数学建模讲义ppt
合集下载
数学建模培训精品课件ppt
R具有丰富的统计函数库和图形库,可以进行各种统计分析 、数据挖掘和预测建模。R还具有开源的特性,用户可以自由 地使用和修改代码,同时也有大量的社区资源和教程可供参 考。
CHAPTER 04
数学建模竞赛经验分享
竞赛准备
知识储备
01
掌握数学建模所需的基本数学知识,如概率论、统计学、线性
代数和微积分等。
Python的NumPy库提供了强大的数组操作功能,可以进行大规模数值计算; Pandas库提供了数据分析和处理的功能;SciPy库可以进行各种科学计算和数学 建模;Scikit-learn库则提供了丰富的机器学习算法和模型。
R
R是一种用于统计计算和图形的编程语言,它提供了大量的 统计函数和图形工具,方便用户进行数据分析、统计建模和 可视化。
微分方程模型
总结词
微分方程模型用于描述动态系统的变化规律,通过建立微分方程来描述系统的状态和行 为。
详细描述
微分方程模型基于物理定律和数学原理,通过求解微分方程来预测系统的未来状态。常 见的微分方程模型有常微分方程、偏微分方程等,广泛应用于物理学、工程学等领域。
优化模型
总结词
优化模型用于寻找最优解,通过建立数学模型来描述问题的约束条件和目标函数。
任务。
创新思维
在解决问题时尝试不同 的方法和思路,不要局
限于一种解决方案。
文档规范
注意文档的规范性和可 读性,方便评委理解和
评价。
CHAPTER 05
数学建模前沿动态
人工智能与数学建模
人工智能算法的数学原理
解释人工智能算法背后的数学原理,如线性代数、概率论和统计 等。
机器学习与数学建模
介绍机器学习中的数学建模方法,如回归分析、分类和聚类等。
CHAPTER 04
数学建模竞赛经验分享
竞赛准备
知识储备
01
掌握数学建模所需的基本数学知识,如概率论、统计学、线性
代数和微积分等。
Python的NumPy库提供了强大的数组操作功能,可以进行大规模数值计算; Pandas库提供了数据分析和处理的功能;SciPy库可以进行各种科学计算和数学 建模;Scikit-learn库则提供了丰富的机器学习算法和模型。
R
R是一种用于统计计算和图形的编程语言,它提供了大量的 统计函数和图形工具,方便用户进行数据分析、统计建模和 可视化。
微分方程模型
总结词
微分方程模型用于描述动态系统的变化规律,通过建立微分方程来描述系统的状态和行 为。
详细描述
微分方程模型基于物理定律和数学原理,通过求解微分方程来预测系统的未来状态。常 见的微分方程模型有常微分方程、偏微分方程等,广泛应用于物理学、工程学等领域。
优化模型
总结词
优化模型用于寻找最优解,通过建立数学模型来描述问题的约束条件和目标函数。
任务。
创新思维
在解决问题时尝试不同 的方法和思路,不要局
限于一种解决方案。
文档规范
注意文档的规范性和可 读性,方便评委理解和
评价。
CHAPTER 05
数学建模前沿动态
人工智能与数学建模
人工智能算法的数学原理
解释人工智能算法背后的数学原理,如线性代数、概率论和统计 等。
机器学习与数学建模
介绍机器学习中的数学建模方法,如回归分析、分类和聚类等。
数学建模课堂PPT(部分例题分析)
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。
数学建模宣导ppt课件
数学建模的软件工具
❖ 3.lingo的概况
LINGO则用于求解非线性规划(NLP—NON—LINEAR PROGRAMMING)和二次规 则(QP—QUARATIC PROGRAMING)其中LINGO 6.0学生版最多可版最多达300个变 量和150个约束的规则问题,其标准版的求解能力亦再10^4量级以上。虽然LINDO和 LINGO不能直接求解目标规划问题,但用序贯式算法可分解成一个个LINDO和LINGO能解 决的规划问题。
❖ Lingo的特色:模型建立语言和求解引擎的整合 A. Lingo是建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。 B. Lingo可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修 改。 C. LINGO建立的模型可以直接从数据库或工作表获取资料。同样地, LINGO可以将求 解结果直接输出到数据库或工作表。 D. LINGO内建的求解引擎有线性、非线性(convex and nonconvex)、二次、二次限制和 整数最佳化。 E.LINGO提供完全互动的环境供您建立、求解和分析模型。LINGO也提供DLL和OLE界 面可供使用者由撰写的程序中呼叫。 F.LINGO提供的所有工具和文件可使你迅速入门和上手。LINGO使用者手册有详细的功 能定义。
