李雅普诺夫稳定性分析

合集下载

第5章李雅普诺夫稳定性分析

第5章李雅普诺夫稳定性分析
3
第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷

李雅普诺夫稳定性分析方法

李雅普诺夫稳定性分析方法
则是根据G(s)的特征值来分析其在小扰动 范围内运动稳定性.
(2)李雅普诺夫第二方法
• 也称直接法,属于直接根据系统结构判断内 部稳定性的方法.
• 该方法直接面对非线性系统,基于引入具有 广义能量属性的Lyapunov函数和分析李氏 函数的定量性, 建立判断稳定性的相应结 论.
• 因此直接法也是一般性方法----Lyapunov 第二法更具有一般性.
(2).平衡状态的形式.平衡状态 可由方程定 出,对二维自治系统, 的形式包括状态空 间中的点和线段.
(3).不唯一性.平衡状态 一般不唯一.
对定常线性系统而言,平衡状态 的解.
• 若矩阵A非奇,则有唯一解 • 若矩阵A奇异,则解 不唯一.
为方程
(4).孤立平衡状态,该状态是指状态空间彼此 分隔的孤立点形式的平衡状态,孤立平衡状 态的重要特征是:通过坐标移动可将其转换 为状态空间的原点.
• Lyapunov函数与
有关,用V(x)来
表示.
• 一般情况下V(x)>0 , 间的变化率.
表示能量随时
•当 少.
表明能量在运动中随时间推移而减
•当 加.
表明能量在运动中随时间推移而增
1.预备知识 1).标量函数V(x)性质意义:
令V(x)是向量x的标量函数,Ω是x空间包含 原点的封闭有限区域. (1).如果对所有区域Ω中的非零向量x,有 V(x)>0,且在x=0处有V(x)=0则在域Ω内称 V(x)为正定.
(3)用李氏方法分析的必要性 • 以一个例子说明:用特征值来判断线性时变
系统一般稳定性是会失效的.
• 其中特征值为 -1,-1.
• 但由于其解为
• 当 时,若 则必有 • 故平衡状态是不稳定的,即系统的实际表现

第4章 李雅普诺夫稳定性分析

第4章 李雅普诺夫稳定性分析

这表明, 当且仅当‖eAt‖≤ k <∞ 时,对任给的一个实数ε > 0,都对应存在和初始时 刻无关的一个实数 δ(ε)= ε /k,使得由满足不等式 ||x0 — xe|| ≤ δ(ε) (4-391) 的任一初态x0出发的受扰运动都满足不等式 xt; x0 ,0 xe e At x0 xe k , t 0 (4 392)

S ( ) x0

xe

xe

xe
x1
x1
x1
(a) 李雅普诺夫意义下的稳定性
(b) 渐近稳定性
(c) 不稳定性
4.2 李雅普诺夫第一法(间接法)
间 接 法:利用状态方程解的特性来判断系统稳定性的方法。 适应范围:线性定常系统、线性时变系统、非线性函数可线性化的系统。
定理4-9 对于线性定常系统
f ( x, t ) x
(4 382)
式中,x为n维状态向量,且显含时间变量t;f(x,t)为线性或非线性、定常或 时变的n维函数,其展开式为
i x
f
i
( x1 , x2 ,...,xn , t ); i 1,2,...,n
(4 383)
假定方程的解为x(t;x0,t0),式中x0和t0分别为初始状态向量和初始时刻, 则初始条件x0必满足 x(t0 ;x0,t0) = x0 。 1 平衡状态 李雅普诺夫关于稳定性的研究均针对平衡状态而言。对于所有t,满足
t e
i
Hale Waihona Puke i t j i tˆ ) A , i ji i ( A i
(4 394)
2)结论2)证明
由式(4-390)可知,当且仅当‖eAt‖ 对一切 t≥0为有界,且当t→0时 ‖eAt‖ →0,零平衡状态 xe= 0 为渐近稳定。如上所证,当且仅当 A 的所有特征 值均具有负或零实部时,‖eÂt‖有界。又根据式(4-393)和式(4-394)可知 当且 t j t 0 t→0时‖eAt‖→0,这就等价于A的特征值均具 仅当t→∞时 t e ,可保证 有负实部。结论2)证毕。

第五章李雅普诺夫稳定性分析

第五章李雅普诺夫稳定性分析
即 x e = f (xe , t) = 0 。
从定义可知,平衡状态的各分量相对于时间不再发生变化。
线性定常系统:x = Ax
A非奇异:Axe = 0 xe = 0 是唯一零解 A奇异:Axe = 0 xe 有无穷多个解
非线性系统:x = f (x,t)
x = f (xe , t) = 0 xe 可能有一个也可能有多个平衡状态
5-2 李雅普诺夫稳定性的基本概念
一、 平衡状态
系统x = f (x,t) ,X为n 维状态向量,且显含时间变量t,x = f (x,t)为线性或
非线性、定常或时变的n
维向量函数,假定方程的解为
x(t;
x
0
,
t 0
)
,式中
x
0
和 t0 分别为初始状态和初始时刻。
定义:系统 x = f (x,t) 的平衡状态是使x = 0的那一类状态,并用 xe 表示,
1 2
Mx22

若用标量函数 V (x) 表示系统的能量。则
V
(x)
=
1 2
Kx12
+
1 2
Mx22
V (x) = Kx1x1 + Mx2x2
=
Kx1x2
+ Mx2 (−
K M
x1

f M
x2 )
= − fx22 0
结论:坐标原点处的平衡状态是渐近稳定的。
一、标量函数及其定号性
1.标量函数 V (x) 的符号和性质
+ ... +
a1
+
a0
=
0
如何判断系统的渐近稳定性?
5-4 李雅普诺夫第二方法
李雅普诺夫第二方法,建立在用能量观点分析稳定性的基础上: 若系统的某个平衡状态是渐近稳定的,则系统储存的能量将随时

