单端反激式开关电源变压器设计的基本工作原理

合集下载

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理反激式变压器开关电源工作原理比较简单,输出电压控制范围比较大,因此,在一般电器设备中应用最广泛。

1-7-1.反激式变压器开关电源工作原理所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流脉冲电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。

图1-19-a是反激式变压器开关电源的简单工作原理图,图1-19-a中,Ui是开关电源的输入电压,T是开关变压器,K是控制开关,C是储能滤波电容,R是负载电阻。

图1-19-b是反激式变压器开关电源的电压输出波形。

把图1-19-a与图1-16-a进行比较,如果我们把图1-16-a中开关变压器次级线圈的同名端对调一下,原来变压器输出电压的正、负极性就会完全颠倒过来,图1-19-b所示的电压输出波形基本上就是从图1-16-b的波形颠倒过来的。

不过,因为图1-16-b的波形对应的是纯电阻负载,而图1-19-b的负载是一个储能滤波电容和一个电阻并联。

由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,图1-16-b中输出电压uo的脉冲尖峰完全被削除,被限幅后的剩余电压幅值正好等于输出电压Uo的最大值Up,同时也等于变压器次级线圈输出电压uo的半波平均值Upa。

下面我们来详细分析反激式变压器开关电源的工作过程(参考图1-20)。

图1-19-a中,在控制开关K接通的Ton期间,输入电源Ui对变压器初级线圈N1绕组加电,初级线圈N1绕组有电流i1流过,在N1两端产生自感电动势的同时,在变压器次级线圈N2绕组的两端也同时产生感应电动势,但由于整流二极管的作用,没有产生回路电流。

相当于变压器次级线圈开路,变压器次级线圈相当于一个电感。

因此,流过变压器初级线圈N1绕组的电流就是变压器的励磁电流,变压器初级线圈N1绕组两端产生自感电动势可由下式表示:或上式中,e1为变压器初级线圈N1绕组产生的自感电动势,L1是变压器初级线圈N1绕组的电感,N1为变压器初级线圈N1绕组线圈绕组的匝数,为变压器铁心中的磁通。

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理引言:反激式变压器开关电源是一种常用的电源设计,广泛应用于各个领域,如电子设备、通信设备、工业控制等。

在本文中,我们将详细介绍反激式变压器开关电源的工作原理及其基本组成部分。

一、工作原理反激式变压器开关电源是一种通过开关管的断续导通实现能量转换的电源设计。

其工作原理可以概括为以下几个过程:1. 输入电压变换:反激式变压器开关电源通常采用交流输入,利用输入电压的变换来实现电能的转换和调节。

输入电压首先经过整流电路,将交流电信号转换为脉冲直流电信号。

2. 能量储存:脉冲直流电信号进入能量储存电容器,用于储存电能。

这里的能量储存器通常采用电容器,其大小和选择根据需求进行合理的设计。

3. 开关管控制:开关管是反激式变压器开关电源的核心部分,用于对能量的开关和控制。

开关管的导通与断开实现了能量的转换。

通过控制开关管的导通时间长短可以实现输出电压和电能的调节。

4. 变压器工作:在开关管导通状态下,输入电压经过变压器变换为输出电压。

反激式变压器特点之一是输入端和输出端没有直接电气连接,其通过磁耦合实现电能传输。

5. 输出滤波:输出电压经过滤波电路,滤除脉动和噪声,得到平稳、纹波较小的直流电压供给外部负载使用。

二、基本组成部分反激式变压器开关电源主要由以下几个基本组成部分构成:1. 整流电路:整流电路用于将交流电信号转换为脉冲直流电信号,常见的整流电路有单相整流桥和三相整流桥。