Mathematica 在线性代数方面的数值运算,例如特征向量、 反矩阵等,皆比
Matlab R13做得更快更好,提供业界最精确的数值运算结果。Mathematica不但
可以做数值计算,还提供最优秀的可设计的符号运算。
数学建模的软件工具
❖ B.丰富的数学函数库,可以快速的解答微积分、线性代数、微分方程、复变函 数、数值分析、机率统计等等问题。 C.Mathematica可以绘制各专业领域专业函数图形,提供丰富的图形表示方法, 结果呈现可视化。 4.Mathematica可编排专业的科学论文期刊,让运算与排版在同一环境下完成, 提供高品质可编辑的排版公式与表格,屏幕与打印的 自动最佳化排版,组织由 初始概念到最后报告的计划,并且对 txt、html、pdf 等格式的输出提供了最好 的兼容性。 D.可与 C、C++ 、Fortran、Perl、Visual Basic、以及 Java 结合,提供强大高 级语言接口功能,使得程序开发更方便。 Mathematica本身就是一个方便学习的程序语言。 Mathematica提供互动且丰 富的帮助功能,让使用者现学现卖。强大的功能,简单的操作,非常容易学习 特点,可以最有效的缩短研发时间。
数学建模讲座PPT_ppt课件
数学建模讲座 PPT
讲座内容
关于数学建模
80年代以来在发达国家兴起并引起巨大凡响的 数学建模竞赛是适应世界性高科技发展及人才需求 而出现的新生事物。 在国家教育部高教司的领导和支持下,提出在 全国普通高校开展数学建模竞赛,旨在“培养学生 解决时间问题的能力和创造精神,全面提高学生的 综合素质”。
不是开玩笑,这就是数学建模。从不同度思考一个 问题,想尽所有的可能,正所谓智者千虑,绝无一 失,这才是数学建模的高手。
数学建模的意义
1 体现了数学的应用价值 2 有利于学生理论联系实际能力的培养 3 有利于培养学生的科研素养 4 有利于增加同学参加课外学术活动的 经验并在评优时更有竞争力。
数学建模的乐趣
论 文
数学建模论文的一般结构
• • • • • • • • • 摘要 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模 问题的重述 基本假设与符号说明 问题的分析与模型的准备
论文的模块设计
模型的建立 模型的求解 模型的检验 模型的灵敏度与稳定性分析 模型的科学性及现实意义 模型的使用说明 模型的进一步讨论与改进 模型评价与推广
1.可以认识一群人; 2.可以消磨一下无聊的时光; 3.可以学会喝咖啡,提高生活品味;
获奖后: 1.加个奖励分拿个奖学金; 2.加个分,保个研; 3.各种其他好处。
数学建模需要能力????
1)分析题意的能力
2)超找资料的能力 3)建立数学模型的能力 4)问题的转化能力 5)现学现用的能力 6)编程能力 7)论文写作能力
论文的模块设计
参考文献 附录
数学建模竞赛网上资源
• 中国数学建模网: • 数学中国网: • 中国大学生数学建模竞赛网:
讲座内容
关于数学建模
80年代以来在发达国家兴起并引起巨大凡响的 数学建模竞赛是适应世界性高科技发展及人才需求 而出现的新生事物。 在国家教育部高教司的领导和支持下,提出在 全国普通高校开展数学建模竞赛,旨在“培养学生 解决时间问题的能力和创造精神,全面提高学生的 综合素质”。
不是开玩笑,这就是数学建模。从不同度思考一个 问题,想尽所有的可能,正所谓智者千虑,绝无一 失,这才是数学建模的高手。
数学建模的意义
1 体现了数学的应用价值 2 有利于学生理论联系实际能力的培养 3 有利于培养学生的科研素养 4 有利于增加同学参加课外学术活动的 经验并在评优时更有竞争力。
数学建模的乐趣
论 文
数学建模论文的一般结构
• • • • • • • • • 摘要 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模 问题的重述 基本假设与符号说明 问题的分析与模型的准备
论文的模块设计
模型的建立 模型的求解 模型的检验 模型的灵敏度与稳定性分析 模型的科学性及现实意义 模型的使用说明 模型的进一步讨论与改进 模型评价与推广
1.可以认识一群人; 2.可以消磨一下无聊的时光; 3.可以学会喝咖啡,提高生活品味;
获奖后: 1.加个奖励分拿个奖学金; 2.加个分,保个研; 3.各种其他好处。
数学建模需要能力????