稳态李雅普诺夫稳定性分析在不确定系统控制中的应用研究

稳态李雅普诺夫稳定性分析在不确定系统控制中的应用研究

稳态李雅普诺夫稳定性分析在不确定系统控制中的应用研究随着科学技术的快速发展,现代化复杂系统的建模和控制问题变得越来越重要。

不确定性常常是复杂系统中的一个普遍特征,包括参数变化、外部干扰等,而这些因素往往会影响到系统稳定性和性能。

因此,寻找有效的控制方法来保证系统稳定性和性能成为了复杂系统研究中的一个热点问题。

本文将探讨稳态李雅普诺夫稳定性分析在不确定系统控制中的应用研究。

一、稳态李雅普诺夫稳定性分析的基本理论稳态李雅普诺夫稳定性分析是现代系统控制理论中的一个重要分支。

其核心思想是通过研究系统状态变量的稳态变化规律,来判断系统的稳定性特征。

该方法的基本理论可以总结如下:1.1 稳态李雅普诺夫函数稳态李雅普诺夫(LS)函数是指在一定条件下,系统状态变量通过某种方式组合而成的函数。

它可以用来刻画系统在达到稳态时的状态变化规律。

具体而言,稳态LS函数的定义如下:$$V(x)=\int_0^{\infty} \sum_{i=1}^n \frac{\partial V}{\partial x_i}f_i(x,t)p(t)dt$$其中,$x=\left[x_1,x_2,\cdots,x_n\right]^{\mathrm{T}}$是系统状态变量,$f_i(x,t)$是系统状态变量的方程,$p(t)$是某个概率密度函数,$\frac{\partialV}{\partial x_i}$是某个函数。

在该式中,$V(x)$越小,表示稳态时系统的稳定性越强。

1.2 稳态李雅普诺夫函数的性质稳态LS函数具有许多重要的性质,其中最基本的包括:1)非负性:$V(x)\geq0$,且$V(x)=0$当且仅当$x=0$;2)单调性:如果$f_i(x,t)\geq0$,则对于$x_1\neq x_2$,有$V(x_1)-V(x_2)>0$或$V(x_1)=V(x_2)$;3)对称性:如果对于任意的$x$和$y$有$f_i(x,t)=f_i(y,t)$,则$V(x)=V(y)$;4)上界性:如果存在$yu>0$,使得$f_i(x,t)\leq f_i(y,t)$,则有$V(x)\leq V(y)$。

第4章李雅普诺夫稳定性分析

第4章李雅普诺夫稳定性分析

第4章李雅普诺夫稳定性分析李雅普诺夫稳定性分析是数学分析中的一个重要概念,它用于判断非线性系统在其中一点附近的稳定性。

李雅普诺夫稳定性分析方法最初由俄国数学家李雅普诺夫提出,广泛应用于控制论、微分方程和动力系统等领域。

在进行李雅普诺夫稳定性分析时,首先需要确定非线性系统的平衡点。

平衡点是指系统在其中一时刻的状态不再发生变化,即各个状态变量的导数为零。

在平衡点附近,可以通过线性化的方法来近似非线性系统,即将非线性系统转化为线性系统进行分析。

接下来,利用李雅普诺夫稳定性定理可以判断线性化系统的稳定性。

根据定理的不同形式,可以分为不动点稳定性定理和周期解稳定性定理。

不动点稳定性定理是指当线性化系统的特征根都具有负的实部时,非线性系统在平衡点附近是稳定的;而当至少存在一个特征根具有正的实部时,非线性系统在平衡点附近是不稳定的。

