2020鄂州市梁子湖区2020年九年级数学12月月考试卷及答案2016
2020-2021九年级上月考数学试卷含答案解析
2020-2021九年级(上)月考数学试卷(12月份)一、选择题(每题3分计36分)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C. D.2.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0C.k<1 D.k<1且k≠03.抛物线图象如图所示,根据图象,抛物线的解析式可能是()A.y=x2﹣2x+3 B.y=﹣x2﹣2x+3 C.y=﹣x2+2x+3 D.y=﹣x2+2x﹣34.已知⊙O过正方形ABCD顶点A,B,且与CD相切,若正方形边长为2,则圆的半径为()A.B.C.D.15.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是()A.B.C.D.6.已知反比例函数的图象经过点(a,b),则它的图象一定也经过()A.(﹣a,﹣b)B.(a,﹣b)C.(﹣a,b)D.(0,0)7.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.8.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.9.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则点P到AB的距离是()A.m B.C.D.10.若M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,则y1、y2、y3的大小关系是()A.y2>y3>y1B.y2>y1>y3C.y3>y1>y2D.y3>y2>y111.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A. B. C. D.12.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是()A.B.C.D.二、填空题(每题4分计24分)13.反比例函数y=(k是常数,k≠0)的图象经过点(a,﹣a),那么该图象一定经过第象限.14.一个反比例函数y=(k≠0)的图象经过点P(﹣2,﹣1),则该反比例函数的解析式是.15.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为米.16.如图,P是反比例函数图象在第二象限上的一点,且长方形PEOF的面积为8,则反比例函数的表达式是.17.如图,D,E分别是△ABC的边AB,AC上的点,请你添加一个条件,使△ABC与△AED相似,你添加的条件是.18.如图,已知△ABC∽△DBE,AB=6,DB=8,则= .三、解答题:19.先化简,再求代数式的值:,其中a=tan60°﹣2sin30°.20.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数解析式;(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值.21.已知如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足是D,BC=,DB=1,求CD,AD的长.22.某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题:(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图.(2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?23.已知:,试判断直线y=kx+k一定经过哪些象限,并说明理由.24.已知:CP为圆O切线,AB为圆的割线,CP、AB交于P,求证:AP•BP=CP2.25.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.参考答案与试题解析一、选择题(每题3分计36分)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:(A)、是轴对称图形,不是中心对称图形,故本选项错误;(B)、是轴对称图形,也是中心对称图形,故本选项正确;(C)、不是轴对称图形,是中心对称图形,故本选项错误;(D)、不是轴对称图形,是中心对称图形,故本选项错误.故选B.【点评】此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念,属于基础题.2.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0C.k<1 D.k<1且k≠0【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.3.抛物线图象如图所示,根据图象,抛物线的解析式可能是()A.y=x2﹣2x+3 B.y=﹣x2﹣2x+3 C.y=﹣x2+2x+3 D.y=﹣x2+2x﹣3 【考点】二次函数的图象.【专题】压轴题.【分析】抛物线开口向下,a<0,与y轴的正半轴相交c>0,对称轴在原点的右侧a、b异号,则b>0,再选答案.【解答】解:由图象得:a<0,b>0,c>0.故选C.【点评】此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.4.已知⊙O过正方形ABCD顶点A,B,且与CD相切,若正方形边长为2,则圆的半径为()A.B.C.D.1【考点】切线的性质;正方形的性质.【分析】作OM⊥AB于点M,连接OB,在直角△OBM中根据勾股定理即可得到一个关于半径的方程,即可求得.【解答】解:作OM⊥AB于点M,连接OB,设圆的半径是x,则在直角△OBM中,OM=2﹣x,BM=1,∵OB2=OM2+BM2,∴x2=(2﹣x)2+1,解得x=.故选:B.【点评】本题主要考查了切线的性质、垂径定理以及勾股定理,在圆的有关半径、弦长、弦心距之间的计算一般要转化为直角三角形的计算.5.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是()A.B.C.D.【考点】几何概率.【分析】确定黑色方格的面积在整个方格中占的比例,根据这个比例即可求出小鸟停在黑色方格中的概率.【解答】解:图上共有15个方格,黑色方格为5个,小鸟最终停在黑色方格上的概率是,即.故选B.【点评】用到的知识点为:概率=相应的面积与总面积之比.6.已知反比例函数的图象经过点(a,b),则它的图象一定也经过()A.(﹣a,﹣b)B.(a,﹣b)C.(﹣a,b)D.(0,0)【考点】反比例函数图象上点的坐标特征.【分析】将(a,b)代入y=即可求出k的值,再根据k=xy解答即可.【解答】解:因为反比例函数的图象经过点(a,b),故k=a×b=ab,只有A案中(﹣a)×(﹣b)=ab=k.故选A.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.7.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【考点】锐角三角函数的定义;互余两角三角函数的关系.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,∴sinA=,tanB=和a2+b2=c2.∵sinA=,设a=3x,则c=5x,结合a2+b2=c2得b=4x.∴tanB=.故选A.解法2:利用同角、互为余角的三角函数关系式求解.∵A、B互为余角,∴cosB=sin(90°﹣B)=sinA=.又∵sin2B+cos2B=1,∴sinB==,∴tanB===.故选A.【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.8.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【解答】解:①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的y=(k≠0)的图象经过一、三象限,故B选项的图象符合要求,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的y=(k≠0)的图象经过二、四象限,没有符合条件的选项.故选:B.【点评】此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.9.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则点P到AB的距离是()A.m B.C.D.【考点】相似三角形的应用.【分析】判断出△PAB与△PCD相似,再根据相似三角形对应高的比等于相似比列式计算即可得解.【解答】解:设点P到AB的距离为xm,∵AB∥CD,∴△PAB∽△PCD,∴==,解得x=m.故选C.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应高的比等于相似比,熟记性质是解题的关键.10.若M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,则y1、y2、y3的大小关系是()A.y2>y3>y1B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【考点】反比例函数图象上点的坐标特征.【专题】函数思想.【分析】将M(,y1)、N(,y2)、P(,y3)三点分别代入函数(k>0),求得y1、y2、y3的值,然后再来比较它们的大小.【解答】解:∵M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,∴M(,y1)、N(,y2)、P(,y3)三点都满足函数关系式(k>0),∴y1=﹣2k,y2=﹣4k,y3=2k;∵k>0,∴﹣4k<﹣2k<2k,即y3>y1>y2.故选C.【点评】本题考查了反比例函数图象上点的坐标特征.所有反比例函数图象上的点都满足该反比例函数的解析式.11.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A. B. C. D.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】压轴题.