预应力箱梁孔道摩阻试验计算书

合集下载

8、预应力砼箱梁孔道摩阻、锚口、喇叭口摩阻损失测试 彭楠楠 魏正军

8、预应力砼箱梁孔道摩阻、锚口、喇叭口摩阻损失测试 彭楠楠  魏正军

预应力砼箱梁孔道摩阻,锚口、喇叭口摩阻损失测试海威公司彭楠楠魏正军摘要:结合遂平梁场预应力施工实践,介绍一种较为新颖的箱梁孔道摩阻和锚圈口摩阻损失测试方法,提供随机抽测8片箱梁测试分析资料。

关键词:箱梁;孔道摩阻损失;锚口,喇叭口摩阻损失;测试已颁交通部、铁道部关于预应力损失测定资料中,孔道摩阻损失和锚圈口摩阻损失测定,为传统主被动千斤顶法,该法除测试精度外,操作工艺也存在一些缺点。

本文介绍目前工程界已较普遍使用,两端安装经过标定穿心式压力传感器的测试方法;该法可有效提高测试精度,操作工艺比较明确规范。

1 遂平梁场基本情况和张拉工艺遂平制梁场预制铁路预应力简支箱梁,规格为23.5m,6片;31.5m,624片;共计630片箱梁。

型式为单箱单室等高度简支箱梁,梁端底版,顶板及腹板内部局部向内侧加厚。

预应力筋公称直径Φ15.2mm,抗拉强度R m=1860MPa,弹性模量E p=1.95×105MPa,孔道采用橡胶抽拔管成形。

预加应力分三阶段:预张拉,拆除端模张拉部分预应力,砼强度f c=33.5Mpa;初张拉,制梁台座上进行,砼强度f c=43.5Mpa;终张拉,存梁台座上进行,砼强度f c=53.5Mpa,弹性模量E c=35.5Gpa,且砼龄期不少于10d。

(预应力张拉顺序见表1、表2、表3)。

两种跨度箱梁截面如图1,2所示图2 23.5m 预应力砼铁路桥简支箱梁预应力孔道分布图预张拉顺序表 表1图1 31.5m 预应力砼铁路桥简支箱梁预应力孔道分布图终张拉顺序表 表32 箱梁预应力损失组成预应力损失分为瞬时损失和长期损失,如图3所示。

瞬时损失 长期损失2.1 预应力钢绞线与孔壁间摩阻损失箱梁张拉时,预应力钢绞线与孔壁接触滑动产生摩擦阻力,可分为弯道影响和孔道走动影响两部分。

理论上讲,直线孔道无摩阻损失,施工时因震动等原因孔道并非理想顺直,加之预应力钢绞线因自重而下垂,与孔道实际上有接触,产生相对滑动时产生摩阻力,称孔道走动影响(或偏差影响、长度影响)。

预应力箱梁孔道摩阻试验计算书

预应力箱梁孔道摩阻试验计算书

OVM锚具孔道摩阻试验大纲一、试验目的为确定合理的张拉顺序及张拉控制应力,准确控制梁体线形,根据有关要求及规定进行试验。

二、试验依据参照《铁路桥涵施工规范》(TB10203-2002),并结合现场具体条件制定。

三、试验仪器、设备及用品1.2台千斤顶、2台高压油泵,2块0.4级精密压力表。

2.2台传感器,2台应变仪,2根配套连接线缆。

3.对中专用工装。

根据现场条件确定。

4.工具锚2套,工作锚1套,配套限位板1块。

5.0.5mm精度钢板尺2把,记录用夹板2个,钢笔2,计算器1,记录纸若干。

四、试验布置成、设计钢束伸长值)、成孔方式、锚具情况(生产厂家、规格型号、厂家提供的锚口摩阻损失率)、钢绞线参数(生产厂家、型号规格、实测弹性模量)12.传感器、应变仪、千斤顶、高压油泵、精密压力表(0.4级)检查。

3.传感器和应变仪的系统标定(用压力机),千斤顶和精密压力表的标定(用标定好的传感器、应变仪)。

千斤顶应标定进油、回油曲线。

4.根据标定结果,按每级5MPa 确定张拉分级。

张拉分级表见附件1。

5.现场确定传感器、千斤顶对中方法,检查位置是否有干涉。

6.计算钢绞线的下料长度并下料、穿束。

7.孔道、梁端面清理干净。

8.准备足够的记录表格。

记录表格的格式见附件2。

9.试验前应对有关人员进行技术交底。

六、试验步骤1.根据试验布置图安装传感器、锚具、锚垫板、千斤顶。

2.锚固端千斤顶主缸进油空顶200mm (根据钢束理论伸长值确定)关闭,两端预应力钢束均匀楔紧于千斤顶上;两端装置对中。

3.根据张拉分级表,张拉端千斤顶进油分级张拉,两端同时记录有关数据。

4.锚固端千斤顶回油后,张拉端千斤顶退回油、退锚。

5.将钢丝束串动数次,做第二次。

七、数据处理方法1.二元线性回归法计算μ、K 值 计算公式为:ii ii i i I i i i Lnr K x Lnr x x K x θμθθμθ∑=∑+∑∑=∑+∑22其中:x i ——第i 束孔道长度,单位为m ;θi ——第i 束曲线孔道切线夹角之和,单位rad ;r i ——第i 束主动端与被动端传感器压力之比;μ______钢筋与管道壁间的摩擦系数;2K ______管道每米局部偏差对摩擦的影响系数。

30m箱梁预应力张拉计算书

30m箱梁预应力张拉计算书

30m箱梁预应力张拉计算书一、工程概述本次预应力张拉计算针对的是 30m 箱梁,该箱梁采用后张法预应力施工工艺。

箱梁的设计承载能力和使用性能在很大程度上取决于预应力的施加效果,因此准确的预应力张拉计算至关重要。

二、设计参数1、箱梁混凝土强度等级为 C50,弹性模量 Ec = 345×10^4 MPa。

2、预应力钢绞线采用高强度低松弛钢绞线,规格为 1×7 152 1860,其标准强度 fpk = 1860 MPa,弹性模量 Ep = 195×10^5 MPa。