2. 能量储存器:能量储存器主要是指电容器,用于储存电能。

其容量的大小和选择应根据输出电流和纹波要求进行合理设计。

3. 开关管:开关管是反激式变压器开关电源的核心部分,主要通过导通或断开来控制能量转换和电压调节。

常见的开关管有MOSFET、IGBT等。

4. 控制电路:控制电路是用于控制开关管导通和断开的电路部分。

它通常接收来自负载和输入电压的反馈信号,并通过控制信号控制开关管的工作。

5. 变压器:变压器是反激式变压器开关电源的核心组件之一,通过变压器实现输入电压和输出电压的转换。

反激式开关电源变压器设计原理

反激式开关电源变压器设计原理

反激式开关电源变压器设计原理首先是变比选择。

变压器的变比决定了输入电压和输出电压的比值。

通常情况下,开关电源需要将输入交流电压转换为稳定的直流电压,因此输出电压需要较低。

在选择变比时,考虑到电路的复杂性和功率转换效率,一般选择较大的输入电压和较小的输出电压。

变比的选择也需要考虑到负载的要求和功率转换效率的平衡。

其次是磁芯材料。

变压器的磁芯材料直接影响到电路的性能和效率。

一般情况下,磁芯材料需要具备较高的矫顽力和饱和磁场强度,以实现高效率的电力转换。

常用的磁芯材料有硅钢片、铁氧体和钕铁硼等。

在选择磁芯材料时需要综合考虑材料的价格、性能和可用性。

最后是工作频率。

反激式开关电源变压器工作在高频率下,一般在10kHz至1MHz之间。

高频率的工作可以减小变压器的体积和重量,提高电路的效率和响应速度。

但是,高频率也会增加电路的开关损耗和EMI(电磁干扰)噪声。

因此,在设计反激式开关电源变压器时需要对工作频率的选择进行充分的考虑。

此外,还需要注意的是反激式开关电源变压器的绝缘和散热问题。

由于反激式开关电源工作在高压和高频下,变压器绝缘需要特别注意以防止电路失效和安全事故发生。

同时,由于电路的功率转换过程中会产生大量的热量,因此需要设计合适的散热系统来保证电路的正常运行。

总结起来,反激式开关电源变压器的设计原理包括变比选择、磁芯材料和工作频率的选择。

设计人员需要根据具体的应用需求,综合考虑功率转换效率、体积和重量等因素,选择合适的设计方案。

同时,还需要注意绝缘和散热问题,以保证电路的安全和可靠运行。

反激式开关电源设计详解

反激式开关电源设计详解

反激式开关电源设计详解一、工作原理1.开关管控制:反激式开关电源中,开关管起到了关键的作用。

当输入电压施加在开关管上时,开关管处于导通状态,此时电流流经变压器和输出电路,能量存储在变压器核心中。

当输入电压施加在开关管上时,开关管处于截止状态,此时能量释放,通过一对二极管和电容器形成输出脉冲电流。

2.变压器作用:反激式开关电源中的变压器主要用于将输入电压转换为所需的输出电压。

在导通状态下,输入电压施加在变压器的一侧,能量存储在变压器的磁场中。

在截止状态下,变压器的磁场崩溃,能量释放到输出电路中。

3.输出电路过滤:输出电流通过一对二极管和电容器形成脉冲电流。

为了使输出电流更加稳定,需要通过电容器对输出电流进行滤波,降低脉冲幅度,使输出电压更加平稳。

二、基本结构1.输入滤波电路:由于输入电源通常含有较多的噪声和干扰,为了保障开关电源的正常工作,需要在输入端添加一个滤波电路,通过滤波电容和电感将输入电压的尖峰和噪声滤除。

2.开关控制电路:开关控制电路用于对开关管进行控制,使其在合适的时机打开和关闭。

常见的控制方式有定时控制和反馈控制两种。

3.开关管:开关管在反激式开关电源中起到了关键的作用。

常见的开关管有MOS管、IGBT管等,其特性包括导通损耗、截止损耗和开关速度等。

4.变压器:变压器用于将输入电压变换为所需的输出电压。

同时,变压器还能起到隔离输入电源和输出负载的作用,保护负载。

5.输出整流滤波电路:输出整流滤波电路用于对输出电流进行整流和滤波,使输出电压更加稳定。

三、常见设计方法1.脉冲宽度调制(PWM)控制:PWM是一种常用的反激式开关电源控制方法,通过控制开关管的导通时间来调节输出电压和电流。

PWM控制能够实现较高的效率和较低的输出波纹,但需要一定的控制电路。

2.变压器匹配设计:在设计反激式开关电源时,需要合理选择变压器的匝数比,以实现所需的输入输出电压转换。

同时,还需要考虑变压器的大小和功耗。

反激式变压器开关电源课件

反激式变压器开关电源课件
反激式变压器开关电源课件
• 反激式变压器开关电源概述 • 反激式变压器开关电源的设计与
优化 • 反激式变压器开关电源的特性与
性能指标
• 反激式变压器开关电源的调试与 测试
• 反激式变压器开关电源的常见问 题与解决方案
01 反激式变压器开关电源概述
定义与工作原理
定义
反激式变压器开关电源是一种通过控制开关管通断来调节输出电压的电源供应 器。
选择低损耗的开关管 和二极管,降低能量 损耗。
根据实际需求,选择 适当的保护电路和辅 助电路元器件。
选择合适的电容和电 感,以满足电源的稳 定性和效率要求。
变压器设计
确定变压器的匝数比和磁芯材料 ,以实现所需的电压和电流转换

