
三、应用示例1. 实例一已知∠A = 90°,AB = CD,BC = DA。
证明△ABC ≌ △CDA。
证明过程:1.根据题意得知△ABC 和△CDA 都是直角三角形。
2.根据 RHS 判定法,需要证明∠A = ∠C,BC = CD,AB = DA。
3.因为∠A = 90°,所以∠C = 90°(直角三角形的定义)。
4.因为 AB = CD(已知条件)。
5.因为 BC = DA(已知条件)。
6.综上所述,根据 RHS 判定法,△ABC ≌ △CDA。
三角形全等判定的定理
三角形全等判定的定理三角形全等判定的定理是几何学中的重要知识点之一。
在解决三角形相关问题时,全等判定定理是必须掌握的基本方法之一。
本文将详细介绍三角形全等判定的定理。
首先,我们需要明确什么是全等三角形。
全等三角形指的是具有相同三边长度和对应角度的两个三角形。
换句话说,只有当两个三角形的边长和对应角度完全相同时,这两个三角形才是全等的。
接下来,我们来看看三角形全等判定的定理。
在几何学中,有五种判定全等三角形的方法,分别是以下五个定理:第一种定理:SSS定理SSS是指边边边(Side-Side-Side)的意思。
如果两个三角形的三边分别相等,则这两个三角形全等。
第二种定理:SAS定理SAS是指边角边(Side-Angle-Side)的意思。
如果两个三角形的两边和夹角分别相等,则这两个三角形全等。
第三种定理:ASA定理ASA是指角边角(Angle-Side-Angle)的意思。
如果两个三角形的两角和夹边分别相等,则这两个三角形全等。
第四种定理:AAS定理AAS是指角角边(Angle-Angle-Side)的意思。
如果两个三角形的两角和一边分别相等,则这两个三角形全等。
第五种定理:HL定理HL是指斜边和直角边(Hypotenuse-Leg)的意思。
如果两个直角三角形的斜边和一条直角边分别相等,则这两个三角形全等。
通过以上五种定理,我们可以判定两个三角形是否全等。
在实际应用中,我们可以根据具体问题选择不同的方法进行求解。
除了以上五种定理外,我们还需要注意以下几点:1. 在判定全等三角形时,对应的边和对应的角必须相等。
2. 如果两个三角形只有一组对应边和对应角相等,则这两个三角形不一定全等。
3. 在进行判定时,需要注意单位制的统一,即计算时要保证单位一致。
总之,掌握了以上五种定理,我们就可以轻松地判定全等三角形了。
在实际应用中,我们还可以根据具体问题进行推导和运用,进一步提高解决问题的效率。
1.2直角三角形全等的判定2
1.2 直角三角形全等的判定Ⅰ.核心知识点扫描⑴直角三角形全等特有的方法:斜边和一条直角边对应相等的两个直角三角形全等。
(简写为“H L ”)⒈直角三角形的全等判定定理⑵与一般三角形公有的方法:SAS 、ASA 、AAS 、SSS. ⑴角平分线的性质:角平分线上的点到这个角两边的距离相等。
⒉直角三角形的全等的应用⑵角平分线的判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
Ⅱ.知识点全面突破知识点1:直角三角形全等的判定方法(重点)⒈判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简写:HL ). ⒉用数学语言表示为:如图1-2-1,在△ABC 和△A ˊB ˊC ˊ中,∵∠ACB=∠A ˊC ˊB ˊ=90°,AB= A ˊB ˊ,AC= A ˊC ˊ, ∴△ABC ≌△A ˊB ˊC ˊ. 3.定理的证明.已知如图1-2-1所示,在△ABC 和△A ′B ′C ′中,∠ACB=∠A ′B ′C ′=90°,AC=A ′C ′,AB=A ′B ′,求证:△ABC ≌△A ′B ′C ′. 