1)分析题意的能力
2)超找资料的能力 3)建立数学模型的能力 4)问题的转化能力 5)现学现用的能力 6)编程能力 7)论文写作能力
论文的模块设计
参考文献 附录
数学建模竞赛网上资源
• 中国数学建模网: • 数学中国网: • 中国大学生数学建模竞赛网:
《数学建模讲义》PPT课件
f=100*(x(2)-x(1)^2)^2+(1-x(1))^2;
return
2. 可以直接使用函数fun.m
例如:计算 f(1,2), 只需在Matlab命令窗口键入命令:
x=[1 2];fun(x)
15
4.4 函数调用和参数传递
在MATLAB中,调用函数的常用形式是: [输出参数1,输出参数2,…] = 函数名(输入参数1,输入参数2, …)
14
M文件建立方法:
1. 在Matlab中点:File->New->M-file 2. 在编辑窗口中输入程序内容 3. 点:File->Save存盘,文件名必须函数名一致。
例:定义函数 f(x1,x2)=100(x2-x12)2+(1-x1)2 1.建立M文件:fun.m
function f=fun(x)
(5)使用方便,具有很好的扩张功能。 使用MATLAB语言编写的程序可以直接运行,无需编译。 可以M文件转变为独立于平台的EXE可执行文件。
MATLAB的应用接口程序API是MATLAB提供的十分重要 的组件 ,由 一系列接口指令组成 。用户就可在FORTRAN 或C中 , 把MATLAB当作计算引擎使用 。 (6)具有很好的帮助功能 提供十分详细的帮助文件(PDF 、HTML 、demo文件)。 联机查询指令:help指令(例:help elfun,help exp,help simulink),lookfor关键词(例: lookfor fourier )。 5
6
一、变量与函数
1、变量 MATLAB中变量的命名规则
(1)变量名必须是不含空格的单个词; (2)变量名区分大小写; (3) 变量名必须以字母打头,之后可以是任意字 母、数字或下划线,变量名中不允许使用标点符
数学建模ppt第一章.ppt
问题分析
多步决策过程
3名商人 3名随从
决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员
要求~在安全的前提下(两岸的随从数不比商人多),经有 限步使全体人员过河.
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 sk=(xk , yk)~过程的状态
《数精学品课建程模》
描述、优化、预报、决策 … …
了解程度 白箱
灰箱
黑箱
《数精学品课建程模》
1.6 怎样学习数学建模
数学建模与其说是一门技术,不如说是一门艺术
技术大致有章可循 艺术无法归纳成普遍适用的准则
想像力
洞察力
判断力
• 学习、分析、评价、改进别人作过的模型
• 亲自动手,认真作几个实际题目
《数精学品课建程模》
第1章 作业
研究人口变化规律 控制人口过快增长
《数精学品课建程模》
常用的计算公式 今年人口 x0, 年增长率 r
k年后人口
x x (1 r)k
k
0
指数增长模型——马尔萨斯提出 (1798)
基本假设 : 人口(相对)增长率 r 是常数
x(t) ~时刻t的人口
dx dt rx, x(0) x0
x(t t) x(t) rt x(t)
一、教材 P 22-23 ex 3(5); 9(3)
二、补充题:巧分蛋糕问题
专家估计
r=0.2557, xm=392.1
《数精学品课建程模》
阻滞增长模型(Logistic模型) 模型检验
用模型计算2000年美国人口,与实际数据比较
x(2000 ) x(1990 ) x x(1990 ) rx(1990 )[1 x(1990 ) / xm ]
数学建模培训精品课件ppt
MATLAB在数学建模中的应用
MATLAB概述
01
MATLAB是一种用于算法开发、数据可视化、数据分析和数值
计算的编程语言和开发环境。
MATLAB在数学建模中的优势
02
MATLAB提供了丰富的数学函数库和工具箱,支持矩阵运算、
符号计算和数值分析,适用于各种数学建模场景。