3、每束钢绞线的根数和布置根据设计要求确定。

4、锚具采用 OVM 系列锚具,锚下控制应力σcon = 075 fpk =1395 MPa。

三、预应力损失计算1、锚具变形和钢筋内缩引起的预应力损失σl1对于夹片式锚具,根据规范取值计算。

2、预应力钢筋与孔道壁之间的摩擦引起的预应力损失σl2考虑孔道偏差系数 k 和摩擦系数μ,通过计算公式得出。

3、混凝土加热养护时,受张拉的钢筋与承受拉力的设备之间温差引起的预应力损失σl3若施工过程中存在此项情况,按照实际温差计算。

4、预应力钢筋的应力松弛引起的预应力损失σl4根据规范规定的松弛系数和张拉控制应力计算。

5、混凝土的收缩和徐变引起的预应力损失σl5综合考虑混凝土的强度、龄期、环境条件等因素计算。

四、张拉力计算1、单根钢绞线的张拉力 P =σcon × Ap其中 Ap 为单根钢绞线的截面积。

2、每束钢绞线的张拉力为单根张拉力乘以束内钢绞线根数。

五、理论伸长值计算1、根据公式ΔL = Pp × L /(Ap × Ep) 计算其中 Pp 为平均张拉力,L 为预应力筋的长度。

2、考虑孔道曲线部分对伸长值的影响,进行修正计算。

六、实际伸长值测量与计算1、测量初始伸长值ΔL1,从千斤顶开始加载至初应力(一般为10%σcon)时的伸长量。

2、测量最终伸长值ΔL2,从初应力加载至控制应力时的伸长量。

25m箱梁预应力张拉计算书

25m箱梁预应力张拉计算书

25m箱梁预应力张拉计算书1、工程概况桥梁全长315m,桥面全宽40米,断面分配形式:3m(栏杆+人行道)+3m(非机动车道)+2m(侧分带)+11m(机动车道)+2m(中分带)+11m(机动车道)+2m (侧分带)+3m(非机动车道)+3m(人行道+栏杆)=40m。

设计桥跨布置为:4×25m+40m+60m+40m+3×25m,主桥为三跨变截面连续箱梁结构,引桥为25m 跨装配式小箱梁结构。

本计算书针对引桥的预制箱梁。

预制箱梁分布于桥前4跨及后3跨,分中跨中梁、中跨边梁、边跨中梁、边跨边梁四种型号,共84片梁。

各梁的预应力筋分布情况如下表所示:25m预制箱梁为单箱单室构造,梁高1.4m,梁底宽1m,中梁顶宽2.4m,边梁顶宽2.85m,砼强度C50。

预应力筋均为纵向,分布在底板、腹板及顶板,其中底板4束,腹板4束,顶板5束,对称于梁横断方向中线布置。

钢绞线采用符合GB/T5224-2003标准的低松驰高强度预应力钢绞线,单根钢绞线直径φs15.2,标准强度R y b =1860MPa,公称截面积Ap=139mm2,弹性模量Ep=1.95*105MPa,松驰系数:0.3。

试验检测的钢绞线弹性模量Ep=1.91*105 MPa。

预应力管道采用塑料波纹管,腹板及底板为圆孔,所配锚具为M15-3及M15-4,顶板为长圆孔,所配锚具为BM15-5。

2、后张法钢绞线理论伸长值计算公式及参数后张法预应力钢绞线在张拉过程中,主要受到两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力。

导致钢绞线张拉时,锚下控制应力沿着管壁向梁跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。

2.1、力学指标及计算参数预应力筋力学性能指标及相关计算参数如下:※弹性模量:Ep=1.91*105 MPa※标准强度:R y b =1860MPa※张拉控制应力:σcon=0.75*R y b =1395MPa※钢绞线松驰系数:0.3※孔道偏差系数:κ=0.0015※孔道摩阻系数:μ=0.15※锚具变形及钢束回缩每端按6mm计2.2、理论伸长值的计算根据《公路桥梁施工技术规范》(JTJ 041-2000),关于预应筋伸长值的计算按如下公式进行:(公式1)式中:ΔL——各分段预应力筋的理论伸长值(mm);Pp——预应力筋的平均张拉力(KN);L——预应力筋的长度(m);Ap——预应力筋的截面面积(mm2);Ep——预应力筋的弹性模量(Mpa)。

铁路桥梁预应力管道摩阻试验方法及控制 (1)[详细]

铁路桥梁预应力管道摩阻试验方法及控制 (1)[详细]

总体平均值 k=0.00363 k=0.00250 k=0.00446 k=0.00149 k=0.00277 k=0.00167 k=0.00219
μ、k≤设计 值的样本数
42孔
15孔
6孔
所占比例
10%
71%
11%
17孔 77%
16孔 26%
15片 50%
23片 40%
百分比(%) 百分比(%)
0.001
0.00-0100
0
规范值(0.0015)
郑西 武广 京沪 大西 京石 石武 哈大 沪杭 宁杭 沪昆 西宝 广深港 津秦 杭甬 合福 平均值 设计值
100
200
300
400
500
600
样本序号
图6 时速350km 32m简支箱梁(橡胶抽拔棒)摩阻系数统计
管道摩擦系数 μ 管道偏差系数 k
n
i2
i 1
n
k
n
lii
i 1
n
n
i 1 n
Cii
0
i 1
lii
k
i 1
li2
i 1
Cili
0
联立解方程组即可求得μ和k值。
• 由于μ、k两个参数之间存在耦合关系, 因此必须测试至少2个不同设计线形的管 道才能利用最小二乘法原理计算出摩阻系 数值。
• 从计算的准确性角度考虑,每孔(片) 梁尽可能选取较多的不同设计弯曲角度的 管道进行摩阻测试,才能使摩阻系数实测 值更为接近真实值。
进行必要的预应力管道摩阻测试,根据实测管
道摩阻系数来调整实际的张拉力。
L con 1 e kx
2 试验原理和测试方法
2.1 试验原理