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴∵CD∥BE∴△CDF∽△EBC∴,∴∵AD∥BC∴△AEF∽△EBC∴∴D错误.故选D.【点评】此题主要考查了平行四边形、相似三角形的性质.12.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是()A.B.C.D.【考点】锐角三角函数的定义;圆周角定理;三角形的外接圆与外心.【分析】求角的三角函数值,可以转化为求直角三角形边的比,连接DC.根据同弧所对的圆周角相等,就可以转化为:求直角三角形的锐角的三角函数值的问题.【解答】解:连接DC.根据直径所对的圆周角是直角,得∠ACD=90°.根据同弧所对的圆周角相等,得∠B=∠D.∴sinB=sinD==.故选A.【点评】综合运用了圆周角定理及其推论.注意求一个角的锐角三角函数时,能够根据条件把角转化到一个直角三角形中.二、填空题(每题4分计24分)13.反比例函数y=(k是常数,k≠0)的图象经过点(a,﹣a),那么该图象一定经过第二,四象限.【考点】反比例函数图象上点的坐标特征.【分析】先根据k=xy,求出k的取值范围,再根据k的取值范围即可得出图象经过的象限.【解答】解:∵反比例函数y=(k是常数,k≠0)的图象经过点(a,﹣a),∴k=a•(﹣a)=﹣a2,为负数.则经过该图象一定二,四象限.故答案为:二,四.【点评】考查了反比例函数图象上点的坐标特征,本题需求得函数k的值的符号,进而判断它所在的象限.14.一个反比例函数y=(k≠0)的图象经过点P(﹣2,﹣1),则该反比例函数的解析式是y=.【考点】待定系数法求反比例函数解析式.【专题】待定系数法.【分析】先把(﹣2,﹣1)代入函数y=中,即可求出k,那么就可求出函数解析式.【解答】解:由题意知,﹣1=,∴k=2,∴该反比例函数的解析式是y=.故答案为:y=.【点评】本题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点内容.15.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为 4.8 米.【考点】相似三角形的应用.【专题】转化思想.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设高度为h,因为太阳光可以看作是互相平行的,由相似三角形:,h=4.8m.【点评】本题考查相似形的知识,解题的关键在于将题目中的文字转化为数学语言再进行解答.16.如图,P是反比例函数图象在第二象限上的一点,且长方形PEOF的面积为8,则反比例函数的表达式是y=﹣.【考点】反比例函数系数k的几何意义.【专题】常规题型.【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S是个定值,即S=|k|,再结合反比例函数所在的象限即可得到k的值,则反比例函数的解析式即可求出.【解答】解:设反比例函数的表达式是(k≠0),由题意知,S矩形PEOF=|k|=8,所以k=±8,又反比例函数图象在第二象限上,k<0,所以k=﹣8,即反比例函数的表达式是y=﹣.故答案为:y=﹣.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.17.如图,D,E分别是△ABC的边AB,AC上的点,请你添加一个条件,使△ABC与△AED相似,你添加的条件是∠AED=∠B.【考点】相似三角形的判定.【专题】开放型.【分析】要使两三角形相似,已知有一组公共角,则可以再添加一组角相等来判定其相似.【解答】解:∠AED=∠B.【点评】这是一道开放性的题,答案不唯一.18.如图,已知△ABC∽△DBE,AB=6,DB=8,则= .【考点】相似三角形的性质.【专题】压轴题.【分析】先求出△ABC与△DBE的相似比,再根据相似三角形面积的比等于相似比的平方的性质解答.【解答】解:∵AB=6,DB=8,∴△ABC与△DBE的相似比=6:8=3:4,∴=.【点评】本题主要考查的是相似三角形面积的比等于相似比的平方.三、解答题:19.先化简,再求代数式的值:,其中a=tan60°﹣2sin30°.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题.【分析】分别化简分式和a的值,再代入计算求值.【解答】解:原式=.(2分)当a=tan60°﹣2sin30°=﹣2×=时,(2分)原式=.(1分)【点评】本题考查了分式的化简求值,关键是化简.同时也考查了特殊角的三角函数值;注意分子、分母能因式分解的先因式分解,除法要统一为乘法运算.20.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数解析式;(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值.【考点】反比例函数与一次函数的交点问题.【专题】压轴题;数形结合;待定系数法.【分析】(1)直接由图象就可得到A(﹣6,﹣2)、B(4,3);(2)把点A、B的坐标代入两函数的解析式,利用方程组求出k、b、m的值,即可得到两函数解析式;(3)结合图象,分别在第一、二象限求出一次函数的函数值>反比例函数的函数值的x的取值范围.【解答】解:(1)由图象得A(﹣6,﹣2),B(4,3).(2)设一次函数的解析式为y=kx+b,(k≠0);把A、B点的坐标代入得解得,∴一次函数的解析式为y=x+1,设反比例函数的解析式为y=,把A点坐标代入得,解得a=12,∴反比例函数的解析式为.(3)当﹣6<x<0或x>4时一次函数的值>反比例函数的值.【点评】本类题目主要考查一次函数、反比例函数的图象和性质,考查待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能力,考查数形结合的数学思想,另外,还需灵活运用方程组解决相关问题.21.已知如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足是D,BC=,DB=1,求CD,AD的长.【考点】勾股定理;相似三角形的判定与性质.【分析】先根据勾股定理求得CD的长,再根据相似三角形的判定方法求得△BCD∽△CAD,从而得到CD2=BD•AD,其它三边的长都已知,则可以求得AD的长.【解答】解:∵BC=,DB=1∴CD=∵∠B+∠BCD=90°,∠BCD+∠DCA=90°∴∠BCD=∠DCA∴△BCD∽△CAD∵CD2=BD•AD∴AD=5.【点评】此题主要考查学生对相似三角形的性质及勾股定理的理解及运用.22.某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题:(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图.(2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?【考点】条形统计图;分式方程的应用;概率公式.【专题】压轴题.【分析】(1)设去天津的车票数为x张,根据条形统计图所给的数据和前往天津的车票占全部车票的30%,列出方程,求出x 的值,从而补全统计图;(2)先算出总车票数和去上海的车票数,再根据概率公式即可得出答案.【解答】解:(1)设去天津的车票数为x张,根据题意得:=30%,解得:x=30,补全统计图如右图所示:(2)∵车票的总数为20+40+30+10=100张,去上海的车票为40张,∴前往上海的车票的概率==,答:张明抽到去上海的车票的概率是.【点评】此题考查了条形统计图和概率公式,从条形统计图中获得必要的信息是本题的关键,条形统计图能清楚地表示出每个项目的数据.23.已知:,试判断直线y=kx+k一定经过哪些象限,并说明理由.【考点】一次函数的性质;比例的性质.【专题】探究型.【分析】由于a+b+c的符号不能确定,故进行分类讨论,当a+b+c≠0时,可利用等比性质求出k的值,当a+b+c=0时,可将a+b转化为﹣c,然后求出k,得到其解析式,进而判断出直线y=kx+k一定经过哪些象限.【解答】解:直线y=kx+k一定经过第二、三象限,理由如下:当a+b+c≠0时,∵,∴k===2,此时,y=kx+k=2x+2,经过第一、二、三象限;当a+b+c=0时,b+c=﹣a,此时,k===﹣1,此时,y=kx+x=﹣x﹣1经过第二、三、四象限.综上所述,y=kx+k一定经过第二、三象限.【点评】本题考查了一次函数的性质,根据已知条件求出k的值是解题的关键,要熟悉等比性质,并能进行分类讨论.24.已知:CP为圆O切线,AB为圆的割线,CP、AB交于P,求证:AP•BP=CP2.【考点】切割线定理.【专题】证明题.【分析】连接AC、BC、CO并延长交圆O于点M,连结AM.先由切线的性质得出OC⊥PC,那么∠ACP+∠ACM=90°,由圆周角定理及直角三角形两锐角互余得出∠M+∠ACM=90°,根据同角的余角相等得出∠ACP=∠M,由圆周角定理得出∠M=∠CBP,那么∠ACP=∠CBP,又∠APC=∠CPB,得出△ACP∽△CBP,根据相似三角形对应边成比例得到AP:CP=CP:BP,即AP•BP=CP2.【解答】证明:连接AC、BC、CO并延长交圆O于点M,连结AM.∵PC是圆O的切线,∴OC⊥PC,∴∠ACP+∠ACM=90°,又∵CM是直径,∴∠M+∠ACM=90°,∴∠ACP=∠M,∵∠M=∠CBP,∴∠ACP=∠CBP,又∵∠APC=∠CPB(公共角),∴△ACP∽△CBP,∴AP:CP=CP:BP,∴AP•BP=CP2.【点评】本题实际上证明了切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.涉及到的知识点有:切线的性质,圆周角定理,直角三角形的性质,余角的性质,相似三角形的判定与性质.准确作出辅助线是解题的关键.25.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【分析】(1)由于抛物线y=x2+bx+c与x轴交于A(﹣1,0),B (3,0)两点,那么可以得到方程x2+bx+c=0的两根为x=﹣1或x=3,然后利用根与系数即可确定b、c的值.(2)根据S△PAB=8,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的坐标.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B (3,0)两点,∴方程x2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b,﹣1×3=c,∴b=﹣2,c=﹣3,∴二次函数解析式是y=x2﹣2x﹣3.(2)∵y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(3)设P的纵坐标为|y P|,∵S△PAB=8,∴AB•|y P|=8,∵AB=3+1=4,∴|y P|=4,∴y P=±4,把y P=4代入解析式得,4=x2﹣2x﹣3,解得,x=1±2,把y P=﹣4代入解析式得,﹣4=x2﹣2x﹣3,解得,x=1,∴点P在该抛物线上滑动到(1+2,4)或(1﹣2,4)或(1,﹣4)时,满足S△PAB=8.【点评】此题主要考查了利用抛物线与x轴的交点坐标确定函数解析式,二次函数的对称轴点的坐标以及二次函数的性质,二次函数图象上的坐标特征,解题的关键是利用待定系数法得到关于b、c的方程,解方程即可解决问题.。