这个定理对于线性化系统为一阶系统或者线性化系统的特征根为复数的情况适用。

周期解稳定性定理是指当线性化系统的所有特征根满足一定条件时,非线性系统在周期解附近是稳定的。

这个定理对于封闭曲线解以及周期解的情况适用。

当线性化系统无法满足上述定理时,可以使用李雅普诺夫直接法来判断非线性系统的稳定性。

李雅普诺夫直接法是基于李雅普诺夫函数的概念,通过构造合适的李雅普诺夫函数来判断非线性系统的稳定性。

李雅普诺夫函数是满足以下条件的函数:1)李雅普诺夫函数的导数在其中一区域内是负定的,即导数的每个分量都小于或等于零;2)在平衡点附近,李雅普诺夫函数取得最小值。

通过构造合适的李雅普诺夫函数,并验证满足上述条件,就可以判断非线性系统的稳定性。

如果李雅普诺夫函数的导数在整个状态空间都是负定的,则非线性系统是全局稳定的;如果李雅普诺夫函数的导数在一些有限的状态空间内是负定的,则非线性系统是局部稳定的。

总之,李雅普诺夫稳定性分析是一种有力的工具,可以用于判断非线性系统的稳定性。

不过需要注意的是,李雅普诺夫稳定性分析方法仅适用于平衡点附近的稳定性分析,对于非线性系统的全局稳定性分析还需要其他的方法。

离散条件下的李雅普诺夫稳定判据

离散条件下的李雅普诺夫稳定判据

离散条件下的李雅普诺夫稳定判据1. 概述在控制论与系统论中,稳定性是一个重要的概念。

在研究动态系统的稳定性时,我们常常需要使用稳定性判据来判断系统的稳定性。

而在离散条件下,李雅普诺夫稳定判据就是一个常用的方法。

2. 李雅普诺夫稳定判据的定义李雅普诺夫稳定判据是由俄罗斯数学家亚科夫•伊万诺维奇•李雅普诺夫在稳定性理论中提出的一种判据。

它用于判断差分方程系统在离散条件下的稳定性。

3. 离散条件下的稳定性在离散条件下,系统的状态是以离散的时间点进行更新的。

这种情况下,我们常常需要研究系统的稳定性,即系统在经过一定次数的状态更新后,是否能趋向于某一稳定状态,或者在一定范围内波动。

而李雅普诺夫稳定判据就是用来判断这种系统的稳定性的一种方法。

4. 李雅普诺夫稳定判据的原理李雅普诺夫稳定判据的核心思想是通过构造一个Lyapunov函数来判断系统的稳定性。

对于一个给定的系统,如果存在一个 Lyapunov 函数,满足对系统的任意状态进行更新后,Lyapunov 函数的值都会减小,那么系统就是稳定的。

5. Lyapunov 函数的选择在使用李雅普诺夫稳定判据时,选择合适的Lyapunov 函数是至关重要的。

一般来说,Lyapunov 函数的选择是根据系统的特点来确定的。

常见的 Lyapunov 函数包括二次型函数、指数型函数等。

不同的Lyapunov 函数对系统的稳定性判断有不同的适用条件和效果。

6. 李雅普诺夫稳定判据的应用李雅普诺夫稳定判据在控制论与系统论中有着广泛的应用。

通过使用李雅普诺夫稳定判据,我们可以对离散条件下的系统进行稳定性分析,为系统的设计与控制提供理论支持。

7. 结论离散条件下的李雅普诺夫稳定判据是系统稳定性分析中的重要工具,通过对系统的 Lyapunov 函数进行构造和分析,我们可以判断系统是否稳定,并为系统的设计与控制提供理论依据。

希望本文的介绍对您有所帮助。

基于离散条件下的李雅普诺夫稳定判据,我们将进一步探讨该方法的具体应用和细节,以及其对控制系统和动态系统的实际意义。

稳定性与李雅普诺夫

稳定性与李雅普诺夫
1)V(x) > 0,则称V(x)为正定。例如V(x)=x12 +x22; 2)V(x) ≥ 0,则称V(x)为半正定(或非负定)。例如
V(x)=(x1 +x2)2; 3)V(x) < 0,则称V(x)为负定。例如V(x)=-(x12 +2x22); 4)V(x) ≤ 0,则称V(x)为半负定(或非正定)。例如
p
Δ1
p11 , Δ2
11
p
21
p
12
p
,…
, Δn P
22
矩阵 P(或 V(x))定号性的充要条件是:
1)若 Δi 0, i (1,2,, n) ,则 P(或 V(x))为正定;
2)若
Δi
0, 0,
i为偶数 i为奇数
,则
P(或
V(x))为负定;
3)若
Δi
0, 0,
i i
(1,2,, n
需要根据舍弃旳髙 阶项再分析 采用李雅普诺夫第 二法
举例:用李雅普诺夫第一法判断下列系统旳稳定性
x1 x1 x1x2
x2
x2
x1x2
第一步:令 x1 0, x2 0
求得系统旳平衡状态 x1e (0,0)T , x1e (1,1)T
第二步:将系统在平衡状态x1e附近线性化
f1 f1
(1)V(x)是满足稳定性判据条件的一个正定的标量函数,且 对于 x 应具有连续的一阶偏导数; (2)对于一个给定系统,如果 V(x)可以找到,那么通常是非 唯一的,这并不影响结论的一致性。 (3)V(x)的最简单形式是二次型函数 V(x) = xTP x,其中 P 为 实对称方阵,它的元素可以是定常的或时变的。但 V(x)并不一 定都是简单的二次型。 (4)如果 V(x)为二次型,且可表示为:

基于MATLAB的李雅普诺夫第二法稳定性分析

基于MATLAB的李雅普诺夫第二法稳定性分析

基于MATLAB的李雅普诺夫第二法稳定性分析李雅普诺夫第二法是一种广泛应用于非线性动力系统稳定性分析的方法。

在MATLAB中,我们可以利用多种功能和工具来实现这种分析。

在本文中,将介绍如何使用MATLAB进行李雅普诺夫第二法稳定性分析。

首先,我们将介绍李雅普诺夫第二法的基本概念,然后是在MATLAB中实现该方法的步骤和示例。

李雅普诺夫第二法是一种通过具有特定属性的李雅普诺夫函数来判断非线性系统的稳定性的方法。

具体来说,李雅普诺夫第二法通过找到一个正定函数V(x)以及一个正数a和b,使下式成立:a,x,^2≤V(x)≤b,x,^2其中x是系统状态,x,^2表示欧几里德范数的平方,a和b是正定的。

如果满足这个不等式,那么系统就是稳定的。

现在,我们将介绍在MATLAB中实现李雅普诺夫第二法的步骤。

首先,我们需要编写系统的状态方程。

这可以通过定义一个MATLAB函数来实现。

例如,考虑以下非线性系统:dx/dt = f(x)其中x是系统状态,f(x)是非线性函数。

我们可以将此方程定义为一个名为f.m的函数,它将系统状态作为输入,并返回状态变量的导数。

下面是一个简单的f.m文件的示例:function dxdt = f(x)dxdt = x^2 - x^4;接下来,我们需要选择一个合适的李雅普诺夫函数V(x)。