32m箱梁预应力孔道管道摩阻及张拉力的调整试验

32m箱梁预应力孔道管道摩阻及张拉力的调整试验

32m箱梁预应力孔道管道摩阻及张拉力的调整试验摘要:兰新第二双线32m铁路简支箱梁采用后张法预应力体系,根据在实梁上进行5种预应力筋束的孔道摩阻试验,测试孔道摩阻系数μ和偏差系数k,以检查预应力孔道的成孔情况,并根据测量数据对张拉力进行调整,保证实梁的有效预应力。

关键字:预应力摩阻系数偏差系数1.引言:预应力张拉是后张法预应力混凝土梁的一道极为重要的工序,如何准确将设计张拉力施加于梁体直接影响梁的耐久性、安全性、刚度及矢拱高度。

后张梁管道摩阻是引起预应力损失的五个主要因素(混凝土收缩徐变、钢筋松弛、锚头变形及钢筋回缩、摩阻、混凝土弹性压缩)之一。

由于施工过程中诸多不确定因素及施工水平的差异,张拉前应对管道摩阻现场测试,并根据测试结果对张拉力及管道进行调整,将设计张拉力准确施加至梁体。

兰新第二双线32m箱粱为后张法预应力混凝土结构,预应力束沿梁长通长布置,有腹板束和底板束两种。

共有孔道27孔,其中5孔采用9—7φ15.2钢绞线,22孔采用10—7φ15.2钢绞线。

钢绞线强度等级为1970 mpa。

预应力管道采用橡胶抽拔棒抽拔成型,设计管道局部偏差影响系数k=0.0015、摩擦系数μ=O.55。

2 .摩阻测试的基本原理张拉时,预应力钢绞线与孔道壁接触面间产生摩擦力引起预应力损失,称为摩阻损失。

摩阻损失主要由于孔道的弯曲和孔道的偏差两部分影响所产生,从理论上说直线孔道无摩擦损失,但由于施工中孔道位置的偏差及孔道不光滑等原因,在钢绞线张拉时实际上仍会与孔道壁接触而引起摩阻损失,称此项为孔道偏差影响(长度影响)摩擦损失,其值较小,反映在系数k上;对于弯道部分除了孔道偏差影响之外,还有因孔道转弯,预应力钢绞线对弯道内壁的径向压力所引起的摩擦损失,一般称这部分影响为弯道影响摩擦损失,其值较大,并随钢筋弯曲角度的增加而增加,反应在系数μ上。

本次管道摩阻试验选取编号为N11、N9、N7、N3、N1b五个孔道。

试验孔道的位置及管道相关参数见表1。

预应力摩阻损失测试试验方案

预应力摩阻损失测试试验方案

预应力摩阻损失测试试验方案岩土与结构实验中心二〇〇八年九月二十一日目录1.概述 (1)2. 检测依据 (1)3. 检测使用的仪器及设备 (1)4.孔道摩阻损失的测试 (2)4.1 测试方法 (2)4.2 试验前的准备工作 (3)4.3 试验测试步骤 (3)4.4 数据处理方法 (4)4.5 注意事项 (6)5.锚口及喇叭口摩阻损失测试 (6)5.1 测试方法 (6)5.2 测试步骤 (7)1.概述预应力摩阻测试包括锚口摩阻、管道摩阻、喇叭口摩阻三部分。

预应力摩阻损失是后张预应力混凝土梁的预应力损失的主要部分之一,对它的准确估计将关系到有效预应力是否能满足梁使用要求,影响着梁体的预拱变形,在某些情况下将影响着桥梁的整体外观等。

过高的估计会使得预应力张拉过度,导致梁端混凝土局部破坏或梁体预拉区开裂,且梁体延性会降低;过低的估计则不能施加足够的预应力,进而影响桥梁的承载能力、变形和抗裂度等。

预应力管道摩阻损失与管道材料性质、力筋束种类以及张拉工艺等有关,相差较大,最大可达45%。

工程中对预应力管道摩阻损失采用摩阻系数μ和管道偏差系数k来表征,虽然设计规范给出了一些建议的取值范围,但基于对实际工程质量保证和施工控制的需要,以及在不同工程中其管道摩阻系数差别较大的事实,在预应力张拉前,需要对同一工地同一施工条件下的管道摩阻系数进行实际测定,从而为张拉时张拉力、伸长量以及预拱度等的控制提供依据。

摩阻测试的主要目的一是可以检验设计所取计算参数是否正确,防止计算预应力损失偏小,给结构带来安全隐患;二是为施工提供可靠依据,以便更准确地确定张拉控制应力和力筋伸长量;三是可检验管道及张拉工艺的施工质量;四是通过大量现场测试,在统计的基础上,为规范的修改提供科学依据。

受中铁×××制梁厂的委托,石家庄铁道学院岩土与结构实验中心拟于2008年×月×日开始对××××进行预应力摩阻测试。

预应力孔道摩阻系数测定

预应力孔道摩阻系数测定

"!
铁道建筑技术 %&’()&* +,-./%0+/’,- /1+2-,(,3* "44" (!)
・ 桥
孔道长度 ! ! "#$%$& ’; 弯曲孔道端部切线交角! ! 孔道偏差系数 " ! +%++*。 "%()*; 将油表读数换算主、 被动端张拉力后计算得 " ! +%*)。 该桥设计的 " 值初定为 +%#,, 实测 +%*)。根据 以往的工程实测值, 初步判断 " 值偏大。经分析认 为造成 " 值偏大可能有如下主要原因: (") 在整理数据时未考虑锚圈口摩阻损失; (#) 未考虑千斤顶、 油泵及压力试验机系统内摩 阻的影响。 ! "# "$ 处理措施 (") 用高精度测力计标定 -. ,+++ 型压力机, 理论值与读数偏差在 +%,/ 以内, 可以认为该机的 系统内摩阻不影响张拉机具标定结果。 (#) 重新标定 +" 0 、 以消 "& 0 千斤顶及 # 套油泵, 除张拉机具系统内摩阻影响。 (*) 锚圈口摩阻测试在一特制的长 #,+ 1’、 断面 为 &+ 1’ 2 &+ 1’ 直孔道钢筋混凝土柱上进行。 (&) 为 确 定 系 统 内 摩 阻 影 响, 从外单位调来 " +++、 # +++ 34 的压力传感器各 " 台。 锚圈口摩阻测试数据见表 "。
・ 桥
梁 ・
预应力孔道摩阻系数测定一例