湖北省鄂州市城区学校九年级下学期第二次月考数学考试卷(解析版)(初三)月考考试卷.doc
湖北省鄂州市城区学校九年级下学期第二次月考数学考试卷(解析版)(初三)月考考试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】的倒数是()A. B. 8 C. ﹣8 D. ﹣1【答案】C【解析】试题解析:根据倒数的定义知:∴的倒数是-8.故选C.【题文】下列运算正确的是( )A. =-1B. (﹣a3b)2=a6b2C. a+a=a2D. a2•4a4=4a8【答案】B【解析】A. =-1,运算不正确,不符合题意;B. ,运算正确,符合题意;C. ,运算不正确,不符合题意;D. ,运算不正确,不符合题意;故选B.【题文】过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为()A. 312×104B. 0.312×107C. 3.12×106D. 3.12×107【答案】C【解析】试题解析:3120000=3.12×106故选C.【题文】如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A. 从前面看到的形状图的面积为5B. 从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3D. 三种视图的面积都是4【答案】B【解析】试题分析:主视图为4个正方形,左视图为3个正方形,俯视图为4个正方形.考点:三视图【题文】对于一组统计数据:2,3,6,9,3,7,下列说法错误的是( )A. 众数是3B. 中位数是4.5C. 方差是7.5D. 极差是7【答案】C【解析】A. ∵3出现了2次,最多,∴众数为3,故此选项正确;B. ∵排序后为:2,3,3,6,7,9,∴中位数为:(3+6)÷2=4.5;故此选项正确;C. ,;故此选项不正确;D. 极差是9−2=7,故此选项正确;故选C.【题文】如图,在△ABC中,∠B=44°,∠C=54°,AD平分∠BAC,l【题文】如图,已知菱形ABCD的边长为2cm,∠A=60°,点M从点A出发,以1cm/s的速度向点B运动,到B点停止,点N从点A同时出发,以2cm/s的速度经过点D向点C运动,到C点停止。
最新初中九级数学鄂题库 州市梁子湖区年九年级数学12月月考试卷及答案
鄂州市梁子湖区2016年秋季九年级月考数学试卷一.选择题(共10小题,每题3分,共30分)1.下列图案中,既是轴对称图形又是中心对称图形的是()A.B. C.D.2.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>53.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y34.已知点P(a+1,﹣ +1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.5.若关于x的方程4x2﹣(2k2+k﹣6)x+4k﹣1=0的两根互为相反数,则k的值为()A.B.﹣2 C.﹣2或D.2或6.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°7.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为,则袋中白球的个数为()A.2 B.3 C.4 D.128.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm9.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C.3 D.210.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤二.填空题(共7小题,每题3分,共21分)11.如图1,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.图1 图2 图312.如图2,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.13.如图3,在Rt△ABC中,∠B=90°,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,则出发秒时,四边形DFCE的面积为20cm2.14.如图4,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是.15.关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.16.如图5,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q.则AB=.17.如图6,抛物线y=x2﹣2x+k(k<0)与x轴相交于A(x1,0)、B(x2,0)两点,其中x1<0<x2,当x=x1+2时,y0(填“>”“=”或“<”号).三.解答题(共7小题,共69分)18.(12分)解方程(1)(x﹣1)(x+3)=12 (2)(x﹣3)2=3﹣23(10分).西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,设每千克降价x元每天销量为y千克.(1)求y与x的函数关系式;(2)如何定价,才能使每天获得的利润为200元,且使每天的销量较大?24.(12分)如图:对称轴x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(﹣3,0),且点(2,5)在抛物线y=ax2+bx+c上.(1)求抛物线的解析式.(2)点C为抛物线与y轴的交点.①点P在抛物线上,且S△POC =4S△BOC,求点P点坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.2016年12月九年级月考数学参考答案与试题解析一.选择题(共10小题)1.B.2.B.3.D.4.C.5.B.6.B.7.B.8.A.9.B.10.D.二.填空题(共7小题)11..12..13.1或5.14. +.15.<a<﹣2.16.6.17.<.三.解答题(共7小题)18.(1)解得:x1=3,x2=﹣5;(2)解得:x1=3,x2=2;(3)∴x==.19.解:(1)∵良有70人,占70%,∴统计图共统计了的空气质量情况的天数为:70÷70%=100(天);(2)如图:条形统计图中,空气质量为“优”的天数为100×20%=20(天),空气质量为“优”所在扇形的圆心角度数是:20%×360°=72°,(3)画树状图得:∵共有12种等可能情况,其中符合一男一女的有8种,∴恰好选到一名男同学和一名女同学的概率是=.故答案为:(1)100,(2)72°,(3).20.解:(1)方程有不相等的实数根,△=b2﹣4ac=4m2﹣4(m﹣3)(m+1)>0,解得∵两个根又不互为相反数,解得m≠0,故m且m≠0且m≠3.(2)当m在取值范围内取最小正偶数时,m=2时,方程是:﹣x2+4x+3=0解得21.解:(1)DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,∴∠DAO=∠D AC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.(2)连接BC交OD于H,延长DF交⊙O于G,由垂径定理可得:OH⊥BC,==,∴=,∴DG=BC,∴弦心距OH=OF=4,∵AB是直径,∴BC⊥AC,∴OH∥AC,∴OH是△ABC的中位线,∴AC=2OH=8.22.证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,在△AQE和△AFE中,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线;(2)由(1)得△AQE≌△AFE,∴QE=EF,在Rt△QBE中,QB2+BE2=QE2,则EF2=BE2+DF2.23.解:(1)∵每千克降价x元每天销量为y千克,∴y=200+,即y=200+400x;(2)设应将每千克小型西瓜的售价降低x元.根据题意,得[(3﹣2)﹣x](200+)﹣24=200.原式可化为:50x2﹣25x+3=0,解这个方程,得x1=0.2,x2=0.3.为使每天的销量较大,应降价0.3元,即定价2.7元/千克.答:应将每千克小型西瓜的售价定为2.7元/千克.24.解:(1)因为抛物线的对称轴为x=﹣1,A点坐标为(﹣3,0)与(2,5)在抛物线上,则:,解得:.所以抛物线的解析式为:y=x 2+2x ﹣3.(2)二次函数的解析式为y=x 2+2x ﹣3,∴抛物线与y 轴的交点C 的坐标为(0,﹣3),OC=3.设P 点坐标为(x ,x 2+2x ﹣3),∵S △POC =4S △BOC ,∴×3×|x |=4××3×1,∴|x |=4,x=±4.当x=4时,x 2+2x ﹣3=16+8﹣3=21;当x=﹣4时,x 2+2x ﹣3=16﹣8﹣3=5.∴点P 的坐标为(4,21)或(﹣4,5);(3)设直线AC 的解析式为y=kx +t ,将A (﹣3,0),C (0,﹣3)代入, 得,解得:.即直线AC 的解析式为y=﹣x ﹣3.设Q 点坐标为(x ,﹣x ﹣3)(﹣3≤x ≤0),则D 点坐标为(x ,x 2+2x ﹣3), QD=(﹣x ﹣3)﹣(x 2+2x ﹣3)=﹣x 2﹣3x=﹣,∴当x=﹣时,QD 有最大值.不用注册,免费下载!。
鄂州市梁子湖区2016年12月九年级上月考数学试卷含答案解析
试卷( 月份)
一.选择题(共 10 小题,每题 3 分,共 30 分) 1.下列图案中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