MATLAB在数学建模中的应用案例
数学建模在金融领域的应用
金融行业对数学建模的需求日益增长,涉及风险管理、投资组合优化、市场预测等领域 。
数学建模在物理科学和工程中的应用
物理科学和工程领域中的复杂问题需要借助数学建模进行深入研究,如流体动力学、材 料科学等。
提高数学建模能力的建议
01
掌握数学基础知识
数学建模需要扎实的数学基础, 如概率论、统计学、线性代数和 微积分等。
深度学习中的数学建模
探讨深度学习领域中常用的数学方法和模型,如卷积神经网络、循 环神经网络等。
数据科学中的数学建模
数据清洗与预处理
数据可视化的数学基础
介绍数据科学中数据预处理的基本方 法和数学原理。
介绍数据可视化中涉及的数学原理和 可视化技术。
统计分析方法
阐述统计分析中常用的方法和模型, 如回归分析、聚类分析等。
02
实践经验积累
03
学习优秀案例
通过参与数学建模竞赛、科研项 目等方式,积累实践经验,提高 解决实际问题的能力。
学习经典数学建模案例,了解不 同领域中数学建模的应用方法和 技巧。
对未来数学建模的展望
跨学科交叉融合
未来数学建模将更加注重与其他学科的交叉融合,如生物 学、环境科学、社会科学等。
人工智能与数学建模结合
数学建模培训精品课件
深度学习与神经网络
介绍深度学习和神经网络的基本原理 ,以及在数学建模中的应用和挑战。
探讨机器学习算法如何与数学建模相 结合,实现数据分析和预测。
大数据时代的数学建模挑战与机遇
大数据的数学建模方法
介绍处理大规模数据集的数学建模方法和技巧,如分布式计算、 云计算等。
数据清洗与预处理
阐述数据预处理在数学建模中的重要性,以及如何进行数据清洗和 特征提取。
THANKS.
04
模型评估与改进技巧
误差分析
分析模型预测误差来源,提高模型预测精度 。
多目标优化
在满足多个约束条件下,优化模型目标函数 。
敏感性分析
评估模型参数对结果的影响程度,优化模型 参数。
模型集成
将多个模型组合起来,提高整体预测性能。
数学建模软件介绍
04
MATLAB的使用介绍
MATLAB概述
01
MATLAB是一种用于算法开发、数据可视化、数据分析以及数
数学建模应用实例
02
微积分建模实例
总结词:微积分建模是数学建模中的基 础,通过实例可以更好地理解微积分的 实际应用。
经济学中的边际分析:通过微积分分析 经济活动中成本、收益和利润的变化, 为决策提供依据。
人口增长模型:利用微积分的知识,建 立人口增长模型,预测未来人口数量和 增长趋势。
详细描述
瞬时速度与加速度:通过分析物体运动 的速度和加速度,建立微积分模型,用 于预测物体的运动轨迹和时间。
模型验证:使用实际数据对模型进行 验证,评估模型的准确性和可靠性。
应用与优化:将模型应用于未来气候 预测中,根据反馈进行模型优化和调 整。
数学建模前沿动态
06
人工智能与数学建模的结合
《数学建模培训》课件
MATLAB
• 总结词:MATLAB是一种高效的数值计算和数据分析工具 ,广泛用于数学建模、算法开发、数据分析等领域。
MATLAB
• 详细描述 • MATLAB简介:MATLAB是Matrix Laboratory的缩写,由MathWorks
公司开发,是一种基于矩阵运算的编程语言和数值计算环境。 • MATLAB功能:MATLAB具有强大的矩阵运算和数值计算能力,可以用
Python(NumPy, Pandas, Scikit-learn)
• 总结词:Python是一种广泛使用的通用编程语言,具有简单易学、代码可读性高等优点,常用于数据处理、机器学习等领 域。
Python(NumPy, Pandas, Scikit-learn)
• 详细描述 • Python简介:Python由Guido van Rossum于1989年发布第一个公开发行版,是一种解释型、交互式的编程
《数学建模培训》课件
汇报人: 日期:
目录
• 数学建模概述 • 数学基础知识 • 数学建模案例分析 • 数学建模进阶知识 • 数学建模实践技巧 • 数学建模常用软件介绍 • 数学建模发展趋势与挑战
01
数学建模概述
数学建模的定义