我们可以通过考虑系统的能量来选择一个合适的函数。

在这种情况下,我们可以选择V(x) = x^2,因为它是系统能量的一种度量方式。

然后,我们需要计算李雅普诺夫函数的时间导数Vdot(x)。

这可以通过将李雅普诺夫函数应用于系统的状态方程来实现。

在MATLAB中,我们可以利用符号计算工具箱来实现这一点。

下面是一个计算Vdot(x)的示例代码:syms xf_sym = x^2 - x^4;V=x^2;Vdot = diff(V, x) * f_sym;最后,我们需要使用MATLAB的求解器来满足条件的李雅普诺夫函数。

第四章李雅普诺夫稳定性理论

第四章李雅普诺夫稳定性理论

即:
(1) p11 0,
(1)2 p11 p21
p12 0, ,(1)n p22
p11 p12 p1n
p21
p22
p2n
0
pn1 pn2 pnn
28
第29页/共73页
例 判断下列二次型函数的正定性。
V (x) 10x12 4x22 x32 2x1x2 2x2 x3 4x1x3
其平衡状态满足
(
),并设在原点邻域存在
V (x,t)
x f (x,t)
,假定状态空间原点作为平衡状态
f (0, t) 0 对 x 的连续的一阶偏导数。 xe 0
30
第31页/共73页
• 定理1:若(1)
V ( 正定; x,t)
V (x, t) (2)
负定;
则原点是渐近稳定的。
(3) 当

,
V ( x, t) x 则系统在原点处是大范围渐近稳定的。
时变: 与t0 有关 定常系统: 与t0无关,xe是一致稳定的。
注意: -向量范数(表示空间距离)
欧几里得范数。
1
x0 xe [(x10 x1e )2 (xn0 xne )2 ]2 9 第10页/共73页
2.渐近稳定
1)是李雅普诺夫意义下的稳定
2)lim t
x(t; x0,t0 ) xe
0
与t0无关 一致渐近稳定
3.大范围内渐近稳定性
对 x0 s( )
都有lim t
x(t; x0,t0 ) xe
0
10
第11页/共73页
初始条件扩展到整个空间,且是渐近稳定性。
s( ) , x xe大范围稳定
❖线性系统(严格):如果它是渐近稳定的,必 是有大范围渐近稳定性(线性系统稳定性与初 始条件的大小无关)。

第4章稳定性与李雅普诺夫方法

第4章稳定性与李雅普诺夫方法

第4章稳定性与李雅普诺夫方法稳定性是评估一个系统的重要性能指标,它描述了系统在一定初始条件下是否能够保持其平衡状态。

稳定性分为两种类型,即渐近稳定性和有界稳定性。

渐近稳定性指的是系统随着时间的推移趋向于其中一平衡状态,而有界稳定性指的是系统在任意时刻的状态都保持在其中一有界范围内。

为了评估系统的稳定性,我们可以利用李雅普诺夫方法。

李雅普诺夫方法是一种通过构造李雅普诺夫函数来判断系统稳定性的方法。

李雅普诺夫函数是一个满足特定条件的函数,它的导数反映了系统状态变化的趋势。

通过对李雅普诺夫函数的导数进行分析,我们可以判断系统在任意时刻的状态是否会向着平衡状态演进。

在利用李雅普诺夫方法进行稳定性分析时,通常需要满足以下条件:1.李雅普诺夫函数必须是正定函数,并且在系统的平衡点上取得最小值。

2.李雅普诺夫函数的导数必须是负定函数,即在系统的平衡点附近的任意一点,李雅普诺夫函数的导数都小于等于零。

如果满足以上条件,那么系统就是渐近稳定的。

反之,如果李雅普诺夫函数的导数是正定函数,那么系统就是不稳定的。

除了判断系统的稳定性外,李雅普诺夫方法还可以用于定量的稳定性分析。

通过分析李雅普诺夫函数的导数的大小,我们可以得到系统状态变化的速度。

如果李雅普诺夫函数的导数越小,那么系统的稳定性就越好。

反之,如果李雅普诺夫函数的导数越大,那么系统的稳定性就越差。

在实际应用中,李雅普诺夫方法广泛应用于控制系统、电路系统和机械系统等领域。

通过利用李雅普诺夫方法进行稳定性分析,我们可以评估系统的稳定性,并对系统进行控制,以保持系统的稳定状态。

总之,稳定性是一个评估系统性能的重要指标,通过利用李雅普诺夫方法可以判断系统的稳定性,并定量地分析系统的稳定性。

李雅普诺夫方法在控制系统、电路系统和机械系统等领域有广泛的应用前景。

李雅普诺夫稳定性分析

李雅普诺夫稳定性分析

概述(3/6)
分析一个控制系统的稳定性, 一直是控制理论所关注的最重 要的问题 对于简单系统, 常利用经典控制理论中线性定常系统的 稳定性判据 在经典控制理论中, 借助于常微分方程稳定性理论, 产生 了许多稳定性判据, 如劳斯-赫尔维茨(Routh-Hurwitz)判 据和奈奎斯特判据等, 都给出了既实用又方便的判别系 统稳定性的方法 但这些稳定性判别方法仅限于讨论SISO线性定常系统 输入输出间动态关系, 讨论的是 线性定常系统的有界输入有界输出(BIBO)稳定性, 未研究系统的内部状态变化的稳定性, 也不能推广到时 变系统和非线性系统等复杂系统.
x’ f(x,t) 所描述的系统在初始时刻t0的平衡态 xe是李雅普诺夫意义下稳定的,且系 统状态最终趋近于系统的平衡态xe, 即 limt x(t) xe
x2
x(0)
x1
则称平衡态xe是李雅普诺夫意义下渐近稳定的 若(,t0)与初始时刻t0无关, 则称平衡态xe是李雅普诺夫意 义下一致渐近稳定的
平衡态(1/4)
5.1.1 平衡态
设我们所研究的系统的状态方程为 x’ f(x,t) 其中x为n维状态变量, f(x,t)为n维的关于状态变量向量x和时 间t的非线性向量函数 定义5-1 动态系统 x’ f(x,t) 的平衡态是使 f(x,t) 0 的状态,并用xe来表示
平衡态(2/4)
难点喔!
矩阵符号(正定性、负定性等)检验方法 李雅普诺夫第二法
李雅普诺夫稳定性的基本定理(2/2)
下面先讲述 李雅普诺夫第一法,然后讨论
李雅普诺夫第二法
李雅普诺夫第一法(1/7)
5.2.1 李雅普诺夫第一法
李雅普诺夫第一法又称间接法,它是研究动态系统的一次近似 数学模型(线性化模型)稳定性的方法。它的基本思路是:

自动控制理论 第10章 李雅普诺夫稳定性分析

自动控制理论 第10章 李雅普诺夫稳定性分析

2)如果xe=0为系统的平衡状态,则李氏函数应满足V(xe)= V(0)=0。但当x(t)≠ 0
时, 不管其分量大于零或小于零,均能使V(x)>0。
基于上述的性质,人们常以状态矢量x的二次型函数V(x)作为李氏函数
的候选函数,即
式中,x为实变数矢量。只要矩阵P是正定的,则上式所示的V(x)就符 合对李氏函数性质的要求。
对于连续定常系统,李雅普诺夫第二方法是根据V(x)和
的性
质去判别它的稳定性。因此需要研究以下两个问题:
1)具备什么条件的函数才是李雅普诺夫函数,简称李氏函数。
2)怎样利用李氏函数去判别系统平衡状态的稳定性?
由对图10-2所示系统的讨论,可知李氏函数必须要同时具有如下两个性质:
1)李氏函数是自变量为系统的状态矢量x(t)的标量函数。
态是不稳定的。
2021/6/18
第十章 李雅普诺夫稳定性分析
6
为了能更直观地理解上述平衡状态稳定性的概念,
下图在二维状态平面上分别画出了系统平衡状态的稳 定、渐近稳定和不稳定3种情况。
2021/6/18
第十章 李雅普诺夫稳定性分析
7
自动控制理论
第二节 李雅普诺夫第二方法
正定函数
2021/6/18
11
自动控制理论
由上式可见,除了xe=0外,系统的能量V(x)在运动过程中由于 受到了阻尼器的阻尼作用而不断地减小,最后使V(x)=0。这个例子很 容易把能量函数V(x)与实际系统联系起来。然而,对一般的系统而言, 至今还没有一个普遍适用“能量函数” 的表达式。对此,李雅普诺夫提出了 一个虚拟的能量函数,人们称它为李雅普诺夫函数,用V(x)表示。
则称系统的平衡状态xe是渐近稳定的。

《现代控制理论》李雅普诺夫稳定性分析

《现代控制理论》李雅普诺夫稳定性分析
向量和矩阵的范数
1、向量空间上的欧几里德范数(即向量长度)
其欧几里德范数定义为:
一般
一、向量和矩阵的范数
预备知识
矩阵范数
矩阵 的范数定义为:
【例】
Hale Waihona Puke , 则即:矩阵每个元素平方和开根号
预备知识
2、矩阵范数
1.二次型函数:由n个变量
组成的二次齐次多项式,称(n元)二次型函数
2.二次型函数的矩阵表示
则系统在原点处的平衡状态是不稳定的。
为唯一的平衡状态。
定理4:设系统状态方程为
李雅普诺夫主要的稳定性定理
例题
[例] 设系统状态方程为
试确定系统的稳定性。
解 xe=0
,
是该系统惟一的平衡状态。
由于当

,所以系统在原点处的平衡状态是
大范围渐近稳定的。
选取
李雅普诺夫主要的稳定性定理
例题
[例] 已知定常系统状态方程为
定义:若所有有界输入引起的零状态响应输出有界,则称系统为有界输入输出稳定。
李雅普诺夫第一方法—间接法
定理3:连续定常系统 传递函数为: 系统 BIBO 稳定的充要条件为:传递函数的所有极点均位于S左半平面。
【例】试分析系统渐近稳定和BIBO稳定。
李雅普诺夫主要的稳定性定理
讨论续
这是一个矛盾的结果,表明
也不是系统的
受扰运动解。综合以上分析可知,

时,显然有
根据定理9-12可判定系统的原点平衡状态是大范围渐近稳定的。
李雅普诺夫主要的稳定性定理
线性系统稳定性分析
一.线性定常系统李雅普诺夫稳定性分析
线性定常连续系统
系统状态方程为