考虑变压器的绝缘材料和结构, 确保安全可靠。
根据实际需求,优化变压器的体 积和重量。
1. 磁芯损耗过大
反激式变压器开关电源中的磁芯在工作过程中会产生损耗 ,若损耗过大,会导致效率降低。需要优化磁芯材料和结 构,降低损耗。
3. 散热不良
电源在工作过程中会产生热量,若散热不良,会导致效率 降低。需要加强散热设计,如增大散热面积、优化散热风 道等。
保护功能问题
总结词
保护功能问题表现为电源的保护功能 失效或误动作。
THANKS 感谢观看
可靠性分析
平均无率
失效率越低,电源的可靠性越高。
04 反激式变压器开关电源的调试与测试
调试步骤与注意事项
调试步骤 检查电路连接是否正确,确保所有元件都已正确安装。
接通电源,观察电源是否正常启动。
调试步骤与注意事项
01
调整变压器和开关管的工作参数 ,确保其在正常范围内。
当输入电压低于正常值时,电源可能无法 启动。解决方案是确保输入电压在正常范 围内。

单端反激式开关电源中变压器的设计

单端反激式开关电源中变压器的设计

2 反 激 式 变 压 器 的 设计 步 骤
经 逐 渐 取 代 了 传 统 的线 性 电源 , 电 子 、 在 电气 设 备 和 家 电 领 域 等
方 面 得 到 了广 泛 的 使用 。 端 反 激 式 拓 扑结 构 的 变 压 器 , 多 路 单 在 输 出情 况 下 电 路 简单 , 本 较低 且具 有效 率 高 等优 点 , 越 来 越 成 被 多地 应 用 在 中 小 功率 的开 关 电源 中 。
1 反激 式 变 压 器 工作 原 理
设 计 的 变 压 器 要 求 在 交 流 输 入 电 压 为 1 5 2 5 的 开 关 6 V ̄ 6 V 电 源 中能 够 提 供 八 路 电 压输 出 。这 八 路输 出参 数 分 别 为 : 共 2路 地 输 出 ± 4 / .A; 路 独 立 地 1 V 02 1路 独 立 地 1 v 1 v 02 3 5 / .A, 5/ 05 2路 独 立 地  ̄ V 2 . A; 5 / A。设 计 变 压 器 工 作 在 C CM 模 式 下 , 具 体步骤如下 。 () 1 已知 参 数 的 确定 根 据 设 计 要 求 和 电 路 特 点确 定 以下 参 数 :输 入 直 流 电压 范 围 V ~ . , 作 频 率 f 6 k , 望 效 率 1 08 , 组 输 出 . V ~ 工 = 6 Hz 期 1 .5 多 = 电 压值 V , 出 功率 P = 0 , 关 管 导 通 压 降 Vs 0 。 因为 0输  ̄ 5W 开 d =1 V 变 压 器 要 求 有 八 路 输 出 ,所 以 选 择 窗 口长 宽 比 例 较 大 的 E 磁 I 芯 , 便 绕组 绕 制 。 据 功 率 要 求选 取 P 4 方 根 C 0材 质 的 E4 l 0磁 芯 , 磁 芯 窗 口面 积 A =18 。 4 mm0骨 架 窗 口面积 A = mm 它 最 大 , 1O 1 ,

单端反激式开关电源变压器的设计

单端反激式开关电源变压器的设计

· 59 ·研制开发单端反激式开关电源变压器的设计顾伟康(国网浙江省电力有限公司 湖州供电公司,浙江文章针对开关电源变压器设计中存在公式繁多,参数计算困难等问题,提出了一种简单实用的设计方法。

该方法统一了变压器工作在电流连续模式和断续模式下的计算公式,有效解决了原边电感值、线圈匝数、线径、磁芯大小等参数的设计,降低了设计难度,提高了设计效率,并给出了设计实例。

开关电源;反激式变压器;参数Design of Single-Ended Flyback Transformers in Switching Power SupplyGU WeikangHuzhou Power Supply Company of State Grid Zhejiang Electric Power Co.The paper puts forward a simple and practical design method for there are many issues such as various parameter calculation difficulty in switching power supply transformer. This method unified the formulas of current continuous mode and current discontinuous mode ,effectively solved the original side inductance value core size and so on ,reduced the design difficulty 图1 单端反激式变压器原理图2 单端反激式变压器的设计单端反激式变压器设计流程图如图2所示。

根据下面步骤设计合适的变压器。

2.1 确定系统要求V acmax ,V acmin ,U max ,U min ,V o ,P o ,η等参数值的确定。

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理

反激式变压器开关电源工作原理
反激式变压器开关电源是一种常见的开关电源拓扑结构,其工作原理
是通过快速开关管(MOSFET或IGBT)周期性地开关电源输入侧的电压,
使得变压器的磁场产生周期性的变化,从而形成高频交流电,经过输出整
流滤波后得到所需的直流输出电压。