数学建模是一种用数学语言描述现实问题,建立数学模型,并通过对模型的分析和 求解来做出决策的科学方法。
大数据时代的挑战
数据处理难度加大
随着大数据时代的到来,数据的类型、规模 和复杂性都不断加大,这给数学建模带来了 更多的挑战。如何有效地处理、分析和利用 大数据,成为数学建模需要面对的重要问题 。
数据隐私和安全问题
在大数据时代,数据的隐私和安全问题也日 益突出。如何在保证数据隐私和安全的前提 下,进行有效的数学建模,是当前需要解决 的一个重要问题。
数学建模常用方法介绍ppt课件
遗传算法一般步骤
1. 完成了预先给定的进 化代数 2. 种群中的最优个体在 连续若干代后没有改进 3. 平均适应度在连续若 干代后基本没有改进
竞赛中的群体思维方法
✓平等地位、相互尊重、充分交流 ✓杜绝武断评价 ✓不要回避责任 ✓不要对交流失去信心
竞赛中的发散性思维方法
➢ 借助于一系列问题来展开思路
与模糊数学相关的问题(二)
模糊聚类分析—根据研究对象本身的属性构造 模糊矩阵,在此基础上根据一定的隶属度来 确定其分类关系
模糊层次分析法—两两比较指标的确定
模糊综合评判—综合评判就是对受到多个因素 制约的事物或对象作出一个总的评价,如产 品质量评定、科技成果鉴定、某种作物种植 适应性的评价等,都属于综合评判问题。由 于从多方面对事物进行评价难免带有模糊性 和主观性,采用模糊数学的方法进行综合评 判将使结果尽量客观从而取得更好的实际效 果
3. 合并距离最近的两类为一个新类 4. 计算新类与当前各类的距离(新类与当
前类的距离等于当前类与组合类中包含 的类的距离最小值),若类的个数等于 1,转5,否则转3 5. 画聚类图 6. 决定类的个数和类。
统计方法(判别分析)
➢ 判别分析—在已知研究对象分成若干类型,并已取 得各种类型的一批已知样品的观测数据,在此基础 上根据某些准则建立判别式,然后对未知类型的样 品进行判别分类。
这个问题与什么问题相似? 如果将问题分解成两个或几个部分会怎样? 极限情形(或理想状态)如何? 综合问题的条件可得到什么结果? 要实现问题的目标需要什么条件?
➢ 借助于下意识的联想(灵感)来展开思路
抓住问题的个别条件或关键词展开联想或猜想 综合所得到的联想和猜想,得到一些结论 进一步思考找出新思路和方法
《数学建模培训》课件
数中一些 重要的等式,如欧拉恒等 式、柯西恒等式等。
几何基础知识
平面几何
解析几何
平面几何是研究平面图形及其性质的 数学分支,包括点、线、面、角等基 本概念。
解析几何是用代数方法研究几何问题 的一门学科,包括坐标系、向量、向 量的运算等基本概念。
立体几何
立体几何是研究空间图形及其性质的 数学分支,包括长方体、球体、圆柱 体等基本几何体。
现状
目前,数学建模已经成为 一个独立的学科领域,拥 有广泛的学术和应用价值 。
数学建模的应用领域
自然科学
数学建模在物理学、化学、生 物学等领域有着广泛的应用, 如牛顿万有引力定律、薛定谔
方程等。
工程学
数学建模在土木工程、机械工 程、电子工程等领域发挥着重 要作用,如结构分析、流体动 力学等。
社会科学
概率与统计基础知识
概率论
概率论是研究随机现象的数学分 支,包括随机事件、概率、期望
、方差等基本概念。
统计学
统计学是研究数据收集、整理、分 析和解释的学科,包括描述性统计 、推论性统计等基本内容。
回归分析
回归分析是研究自变量和因变量之 间关系的学科,包括线性回归、多 元回归等基本内容。
数学建模方法与技
3
分式方程
通过实际问题建立分式方程,如工程问题、时间 分配等,掌握方程的解法及实际应用。
几何图形建模案例分析
平面几何
01
通过实际问题建立平面几何模型,如面积、周长、角度等,掌
握图形的性质及实际应用。
立体几何
02
通过实际问题建立立体几何模型,如体积、表面积、距离等,
掌握图形的性质及实际应用。
解析几何
总结词
竞赛经验、团队合作
几何基础知识
平面几何
解析几何
平面几何是研究平面图形及其性质的 数学分支,包括点、线、面、角等基 本概念。
解析几何是用代数方法研究几何问题 的一门学科,包括坐标系、向量、向 量的运算等基本概念。
立体几何
立体几何是研究空间图形及其性质的 数学分支,包括长方体、球体、圆柱 体等基本几何体。
