第二章 随机过程的概念解析

合集下载

第二章随机过程的概念

第二章随机过程的概念

2020/1/27
11
随机过程的研究范围
?1. 依据随机过程单样本值为随机变量的特 点,相应的研究内容包括:
? 连续型随机过程 ? 离散型随机过程
?具体的研究对象包括:均值、方差、协方 差、有限维联合分布等。
2020/1/27
12
随机过程的研究范围
?2. 依据随机过程的函数特性,相应的研究 内容应包括:
2020/1/27
14
随机过程的分类
(一)根据参数集T 及状态空间I 是离散或连 续,可把随机过程分为以下四种类型:
? T 和 I 都是离散的 ; ? T 连续,I 离散; ? T 离散,I 连续; ? T 和 I 都连续。
2020/1/27
15

例2.1 生物群体的增长问题 在描述群体的发展或演变过程中,以 X t 表 示在时刻 t 群体的个数,则对每个固定的t, X t 是一个随机变量。 假设从 t =0开始每隔一天对群体的个数观察 一次,则
{X t , t = 0,1,L } 是随机过程。
信息工程大学四院六教
随机过程的分类
(二)根据 X (t ) 之间的关系,可将随机过 程分为几个研究较多且用途较广的主要类 型:
? 马尔可夫过程 ? 独立增量过程 ; ? 平稳过程; ? 鞅过程; ? ……
2020/1/27
17
随机过程的分布函数
如何用分布函数刻画随机过程?
1
1
2
x , L , X (t ) ? x }
2
n
n
2020/1/27
18
随机过程的分布函数
这些分布函数的全体
F = {Ft1,t2,L ,tn (x 1, x 2, L , x n ) : t1, t 2, L , tn 纬T , n 1}

第2章随机过程习题及答案

第2章随机过程习题及答案

第2章随机过程习题及答案第二章随机过程分析1.1学习指导1.1.1要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。

1.随机过程的概念随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。

可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。

2.随机过程的分布函数和概率密度函数如果ξ(t)是一个随机过程,则其在时刻t1取值ξ(t1)是一个随机变量。

ξ(t1)小于或等于某一数值某1的概率为P[ξ(t1)≤某1],随机过程ξ(t)的一维分布函数为F1(某1,t1)=P[ξ(t1)≤某1](2-1)如果F1(某1,t1)的偏导数存在,则ξ(t)的一维概率密度函数为F1(某1,t1)f1(某1,t1)(2-2)某1对于任意时刻t1和t2,把ξ(t1)≤某1和ξ(t2)≤某2同时成立的概率F2(某1,某2;t1,t2)P(t1)某1,(t2)某2(2-3)称为随机过程(t)的二维分布函数。

如果2F2(某1,某2;t1,t2)f2(某1,某2;t1,t2)(2-4)某1某2存在,则称f2(某1,某2;t1,t2)为随机过程(t)的二维概率密度函数。

对于任意时刻t1,t2,…,tn,把Fn(某1,某2,,某n;t1,t2,,tn)P(t1)某1,(t2)某2,称为随机过程(t)的n维分布函数。

如果,(tn)某n(2-5)nFn(某1,某2,,某n;t1,t2,,tn)fn(某1,某2,,某n;t1,t2,,tn)(2-6)某1某2某n存在,则称fn(某1,某2,…,某n;t1,t2,…,tn)为随机过程(t)的n维概率密度函数。