箱梁预应力张拉计算书25、30米(读书油表)

箱梁预应力张拉计算书25、30米(读书油表)

箱梁预应力张拉计算书武(陟)西(峡)高速公路桃花峪黄河大桥工程,是郑州市西南绕城高速公路向北延伸与郑(州)焦(作)晋(城)高速公路相接的南北大通道。

第3标段长度:1250.43m(K28+917.57~K30+168)。

桥梁长度:7联35孔1244.7m(跨堤桥1联3孔,引桥6联32孔)。

引桥全长955.43m,6联32孔预制安装(先简支后连续)的预应力连续小箱梁结构。

第1联6孔,左幅(25+30+35+35+25+25)m、右幅(25+25+25+35+35+30)m;第2联6孔均为30m;第3、4、5、6联,均为5孔30m。

每孔左右幅共12榀小箱梁。

一、张拉计算所用常量:预应力钢材弹性模量 Eg=1.95×105Mpa=1.95×105N/mm2预应力单数钢材截面面积 Ag=139mm2预应力钢材标准强度 f pk=1860Mpa孔道每米局部偏差对摩擦的影响系数 k=0.0015预应力钢材与孔道壁的摩擦系数μ=0.17设计图纸要求:锚下张拉控制应力σ1=0.75 f pk =1395MPa二、计算所用公式:1、P的计算:P=σk ×Ag×n×10001×b (KN) (1)式中:σk ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢材的张拉控制应力(Mpa); Ag ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力单束钢筋截面面积(mm2);n  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄同时张拉预应力筋的根数(mm2);b  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄超张拉系数,不超张拉取1.0。

2、p 的计算:p =μθμθ+-+-kl e p kl(1( (KN ) (2) 其中:P  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢筋张拉端的拉力(N ); l  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄从张拉端至计算截面的孔道长(m );θ  ̄ ̄ ̄ ̄ ̄ ̄ 从张拉端至计算截面曲线孔道部分切线的夹角之和(Rad );k  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄孔道每米局部偏差对摩擦的影响系数; μ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢材与孔道壁的摩擦系数。

摩阻试验方案

摩阻试验方案

京沪高速铁路沧德特大桥跨104国道(45+3 X 70+45 ) m预应力混凝土连续梁桥摩阻、锚口、喇叭口损失试验方案兰州交通大学土木工程学院2009年04月1工程概况1工程概况京沪高铁沧德特大桥跨104国道(45+3X 70+45) m 预应力混凝土连续梁桥,梁体为单 箱单室、变高度、变截面结构。

箱梁顶宽 12.0m ,箱梁底宽6.7m 。

顶板厚度40至50cm 按 折线变化,底板厚度40至90cm ,按直线线性变化,腹板厚48至80cm,厚度按折线变化, 中支点处腹板局部加厚到165cm梁全长为301.5m ,计算跨度为45+3X 70+45m 中支点处梁高6.5m ,跨中9m 直线段及 边跨15.25m 直线段梁高为3.5m,梁底下缘按二次抛物线变化,边支座中心线至梁端0.75m 。

箱梁采用三向预应力体系,纵向预应力筋采用1X T5224-2003预应力钢绞线,锚固体 系采用OVM!锚式拉丝体系,张拉采用与之配套的机具设备,管道形成采用金属波纹管成 孔。

2试验的必要性由于预应力筋过长或弯曲过多都会加大预应力筋的孔道摩阻损失,特别是弯曲多、弯 曲半径小、弯曲角度较大的预应力筋,两端张拉时,中间段的有效预应力损失较大。

实测 资料表明:虽然孔道材质、力筋束种类以及张拉控制力相同,不同单位施工的梁所用的钢 绞线与波纹管的实测孔道摩阻系数却大不相同,同一单位施工的不同孔道的摩阻系数也存 在差异。

作为张拉的控制条件,如果孔道有漏浆堵塞现象,若不校核伸长值,就会使有效预应 力达不到设计要求;另外,在施工过程中,预应力孔道埋设与设计存在误差时,预应力损 失也是不同的,这时,设计伸长值若按照以往经验计算是不能真实反映实际施工情况的。

因此,测量预应力筋的摩阻力,是确保施工质量的有效措施。

锚口、喇叭口损失在预应力的损失中也占有较大的比重, 为保证预应力束的锚下应力,需要测试锚口和喇叭口的损失。

为解决孔道摩阻、锚口、喇叭口常规测试中存在的问题,保证测试数据的准确性,在 本桥梁体孔道摩阻试验中,使用穿心式压力传感器测试张拉端和被动端的压力以代替千斤 顶油压表读取数据的方法,提高了测试数据的可靠度与准确性,测试结果不受千斤顶油压 表读数分辨率较低的影响;并在传感器外采用约束垫板的测试工艺,以保证张拉过程中压 力传感器与张拉千斤顶对位准确。