线性定常系统李雅普诺夫稳定性分析

线性定常系统李雅普诺夫稳定性分析
➢ 由于各类系统的复杂性,在应用Lyapunov第二法时, 难于建立统一的定义Lyapunov函数的方法。
➢ 目前的处理方法是,针对系统的不同分类和特性,分别 寻找建立Lyapunov函数的方法。
➢ 本小节将讨论对线性系统,包括 ✓ 线性定常连续系统 ✓ 线性定常离散系统 ✓ 线性时变连续系统
如何利用Lyapunov第二法及如何选取Lyapunov函数来 分析该线性系统的稳定性。
次型函数的形式。
上述第 3) 点可由如下定理中得到说明。 定理11-7 线性定常连续系统
x’=Ax 的平衡态xe=0为渐近稳定的充要条件为:
➢ 对任意给定的一个正定矩阵Q,都存在一个正定矩阵P 为下述Lyapunov方程(Lyapunov equation) 的解 PA+ATP = -Q
并且正定函数V(x)=xTPx 即为系统的一个Lyapunov函数。
本节主要研究Lyapunov方法在线性系统中的应用。 ➢ 讨论的主要问题有: 基本方法: 线性定常连续系统的Lyapunov稳定性分析 矩阵Lyapunov方程的求解 线性时变连续系统的Lyapunov稳定性分析 线性定常离散系统的Lyapunov稳定性定理 及稳定性分析
由上节知, Lyapunov第二法是分析动态系统的稳定性的有效 方法, 但具体运用时将涉及到如何选取适宜的Lyapunov函数 来分析系统的稳定性。
➢ 如果存在一个连续的标量函数V[x(k),k]且正定, 则有: 1) 若V[x(k),k]的差分V[x(k),k]=V[x(k+1),k+1]-V[x(k),k]为
负定的, 则系统在原点处的平衡态是一致渐近稳定的; 2) 若V[x(k),k]为非正定的,则该系统在原点处的平衡态
是一致稳定的; ✓ 更进一步, 若V[x(k),k]对任意初始状态的解序列 x(k), V[x(k), k]不恒为零,那么该系统在原点处的 平衡态是一致渐近稳定的;

稳定性与李雅普诺夫方法

稳定性与李雅普诺夫方法

只在李雅普诺夫意义下稳定,但不是渐近稳定旳系统则称临界 稳定系统,这在工程上属于不稳定系统。
经典控制理论(线性系统)不稳定 (Re(s)>0) 临界情况 (Re(s)=0) 稳定 (Re(s)<0)
Lyapunov意义下
不稳定
稳定
渐近稳定
2024/10/11
25
4.3 李雅普诺夫第一法
2024/10/11
x描述了系统在n维状态空间中从初始条件(t0,x0)出发旳一条状 态运动旳轨线,称系统旳运动或状态轨线
2024/10/11
15
平衡状态
若系统存在状态向量xe,对全部t,都使: f (xe , t) 0
成立,则称xe为系统旳平衡状态。
对于一种任意系统,不一定都存在平衡状态,有时虽然存在也 未必是唯一旳。
早在1892年,俄国数学家李雅普诺夫就提出将鉴定系统稳定性 旳问题归纳为两种措施:李雅普诺夫第一法和李雅普诺夫第二 法。
前者是经过求解系统微分方程,然后根据解旳性质来鉴定系统 旳稳定性。它旳基本思想和分析措施与经典理论是一致旳。
2024/10/11
3
本章要点讨论李雅普诺夫第二法。
它旳特点是不求解系统方程,而是经过一种叫李雅普诺夫函数旳 标量函数来直接鉴定系统旳稳定性。
所以,它尤其合用于那些难以求解旳非线性系统和时变系统。
李雅普诺夫第二法除了用于对系统进行稳定性分析外,还可用于 对系统瞬态响应旳质量进行评价以及求解参数最优化问题。
另外,在当代控制理论旳许多方面,例如最优系统设计、最优 估值、最优滤波以及自适应控制系统设计等,李雅普诺夫理论 都有广泛旳应用。
2024/10/11
所以,怎样拟定渐近稳定旳最大区域,而且尽量扩大其范围是 尤其主要旳。

理论力学中的稳定性分析有哪些常用方法?

理论力学中的稳定性分析有哪些常用方法?

理论力学中的稳定性分析有哪些常用方法?在理论力学的领域中,稳定性分析是一个至关重要的课题。

它帮助我们理解和预测物体或系统在各种力的作用下保持平衡或稳定状态的能力。

下面将为您介绍一些常用的稳定性分析方法。

首先,让我们来谈谈静力平衡法。

这是一种基于物体所受的力和力矩来判断稳定性的基本方法。

当一个物体处于静止状态时,如果它所受到的所有外力的合力为零,并且所有外力矩的总和也为零,那么我们就说这个物体处于静力平衡状态。

通过分析这些力和力矩的分布情况,我们可以初步判断物体是否稳定。

例如,一个放置在水平面上的圆柱体,如果它的重心在底面的投影位于底面的范围内,那么它在受到轻微扰动后能够恢复到原来的平衡位置,从而被认为是稳定的;反之,如果重心投影超出底面范围,那么它在受到扰动后就容易倾倒,是不稳定的。

接下来是能量法。

在这种方法中,我们通过分析系统的势能来判断其稳定性。

如果一个系统在平衡位置处的势能具有最小值,那么它在受到微小扰动后,势能会增加,从而产生一个恢复力,使系统回到平衡位置,这表明系统是稳定的。

相反,如果平衡位置处的势能不是最小值,那么系统就是不稳定的。

能量法在处理一些复杂的力学系统时非常有用,尤其是对于那些难以直接通过力和力矩进行分析的情况。

然后是动力法。

这一方法考虑了物体的运动状态和加速度。

通过建立物体的运动方程,并分析其特征值或频率等动态特性,来判断系统的稳定性。

例如,在振动系统中,如果系统的固有频率都是实数且为正值,那么系统是稳定的;如果存在负实部的特征值,那么系统是不稳定的。

李雅普诺夫直接法也是一种重要的稳定性分析方法。

它通过构造一个被称为李雅普诺夫函数的正定函数,来判断系统的稳定性。

如果能够找到这样一个函数,其沿着系统的运动轨迹总是递减的,那么系统就是稳定的。

李雅普诺夫直接法具有广泛的适用性,可以用于线性和非线性系统的稳定性分析。

在实际应用中,还经常会用到数值模拟的方法。

借助计算机软件,如有限元分析(FEA),对物体或系统进行建模,并施加各种力和边界条件,然后通过数值计算来模拟其运动和变形过程,从而判断其稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 李雅普诺夫稳定性分析在反馈控制系统的分析设计中,系统的稳定性是首先需要考虑的问题之一。