3.随机过程的数字特征随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。

随机过程(t)在任意给定时刻t的取值(t)是一个随机变量,其均值为E(t)某f1(某,t)d某(2-7)其中,f1(某,t)为(t)的概率密度函数。

第二章 随机过程总结

第二章   随机过程总结

图2-2-3 随机过程的均方值、方差
方差、均方值和均值有数学关系式:
(2.2.18) • 方差描述在该时刻对其数学期望的偏离程度。
• 数学期望、均方值和均方差只能描述随机过程孤 立的时间点上的统计特性。
• 随机过程孤立的时间点上的统计特性不能反映随 机过程的起伏程度。
图2-2-4 随机过程的起伏程度
注:一维概率分布描述了随机过程在各个孤 立时刻的统计特性。 3、二维分布函数
与 , , 和 都有直接的关系, 是 ,, 和 的四元函数,记为: (2.2.4) 被称为随机过程的二维分布函数。
4、二维概率密度函数
如果存在四元函数
ቤተ መጻሕፍቲ ባይዱ
,使
(2.2.5)
成立,则称 为随机过程的二维概率密 度函数,是 ,,和 的四元函数,且满足 (2.2.6)
§2.3
平稳随机过程
• 平稳随机过程的定义
• 严平稳随机过程及其性质 • 宽平稳随机过程及其性质
图2-3-1 初相角随机的正弦信号
图2-3-2 幅度随机的正弦信号
图2-3-3 频率随机的正弦信号
图2-3-4 频率、相位和幅度随机的正弦信号
图2-3-5 云层背景下的飞机
2.3.1 随机信号 的统计特性(如概率密度函 数、相关函数),部分或全部在观察点或观察 点组的位置变化时,保持不变或变化。在随机 信号理论中就称该随机信号的相应统计特性具 有平稳或非平稳性。 2.3.2 随机信号统计平稳性有多种情况: (1)对整个观察点位置 变化的平稳性; (2)对观察点中时间位置 变化的时间平稳性; (3)对观察点空间位置 变化的平稳性; (4)对观察点中空间位置的部分坐标变化的平 稳性。
例2.8 设有随机过程 ,式中A是高斯 随机变量, 为确定的时间函数。试判断 是否为严平稳过程。 解:已知A的概率密度函数

第二章 随机数据的数字特征

第二章 随机数据的数字特征

2.1. 随机过程的描述1. 随机过程的概念随机过程:考察各测量样本固定时刻0t t =在0t 时刻的值)(01t x ,)(02t x ,……,)(0t x n 构成随机变量,具有自身的概率特性,记为)(0t X 。

在数学上把所有已经得到的和未得到的而可能发生的样本总体)}({0t x i (t=1,2,3,……)称为随机过程,记为)(t X 。

随机过程具有双向无穷特征,即在时间轴上无穷,又在样本数上无穷。

2. 随机过程的统计规律(1). 一维概率分布特征设一随机变量)(t X 在某一时刻i t 的随机变量)(i t X 的取值小于等于给定值x ()(t X x ∈),这一事件发生的概率定义为:])([Pr );(1x t X ob t x F i i ≤=,)(t X x ∈)(t X 的一维概率密度函数);(1i t x f 定义为);(1i t x F 对x 的一阶偏导数,即:xt x F t x f i i ∂∂=);();(11 (2). 多维概率分布特征 二维概率分布特征随机过程)(t X 在i t 时刻的随机变量i i x t X ≤)(;而且在j t 时刻的随机变量j j x t X ≤)(,这两件事同时发生的概率定义为二维概率分布特征:])(,)([Pr ),;,(2j j i i j i j i x t X x t X ob t t x x F ≤≤=二维概率密度函数为对j i x x ,的二阶偏导数,即:j i j i j i j i j i x x t t x x F t t x x f ∂∂∂=),;,(),;,(222三维、四维,……直至n 维可以以此类推实际应用中,要确定随机过程的各维概率分布函数及密度函数非常困难3. 随机过程的统计特征量(1). 均值)(t m x也就是随机过程的数学期望吗,度量过程随机变动的平均值dx t x xf t X E t m i x ⎰∞∞-==);()]([)(1 由于)(t X 在不同时刻的一维概率密度函数);(1t x f 是对时间t 的函数,故均值)(t m x 亦随时间而变。