单端张拉条件下预应力孔道摩阻损失测试研究

单端张拉条件下预应力孔道摩阻损失测试研究
— 297.
[6] GB 50666—2011混 凝 土结 构 工 程 施 工 规 范 [s].
四JI l建 筑 第 36卷 2期 2016.4
257
N1b N3
9—7,t,5
9 — 7
金 属 波 纹 管
9—7击5
633
640 649
N5 11—7+5
806
7.35
7.50 7.69
7.5O
638
610 628
610
7.16
7.20 7.38
7.20
608
608 633
608
6.85
7.O9 7.38
的函数 ,由多元函数微分叠加原理有 :
OAl
0 £
+ d
) :
+ 幽
(4)
某城际铁路 32 m支架现浇箱梁 的预应力管道 采用金属 波纹管成型管道形式 ,钢束与管道壁之 间的摩 阻系数规范值 为 =0.23,偏 差 系 数 =0.0025,选 择 Nla、N1b、N3和 N5 束进行 了管道摩 阻测试 。箱 梁 的管道 摩阻测 试基 本数 据见 表 1,管 道 摩 阻 测 试 数 据 分 析 见 表 2。
旖=l:蟪 蟊畦 术妒0
根据式 (1),由弹 性变 形理 论 得钢 绞 线微 段 的伸 长
式 (4)为 和 的方程 组。取设 计值 和 为初 始
量 为 :
值 ,即 (O)= d, (0)= d,则 ,d(△ z.(0) = I△1 一
d(△) = dx = 8-( ̄O+kx)
7.O9
626
619 637
675

预应力孔道系数计算书

预应力孔道系数计算书

µ 和管道每米局部偏差对摩擦的影响系数 k 有关。
一、试验目的
为了确定白龙江 4#特大桥 1-56m 钢管混凝土系杆拱桥箱梁合理的张拉控制 应力, 并根据预应力钢束与管道壁的摩擦系数 µ 和管道每米局部偏差对摩擦的影 响系数 k 确定预应力孔道摩阻损失。
二、试验仪器布置
孔道摩阻试验布置图见 2-1。
计算设计摩阻力与实测摩阻力的比值以及实测摩阻力与锚下控制应力的比 值,见表 7-2。
表 7-2 钢束编号 设计摩阻力/实测摩阻力与实测摩阻力/锚下控制应力计算表 设计摩阻力/实测摩阻力 实测摩阻力/锚下控制应力
N4 N5 N8
0.964 0.964 0.964
0.155 0.158 0.153
经计算可得测试梁段的 管道摩擦系数和管道偏差系数分别为μ=0.24,k=0.0026。 对应设计值分别为μ=0.23,k=0.0025。
压力传感器 垫板 张拉千斤顶
锚环塞栓 对中环ห้องสมุดไป่ตู้
预应力孔道 预应力束 压力测试仪
张拉端
图 2-1
压力表
锚固端
孔道摩阻试验布置图
1
白龙江 4#特大桥 1-56m 钢管混凝土系杆拱桥箱梁孔道摩阻试验报告
三、测试孔道和测试束的选择
本次测试时,选取顶板孔道 N8、腹板孔道 N4 和底板孔道 N5,共三个孔道, 每个孔道内选择其孔道预应力钢绞线作为测试束。 测试束在箱梁横断面及沿桥纵 向的位置示意图分别见图 3-1、图 3-2。
白龙江 4#特大桥 1-56m 钢管混凝土系杆拱桥箱梁孔道摩阻试验报告
白龙江 4#特大桥 1-56m 钢管混凝土系杆拱桥箱梁
孔道摩阻测试报告
大跨度预应力混凝土箱形梁桥需施加的预应力以及施加后在结构中所产生 的有效预应力的确定是保证预应力结构安全性能的关键, 而相关设计规范中只提 供了一般条件下预应力的摩阻损失数据,对于大曲率预应力筋混凝土结构,其孔 道摩阻损失都必须进行专门的孔道摩阻试验测试。 预应力混凝土结构的孔道摩阻损失主要是因为预应力钢筋与管道壁之间摩 擦引起的, 由于力筋与管道壁接触并沿管道滑动而产生摩擦阻力,进而产生摩阻 损失。 摩阻损失可分为孔道弯曲影响和孔道偏差影响两部分,孔道弯曲影响的摩 阻损失仅在曲线部分加以考虑, 而由孔道偏差所引起的摩阻损失在直线段和曲线 段均应加以考虑。 预应力混凝土结构的孔道摩阻损失主要与预应力钢束与管道壁的摩擦系数

32m箱梁预应力张拉伸长值计算书(管道摩阻后)--通桥(2016)2322A

32m箱梁预应力张拉伸长值计算书(管道摩阻后)--通桥(2016)2322A

-1
竖弯圆弧段 水平长度
第 1 页,共 3 页
通桥(2016)2322A-Ⅱ-1预应力管道分段伸长值计算表(跨度31.5m)
伸长值计算基本参数 管道偏差系数k 0.00337 管道摩阻系数μ 0.59 钢绞线弹性模量(GPa) 197 锚口及喇叭摩阻 预张拉顶内钢绞线长度(m) 0.75
4.60%
设计转角θ (rad) 0 0.06981317 0 0 0.113446401 0 0.113446401 0 0 0.06981317 0 0 0.06981317 0 0 0.13962634 0 0.113446401 0 0 0.13962634 0 0.113446401 0 0 0.06981317 0 0.113446401 0 0 0.06981317 0
15.6 5.0 53.8 9.5 5.0 19.5 9.9 27.7 16.8 5.0 53.7 16.8 5.0 53.7 9.0 9.9 3.6 9.8 37.9 9.0 9.9 26.4 9.6 16.8 9.5 5.1 43.6 10.0 6.7 16.8 5.0 53.7 151.2 7.8 159 169 149 149.7 7.8 158 167 148 143.5 7.8 151 160 142 140.3 7.8 148 157 139 151.2 7.8 159 169 149 151.2 7.8 159 169 149 143.3 7.8 151 160 142 148.8 7.8 157 166 147
锚外张拉 锚下张拉 控制应力 控制应力 (MPa) (MPa)
kx+µθ
e-(kx+µθ )
每段平均张 每段起点控制应 每段伸长值 管道内理论伸 拉控制应力 内弹性伸长 力(MPa) (mm) 长值(mm) (MPa) 量(mm) 975.94 965.58 923.35 975.94 969.63 903.64 890.69 826.68 975.94 964.76 922.57 975.94 964.76 922.57 975.94 969.99 886.96 884.59 821.02 975.94 969.99 886.96 869.45 806.96 975.94 969.63 927.20 898.27 833.72 975.94 964.76 922.57 970.75 944.31 905.38 972.78 936.24 897.15 858.29 817.43 970.34 943.51 904.61 970.34 943.51 904.61 972.96 927.86 885.78 852.41 808.38 972.96 927.86 878.18 837.82 801.36 972.78 948.26 912.66 865.59 831.48 970.34 943.51 904.61