因为它关系到系统是否能正常工作。

经典控制理论中已经建立了劳斯判据、Huiwitz 稳定判据、Nquist 判据、对数判据、根轨迹判据等来判断线性定常系统的稳定性,但不适用于非线性和时变系统。

分析非线性系统稳定性及自振的描述函数法,则要求系统的线性部分具有良好的滤除谐波的性能;而相平面法则只适合于一阶、二阶非线性系统。

1892年俄国学者李雅普诺夫(Lyapunov )提出的稳定性理论是确定系统稳定性的更一般的理论,它采用状态向量来描述,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统。

§6-1 外部稳定性和内部稳定性系统的数学模型有输入输出描述(即外部描述)和状态空间描述(即内部描述),相应的稳定性便分为外部稳定性和内部稳定性。

一、外部稳定性1、定义(外部稳定性):若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的。

(外部稳定性也称为BIBO (Bounded Input Bounded Output )稳定性) 说明:(1)所谓有界是指如果一个函数)(t h ,在时间区间],0[∞中,它的幅值不会增至无穷,即存在一个实常数k ,使得对于所有的[]∞∈0t ,恒有∞<≤k t h )(成立。

(2)所谓零状态响应,是指零初始状态时非零输入引起的响应。

2、系统外部稳定性判据线性定常连续系统∑),,(C B A 的传递函数矩阵为Cxy Bu Ax x=+=BUA sI X BU X A sI CX Y BU AX sX 1)()(--==-=+=B A sIC s G 1)()(--=当且仅当)(s G 极点都在s 的左半平面内时,系统才是外部稳定(或BIBO 稳定)的。

【例6.1.1】已知受控系统状态空间表达式为u x x ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=121160 , []x y 10= 试分析系统的外部稳定性。

解:系统为SISO 系统,传递函数为B A sIC s G 1)()(--=[]⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+--=-12116101s s )3)(2(2+--=s s s31+=s 由于传递函数的极点位于s 左平面,故系统是外部稳定的。

二、内部稳定性对于线性定常系统 Bu Ax x+= , 00)(x t x =Cx y =如果外部输入0)(=t u ,初始条件0x 为任意,且由0x 引起的零输入响应为00),()(x t t t x φ=满足0),(lim 00=∞→x t t t φ则称系统是内部稳定的,或称为系统是渐近稳定的。

说 明:线性定常系统的渐近稳定与经典控制理论中的稳定性一致。

【例6.1.2】已知受控系统状态空间表达式为u x x ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=121160 , []x y 10= 试分析系统的内部稳定性。

解:该系统为线性定常系统,其特征方程为:0)3)(2(6)1(=+-=-+=-λλλλλA I于是系统的特征值为21=λ,32-=λ,故系统不是内部稳定(渐近稳定)的。

三、内部稳定性与外部稳定性的关系1、若系统是内部稳定(渐近稳定)的,则一定是外部稳定(BIBO 稳定)的。

2、若系统是外部稳定(BIBO 稳定)的,且又是可控可观测的,则系统是内部稳定(渐近稳定)的。

此时内部稳定和外部稳定是等价的。

§6-2 李雅普诺夫稳定性的基本概念一、自治系统没有外界输入作用的系统叫自治系统。

自治系统可用如下的显含时间t 的状态方程来描述),(t x f x = , 00)(x t x =,0t t ≥………………………… (6-1)其中x 为n 维状态向量。

),(t x f 为线性或非线性、定常或时变的n 维向量函数。

假定方程的解为),;(00t x t x ,式中0x 和0t 分别为初始状态向量和初始时刻,那么初始条件0x 必满足0000),;(x t x t x =。

如果系统为线性系统,则(6-1)方程中的),(t x f 为x 的线性向量函数,或按习惯表示为:x t A x)(= , 00)(x t x =,0t t ≥………………………… (6-2)二、平衡状态设控制系统的齐次状态方程为:),(t x f x = , 00)(x t x =,0t t ≥对于所有t ,如果存在某个状态e x ,满足:0),(==t x f xe e则称e x 为系统的一个平衡点或平衡状态。

平衡状态的各分量相对时间不再发生变化。

若已知系统状态方程,令0=x所求得的解x ,便是平衡状态。

在大多数情况下,0=e x (状态空间原点)为系统的一个平衡状态。

当然,系统也可以有非零平衡状态。

如果系统的平衡状态在状态空间中表现为彼此分隔的孤立点,则称其为孤立平衡状态。

对于孤立平衡状态,总是可以通过移动坐标系而将其转换为状态空间的原点,所以在下面的讨论中,假定原点即0=e x 为平衡状态。

所谓系统运动的稳定性,就是研究其平衡状态的稳定性,也即偏离平衡状态的受扰运动,能否只依靠系统内部的结构因素而返回到平衡状态,或者限制在平衡状态的附近。

线性定常系统Ax x= ,其平衡状态满足0=e Ax ,只要A 非奇异,系统只有唯一的零解,即存在一个位于状态空间原点的平衡状态;当A 为奇异矩阵时,0=e Ax 有无数解,也就是系统有无数个平衡状态。