下面是反激式变压器开关电源的详细工作原理介绍:
1.输入侧电压整流:输入电源的交流电压经过整流电路,转换为半波
或全波的脉冲电流,较低的电压通过滤波电容进行滤波,变为直流电压。

2.输入电感存储能量:变压器的输入侧有一个电感,当开关管导通时,电感存储电能,当开关管截止时,电感释放储能,产生电压波动,使得输
入侧电流减小。

3.开关管驱动:控制电路通过控制开关管的导通与截止,来实现周期
性地开关输入侧电压。

控制电路检测到输出电压低于设定值时,控制开关
管导通,电感储能;当输出电压高于设定值时,控制开关管截止,电感释
放能量。

4.变压器传递能量:当开关管导通时,电感储能产生的磁场将能量传
递到变压器绕组中;当开关管截止时,电感的储能释放,磁场消失,变压
器的绕组感应出变化的磁通,产生高频交流电。

5.输出整流滤波:变压器传递出的高频交流电经过输出端的整流电路,将交流电转换为直流电,然后经过滤波电容进行滤波,去除残余的脉动,
得到平滑的直流输出电压。

6.控制反馈:控制电路会不断检测输出电压并与设定值进行比较,根据比较结果控制开关管的导通与截止,使得输出电压保持在设定范围内。

反激式开关电源电路设计

反激式开关电源电路设计

反激式开关电源电路设计一、反激式开关电源的基本原理1.输入滤波电路:用于对输入电压进行滤波,消除噪声和干扰。

2.整流电路:将输入交流电压转换为直流电压。

3.开关变压器:通过变压器实现电压的升降。

4.开关管:通过快速开关控制电源的输出。

5.输出滤波电路:对输出电压进行滤波,减小纹波。

二、反激式开关电源的设计步骤1.确定需求:首先需要确定设计要求,包括输出电压和电流、负载稳定性要求、效率要求等。

2.选择开关管和变压器:根据需求选择合适的开关管和变压器,考虑其最大工作电流和功率损耗。

3.转换频率的选择:根据应用的具体要求,选择合适的转换频率。

较高的频率可以减小变压器的尺寸,但也会增加开关管的功耗。

4.控制电路设计:设计开关管的控制电路,包括驱动电路和保护电路,确保开关管的正常工作和保护电路的可靠性。

5.输出滤波电路设计:设计输出滤波电路,用于滤除输出电压中的高频噪声和纹波,提高稳定性和负载能力。

6.开关电路设计:设计开关电路,确保开关管的快速开关和可靠性。

7.其他辅助电路设计:如过温保护电路、过流保护电路等。

8.电路板布局和布线:根据电路设计和要求进行电路板布局和布线,提高电路的可靠性和稳定性。

9.电路仿真和调试:使用仿真软件对设计的电路进行仿真分析,并进行实际的电路调试,确保电路的可靠性和稳定性。

三、反激式开关电源设计的注意事项1.高效率设计:选择合适的元件和电路设计,减小功率损耗,提高电源的整体效率。

2.稳定性设计:考虑负载稳定性的要求,选择合适的控制策略和滤波电路,提高电源的稳定性和负载能力。

3.保护设计:考虑过温、过流、短路等保护功能的设计,保护电源和负载器件的安全。

4.电磁兼容设计:反激式开关电源中产生的高频噪声易对其他电子设备产生干扰,需要采取适当的电磁屏蔽和滤波措施。

5.安全性设计:合理设置安全保护电路和安全措施,确保电源在故障情况下能够及时切断电源,保护用户的安全。

通过以上步骤和注意事项,可以设计出一台高效、稳定、安全的反激式开关电源,满足不同应用领域的需求。

反激式开关电源工作原理

反激式开关电源工作原理

反激式开关电源工作原理
反激式开关电源是一种常见的电源设计,其工作原理如下:
1. 输入电压:将交流电源输入到变压器的主线圈中。

主线圈的绕组根据需要选择适当的变比,以实现输入电压的转换和隔离。

2. 桥式整流:在主线圈的输出端连接一个桥式整流电路,将交流信号转换成直流信号。

桥式整流电路通常由四个二极管组成,通过改变二极管的导通方式,将正负半周的交流信号转换为正向的直流信号。

3. 滤波电容:为了进一步减小直流信号中的纹波成分,通常在桥式整流电路后面添加一个滤波电容。

滤波电容会充当一个能量储存器,在充电过程中吸收纹波成分,在电容放电过程中输出平稳的直流信号。

4. 开关管:在滤波电容充电期间,控制开关管的导通和截止状态,以避免电压过高和电流过大。

通常使用开关管,如MOSFET、BJT等。

当开关管导通时,它会允许电源输出电流,而当开关管截止时,它会切断电源输出。

5. 控制电路:使用控制电路来控制开关管的开关时间和频率。

控制电路通常会监测输出电压,并根据需要调整开关管的状态,以保持输出电压稳定。