预应力孔道摩擦损失试验方案

预应力孔道摩擦损失试验方案

预应力孔道摩擦损失试验方案一、概述该桥上部构造为现浇箱梁直线桥,全长234m,共三联,其中第二联为30+35+35+30=130m四跨连续后张法连续箱梁,断面形式为单箱单室+单箱双室,桥面宽24.5m,梁高1.8m,整体处于R=1500m 的竖曲线上,设计荷载为城市-A级。

第二联箱梁采用满堂支架支撑一次性浇注完成。

该桥第二联预应力筋部分设计共3种编号45束,每束12根1860MPa级低应力松驰钢绞线,单束钢绞线贯通全联,单根钢绞线长约132m。

第二联箱梁采用的是后张法预应力结构,要求预应力张拉前需要测定预应力孔道摩阻系数。

现浇箱梁砼浇注于2006年11月29日~2006年11月30日完成,预计2006年12月5日能达到90%的设计强度,施工现场准备于2006年12月5日对第二联N1、N2、N3束预应力钢绞线的孔道摩阻进行了测试。

二、试验标准和原理试验根据《公路桥涵施工技术规范》(JTJ041-2000)以及《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)等的有关规定进行。

试验装置如图1所示。

试验采用一端张拉(主动端)一端固定(被动端)的方式进行。

根据在主动端施加张拉力在被动端不施加,根据力的平衡原理,两端的拉力之差即为孔道的预应力摩阻损失。

根据理论推导得,对于后张法张拉时,预应力钢筋于管道壁之间的摩擦引起的预应力损失,计算如下:式中-预应力钢筋与管道壁之间的摩擦引起的预应力损失;-主动端预应力钢筋的张拉控制力;-预应力钢筋与管道壁的摩擦系数;-从张拉端至计算截面曲线管道部分切线的夹角之和(rad);k-管道每米局部偏差对摩擦的影响系数;x-从张拉端至计算截面的管道长度。

这样,根据上述的试验装置和计算模型,可以得到预应力管道的摩阻系数。

采用图1的试验装置,由于试验时间比较短暂及现场张拉的事实,试验测试结果可以忽略预应力损失的其它部分,如锚具变形,钢筋回缩和接缝压缩等引起的预应力损失、预应力钢筋与台座之间的温差引起的预应力损失、混凝土的弹性压缩引起的预应力损失、以及预应力钢筋的应力松弛和混凝土的收缩和徐变等引起的预应力损失。

桥梁预应力构件孔道摩阻试验方案

桥梁预应力构件孔道摩阻试验方案

桥梁预应力构件孔道摩阻试验方案XXXX技术有限公司2014 年12月1 试验的意义和目的随着现代预应力技术的发展, 预应力混凝土在土木工程中的应用日益广泛。

特别是在桥梁结构中, 预应力技术更为普遍, 且大量采用后张法预应力施工技术。

但后张法预应力施工中, 预应力损失大, 准确计算困难。

在5种预应力损失( 混凝土收缩徐变, 预应力筋松弛, 锚头变形、预应力筋回缩和接缝压缩, 摩阻和混凝土弹性压缩) 中, 摩阻损失所占比例较大, 计算尤为困难。

对于弯曲长束预应力孔道, 摩阻损失高达40%以上。

预应力损失的准确计算是确定预应力筋中有效预应力的关键, 直接影响桥梁结构的使用性能。

对预应力损失估计过高, 可能使梁端混凝土局部破坏或梁体预拉区开裂, 且降低延性。

对预应力损失估计不足, 则不能有效提高预应力混凝土梁的刚度和抗裂性。

在现行桥梁规范中,对于一定的成孔材料其孔道摩阻系数μ是一个定值,并不考虑预应力钢绞线的数量、张拉力的吨位、曲率半径的影响。

但是实际上,当孔道曲率半径较小时,预应力钢绞线在同样的张拉控制力下,产生的径向作用很大,预应力钢绞线有陷入孔道内壁的趋势,将增大摩阻系数μ。

此外,随着预应力钢绞线根数的增加,沿小曲率半径布置的钢绞线受力不均匀,预应力钢绞线之间、钢绞线与孔道壁之间的摩阻也将有所不同,这些因素都将引起摩阻系数μ的增大。

一般来说,随着曲率半径的减小,预应力钢绞线数量的增加,摩阻系数μ也将增大。

如采用挂篮悬臂浇筑大跨径连续钢构桥时,精确计算预应力束的有效应力是保证施工过程中结构安全、成桥以后的线形和受力状态合理,需要考虑的重要因素之一。

然而,规范提供了孔道摩阻系数μ和偏差系数k的使用范围,但是范围太大,取不同的值,会得到完全不同的孔道摩阻损失。

虽然可以根据施工采用的结构材料,在试验室进行模型试验,但是试验室和施工现场环境相差较大,得出的结果相差甚远。

在《公路桥梁施工技术规范(JTG/T F50-2011)》中第7.8.5第一点“预应力张拉之前,宜对不同类型的孔道进行至少一个孔道的摩阻测试,通过测试所确定的μ值和k值宜用于对设计张拉控制应力的修正。