2.若关于 x 的一元二次方程(k﹣﹣)x2+4x+1=0 有两个不相等的实数根,则 k 的 取值范围是( )
A.k<5 B.k<5,且 k≠1 C.k≤5,且 k≠1 D.k>5
3.点 P1 (﹣﹣,y1 ),P2 (3,2y ),3P (5,3 y )均在二次函数 y=2﹣+﹣2x+c 的图象 上,则 y1,y2 ,y3 的大小关系是( ) A.y3 >y2 >y1 B.3y >1y =2 y C.y1 >y2 >y3 D.1y =2 y >y
A.15° B.20° C.25° D.30° 7.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球 5
第 1 页(共 30 页)
个,黄球 4 个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为 ,则袋中白球的个数为( )
A.2 B.3 C.4 D.12 8.如图,已知一块圆心角为 270°的扇形铁皮,用它作一个圆锥形的烟囱帽 (接缝忽略不计),圆锥底面圆的直径是 60cm,则这块扇形铁皮的半径是 ()
A.40cm B.50cm C.60cm D.80cm 9.如图,半径为 3 的⊙O 内有一点 A,OA= ,点 P 在⊙O 上,当∠OPA 最大 时,PA 的长等于( )
A. B. C.3 D.2 10.如图,已知二次函数 y=a2x+bx+c(a≠0)的图象与 x 轴交于点 A(﹣﹣, 0),与 y 轴的交点 B 在(0,﹣2)和(0,﹣﹣)之间(不包括这两点),对称轴为 直线 x=1.下列结论: ①abc>0 ②4a+2b+c>0 ③4ac﹣b 2<8a ④ <a< ⑤b>c. 其中含所有正确结论的选项是( )
湖北鄂州一中九年级上期第二次月考(12月考)数学卷(解析版)(初三)月考考试卷.doc
湖北鄂州一中九年级上期第二次月考(12月考)数学卷(解析版)(初三)月考考试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】用配方法解一元二次方程x²﹣6x﹣4=0,下列变形正确的是( )A.(x﹣6)²=﹣4+36 B.(x﹣6)²=4+36C.(x﹣3)²=﹣4+9 D.(x﹣3)²=4+9【答案】D【解析】试题分析:配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方.考点:配方法【题文】若点A(3-m,n+2)关于原点的对称点B的坐标是(-3,2),则m,n的值为( )A.m=-6,n=-4B.m=O,n=-4 C.m=6,n=4 D.m=6,n=-4 【答案】B【解析】试题分析:关于原点对称的两点的横纵坐标分别互为相反数,则3-m=3,n+2=-2,解得:m=0,n=-4. 考点:原点对称【题文】下列图形中,既是轴对称图形,又是中心对称图形的有( )A、1个B、2个C、3个D、4个【答案】B【解析】试题分析:根据轴对称图形和中心对称图形的定义可得:图1、图5为轴对称图形;图3是中心对称图形;图2和图4既是轴对称图形,也是中心对称图形.考点:(1)、轴对称图形;(2)、中心对称图形【题文】若函数y=mx²+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为( )A.0B.0或2C.2或-2D.0,2或-2评卷人得分【解析】试题分析:当函数为一次函数时,则m=0;当函数为二次函数时,则,解得:m=±2.综上所述,m=0或2或-2.考点:函数的性质【题文】若函数y=mx²+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为( )A.0B.0或2C.2或-2D.0,2或-2【答案】D【解析】试题分析:当函数为一次函数时,则m=0;当函数为二次函数时,则,解得:m=±2.综上所述,m=0或2或-2.考点:函数的性质【题文】如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△ABC′的位置,使得CC ′∥AB,则∠BAB′=( )A.30° B.35° C.40° D.50°【答案】C【解析】试题分析:根据CC′∥AB可得∠ACC′=∠CAB=70°,根据旋转可得:AC=AC′,则∠AC′C=∠ACC′=70°,则∠CAC′=40°,根据旋转图形的性质可得:∠BAB′=∠CAC′=40°.考点:旋转图形【题文】如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为( ) A. B.5 C.4 D.3【解析】试题分析:根据题意可得AB⊥CD,设OD=r,则DE=4,OE=8-r,根据Rt△ODE的勾股定理可得r=5.考点:垂径定理【题文】如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()A.当弦PB最长时,ΔAPC是等腰三角形B.当ΔAPC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,ΔPBC是直角三角形【答案】C【解析】试题分析:当PB最长时,则BP为直径,根据BP⊥AC,即△APC是等腰三角形;同理可得当△APC是等腰三角形时,PO⊥AC;当PO⊥AC时,∠ACP=30°或60°;当∠ACP=30°时,△PBC是直角三角形.考点:圆的基本性质【题文】关于x的一元二次方程(a-1)x2+x+a2-1=0有一个实数根是x=0,则a的值为________【答案】-1【解析】试题分析:将x=0代入方程可得:-1=0,解得:a=±1;根据一元二次方程的定义可得:a-1≠0,则a ≠1,综上所述,则a=-1.考点:一元二次方程的解.【题文】若m,n是一元二次方程+x-2015=0的两个实数根,则m2+2m+n的值为________【答案】2014【解析】试题分析:根据韦达定理可得:m+n=-1;将x=m代入方程可得:+m=2015,则原式=+m+m+n=2015+(-1)=2014. 考点:(1)、一元二次方程的解;(2)、韦达定理【题文】方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为______.【答案】15【解析】试题分析:解一元二次方程可得:x=3或x=6;当3为腰时,3、3、6无法构成三角形,则三角形的三边长为6、6、3,则三角形的周长为:6+6+3=15.考点:(1)、一元二次方程的解;(2)、等腰三角形的性质【题文】在同一平面直角坐标系内,将函数y=x2-3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是________【答案】(2,-4)【解析】试题分析:根据函数图象的平移法则可得:平移后的函数解析式为:y=,则顶点坐标为(2,-4).考点:函数图象的平移【题文】如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是____【答案】-1<x<5【解析】试题分析:根据图象可得:函数与x轴的另一个交点为(-1,0),根据图象可得:不等式的解为-1<x<5. 考点:二次函数图象的性质【题文】某药品经过连续两次降价后,由每盒200元下调至128元,若平均每次下降百分率为x,则所列方程为【答案】200(1-x) 2=128【解析】试题分析:根据降价率的通用公式为:降价前的数量×=降价后的数量.考点:一元二次方程的应用【题文】已知,如图:AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°。
2024-2025学年九年级数学上学期第三次月考卷(湖北省卷专用,人教版九上全部)(考试版A4)
2024-2025学年九年级数学上学期第三次月考卷(湖北省卷专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版第21章一元二次方程19%+第22章二次函数28%+第23章旋转21%+第24章圆22%+第25章概率初步10%。
5.难度系数:0.68。
第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.数学是一门美丽的学科,在平面直角坐标系内可以利用函数画出许多漂亮的曲线,下列曲线中,既是中心对称图形,也是轴对称图形的是( )A.三叶玫瑰线B.四叶玫瑰线C.心形线D.笛卡尔叶形线2.如图,AB,CD是⊙O的直径,AE=BD,若∠AOE=32°,则∠COE的度数是( )A.32°B.60°C.68°D.64°3.下列说法正确的是( )A.“明天会下雨”是必然事件B.“概率为0.0001的事件”是不可能事件C.测试自行车的质量应采取全面普查D.任意掷一枚质地均匀的硬币20次,正面向上的次数不一定是10次4.如图,在△ABC中,AB≠AC,∠BAC=120°,将△ABC绕点C逆时针旋转,点A、B分别落在点D、E处,如果点A、D、E在同一直线上,那么下列结论错误的是( )A.∠ADC=60°B.∠ACD=60°C.∠BCD=∠ECD D.∠BAD=∠BCE5.若二次函数y=﹣2x2+8x+c的图象经过A(1,y1),B(―1,y2),C(2+y3)三点,则y1、y2、y3的大小关系是( )A.y2<y3<y1B.y1<y3<y2C.y1<y2<y3D.y2<y1<y36.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,某桨轮船的轮子被水面截得的弦AB长8m,轮子的吃水深度CD为2m,则该桨轮船的轮子半径为( )A.2m B.3m C.4m D.5m7.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是( )A.0B.﹣1C.﹣2D.﹣38.在平面直角坐标系中,二次函数y=2x2﹣2mx+m2﹣2m(m为常数)的图象经过点(0,8),其对称轴在y轴右侧,则该二次函数有( )A.最大值0B.最小值0C.最大值6D.最小值69.如图,在△ABC中,AB=AC,以AC为直径的⊙O与AB,BC分别交于点D,E,连接AE,DE,若∠BED=45°,AB=2,则阴影部分的面积为( )A.π4B.π3C.2π3D.π10.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的为( )A.①④B.②③④C.①②④D.①②③④第二部分(非选择题共55分)二、填空题(本大题共5小题,每小题3分,满分15分)11.在平面直角坐标系中,若抛物线y=x2﹣6x+c的顶点在x轴,则c的值为 .12.如图,在⊙O中,弦BC=2,点A是圆上一点,且∠BAC=30°,则⊙O的半径是 .13.