对于非线性系统,0),(=t x f e 的解可能有多个,由系统状态方程决定。

三、李雅普诺夫意义下稳定设系统初始状态0x 位于以平衡状态e x 为球心、半径为δ的闭球域)(δS 内,即 ),(00t x x e εδ≤- 0t t =若能使系统方程的解),;(00t x t x 在∞→t 的过程中,都位于以e x 为球心、任意规定的半径为ε的闭球域)(εS 内,即ε≤-e x t x t x ),;(00 0t t ≥则称该e x 是稳定的,通常称e x 为李雅普诺夫意义下稳定的平衡状态。

以二维系统为例,上述定义的平面几何表示如图6-1所示。

式中∙称为向量的范数,其几何意义是空间距离的尺度。

如e x x -0表示状态空间中0x 至e x 点之间的距离的尺度,其数学表达式为2021100)()(ne n e e x x x x x x -++-=-在上述稳定性的定义中,如果δ只依赖于ε而和初始时刻0t 的选取无关,则称平衡状态e x 是一致稳定的。

对于定常系统,e x 的稳定等价于一致稳定。

但对于时变系统,e x 的稳定并不意味着其为一致稳定。

要注意到,按李雅普诺夫意义下的稳定性定义,当系统作不衰减的振荡运动时,将在平面描绘出一条封闭曲线,但只要不超过)(εS ,则认为稳定,这同经典控制理论中线性定常系统稳定性的定义是有差异的。

四、渐近稳定设e x 是系统),(t x f x= , 00)(x t x =,0t t ≥的一个孤立平衡状态,如果 (1)e x 是李雅普诺夫意义下稳定的;0x - 初始状态e x - 平衡状态图6-1 二维空间李雅普诺夫意义下稳定性的几何解释示意图(2)0),;(lim00→-∞→e t x t x t x则称此平衡状态是渐近稳定的。

实际上,渐近稳定即为工程意义下的稳定,也就是经典控制理论中所讨论的稳定性。

当δ与0t 无关时,称平衡状态e x 是一致渐近稳定的。

五、大范围(全局)渐近稳定当初始条件扩展到整个状态空间,且具有渐近稳定性时,称此平衡状态e x 是大范围渐近稳定的。

对于严格线性系统,如果它是渐近稳定的,必具有大范围渐近稳定性,这是因为线性系统稳定性与初始条件的大小无关。

一般非线性系统的稳定性与初始条件的大小密切相关,其δ总是有限的,故通常只能在小范围内渐近稳定。

当δ与0t 无关时,称平衡状态e x 是大范围一致渐近稳定。

六、不稳定不管把域)(δS 取得多么小,也不管把域)(εS 取得如何的大,只要在)(δS 内存在一个非零初始状态0x ,使得有0x 出发的运动轨迹超出域)(εS 以外,则称平衡状态e x 是不稳定的。

线性系统的平衡状态不稳定,表征系统不稳定。

非线性系统的平衡状态不稳定,只说明存在局部发散的轨迹,至于是否趋于无穷远,要看)(εS 域外是否存在其它平衡状态,若存在,如有极限环,则系统仍是李雅普诺夫意义下稳定的。

下面介绍李雅普诺夫理论中判断系统稳定性的方法。

§6-3 李雅普诺夫稳定性判别方法一、李雅普诺夫第一法(间接法)这是利用状态方程解的特性来判别系统稳定性的方法,它适用于线性定常、线性时变以及非线性函数可线性化的情况。

由于本章主要研究线性定常系统,所以在此仅介绍线性定常系统的特征值判据。

0x - 初始状态e x - 平衡状态图6-2 二维空间渐近稳定性的几何解释示意图线性定常系统的特征值判据:对于线性定常系统Ax x= ,0)0(x x =,0≥t 有 (1)系统的平衡状态是在李雅普诺夫意义下稳定的充分必要条件是,A 的所有特征值均具有非正(负或零)实部,且具有零实部的特征值为A 的最小多项式的单根。

(2)系统的惟一平衡状态0=e x 是渐近稳定的充分必要条件是,A 的所有特征值均具有负实部。

二、李雅普诺夫第二法(直接法)根据古典力学中的振动现象,若系统能量(含动能与位能)随时间推移而衰减,系统迟早回到达平衡状态,但要找到实际系统的能量函数表达式并非易事。

李雅普诺夫提出,可虚构一个能量函数(后来被称为李雅普诺夫函数),一般它与n x x x ,,,21 及t 有关,记为),(t x V 。

若不显含t ,则记为)(x V 。

它是一个标量函数,考虑到能量函数总是大于零,故为正定函数。

能量衰减特性用),(t x V或)(x V 表示。

李雅普诺夫第二法利用V 及V的符号特征,直接对平衡状态稳定性作出判断,无需求出系统状态方程的解,故称直接法。

用此方法解决了一些用其它稳定性判据难以解决的非线性系统的稳定性问题,遗憾的是对一般非线性系统仍未形成构造李雅普诺夫函数的通用方法。

对于线性系统,通常用二次型函数Px x T 作为李雅普诺夫函数。

1、标量函数)(x V 符号性质的几个定义(1)正定性标量函数)(x V 在域s 中对所有非零状态(0≠x )有0)(>x V 且0)0(=V ,则称)(x V 在域s 内正定。

如2221)(x x x V +=是正定的。

(2)负定性标量函数)(x V 在域s 中对所有非零状态(0≠x )有0)(<x V 且0)0(=V ,则称)(x V 在域s 内负定。

如)()(2221x x x V +-=是正定的。

(3)正半定性0x - 初始状态图6-3 二维空间不稳定的几何解释示意图0)0(=V ,且标量函数)(x V 在域s 内某些非零状态处有0)(=x V ,而在其它非零状态处有0)(>x V 且,则称)(x V 在域s 内正半定。

相关文档
最新文档