证明:设 AC=A ′C ′=b ,AB=A ′B ′=c ,∵在△ABC 和△A ′B ′C ′中,∠ACB=∠A ′B ′C ′=90°,AC=A ′C ′=b ,AB=A ′B ′=c ∴BC=B ′C ′∵在△ABC 和△A ′B ′C ′中''''''AC A C AB A B BC B C ⎧=⎪=⎨⎪=⎩∴△ABC ≌△A ′B ′C ′(SSS)例 :(2010,北京)已知:如图1-1-2,点A 、B 、C 、D 在同一条直线上,EA⊥AD,FD⊥AD,AE=DF ,AB=DC .求证:∠ACE=∠DBF.{{C(CBA(AB'C'A'B CA图1-2-1证明:∵AB=DC∴AC=DB∵EA⊥AD,FD⊥AD∴∠A=∠D=90°在△EAC与△FDB中,EA=FD, ∠A=∠D,AC=DB∴△EAC≌△FDB(SAS) ∴∠ACE=∠DBF.点拨:□C要想证明∠ACE=∠DBF,则需要证明△EAC≌△FDB 即可,而两个三角形全等的条件题中易得.证明:能.∵AB=DC∴AC=DB∵EA⊥AD,FD⊥AD∴∠A=∠D=90°在Rt△EAC与Rt△FDB中AC=DB, EC=BF∴△EAC≌△FDB(HL)∴∠ACE=∠DBF.点拨:要想证明∠ACE=∠DBF,则需要证明△EAC≌△FDB即可,由EA⊥AD,FD⊥AD,可得∠ACB=∠DCE=90°,由AB=DC,可得AC=DB,再根据EC=BF可利用“HL”证明两个三角形全等.知识点2:角的平分线的性质定理及逆定理(重点)1. 角的平分线的性质定理及逆定理定理内容用数学语言表示定理作用角的平分线的性质定理角平分线上的点到这个角的两边的距离相等.∵□C PA⊥AO,PB⊥OB,OP是角平分线,∴PA=PB(角的平分线的性质定理)证明线段相等角的平分线的判定定理角内部到角的两边距离相等的点,在这个角的平分线上.∵□C PA⊥AO,PB⊥OB,PA=PB,∴OP是角平分线(角的平分线的判定定理)证明角相等2.角是轴对称图形,角平分线所在的直线是它的对称轴,用“折叠得到折痕(垂线段)重合”来证明角平分线定理1,再说明角平分线定理1逆命题是真命题.由此,角平分图1-2-2线的这两个定理可以归纳为:角平分线可以看着是到角的两边距离相等的所有点的集合. 例1:(2009,山东临沂)如图1-2-3,OP 平分AOB ∠, PA OA ⊥, PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP解:D点拨:本题考查的是三角形全等和角平分线的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级 数学学案(总第 节)
设计老师 执教老师 上课班级 学生姓名
教 学 内 容 及 学 生 活 动
时量
教师活动
二. 自主学习
1.如图3-46,已知∠ACB=∠BDA=Rt ∠,若要使△ACB ≌△BDA ,还需要什么条件?把它们分别写出来(有几种不同的方法就写几种).
理由:( )( )( )( )
三. 合作交流
前面我们学习了判定两个三角形全等的四种方法——SAS 、ASA 、AAS 、SSS .我们也知道“有两边和其中一边的对角对应相等的两个三角形不一定全等”,这些结论适用于一般三角形.我们在三角形分类时,还学过了一些特殊三角形(如直角三角形).特殊三角形全等的判定是否会有一般三角形不适用的特殊方法呢? 我们知道,斜边和一对锐角对应相等的两个直角三角形,可以根据“ASA ”或“AAS ”判定它们全等,两对直角边对应相等的两个直角三角形,可以根据“SAS ”判定它们全等.
如果两个直角三角形的斜边和一对直角边相等(边边角),这两个三角形是否能全等呢?
具有下列条件的Rt △ABC 与Rt △A 'B 'C '(其中∠C=∠C '=Rt ∠)是否全等?如果全等在()里填写理由,如果不全等在()里打“×”. (1)AC=A 'C ',∠A=∠A ' ( ) (2)AC=A 'C ', BC=B 'C ' ( ) (3)∠A=∠A ',∠B=∠B ' ( ) (4) AB=A 'B ',∠B=∠B ' ( ) (5) AC=A 'C ', AB=A 'B ' ( )
的中点。
求证:BD ⊥AC 。
D C
A。