如图,AD是正五边形ABCDE的一条对角线,以C为圆心,CB为半径画弧交AD于点F,连接CF,则∠CFD= °.14.如图,一块飞镖游戏板由四个全等的直角三角形和一个正方形构成,若a=1,b=2.游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中阴影部分的概率 .15.如图,在矩形ABCD中,AB=4,AD=8,Q是矩形ABCD左侧一点,连接AQ、BQ,且∠AQB=90°,连接DQ,E为DQ的中点,连接CE,则CE的最大值为 .三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(每小题3分,共6分)用适当的方法解下列一元二次方程:(1)x(4x﹣1)=9﹣x;(2)x2﹣6x﹣16=0.17.(6分)已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1,2,且x21+x22―x1x2=7,求m的值.18.(6分)2024年巴黎奥运会新增了四个项目:霹雳舞,滑板,冲浪,运动攀岩,依次记为A,B,C,D,浔阳体育队的小明同学把这四个项目写在了背面完全相同的卡片上.将这四张卡片背面朝上,洗匀放好.(1)小明想从中随机抽取一张,去了解该项目在奥运会中的得分标准,恰好抽到是B(滑板)的概率是 .(2)体育老师想从中选出来两个项目,让小明做成手抄报给大家普及一下,他先从中随机抽取一张不放回,再从中随机抽取一张,请用列表法或画树状图法表示出所有可能的结果,并求体育老师抽到的两张卡片恰好是B(滑板)和D(运动攀岩)的概率.19.(8分)某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,这一想法能实现吗?请说明理由.20.(8分)如图,在平面直角坐标系中,已知点A(﹣2,2),B(﹣1,4),C(﹣4,5),请解答下列问题:(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(1,0)作出△A1B1C1并写出其余两个顶点的坐标;(2)将△ABC绕点O按顺时针方向旋转90°得到△A2B2C2,作出△A2B2C2;(3)若将△A1B1C1绕某一点旋转可得到△A2B2C2,直接写出旋转中心的坐标.21.(8分)如图,以点O为圆心,AB长为直径作圆,在⊙O上取一点C,延长AB至点D,连接DC,∠DCB=∠DAC,过点A作AE⊥AD交DC的延长线于点E.(1)求证:CD是⊙O的切线;(2)若CD=4,DB=2,求AE的长.22.(10分)网络直播销售已经成为一种热门的销售方式,某生产商在一销售平台上进行直播销售板栗.已知板栗的成本价为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg.设公司销售板栗的日获利为w (元).(2)当销售单价定为多少时,销售这种板栗日获利w最大?最大利润为多少元?(3)当销售单价在什么范围内时,日获利w不低于42000元?23.(11分)已知∠AOB=∠COD=90°,OA=OB=10,OC=OD=8.(1)如图1,连接AC、BD,问AC与BD相等吗?并说明理由.(2)若将△COD绕点O逆时针旋转,如图2,当点C恰好在AB边上时,请写出AC、BC、OC之间关系,并说明理由.(3)若△COD绕点O旋转,当∠AOC=15°时,直线CD与直线AO交于点F,请直接写出AF的长.24.(12分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y 轴交于点C,作直线BC,点P是抛物线上一个动点(点P不与点B,C重合),连接PB,PC,以PB,PC为边作平行四边形CPBD,设平行四边形CPBD的面积为S,点P的横坐标为m.(1)求抛物线函数解析式;(2)当点P在第四象限,且S=6时,求点P坐标.(3)①求S与m之间的函数关系式.②根据S的不同取值,试探索点P的个数情况.。
湖北省九年级上学期数学12月月考试卷
湖北省九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2015九上·福田期末) 抛物线y=2(x﹣1)2+1的顶点坐标是()A . (1,1)B . (1,﹣1)C . (﹣1,1)D . (﹣1,﹣1)2. (2分) (2020八上·松阳期末) 已知直角三角形的两条边长分别是3cm和4cm,则它的第三边长为()A . 4cmB . cmC . 5cmD . 5cm或 cm3. (2分)如图,△ABC中,D、F在AB边上,E、G在AC边上,DE∥FG∥BC,且AD:DF:FB=3:2:1,若AG=15,则CE的长为()A . 9B . 15C . 12D . 64. (2分) (2020八上·盐田期末) 如图,数轴上点C所表示的数是()A . 2B . 3.7C . 3.8D .5. (2分) (2019九下·临洮月考) 如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像的长()A .B .C .D .6. (2分)如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为()A . 4.5米B . 6米C . 3米D . 4米7. (2分) (2017九上·鄞州月考) 若点A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1 , y2 , y3的大小关系为()A . y3>y1>y2B . y1>y3>y2C . y3>y2>y1D . y1>y2>y38. (2分) (2019九上·巴南期末) 已知过点的抛物线的对称轴是,若,则()A .B .C .D . 当时,二、填空题 (共9题;共15分)9. (1分) (2018九上·江阴期中) 直接写出解: ________;若,则 ________。
湖北省鄂州市九年级上学期数学12月月考试卷
湖北省鄂州市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·开封期中) 下列方程中是关于x的一元二次方程的是()A . x2+ =5B . 3x2+4xy﹣y2=0C . ax2+bx+c=0D . 2x2+x+1=02. (2分)(2020·武汉模拟) 抛物线 y=(x﹣1)2﹣2 的顶点是()A . (1,﹣2)B . (﹣1,2)C . (1,2)D . (﹣1,﹣2)3. (2分)有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同。
小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A . 6B . 16C . 18D . 244. (2分) (2017九上·长春月考) 方程x2-3x-2 = 0的根的情况是()A . 有两个相等的实数根B . 只有一个实数根C . 没有实数根D . 有两个不相等的实数根5. (2分) (2019九下·东莞月考) 已知⊙O的半径是5cm,点O到同一平面内直线a的距离为4cm,则直线a与⊙O的位置关系是()A . 相交B . 相切C . 相离D . 相交或相离6. (2分)鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为()A . 10只B . 11只C . 12只D . 13只7. (2分)(2017·石狮模拟) 如图,正五边形ABCDE内接于⊙O,若⊙O的半径为5,则的长度为()A . πB . 2πC . 5πD . 10π8. (2分)(2019·泸州) 如图,等腰的内切圆⊙ 与,,分别相切于点,,,且,,则的长是()A .B .C .D .9. (2分)(2017·历下模拟) 定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A . 当m=﹣3时,函数图象的顶点坐标是()B . 当m>0时,函数图象截x轴所得的线段长度大于C . 当m≠0时,函数图象经过同一个点D . 当m<0时,函数在x 时,y随x的增大而减小10. (2分)(2017·和平模拟) 下列图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .二、填空题 (共6题;共10分)11. (1分) (2017九上·孝南期中) 若点P( , )关于原点的对称点在第一象限,则a的取值范围是________.12. (5分)在-1,0,,,π,0.10110中任取一个数,取到无理数的概率是________.13. (1分)(2017·淮安) 如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4:3:5,则∠D 的度数是________°.14. (1分)(2018·衡阳) 如图,点A、B、C、D、O都在方格纸的格点上,若是由绕点O按顺时针方向旋转而得到的,则旋转的角度为________.15. (1分)(2018·临河模拟) 如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°,则图中阴影部分的面积是________16. (1分)(2017·赤峰模拟) 如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论是________.三、解答题 (共8题;共56分)17. (5分)解方程(若题目有要求,请按要求解答)(1) x2﹣4x+2=0(配方法);(2) x2+3x+2=0.18. (5分)一块长方形菜地的面积是150cm2 ,如果它的长减少5cm,那么它就成为正方形菜地,求这个长方形菜地的长和宽?19. (10分) (2018九上·阜宁期末) 甲、乙、丙3名学生各自随机选择到A、B 2个书店购书.(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率.20. (11分) (2018八上·宁波期中) 已知,如图,四边形,.(1)尺规作图,在线段上找一点,使得,连接,(不写作法,保留作图痕迹);(2)在(1)在图形中,若,且,,求的长.21. (2分) (2019九上·鄂州期末) 如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB 于点D,延长AO交⊙O于点E,连接CD、CE,若CE是⊙O的切线.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为4,OC=7,求BD的长.22. (2分) (2017八上·阳江期中) 已知一次函数y=kx+5的图象经过点A(1,4).