通过上述步骤,反激式开关电源可以实现将输入电压转换为稳定的输出电压,具有高效率、小体积和广泛的应用范围。

反激式开关电源工作原理

反激式开关电源工作原理

反激式开关电源工作原理
反激式开关电源工作原理是通过开关管和变压器的协同工作,将输入直流电压转换成需要的输出交流电压。

反激式开关电源由输入滤波电路、整流电路、开关管、变压器、输出整流滤波电路和反馈控制电路组成。

其工作原理如下:
1. 输入滤波电路:将输入的交流电压通过电感和电容的组合滤波,得到较为平稳的直流电压。

2. 整流电路:将输入滤波后的直流电压经过整流桥整流,使其变为单向的直流电压。

3. 开关管:开关管的作用是将经过整流的直流电压转换为高频脉冲信号。

开关管通与断的变化通过调节占空比来控制输出电压的大小,实现电压调节。

4. 变压器:开关管输出的高频脉冲信号经过变压器进行变压变换,转换为需要的输出交流电压。

5. 输出整流滤波电路:将变压器输出的交流电压进行整流和滤波,得到平滑的直流输出电压。

6. 反馈控制电路:通过对输出电压进行采样,并与参考电压进行比较,产生控制信号。

控制信号经过反馈电路调节开关管的占空比,以达到稳定输出电压的目的。

通过上述工作原理,反激式开关电源能够高效地将输入直流电压转换为需要的输出交流电压,并且具有体积小、效率高、稳定性好等优点,被广泛应用于各种电子设备中。

反激开关电源的工作原理

反激开关电源的工作原理

反激开关电源的工作原理
1.输入滤波:
2.整流:
滤波后的电源输入电压为直流电,在反激开关电源中通常采用整流桥
将交流电转换为单向直流电。

整流桥由四个二极管组成,通过控制二极管
的导通状态来实现电源输入电压的单向整流。

3.变换:
整流后得到的直流电输入到变压器中,反激开关电源通过变压器将输
入电压变换成合适的交流电压,这个交流电压的大小将决定输出电压的大小。

变压器通常使用磁性材料绕制,并包括输入绕组和输出绕组。

反激开
关电源可以根据需要使用升压变压器或降压变压器。

4.开关控制:
5.输出滤波:
控制开关管的开关频率,会在变压器中产生高频振荡,通过输出滤波
电路,将高频噪声滤除,得到稳定的输出电压。

输出滤波电路通常由电感
和电容组成。

6.反馈控制:
为了确保输出电压的稳定性,反激开关电源通常会用一个反馈回路来
监测输出电压并调节开关管的导通和截止状态。

反馈回路通常包括比较器、控制电路和变压器辅助回路等,通过反馈回路控制开关管的导通时间和截
止时间,以调节输出电压的稳定性。

综上所述,反激开关电源的工作原理主要包括输入滤波、整流、变换、开关控制、输出滤波和反馈控制等几个关键环节。

通过这些环节的有机组合,可以实现高效率、稳定输出的电源设计,广泛应用于各种电子设备中。

单端反激开关电源工作原理

单端反激开关电源工作原理

单端反激开关电源工作原理
单端反激开关电源工作原理如下:
1. 输入变压器:交流电源首先经过输入变压器,将输入的交流电源转换为所需要的较高或较低的交流电压。

2. 整流电路:经过输入变压器的交流电被整流电路转换为脉冲状的直流电。

3. 滤波电路:经过整流后得到的直流电,经过滤波电路使电压变得更加平滑稳定。

4. 开关电路:滤波后得到的直流电经过开关电路,由开关芯片控制开关管的导通和截止,产生一系列短暂的高频脉冲。

5. 变压器:开关电路产生的高频脉冲信号经过变压器,通过变压器的变比关系将电压转换为所需要的输出电压。

6. 输出滤波:经过变压器转换后得到输出电压,再经过输出滤波电路,进一步平滑和稳定输出电压。

7. 输出电路:最后将输出电压提供给负载进行使用,保证输出电流的稳定性和质量。

以上就是单端反激开关电源的工作原理,通过交流输入变压器、整流电路、滤波电路、开关电路、变压器、输出滤波、输出电路等组成,完成从输入交流电源到输出直流电压的转换。

反激式开关电源变压器的设计

反激式开关电源变压器的设计

反激式开关电源变压器的设计反激式开关电源变压器是一种常见的变压器类型,广泛应用于电子设备和通信设备中。

它具有体积小、效率高以及输出电压稳定等优点。

本文将分别从设计原理、工作方式和设计步骤等方面对反激式开关电源变压器的设计进行详细介绍。

一、设计原理二、工作方式反激式开关电源变压器的工作方式可以分为两个阶段:储能和传输。

在储能阶段,开关管打开,电流通过变压器一侧的绕组进行储能;在传输阶段,开关管关闭,储存的能量被转移到变压器另一侧的绕组上,最后输出所需的电压。