现状
目前,数学建模已经成为 一个独立的学科领域,拥 有广泛的学术和应用价值 。
数学建模的应用领域
自然科学
数学建模在物理学、化学、生 物学等领域有着广泛的应用, 如牛顿万有引力定律、薛定谔
方程等。
工程学
数学建模在土木工程、机械工 程、电子工程等领域发挥着重 要作用,如结构分析、流体动 力学等。
社会科学
概率与统计基础知识
概率论
概率论是研究随机现象的数学分 支,包括随机事件、概率、期望
、方差等基本概念。
统计学
统计学是研究数据收集、整理、分 析和解释的学科,包括描述性统计 、推论性统计等基本内容。
回归分析
回归分析是研究自变量和因变量之 间关系的学科,包括线性回归、多 元回归等基本内容。
数学建模方法与技
3
分式方程
通过实际问题建立分式方程,如工程问题、时间 分配等,掌握方程的解法及实际应用。
几何图形建模案例分析
平面几何
01
通过实际问题建立平面几何模型,如面积、周长、角度等,掌
握图形的性质及实际应用。
立体几何
02
通过实际问题建立立体几何模型,如体积、表面积、距离等,
掌握图形的性质及实际应用。
解析几何
总结词
竞赛经验、团队合作
数学建模培训精品课件ppt
03
跨学科的数学建模需要加强交流与合作,打破学科壁垒,促进知识的融合和应用。
总结
数学建模是利用数学语言描述现实世界的过程,它在科学、工程、经济、金融等领域有着广泛的应用。
重要性
数学建模能够将实际问题抽象化,通过数学分析和计算得出结论,为决策提供科学依据。
应用领域
数学建模在物理、化学、生物、环境科学、医学、社会科学等领域都有应用,是解决复杂问题的重要工具。
数学建模竞赛经验分享
数学建模竞赛需要学生运用所学知识解决实际问题,有助于培养他们的创新思维和解决问题的能力。
培养创新思维
参加数学建模竞赛可以提高学生的数学素养、编程能力、团队协作和沟通能力等,有助于提升学生的综合素质。
提高综合素质
在数学建模竞赛中取得优异成绩,可以为学生未来的学术和职业发展提供有力支持,增强他们的竞争力。
随着实际问题越来越复杂,数学建模面临诸多挑战,如模型建立、数据获取和处理、计算效率等。
挑战
随着科技的发展,数学建模在大数据分析、人工智能、机器学习等领域的应用越来越广泛,为数学建模提供了新的机遇。
技术创新
随着计算技术和算法的发展,数学建模将更加高效和精确,能够处理更大规模和更复杂的数据。
应用拓展
LINGO是一款由Lindo Systems公司开发的商业优化软件,主要用于解决线性规划、整数规划、非线性规划等问题。
LINGO内置了多种求解器,可以快速求解大规模的优化问题,支持多种目标函数和约束条件。
LINGO提供了友好的用户界面和强大的建模功能,支持多种优化模型,包括线性规划、整数规划、二次规划等。
Python的语法简单易懂,易于上手,适合初学者快速入门。
Python的可视化库也非常丰富,如Matplotlib、Seaborn等,可以方便地绘制各种统计图形和数据可视化。
跨学科的数学建模需要加强交流与合作,打破学科壁垒,促进知识的融合和应用。
总结
数学建模是利用数学语言描述现实世界的过程,它在科学、工程、经济、金融等领域有着广泛的应用。
重要性
数学建模能够将实际问题抽象化,通过数学分析和计算得出结论,为决策提供科学依据。
应用领域
数学建模在物理、化学、生物、环境科学、医学、社会科学等领域都有应用,是解决复杂问题的重要工具。
数学建模竞赛经验分享
数学建模竞赛需要学生运用所学知识解决实际问题,有助于培养他们的创新思维和解决问题的能力。
培养创新思维
参加数学建模竞赛可以提高学生的数学素养、编程能力、团队协作和沟通能力等,有助于提升学生的综合素质。
提高综合素质
在数学建模竞赛中取得优异成绩,可以为学生未来的学术和职业发展提供有力支持,增强他们的竞争力。
随着实际问题越来越复杂,数学建模面临诸多挑战,如模型建立、数据获取和处理、计算效率等。
挑战
随着科技的发展,数学建模在大数据分析、人工智能、机器学习等领域的应用越来越广泛,为数学建模提供了新的机遇。
技术创新
随着计算技术和算法的发展,数学建模将更加高效和精确,能够处理更大规模和更复杂的数据。