第二章 随机过程

第二章 随机过程

T /2
(2-2-7)
16
如果平稳过程使下式成立
a = a
σ
2

2
(2-2-8)
R (τ ) = R (τ )
称该平稳过程ξ(t)具有各态历经性。 称该平稳过程 具有各态历经性。 具有各态历经性 意义:随机过程中的任一次实现都经历了随机过程的 意义:随机过程中的任一次实现都经历了随机过程的 实现 所有可能状态。 所有可能状态。 具有各态历经性随机过程一定是平稳过程, 具有各态历经性随机过程一定是平稳过程,反之不 一定成立。 一定成立。 求解各种统计平均时(实际中很难获得大量样本), 求解各种统计平均时(实际中很难获得大量样本), 无需作无限多次考察,只要获得一次考察, 无需作无限多次考察,只要获得一次考察,用一次 实现的时间平均值代替过程的统计平均即可。 实现的时间平均值代替过程的统计平均即可。
满足上式则称ξ(t)为广义平稳随机过程或宽平稳随机过 满足上式则称 为广义平稳随机过程或宽平稳随机过 程。 严平稳随机过程(狭义平稳随机过程) 严平稳随机过程(狭义平稳随机过程)只要 Eξ2(t) 均方值有界,它必定是广义平稳随机过程。 均方值有界,它必定是广义平稳随机过程。 反之不一定成立。 反之不一定成立。
C (t1 , t 2 ) = E {[ξ (t1 ) − a (t1 ) ][ξ (t 2 ) − a (t 2 ) ]} =
∞ ∞ −∞ −∞
∫ ∫ [x
1
− a (t1 ) ][ x 2 − a (t 2 ) ] f 2 ( x1 , x2 ; t1 , t 2 ) dx1 x 2
(2-1-5) 2-1-5
互相关函数(针对两个随机过程) 互相关函数(针对两个随机过程)
Cξ ,η (t1 , t2 ) = E {[ξ (t1 ) − a (t1 ) ][η (t2 ) − a (t2 ) ]}

第二章 随机过程的基本概念_2.3 2.4

第二章 随机过程的基本概念_2.3 2.4
相关时间 0 小:随机过程随时间变化快 相关时间 0 大:随机过程随时间变化慢
4 2 0 -2 -4 10 5 0 -5 -10
0
50
100
0
50
100
0 1
2015/5/12
0 100
14
两个不同相关时间随机过程的样本函数
2.3.4 循环平稳的概念
广义循环平稳:
如果随机过程X(t)的均值和自相关函数满足下列关系
2T
0
(1

2T
2 )[ RX ( ) mX ]d 0
平稳随机过程X(t)具有相关函数遍历性的充要条件
1 lim T T

2T
0
(1

2T
2 )[ R ( ) RX ( )]d 0
(t ) X (t ) X (t )
2015/5/12 22
第二章随机过程的基本概念
mX mX
其中
RX ( ) RX ( )
RX ( )
1 lim T 2T
T T
x(t
) x(t )dt
则X(t)为遍历(各态历经)过程。
2015/5/12 19
2.3.5 随机过程的各态历经性
X (t ) X (t )
t
t
(a)
(b)
各态历经过程与非各态历经过程示意图 各态历经过程的一个样本函数经历了随机过程 所有可能的状态
如果
f XY ( x1 ,..., xN , t1 ,..., t N , y1 ,..., yM , t '1 ,..., t 'M ) f X ( x1 ,..., xN , t1 ,..., t N ) fY ( y1 ,..., yM , t '1 ,..., t 'M )

第二章 随机过程基本概念

第二章 随机过程基本概念
随机过程的基本概念
第二章 随机过程的基本概念
§2.1 随机过程的定义 §2.2 随机过程的分布与数字特征 §2.3 随机过程的分类
§2.1 随机过程的定义
引入:
初等概率论的研究对象
§2.1 随机过程的定义
引例1
某电话交换台在时间段[0,t]内接到的电话次数记为X(t),
随机现象某个时刻或有限个时刻静态的结果 即一个或有限个随机变量(随机向量). 问 描述随机现象的整个变化过程, 需要多少个随机变量?
Fn ( xi1 , xi2 ,, xin , ti1 , ti2 ,, tin ) Fn ( x1 , x2 ,, xn , t1, t2 ,, tn )
(2)相容性 对任意自然数m<n,随机过程的m维分布函数 与n维分布函数之间有关系:
Fm ( x1 , x2 ,, xm , t1 , t2 ,, tm ) Fn ( x1 , x2 ,, xm , ,, , t1 , t2 ,, tn )

X(t ) A (t (T0 kT )), T0 kT t T0 (k 1)T (k 0, 1, 2) T
§2.2 随机过程的分布与数字特征
2、随机过程的二维分布函数
定义 设{ X ( t ), t T }是一个随机过程,对任意固定的
T 故有,T0 X (t ) t kT h( X (t )), T0 kT t T0 (k 1)T A
29 November 2015
随机过程
§2.2 随机过程的分布与数字特征
例1 设X ( t ) X cos(at ), t ,其中a为常数,
X服从标准正态分布,试求X(t)的一维概率密度函数。