三、设计步骤1.确定输入电压和输出电压的需求。

根据实际应用需求确定输入电压和输出电压的范围。

2.计算变压器的变比。

根据输入电压和输出电压的比例计算变压器的变比N。

3.计算变压器的功率。

根据输出电压和输出电流计算变压器的功率,确保变压器能够承受所需的功率。

4.确定变压器的工作频率。

根据实际应用需求选择合适的工作频率,通常在20kHz到200kHz之间。

5.计算变压器的参数。

根据变压器的变比、工作频率和功率计算变压器的参数,包括绕组的匝数、铁芯的尺寸等。

6.选择合适的磁性材料。

根据变压器的参数选择适合的磁性材料,常用的材料有软磁合金和磁性氧化铁等。

7.进行原型设计和测试。

根据上述设计参数制作变压器的原型,并进行测试以验证设计结果的准确性。

8.进行参数调整和优化。

根据原型测试结果进行参数调整和优化,以实现更好的性能和效果。

9.进行批量生产。

当设计满足要求时,可以进行批量生产并进行产品验证和测试。

总结:。

反激开关电源的工作原理变压器电感计算

反激开关电源的工作原理变压器电感计算

反激开关电源的工作原理变压器电感计算反激开关电源是一种常见且广泛应用的电源设计,其工作原理涉及到变压器和电感的计算。

在了解反激开关电源的工作原理以及如何计算变压器和电感参数之前,首先我们需要了解反激开关电源的基本结构和工作原理。

反激开关电源由输入滤波电路、整流电路、能量存储元件、PWM控制电路和输出稳压电路等部分组成。

其中,能量存储元件通常采用电感元件,用于存储能量并实现电压转换。

PWM控制电路通过控制开关管的通断来调节输出电压,从而实现稳定的输出电压。

在反激开关电源的工作过程中,输入电压首先经过输入滤波电路进行滤波处理,然后经过整流电路转换为脉冲电压输入到能量存储元件中。

能量存储元件中的电感在输入信号变化时会存储和释放能量,从而实现电压转换。

PWM控制电路会根据输出电压的反馈信号来控制开关管的通断,调节输入到变压器的信号,从而实现稳定的输出电压。

在设计反激开关电源时,变压器和电感的参数计算是至关重要的。

变压器的参数包括匝数、芯型、匝比等,而电感的参数则包括电感值、电流波形等。

在计算变压器的参数时,需要根据输入输出电压、电流等参数来确定变压器的匝数和匝比,以及芯型的选择。

在计算电感参数时,则需要考虑电感值的大小以及电流波形对电感的影响。

需要注意的是,在进行变压器和电感的参数计算时,要考虑电路的效率、功率损耗以及工作频率等因素,以确保电源设计的稳定性和可靠性。

此外,还需要注意防止电磁干扰和电磁兼容性问题,以满足相关的电磁兼容标准要求。

综上所述,反激开关电源是一种常见的电源设计,在设计过程中需要充分理解其工作原理和计算变压器、电感等参数。

通过合理设计和计算,可以实现电源设计的稳定性和高效性,满足不同应用场景的需求。

1。

单端反激开关电源变压器设计

单端反激开关电源变压器设计

单端反激开关电源变压器设计时间:2009-01-14 来源: 作者: 点击:47 字体大小:【大 中 小】单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等 工作。

下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。

1、 已知的参数 这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压 Vin、输出电压 Vout、 每路输出的功率 Pout、效率 η、开关频率 fs(或周期 T)、线路主开关管的耐压 Vmos。

2、 计算 在反激变换器中,副边反射电压即反激电压 Vf 和输入电压之和不能高过主开关管的耐压, 同时还要留有一定的裕量(此处假设为 150V)。

反激电压由下式确定: Vf=VMos-VinDCMax-150V反激电压和输出电压的关系由原、副边的匝比确定。

所以确定了反激电压之后,就可以确定 原、副边的匝比了。

Np/Ns=Vf/Vout另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下, 变压器的磁平衡,可以有下式: VinDCMin•DMax=Vf•(1-DMax)设在最大占空比时,当开关管开通时,原边电流为 Ip1,当开关管关断时,原边电流上升到 Ip2。