(1)求这个一次函数的解析式.(2)求出当x=﹣1时的函数值.23. (6分)(2019·东台模拟) 如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE=DC.(1)问题发现:若∠ACB=∠ECD=45°,则 ________.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中的大小有无变化?如果不变,请求出的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则的值为________.(用含β的式子表示)24. (15分)(2014·茂名) 如图,在△ABC中,AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,),点B在y轴的负半轴上,抛物线y=﹣ x2+bx+c经过点A和点C(1)求b,c的值;(2)在抛物线的对称轴上是否存在点Q,使得△ACQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由(3)点P是线段AO上的一个动点,过点P作y轴的平行线交抛物线于点M,交AB于点E,探究:当点P在什么位置时,四边形MEBC是平行四边形,此时,请判断四边形AECM的形状,并说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共56分)17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。
2016-2017年湖北省鄂州市梁子湖区九年级(下)第三次月考数学试卷(解析版)
按表中规律,当所得分数为 71 分时,则挪动的珠子数为 为大于 1 的整数) ,所得分数为 三、解答题 17. (7 分) (1)计算:
2
颗; 当挪动 n 颗珠子时(n
(用含 n 的代数式表示) .
+|﹣5|﹣( ) +3tan60°; ﹣ ÷ 的值.
﹣1
(2)已知 a ﹣2a﹣2=0,求代数式
18. (8 分)如图 1,△ABC 和△DEF 中,AB=AC,DE=DF,∠A=∠D.
第 3 页(共 28 页)
发现,该时装单价每降 1 元,每天销量增加 4 件.在这 30 天内,要使每天缴纳电商平台 推广费用后的利润随天数 t(t 为正整数)的增大而增大,a 的取值范围应为 .
16. (3 分)小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次 挪动珠子的颗数与所得分数的对应关系如下表所示: 挪动珠子数(颗) 所得分数(分) 2 5 3 11 4 19 5 29 6 41 … …
(1)求证:
=
;
(2)由(1)中的结论可知,等腰三角形 ABC 中,当顶角∠A 的大小确定时,它的对边(即 底边 BC)与邻边(即腰 AB 或 AC)的比值也就确定,我们把这个比值记作 T(A) ,即 T (A)= ①理解巩固:T(90°)= T(α)的取值范围是 ; = ,如 T(60°)=1. ,T(120°)= ,若 α 是等腰三角形的顶角,则
第 1 页(共 28 页)
A.
B.
C.
D.
8. (3 分) 如图, CB=CA, ∠ACB=90°, 点 D 在边 BC 上 (与 B、 C 不重合) , 四边形 ADEF 为正方形,过点 F 作 FG⊥CA,交 CA 的延长线于点 G,连接 FB,交 DE 于点 Q,给出 以下结论: ①AC=FG;②S△FAB:S 四边形 CBFG=1:2;③∠ABC=∠ABF;④AD =FQ•AC, 其中正确的结论的个数是( )
2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)
2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.解方程(x+1)2=3(1+x)的最佳方法是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法3.抛物线y=−3x2+2x−1与y轴的交点为( )A. (0,1)B. (0,−1)C. (−1,0)D. (1,0)4.若关于x的一元二次方程(k−1)x2+x+1=0有实数根,则k的取值范围是( )A. k≥54B. k>54C. k>54且k≠1 D. k≤54且k≠15.若关于x的方程x2−kx−3=0的一个根是x=3,则k的值是( )A. −2B. 2C. −12D. 126.关于x的方程|x2−2x−3|=a有且仅有两个实数根,则实数a的取值范围是( )A. a=0B. a=0或a=4C. a>4D. a=0或a>47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x个,根据题意,下面列出的方程正确的是( )A. 12x(x+1)=110 B. 12x(x−1)=110 C. x(x+1)=110 D. x(x−1)=1108.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A. 无实数根B. 有两个相等实数根C. 有两个同号不等实数根D. 有两个异号实数根9.二次函数y=ax2+bx+c,若ab<0,a−b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A. y1=−y2B. y1>y2C. y1<y2D. y1、y2的大小无法确定10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a−b=0;④b2−4ac<0.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。
湖北省鄂州市九年级上学期数学12月月考试卷
湖北省鄂州市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九下·萧山开学考) 在Rt△ABC中,∠C=90°,∠A=α,BC=m,则AB的长为()A . m sinαB .C . m cosαD .2. (2分) (2016九上·松原期末) 如图,二次函数y=ax2+bx+c的图象经过(-1,0)、(0,3),下列结论中错误的是()A . abc<0B . 9a+3b+c=0C . a-b=-3D . 4ac﹣b2<03. (2分) (2019九上·慈溪期中) 下列命题中,是真命题的是()A . 平分弦的直径垂直于弦B . 圆内接平行四边形必为矩形C . 任意三个点确定一个圆D . 相等圆心角所对的弧相等4. (2分) (2017八下·丽水期末) “I am a good student.”这句话中,字母”a“出现的频率是()A . 2B .C .D .5. (2分)(2017·龙岗模拟) 若二次函数的解析式为y=2x2﹣4x+3,则其函数图象与x轴交点的情况是()A . 没有交点B . 有一个交点C . 有两个交点D . 以上都不对6. (2分) (2016·防城) 如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1 ,正八边形外侧八个扇形(阴影部分)面积之和为S2 ,则 =()A .B .C .D . 17. (2分)如图,在△ABC中,DE∥BC,若AD=1,BD=2,则的值为()A .B .C .D .8. (2分)如图,正方形ABCD的边长为1,E为AD中点,P为CE中点,F为BP中点,则F到BD的距离等于()A .B .C .D .9. (2分)(2019·孝感模拟) 如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤ .其中正确结论的是()A . ①③④B . ②④⑤C . ①③⑤D . ①③④⑤10. (2分)一个长方形的周长是16cm,长比宽多2cm,那么长是()A . 9cmB . 5cmC . 7cmD . 10cm二、填空题 (共6题;共20分)11. (1分)(2019·广州模拟) 如图,在平面直角坐标系中有两点A(6,0),B(0,3),如果点C在x轴上(C与A不重合),当点C的坐标为________时,△BOC与△AOB相似.12. (1分) (2018九上·丽水期中) 如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD= ,则BC的长为________。
湖北省鄂州市九年级上学期数学12月月考试卷
湖北省鄂州市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019九上·沭阳月考) 下列方程中,属于一元二次方程是()A . 2x2﹣y﹣1=0B . x2=1C . x2﹣x(x+7)=0D .2. (2分) (2020九下·江阴期中) 如图,抛物线与轴交于两点,是以点为圆心,为半径的圆上的动点,是线段的中点,连接,则线段的最小值是()A .B .C .D .3. (2分)已知圆锥的底面半径为1cm,母线长为3cm,则其全面积为()。