孔道摩阻试验_70m箱梁孔道摩阻试验

孔道摩阻试验_70m箱梁孔道摩阻试验

x
2 i

θ
2 i
(A)
∑ ∑ μ = ( Ai ⋅θi ) − k ⋅ (xi ⋅θi )
∑θ
2 i
(B)
2、在 一 端 张 拉 ,一 端 固 定 时 ,在 固 定 端 测 得 了 克 服 全 长 范 围 内 摩
1
擦损失后的有效预应力 σ l /2 = (σ l ⋅σ k )2 ,此时管道摩擦损失在中部截面为
1763
1287
19.1
205
10
5
2500
2199
1623
23.9
245
9
6
3000
2645
1956
28.8
287
9
7
3500
3102
2305
33.9
333
9
8
4000
3773
2856
41
364
8
3000 固定端 (KN) 2500
2000
试验编号
管道全长 X(m)
68.286
管道总角度θ(度)
试验日期
2004-12-20
Po/P

传感器荷载(KN)
油压表 千斤顶
号 张拉端设计值 张拉端实际值 固定端实际值 (Mpa) 外露量(mm)
1
450
585
522
7.3
77
2
900
998
892
11.6
129
3
1350
1445
1284
16.3
183
孔道号
C32C33-X-L-Z3J
试验编号
Z3-1
管道全长 X(m)

25m箱梁预应力张拉计算书模板

25m箱梁预应力张拉计算书模板

25m箱梁预应力张拉计算书1、工程概况杏树凹大桥左线桥中心桩号为ZK9+875,上部构造采用16×25m预制预应力混凝土小箱梁,先简支后连续。

全桥分4联,桥长406m,,右线中心桩号为YK9+782.5,上部构造采用15×25m预制预应力混凝土小箱梁,先简支后连续。

全桥分4联,桥长381m。

本桥左线位于R-3600左偏圆曲线上,右线位于R-3400左偏圆曲线上。

每跨横桥面由4片预制安装小箱梁构成。

25m预制箱梁为单箱单室构造,箱梁高度为140厘米, 跨中断面腹板、底板厚度为18厘米,支点断面腹板、底板厚度为25厘米,顶板一般厚度为18厘米,箱梁底宽为100厘米,中梁翼缘顶宽为240厘米,边梁翼缘顶宽为284.5厘米。

本桥共有C50预应力混凝土箱梁124片。

各梁的预应力筋分布情况如下表所示:预应力筋均为纵向,分布在底板、腹板及顶板,其中底板4束,腹板4束,顶板5束,对称于梁横断方向中线布置。

预应力钢绞线采用抗拉强度标准值f=1860 MP、公称直径d=15.2mm的低松驰高强度,其力学性能符合《预应pk力混凝土用钢绞线》(GB/T5224-2003)的规定,公称截面积Ap=139mm2,弹性模量Ep=1.95*105MPa,松驰系数:0.3。

试验检测的钢绞线弹性模量Ep=1.95*105 MPa。

预应力管道采用金属波纹管,腹板及底板为圆孔,所配锚具为M15-3及M15-4,顶板为长圆孔,所配锚具为BM15-4及BM15-5。

2、后张法钢绞线理论伸长值计算公式及参数后张法预应力钢绞线在张拉过程中,主要受到两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力。

导致钢绞线张拉时,锚下控制应力沿着管壁向梁跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。

2.1、力学指标及计算参数预应力筋力学性能指标及相关计算参数如下:※弹性模量:Ep=1.91*105 MPa※标准强度:f=1860MPapk=1395MPa※张拉控制应力:σcon=0.75fpk※钢绞线松驰系数:0.3※孔道偏差系数:κ=0.0015※孔道摩阻系数:μ=0.15※锚具变形及钢束回缩每端按6mm计2.2、理论伸长值的计算根据《公路桥梁施工技术规范》(JTJ 041-2000),关于预应筋伸长值的计算按如下公式进行:(公式1)式中:ΔL——各分段预应力筋的理论伸长值(mm);Pp——预应力筋的平均张拉力(N);L——预应力筋的长度(mm);Ap——预应力筋的截面面积(mm2);Ep——预应力筋的弹性模量(Mpa)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

OVM锚具孔道摩阻试验大纲
一、试验目的
为确定合理的张拉顺序及张拉控制应力,准确控制梁体线形,根据有关要求及规定进行试验。

二、试验依据
参照《铁路桥涵施工规范》(TB10203-2002),并结合现场具体条件制定。

三、试验仪器、设备及用品
1.2台千斤顶、2台高压油泵,2块0.4级精密压力表。

2.2台传感器,2台应变仪,2根配套连接线缆。

3.对中专用工装。

根据现场条件确定。

4.工具锚2套,工作锚1套,配套限位板1块。

5.0.5mm精度钢板尺2把,记录用夹板2个,钢笔2,计算器1,记录纸若干。

四、试验布置
成、设计钢束伸长值)、成孔方式、锚具情况(生产厂家、规格型号、厂家提供的锚口摩阻损失率)、钢绞线参数(生产厂家、型号规格、实测弹性模量)