若 Ip1 为 0,则说明变换器工作于断续模式,否则工作于连续模式。

由能量守恒,我们 有下式: 1/2•(Ip1+Ip2)•DMax•VinDCMin=Pout/η一般连续模式设计,我们令 Ip2=3Ip1 这样就可以求出变换器的原边电流,由此可以得到原边电感量: Lp= DMax•VinDCMin/fs•ΔIp对于连续模式,ΔIp=Ip2-Ip1=2Ip1;对于断续模式,ΔIp=Ip2 。

可由 AwAe 法求出所要铁芯: AwAe=(Lp•Ip22•104/Bw•K0•Kj)1.14在上式中, Aw 为磁芯窗口面积,单位为 cm2 Ae 为磁芯截面积,单位为 cm2 Lp 为原边电感量,单位为 HIp2 为原边峰值电流,单位为 A Bw 为磁芯工作磁感应强度,单位为 T K0 为窗口有效使用系数,根据安规的要求和输出路数决定,一般为 0.2~0.4 Kj 为电流密度系数,一般取 395A/cm2 根据求得的 AwAe 值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯 的窗口有效使用系数较高,同时可以减小漏感。

反激式开关电源变压器设计说明

反激式开关电源变压器设计说明

反激式开关电源变压器设计说明反激式开关电源变压器是一种常见的电源变压器,能够将输入电压通过开关转换和变换输出为所需的电压。

它具有多种应用领域,如电子设备、通信设备、医疗设备等。

本文将详细介绍反激式开关电源变压器的设计原理、设计步骤以及注意事项。

一、设计原理开关管是控制开关电路导通和断开的关键元件。

当开关导通时,输入电压通过变压器传递到输出端,当开关断开时,输出端与输入端相隔离。

变压器用于变换电压。

它通常由两个或多个线圈绕制而成,主要包括输入线圈和输出线圈。

输入线圈与开关管相连接,负责将输入电压传递到输出线圈。

输出线圈则负责变换电压。

滤波电路用于对输出信号进行滤波,减小波动和噪音。

二、设计步骤1.确定输入电压和输出电压:首先需要明确所需的输入电压和输出电压。

这将决定变压器的变比。

2.选择合适的变压器:根据所需的变比,选择合适的变压器。

变压器的选取应基于电流容量和功率需求等因素。

3.计算变压器的线圈数:根据变压器的变比和输入输出电压,计算输入线圈和输出线圈的匝数。

同时,考虑变压器的耦合系数和数量线圈相对位置等因素。

4.确定开关管和开关频率:根据输入电压、输出电压和功率需求,确定合适的开关管。

同时,选择合适的开关频率,以避免电磁干扰。

5.设计滤波电路:根据输出电压的要求,设计合适的滤波电路。

滤波电路可以使用电容、电感和抗干扰电路等组成。

6.确定电源保护电路:为了保证电源的稳定性和可靠性,设计合适的保护电路,如过流保护、过压保护、短路保护等。

7.进行仿真分析:使用电路仿真工具,对设计的电源变压器进行仿真分析,检查电源变压器的性能和特性。

8.制作和测试:按照设计的电路图,制作电源变压器,并进行测试。

测试包括输出电压稳定性、效率和波动等。

三、注意事项1.选择适当的变压器:变压器应能满足所需的电流容量和功率需求。

同时,应注意变压器的质量和耐用性。

2.稳定性和可靠性:电源变压器应具有良好的输出电压稳定性和可靠性。

反激式开关电源变压器设计

反激式开关电源变压器设计

反激式开关电源变压器设计一、设计原理反激式开关电源变压器基于开关电源的工作原理,利用开关元件(开关管或者MOS管)、变压器、滤波电容和反激电容等组成。

其基本原理为:输入交流电经过整流滤波得到直流电压,然后由开关元件进行开关控制,将直流电压通过变压器变换为所需的输出直流电压,最后通过滤波电容输出稳定的直流电压。

二、关键技术1.变压器设计:反激式开关电源变压器的设计是整个电源设计中最为关键的部分。

在设计变压器时,要考虑输出功率、输入电压范围、输出电压等参数。

通常采用环型铁芯、锥形铁芯或者斜式铁芯,以减小漏电感和磁性损耗,提高效率。

同时,在设计过程中还要考虑绕组的匝数、电流和绝缘等级等方面的因素。

2.开关元件选择:开关元件是实现能量转换和控制的关键部分。

常用的开关元件有开关管、MOS管等。

选择合适的开关元件需要综合考虑电源输出功率、开关频率、开关速度、导通压降以及温升等因素。

3.控制电路设计:控制电路主要负责控制开关元件的导通和关断。

常见的控制电路有单片机控制和集成电路控制两种。

单片机控制的优点是灵活性高、可编程性强,但需要额外增加单片机等硬件,造成成本增加;集成电路控制则更简单,但灵活性较差。