A . πB . 3πC . 4 πD . 7 π4. (2分) (2020九上·牡丹期末) 某公司一月份缴税40万元,由于公司的业绩逐月稳步上升,假设每月的缴税增长率相同,第一季度共缴税145.6万元,该公司这季度缴税的月平均增长率为多少?设公司这季度缴税的月平均增长率为x,则下列所列方程正确的是()A .B .C .D .5. (2分)如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,DE⊥AB,垂足为E,则图中与△ADE相似的三角形的个数为().A . 1B . 2C . 3D . 46. (2分)(2018·平顶山模拟) 已知关于x的一元二次方程有实数根,若k为非负整数,则k等于()A . 0B . 1C . 0,1D . 27. (2分) (2019九下·鞍山月考) 将一副三角尺(在中,∠ACB=90°,∠B=60° ,在中,∠EDF=90°,∠E=45° )如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(0°<α<60°),交于点,交于点,则的值为()A .B .C .D .8. (2分)(2019·高台模拟) 如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为6cm,AB=6 cm,则阴影部分的面积为()A .B .C .D .二、填空题 (共8题;共12分)9. (1分)如果,那么=________10. (1分)(2018·崇仁模拟) 若方程x2+2x-11=0的两根分别为m、n,则mn(m+n)=________.11. (1分) (2018九上·三门期中) 一个扇形的圆心角是120°,面积为3πcm2 ,那么这个扇形的半径是________.12. (1分)根据人的审美观点,当人的下肢长与身高之比为0.618时,能使人看起来感到匀称,某成年女士身高160厘米,下肢长95厘米,持上述观点,她所选的高跟鞋的最佳高度约为________(精确到0.1cm).13. (1分) (2018九上·无锡月考) 如图,、分别是的直径和弦,且,,交于点.若,则弦的长等于________.14. (1分)如图,E , F分别为矩形ABCD的边AD , BC的中点,若矩形ABCD∽矩形EABF , AB=1.则矩形ABCD的面积是________.15. (5分) (2020九上·江都月考) 如图,在⊙O中,AB=2CD,那么 ________2 (填“>,<或=”)16. (1分) (2019九下·南关月考) 如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是________;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2) AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为________,∠ABC=________°.(直接填写结果)三、解答题 (共7题;共77分)17. (20分)(2017·江汉模拟) 解方程:2x2﹣4x=1(用配方法)18. (6分) (2018八上·巍山期中) 如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1BlCl ,写出△ABC关于x轴对称的△A2B2C2的各点坐标.20. (10分)如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,且AH=2,连接CF.(1)当DG=2时,求证:菱形EFGH为正方形;(2)设DG=x,试用含x的代数式表示△FCG的面积.21. (10分) (2020九上·芜湖期末) 如图,已知等边△ABC,AB=12.以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求△FDG的面积.22. (6分) (2020九上·巩义月考) 某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要赢利1200元,且让顾客得到实惠,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,则每件衬衫应降价多少元?23. (15分)(2019·义乌模拟) 如图(1),在矩形DEFG中,DE=3,EG=6,在Rt△ABC中,∠ABC=90°,BC=3,AC=6,△ABC的一边BC和矩形的一边DG在同一直线上,点C和点D重合,Rt△ABC将从D以每秒1个单位的速度向DG方向匀速平移,当点C与点G重合时停止运动,设运动时间为t秒,解答下列问题:(1)如图(2),当AC过点E时,求t的值;(2)如图(3),当AB与DE重合时,AC与EF、EG分别交于点M、N,求CN的长;(3)在整个运动过程中,设Rt△ABC与△EFG重叠部分面积为y,请求出y与t的函数关系式,并写出相应t 的取值范围参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共8题;共12分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:三、解答题 (共7题;共77分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
2019-2020年湖北省鄂州市梁子湖区九年级第二学期第三次月考数学试卷和解析
2
x +(
2m﹣
1)
x+m2= 0
有两个实数根
x1 和 x2.
(1)求实数 m 的取值范围; (2)当 x12﹣x22= 0 时,求 m 的值.
21.( 9 分)如图是将一正方体货物沿坡面 AB 装进汽车货厢的平面示意图. 已知长方体货厢
的高度 BC 为 米, tanA= ,现把图中的货物继续往前平移,当货物顶点
与 x 轴负半轴交于点 A,
顶点为 B,且对称轴与 x 轴交于点 C. (1)求点 B 的坐标 (用含 m 的代数式表示) ; (2) D 为 BO 中点,直线 AD 交 y 轴于 E,若点 E 的坐标为( 0,2),求抛物线的解析式; (3)在( 2)的条件下,点 M 在直线 BO 上,且使得△ AMC 的周长最小, P 在抛物线上,
…
按表中规律,当所得分数为 71 分时,则挪动的珠子数为
颗; 当挪动 n 颗珠子时 ( n
为大于 1 的整数),所得分数为
(用含 n 的代数式表示) .
三、解答题 17.( 7 分)( 1)计算:
﹣1
+|﹣5|﹣( ) +3tan60°;
(2)已知 a2﹣ 2a﹣ 2=0,求代数式
﹣
÷
的值.
18.( 8 分)如图 1,△ ABC 和△ DEF 中, AB =AC,DE = DF ,∠ A=∠ D.
﹣7
C. 77× 10
﹣5
D. 0.77× 10
【解答】 解: 0.0000077 用科学记数法表示为 7.7× 10﹣6
故选: B.
4.( 3 分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,
其俯视图是 ( )
湖北省鄂州市2020版九年级上学期数学第一次月考试卷B卷
湖北省鄂州市2020版九年级上学期数学第一次月考试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列命题的逆命题是真命题的是()A . 若a的倒数为,则a是整数B . 若三个数满足a2+b2=c2 ,则a、b、c一定是三角形的三条边C . 若△ABC与△A'B'C'关于某直线对称,则△ABC与△A'B'C'一定全等D . 两直线平行,同旁内角互补2. (2分) (2017九上·下城期中) 下列命题:①三点确定一个圆;②平分弦的直径平分弦所对的弧;③相等的弦所对的圆心角相等;④在半径为的圆中,的圆周角所对的弧长为.错误的有()个.A .B .C .D .3. (2分)由6个完全相同的小正方体搭成的几何体如图所示,它的主视图是()A .B .C .D .4. (2分) (2015七上·献县期中) 下列比较大小的式子中,正确的是()A . 2<﹣(+5)B . ﹣1>﹣0.01C . |﹣3|<|+3|D . ﹣(﹣5)>+(﹣7)5. (2分) (2018九上·潮南期末) 已知⊙O的直径为5,若PO=5,则点P与⊙O的位置关系是()A . 点P在⊙O内B . 点P在⊙O上C . 点P在⊙O外D . 无法判断6. (2分) (2019九下·象山月考) 如图,在△ABC中,点D,E分别为边AB,AC上的点,且DE∥BC.若AD =5,BD=10,AE=3,则CE的长为()A . 3B . 6C . 9D . 127. (2分) (2019七上·鞍山期末) 下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A . 1个B . 2个C . 3个D . 4个8. (2分)有下列结论:(1)平分弦的直径垂直于弦;(2)圆周角的度数等于圆心角的一半;(3)等弧所对的圆周角相等;(4)经过三点一定可以作一个圆;(5)三角形的外心到三边的距离相等;(6)垂直于半径的直线是圆的切线.其中正确的个数为()A . 1个B . 2个C . 3个D . 4个9. (2分)(2017·桂平模拟) 我们知道:等腰三角形、平行四边形、菱形、双曲线、抛物线.这些都是我们在初中学习阶段学过的几何图形或函数的图象,那么从它们之中随机抽取两个,得到的都是中心对称图形的概率是()A .B .C .D . 110. (2分)某商店四月份的利润为6.3万元,此后两个月进入淡季,利润均以相同的百分比下降,至六月份利润为5.4万元.设下降的百分比为x,由题意列出方程正确的是()A . 5.4(1+x)2=6.3B . 5.4(1﹣x)2=6.3C . 6.3(1+x)2=5.4D . 6.3(1﹣x)2=5.411. (2分) (2018九上·宁波期中) 一个布袋里装有5个只有颜色不同的球,其中2个红球,3个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为()A .B .C .D .12. (2分)学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()新鞋码(y)225245 (280)原鞋码(x)3539 (46)A . 270B . 255C . 260D . 265二、填空题 (共4题;共4分)13. (1分)已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=________.14. (1分)(2020·上海模拟) 已知在Rt△ABC中,∠C=90º,AC=3,BC=4,⊙C与斜边AB相切,那么⊙C 的半径为________.15. (1分)分式在实数范围内有意义,则x的取值范围是________16. (1分) (2016九上·芜湖期中) 如图,某抛物线的对称轴为直线x=2,点E是该抛物线顶点,抛物线与y轴交于点C,过点C作CD∥x轴,与抛物线交于点B,与对称轴交于点D,点A是对称轴上一点,连结AC、AB,若△ABC是等边三角形,则图中阴影部分图形的面积之和是________.三、解答题 (共6题;共40分)17. (5分) (2018八上·浦东期中) 解方程:x2+4x-3=0.18. (5分)如图,AB为⊙O的直径,弦CK交AB于P,D为上一点,且∠CPD=∠BPD=60°,连OC、OD.(1)求证:∠OCK=∠ODP;(2)若PC=4, PO=6,求S△POD .19. (5分)(2017·焦作模拟) 先化简,再求值:÷(x﹣),其中x是方程x2﹣4=0的根.20. (5分) (2019八上·亳州月考) 求经过A(-2 ,-3)和B(-3, 9)两点的直线解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鄂州市梁子湖区2020年秋季九年级月考数学试卷
一.选择题(共10小题,每题3分,共30分)
1.下列图案中,既是轴对称图形又是中心对称图形的是()
A.B.C. D.