2.传感器、应变仪、千斤顶、高压油泵、精密压力表(0.4级)检查。

3.传感器和应变仪的系统标定(用压力机),千斤顶和精密压力表的标定(用标定好的传感器、应变仪)。

千斤顶应标定进油、回油曲线。

4.根据标定结果,按每级5MPa 确定张拉分级。

张拉分级表见附件1。

5.现场确定传感器、千斤顶对中方法,检查位置是否有干涉。

6.计算钢绞线的下料长度并下料、穿束。

7.孔道、梁端面清理干净。

8.准备足够的记录表格。

记录表格的格式见附件2。

9.试验前应对有关人员进行技术交底。

六、试验步骤
1.根据试验布置图安装传感器、锚具、锚垫板、千斤顶。

2.锚固端千斤顶主缸进油空顶200mm (根据钢束理论伸长值确定)关闭,两端预应力钢束均匀楔紧于千斤顶上;两端装置对中。

3.根据张拉分级表,张拉端千斤顶进油分级张拉,两端同时记录有关数据。

4.锚固端千斤顶回油后,张拉端千斤顶退回油、退锚。

5.将钢丝束串动数次,做第二次。

七、数据处理方法
1.二元线性回归法计算μ、K 值 计算公式为:
i
i i
i i i I i i i Lnr K x Lnr x x K x θμθθμθ∑=∑+∑∑=∑+∑2
2
其中:x i ——第i 束孔道长度,单位为m ;
θi ——第i 束曲线孔道切线夹角之和,单位rad ;
r i ——第i 束主动端与被动端传感器压力之比;
μ______钢筋与管道壁间的摩擦系数;

K ______管道每米局部偏差对摩擦的影响系数。

二元线性回归法是建立在数理统计基础上的计算方法,如果原始数据离散性大,则计算结果不稳定,任意增加或减少几组数据会造成结果的较大变动,反之则可证明原始数据的稳定性。

只有原始数据稳定可靠的情况下方可采用此法。

2.固定μ值算K 值
由于梁两端孔道位置均被端模板固定,故认为弯起的角度一般不会出现较大的波动,整个孔道摩阻系数的变化主要取决于孔道位置偏差;μ值是材料固有性质,和施工工艺没有关系,故可确定一固定的μ值,计算K 。

μ值的确定有两种方法,一是直接取规范规定值,二是测出μ值。

μ值的测试可委托有关机构进行。

3.张拉时钢绞线非弹性伸长值计算
①从张拉第一级起,逐级记录千斤顶油缸伸长值l i ;
②根据每级千斤顶油缸伸长值,计算每一级的钢绞线伸长值:Δl i =l i -l i-1;
③取Δl i 相差最小的若干值求其平均值,一般是从第二级算起,并扣除传力锚固前的一级(该级往往不是级差的整倍数),计算方法为:
④钢绞线非弹性伸长值=)(l l i ∆-∆∑,此处Δl i 一般取第一、二级即可。

4.钢绞线伸长值精确计算 ①被动端锚外钢束伸长值计算
被动端锚外长度
—被动端千斤顶压力
—其中:
111
11L P A E L P L B Y
Y B =

②孔道长度范围内钢束伸长值计算
N
l
l n
n
i ∑∆=
∆,

其中: ΔL 2——钢绞线伸长值;
P A 2——持荷5min 后主动端锚下力;
L 2——钢绞线工作长度; E y ——钢绞线弹性模量; A y ——钢绞线束截面积。

③主动端锚外伸长值计算
被动端锚外长度
—主动端千斤顶压力
—其中:
313
13L P A E L P L A Y Y A =

④钢绞线伸长值:
321L L L L ∆+∆+∆=∆
5.试验中钢绞线伸长值的估算
被动端锚下压力
—主动端锚下压力—其中:
22321222)
)((B A Y
Y B A P P A E L L L P P L +++=

八、人员配合
1.技术人员6。

其中记录2,读尺2,读表2
2.张拉工1。

3.普通工人6。

负责安装仪器、设备等。

九、注意事项
1.被动端不能安装工作锚。

2.限位板两面的槽深不同,一侧为6.5mm ,另一侧为7.5mm ,适用于不同的钢绞线类型,
)1()
()(22
222kL y y A e kL A E L P L +--+⋅⋅=∆μθμθ
一侧为1860MPa,另一侧为1650MPa。

注意安装面。

3.千斤顶安装时,要注意油缸的方向,应使油缸向外便于侧伸长值。

4.千斤顶和传感器标定时应采用同一压力机标定,以消除千斤顶和传感器的标定系统误差。

标定时要有初读数、标到额定荷载后要缓慢回零,并记下回零读数。

当三次的读数差别较大或有两次差别不大而与另一次差别较大、或逐次增大时,应标第四次。

应变仪AC、BD接头可互换。

5.试验前检查压力表指针是否在零读数位置。

6.千斤顶行程要留20mm,这一段一般不成线性。

两端千斤顶预先伸长一部分以便退锚。

7.读数根据加载表每级都读,注意应记录初始、σK、持荷、锚固、回零几个状态的读数。

有关数据应由技术人员负责读取。

由于加压时压力表有振动,节流阀密实性的影响,操作人员的控制误差,实际读数与计算值有误差,此时压力表数据必须读实际达到的压力值,并且不得靠回油来调整压力值。

8.张拉工艺:OVM锚具不能超张拉,张拉中应观察钢绞线是否有滑丝。

9.由于实际张拉为两端张拉,而试验为一端张拉,因此千斤顶行程可能不够。

可采用两种方法,一是倒顶,二是张拉端串联两台顶。

10.试验中应及时处理数据,发现数据反常则增加试验次数。

每做完一束均要计算实测伸长值、理论伸长值并校核误差。

11.锚具回缩值的测定:在OVM锚体系下,原定通过测工具锚夹片回缩值的方法不正确,原因是传力锚固时,钢绞线与夹片有相对滑移,夹片回缩值不等于钢绞线回缩值。

12.钢束弯起角指其圆心角,等于弧长除以半径。

13.钢束回缩值和锚固前后的应力损失值不存在对应关系。

因为锚固后由于千斤顶内摩阻的影响,锚外钢束实际还有荷载;传力锚固时钢束停止滑移时的长度和对应张拉力无法测出;孔道内钢束回缩受反向摩阻的影响,存在一个应力不动点,实际参与回缩的钢束实际长度小于其工作长度。

14.一定要将千斤顶和传感器系统标定,以消除系统误差。


15.试验时要及时松倒,确保各部位受力顺畅。

附件1
单位:MPa

孔道摩阻试验记录表主/被动端
工程项目传感器编号压力表编号施工单位应变仪编号千斤顶编号
6。

相关文档
最新文档