应用拓展
LINGO是一款由Lindo Systems公司开发的商业优化软件,主要用于解决线性规划、整数规划、非线性规划等问题。
LINGO内置了多种求解器,可以快速求解大规模的优化问题,支持多种目标函数和约束条件。
LINGO提供了友好的用户界面和强大的建模功能,支持多种优化模型,包括线性规划、整数规划、二次规划等。
Python的语法简单易懂,易于上手,适合初学者快速入门。
Python的可视化库也非常丰富,如Matplotlib、Seaborn等,可以方便地绘制各种统计图形和数据可视化。
《数学建模经验交流》课件
如何处理数据和参数的调整
数据清洗和预处理
01
在建模之前,需要对数据进行清洗和预处理,去除异常值、缺
失值和重复数据,确保数据的质量和准确性。
参数调整和优化
02
根据模型的参数要求,对数据进行适当的调整和优化,以满足
模型的输入要求。
数据可视化和分析
03
通过数据可视化和分析,了解数据的分布和特征,为参数调整
03
数学建模是解决复杂问题的 重要手段,广泛应用于科学 研究、工程设计、经济分析
等领域。
数学建模的应用领域
自然科学
物理、化学、生物等学科中的问题可以 通过数学建模进行深入研究。
工程领域
机械、电子、航空航天等工程问题需要 数学建模来优化设计。
社会科学
经济学、心理学、社会学等领域的研究 可以通过数学建模来揭示规律。
04
数学建模挑战与展望
数学建模面临的挑战
模型复杂度增加
随着实际问题的复杂化,数学建模的难度也在不断加 大,需要更高的数学理论和技术支持。
数据量与维度增加
大数据时代的来临使得数据量急剧增加,处理和分析 这些高维度数据需要更高级的数学建模方法。
模型验证与评估难度
由于现实世界的复杂性和不确定性,数学模型的验证 和评估变得更为困难。
心得2
数学建模不仅仅是建立模型,更重要的是对实际问题的深入理解 和分析。
经验3
要不断学习和掌握新的数学方法和工具,提高自己的建模能力和 水平。
THANKS
分组讨论
01
讨论1
针对环境污染问题,如何建立 数学模型来预测污染趋势和制
定治理方案?
02
讨论2
在金融领域,如何利用数学建 模来评估投资风险和预测市场
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模竞赛期间的注意事项
• 吃透题意,确定题目;
• 查阅资料、实际调查要适度;
• 保证基本模型和求解的完成,在此基础上完善改进; • 根据建模的要求,可以增加、删除甚至修改题目的 条件; • 把握好用现成的模型和方法,与自己创新的模型和 方法之间的关系; • 论文主体由一人完成,并早些开始写作。
• 竞赛优秀论文,见<工程数学学报>(2001年起)及 <数 学的实践与认识> (2001年前)
数学建模竞赛组队的方式
• 尽可能地让不同创新 能力强的,认真踏实的,有组织能力的,文笔 好的,…)组成一队,以利优势互补; • 尽可能地让学生在队内充分磨合,达成默契, 形成“领袖”。
一、CUMCM历年赛题的分析
3、从问题的解决方法上分析
• 用到插值拟合的问题有6个; • 用到神经网络的4个; • 用灰色系统理论的4个; • 用到时间序列分析的至少2个; • 用到综合评价方法的至少3个; • 机理分析方法和随机模拟都多次用到; • 其他的方法都至少用到一次。 • 大部分题目都可以用两种以上的方法来解决 ,即综合性较强的题目有25个,占83.3%。
评奖标准:假设的合理性、建模的创造性、结果的正 确性、文字表述的清晰程度。 竞赛宗旨:创新意识 团队精神 重在参与 公平竞争
数学建模竞赛培养学生创新精神,提高学生综合素质
运用学过的数学知识和计算机(包括选择合 适的数学软件)分析和解决实际问题的能力 面对复杂事物的想象力、洞察力、创造力和 独立进行研究的能力 关心、投身国家经济建设的意识和理论联系实际的学风 团结合作精神和进行协调的组织能力
勇于参与的竞争意识和不怕困难、奋力攻关的顽强意志
查阅文献、收集资料及撰写科技论文的文字表达能力
数学建模竞赛 优秀论文评析
• 每年出两道题(甲组:A,B题; 乙组:C,D题), 任选一题. • A,C 为连续型题目; B,D为离散型题目