2.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()
A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5
3.点P
1(﹣1,y
1
),P
2
(3,y
2
),P
3
(5,y
3
)均在二次函数y=﹣x2+2x+c的图象
上,则y
1,y
2
,y
3
的大小关系是()
A.y
3>y
2
>y
1
B.y
3
>y
1
=y
2
C.y
1
>y
2
>y
3
D.y
1
=y
2
>y
3
4.已知点P(a+1,﹣ +1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()
A.B.C.
D.
5.若关于x的方程4x2﹣(2k2+k﹣6)x+4k﹣1=0的两根互为相反数,则k的值为()
A.B.﹣2 C.﹣2或D.2或
6.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()
A.15°B.20°C.25°D.30°
7.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为,则袋中白球的个数为()
A.2 B.3 C.4 D.12
8.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()
A.40cm B.50cm C.60cm D.80cm
9.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA 的长等于()
A.B.C.3 D.2
10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
④<a<
⑤b>c.
其中含所有正确结论的选项是()
A.①③B.①③④C.②④⑤ D.①③④⑤
二.填空题(共7小题,每题3分,共21分)
11.如图1,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.
图1 图2 图3
12.如图2,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.
13.如图3,在Rt△ABC中,∠B=90°,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,则出发秒时,四边形DFCE的面积为20cm2.
14.如图4,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是.
15.关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是.
16.如图5,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD 的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q.则AB= .
17.如图6,抛物线y=x2﹣2x+k(k<0)与x轴相交于A(x
1,0)、B(x
2
,0)两
点,其中x
1<0<x
2
,当x=x
1
+2时,y 0(填“>”“=”或“<”号).
三.解答题(共7小题,共69分)
18.(12分)解方程
(1)(x﹣1)(x+3)=12 (2)(x﹣3)2=3﹣
23(10分).西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,设每千克降价x元每天销量为y千克.
(1)求y与x的函数关系式;
(2)如何定价,才能使每天获得的利润为200元,且使每天的销量较大?
24.(12分)如图:对称轴x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(﹣3,0),且点(2,5)在抛物线y=ax2+bx+c上.(1)求抛物线的解析式.
(2)点C为抛物线与y轴的交点.
①点P在抛物线上,且S
△POC =4S
△BOC
,求点P点坐标.
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
2020年12月九年级月考数学
参考答案与试题解析
一.选择题(共10小题)1.B.2.B.3.D.4.C.5.B.6.B.7.B.8.A.9.B.10.D.
二.填空题(共7小题)
11.. 12.. 13.1或5. 14. +. 15.<a<﹣2.16.6. 17.<.
三.解答题(共7小题)
18.
(1)解得:x
1=3,x
2
=﹣5;(2)解得:x
1
=3,x
2
=2;
(3)∴x==.
19.解:(1)∵良有70人,占70%,
∴统计图共统计了的空气质量情况的天数为:70÷70%=100(天);
(2)如图:条形统计图中,空气质量为“优”的天数为100×20%=20(天),空气质量为“优”所在扇形的圆心角度数是:20%×360°=72°,
(3)画树状图得:
∵共有12种等可能情况,其中符合一男一女的有8种,∴恰好选到一名男同学和一名女同学的概率是=.故答案为:(1)100,(2)72°,(3).
20.解:(1)方程有不相等的实数根,
△=b2﹣4ac=4m2﹣4(m﹣3)(m+1)>0,
解得
∵两个根又不互为相反数,
解得m≠0,
故m且m≠0且m≠3.
(2)当m在取值范围内取最小正偶数时,
m=2时,方程是:﹣x2+4x+3=0
解得
21.解:(1)DE与⊙O相切.
证明:连接OD、AD,
∵点D是的中点,
∴=,
∴∠DAO=∠DAC,
∵OA=OD,
∴∠DAO=∠ODA,
∴∠DAC=∠ODA,
∴OD∥AE,
∵DE⊥AC,
∴DE⊥OD,
∴DE与⊙O相切.
(2)连接BC交OD于H,延长DF交⊙O于G,
由垂径定理可得:OH⊥BC, ==,
∴=,
∴DG=BC,
∴弦心距OH=OF=4,
∵AB是直径,
∴BC⊥AC,
∴OH∥AC,
∴OH是△ABC的中位线,
∴AC=2OH=8.
22.证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,
在△AQE和△AFE中
,
∴△AQE≌△AFE(SAS),
∴∠AEQ=∠AEF,
∴EA是∠QED的平分线;
(2)由(1)得△AQE≌△AFE,
∴QE=EF,
在Rt△QBE中,
QB2+BE2=QE2,
则EF2=BE2+DF2.
23.解:(1)∵每千克降价x元每天销量为y千克,∴y=200+,即y=200+400x;
(2)设应将每千克小型西瓜的售价降低x元.
根据题意,得[(3﹣2)﹣x](200+)﹣24=200.原式可化为:50x2﹣25x+3=0,
解这个方程,得x
1=0.2,x
2
=0.3.
为使每天的销量较大,应降价0.3元,即定价2.7元/千克.答:应将每千克小型西瓜的售价定为2.7元/千克.
24.
解:(1)因为抛物线的对称轴为x=﹣1,A点坐标为(﹣3,0)与(2,5)在抛物线上,则:
,
解得:.
所以抛物线的解析式为:y=x2+2x﹣3.
(2)二次函数的解析式为y=x2+2x﹣3,
∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3.
设P点坐标为(x,x2+2x﹣3),
∵S
△POC =4S
△BOC
,
∴×3×|x|=4××3×1,
∴|x|=4,x=±4.当x=4时,x2+2x﹣3=16+8﹣3=21;
当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.
∴点P的坐标为(4,21)或(﹣4,5);
(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,﹣3)代入,得,
解得:.
即直线AC的解析式为y=﹣x﹣3.
设Q点坐标为(x,﹣x﹣3)(﹣3≤x≤0),则D点坐标为(x,x2+2x﹣3),QD=(﹣x﹣3)﹣(x2+2x﹣3)=﹣x2﹣3x=﹣,
∴当x=﹣时,QD有最大值.。