三、注意事项1.确保变压器设计合理:变压器设计要保证核心材料的选取合理,应该选择磁性能好、耐高温的材料。

此外,变压器的绕组要均匀绝缘,并合理设计匝数,以减小漏电感和损耗。

2.开关元件的选择要合适:开关元件选择要根据实际工作条件来确定,如输出功率、输入电压范围、输入电流等。

3.控制电路设计要稳定可靠:控制电路要设计稳定可靠,能够保证开关元件的正常工作。

如果选用单片机控制,还需考虑保护电路的设计,以避免过电流和过压等问题。

4.散热设计要合理:反激式开关电源在工作过程中会产生较多的热量,因此散热设计要合理。

可以采用散热片、散热风扇等降低温度。

总结:反激式开关电源变压器的设计涉及变压器设计、开关元件选择和控制电路设计等多个方面。

单端反激式变换器开关稳压电源原理图

单端反激式变换器开关稳压电源原理图

单端反激式开关稳压电源与推挽、全桥、半桥双端变换的开关稳压电源的根本区别在于高频变压器的磁心仅工作在磁滞回线的一侧(第一象限)。

典型的单端反激变换式开关稳压电源的原理图如图所示。

所谓单端,即指转换电路的磁心仅工作在其磁滞回线的一侧。

所谓反激,系指当晶体管导通时,在初级电感线圈中储存能量,当晶体管截止时,初级线圈中储存的能量再通过次级线圈释放给负载。

当开关管VT1被控制脉冲激励而导通时,输入电压Ui便施加到高频变压器T1的原边绕组N1上。

由于变压器T1副边的整流二极管VD反接,因此副边绕组N2没有电流流过;当VT1截止时,绕组N2上的电压极性颠倒,VD被正偏,VTl导通期间储存在T1中的能量便通过VD负载释放。

由于这种电路在开关管导通期间储存能量,因此在开关管截止期间才向负载传递能量。

高频变压器在工作中除了起变压作用外,还相当于一个储能用的电感,因此也有人称之为“电感储能式变换器”或“电感变换器”。

单端反激式开关电源电路是成本最低的一种。

它可以达到输入与输出部分隔离,还可以同时输出几路不同的电压,有较好的电压调整率。

但其输出纹波电压较大,负载调整率较差,适用于相对固定的负载。

在单端反激式开关电源电路中,开关三极管承受的最大反峰值电压是线路工作电压峰值的2倍以上。

为了降低开关管的耐压,需要对集射电压进行限幅,因此常用的单端反激式开关电源有三种形式。

其实看正激还是反激很简单在电路上的区别主要有两点:1.看次级何时导通--次级一般接有二极管之类的单向导通器件, 在初级通时,次级可以导通,是正激的表现;在初级导通时,次级不导通,则时反激的表现2.看次级有没有为反激准备的回路--反激变换器在晶体管关闭时发生能量转换,由磁能变为电能,所以,一定要有电流流动的回路,没有回路则不可能是反激.反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。

反激式开关电源中,输出变压器同时充当储能电感,整个电源体积小、结构简单,所以得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单端反激式开关电源变压器设计的基本工作原理
反激式变压器的基本工作原理
图一(a)为反激式变压器的工作原理图,其中,开关管VT1的导通和截止使
得原边绕组线圈产生交变电流信号。

当原边绕组导通期间,次级绕组输出电压为上负下正,整流二极管VD1和VD2截止,输出电容Co和Cf放电;当原边绕组截止时次级输出电压为上正下负,整流二极管VD1和VD2导通,输出电容Co和Cf充电,与正激式电路充放电过程相反。

可以从输入输出电压、电流波形关系图一(b)中得出DCM模式下的工作过程。

其中
PWM、UDS、IDl,IF1、Io1、Uo2分别为开关管VT1栅极脉宽调制信号、漏源极电压、整流二极管VD1和VD2电流、负载输出端Co正极性端电压波形、反馈输出端Cf正极性端电压波形。

图一:反激式变压器的基本工作原理图单激式变压器开关电源的工作原理
所谓单激式变压器开关电源,是指开关电源在一个工作周期之内,变压器的初级线圈只被直流电压激励一次。

一般单激式变压器开关电源在一个工作周期之内,只有半个周期向负载提供功率(或电压)输出。

当变压器的初级线圈正好
被直流电压激励时,变压器的次级线圈也正好向负载提供功率输出,这种变压器开关电源称为正激式开关电源;当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。

图二:单激式变压器开关电源的工作原理图。

相关文档
最新文档