数学建模竞赛的准备(培训)内容
1)建模的基本概念和方法(数学建模课程的主要内容)
数学建模培训讲座---
数学建模历年赛题的分析与思考
韩中庚
信 息 信工 息程 工大 程学 学 院 ---
Institute of Information Engineering, Information Engineering University
一、CUMCM历年赛题的分析
• 数学建模竞赛的规模越来越大,水平越来越高; • 竞赛的水平主要体现在赛题水平的提高; • 赛题的水平主要体现: (1)综合性、实用性、创新性、即时性等; (2)多种解题方法的创造性、灵活性、开放性等 ; (3)给参赛者留有很大的发挥创造的想象空间。
数学建模竞赛 简介
dx rx dt
姜启源
清华大学
全国大学生数学建模竞赛
竞赛内容:题目由工程技术、管理科学中的实际问 题简化而成,没有事先设定的标准答案,但留有充 分余地供参赛者发挥其聪明才智和创造精神。 竞赛形式:三名大学生组成一队,可以自由地收集 资料、调查研究,使用计算机、互联网和任何软件, 在三天时间内分工合作完成一篇论文。
纵览15年的本科组30个题目(专科组还有11个题 目),可以从问题的实际意义、解决问题的方法和题 型三个方面作一些简单的分析。
一、CUMCM历年赛题的分析
2、从问题的实际意义分析
30个问题的从实际意义分析大体上可分为: 工业、农业、工程设计、交通运输、经济管理、 生物医学和社会事业等七个大类。
工业类:电子通信、机械加工 交通运输类:3个题,占10.0% 与制造、机械设计与 控制等行业,共有8个 经济管理类:5个题,占16.7% 题,占26.7%。 生物医学类:5个题,占16.7% 农业类:1个题,占3.3%。 工程设计类: 3个题,占10.0%。 社会事业类: 5个题,占16.7% 有的问题属于交叉的,或者是边缘的。
一、CUMCM历年赛题的分析
3、从问题的解决方法上分析
• 用的最多的方法是优化方法和概率统计的方法. • 用到优化方法的共有21个题,占总数的70%,其 中整数规划4个,线性规划6个,非线性规划14个, 多目标规划5个。 • 用到概率统计方法的有16个题,占53.3%,几乎 是每年至少有一个题目用到概率统计的方法。 • 用到图论与网络优化方法的问题有5个; • 用到层次分析方法的问题有3个;
一、CUMCM历年赛题的分析
3、从问题的解决方法上分析
从问题的解决方法上分析,涉及到的数学 建模方法: 几何理论、组合概率、统计(回归)分析、 优化方法(规划)、图论与网络优化、层次分 析、插值与拟合、差分方法、微分方程、排队 论、模糊数学、随机决策、多目标决策、随机 模拟、灰色系统理论、神经网络、时间序列、 综合评价、机理分析等方法。
2)建模过程中常用的数学方法(微积分、代数、概率外), 主要有:计算方法(如数值微分和积分、微分方程数值解、 代数方程组解法),优化方法(如线性、非线性规划),数理 统计(如假设检验、回归分析),图论(如最短路)等。 只要求知道实际问题与这些数学知识之间的对应关系 (如哪些问题可用线性规划求解,或线性规划可解决 哪些问题),以及用它们建立模型的方法,基本上不 必涉及模型的求解。
写好论文(答卷)的注意事项
• 完整——摘要;问题提出(用自己的语言);问题 分析;模型假设;模型建立;模型求解(算法设计 和计算机实现);结果(数据、图形);结果分析 和检验(如误差分析、统计检验、灵敏性检验); 优缺点,改进方向等,附录(程序、更多的计算结 果、复杂的推导、证明等); • 摘要——主要模型(名称)、方法和结果,解决 了什么问题,有何特色等; • 表述清晰、简明,给出数学符号的确切含义、 模型假设的理由等。
数学建模竞赛准备的(培训)内容
3)合适的数学软件的用法。基本上能完成上述方法的 软件,如 MATLAB ,MATHEMATICA, LINDO等。 4)历届赛题的研讨。 5)撰写数学建模论文的练习。
参考书
• 数学模型(第3版),姜启源等(高等教育出版社,2003年) • 大学数学实验, 姜启源等(清华大学出版社, 2005年)