随机过程课件

随机过程课件

随机过程课件随机过程课件随机过程是概率论与数理统计中的重要概念,它描述了随机变量随时间的演化规律。

在现代科学和工程领域,随机过程被广泛应用于信号处理、通信系统、金融市场等众多领域。

本文将介绍随机过程的基本概念、分类以及一些常见的应用。

一、随机过程的基本概念随机过程是一族随机变量的集合,它描述了随机变量随时间的变化。

在数学上,随机过程可以用函数的形式表示,即X(t),其中t表示时间,X(t)表示在时间t时刻的随机变量。

随机过程可以分为离散时间和连续时间两种类型。

离散时间随机过程是指随机变量在离散时间点上的演化,例如抛硬币的结果、骰子的点数等。

连续时间随机过程是指随机变量在连续时间上的演化,例如股票价格的变动、电信号的传输等。

二、随机过程的分类根据随机过程的性质和演化规律,可以将其分为多种类型。

常见的分类包括马尔可夫过程、泊松过程、布朗运动等。

1. 马尔可夫过程马尔可夫过程是指在给定当前状态下,未来的演化只与当前状态有关,与过去的状态无关。

马尔可夫过程具有“无记忆”的特性,常用于描述具有时序性质的问题,如排队系统、信道传输等。

2. 泊松过程泊松过程是一种用于描述随机事件的发生次数的随机过程。

它具有独立增量和无记忆性的特点,常用于描述到达率恒定的随机事件,如电话呼叫、交通流量等。

3. 布朗运动布朗运动是一种连续时间的随机过程,其演化规律由随机变量驱动。

布朗运动具有连续性、无界性和马尔可夫性等特点,广泛应用于金融市场、物理学等领域。

三、随机过程的应用随机过程在现代科学和工程领域有着广泛的应用。

以下列举几个常见的应用领域。

1. 信号处理随机过程在信号处理中起到了重要的作用。

通过对信号进行建模,可以利用随机过程的理论和方法对信号进行分析和处理,如图像压缩、语音识别等。

2. 通信系统随机过程在通信系统中也有着重要的应用。

通过对信道的建模,可以利用随机过程的理论来分析和优化通信系统的性能,如误码率分析、信道编码等。

第二章随机过程基本概念

第二章随机过程基本概念

2随机过程的基本概念§2.1 基本概念随机过程是指一族随机变量.对随机过程的统计分析称为随机过程论,它是随机数学中的一个重要分支,产生于本世纪的初期.其研究对象是随机现象,而它特别研究的是随“时间”变化的“动态”的随机现象.一随机过程的定义1 定义设E为随机试验,S为其样本空间,如果(1)对于每个参数t∈T, X(e,t)为建立在S上的随机变量,(2)对每一个e∈S, X(e,t)为t的函数,那么称随机变量族{X(e,t), t∈T, e∈S}为一个随机过程,简记为{X(e,t), t∈T}或X(t)。

()()()()(){}{}[]()为随机序列。

时,通常称,取可列集合当可以为无穷。

通常有三种形式:参数一般表示时间或空间,或有时也简写为一个轨道。

随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于:上的二元单值函数。

为即若用映射来表示注意:t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X RS T t e X t21321,,,,3,2,1,0,1,2,3,,3,2,1,0T ,.4,.3,,2,:,.1=---==ÎÎ×δ®´L L L为一个随机过程。

则令掷一均匀硬币,例),()(cos )(},{1t e X t X Rt T e t H e t t X T H S =Îîíì====p 2 随机过程举例îíì=====为随机变量的函数均为和解释:T e t He t t e X t t t T X t t H X 000cos ),(),(cos ),((p p 2121cos ),(000p t t t e X p 并且:例2:用X(t)表示电话交换台在(0,t)时间内接到的呼唤的次数,则(1)对于固定的时刻t, X(t)为随机变量,其样本空间为{0,1,2,…..},且对于不同的t,是不同的随机变量.(2)对于固定的样本点n, X(t)=n是一个t的函数.(即:在多长时间内来n个人?)所以{X(t),t>0}为一个随机过程.相位正弦波。

第二章 随机过程的基本概念.

第二章 随机过程的基本概念.

4
5
随机变量X (t1 )
x1 (t )
随机序列
x2 (t )
x3 (t ) xn (t )
t1
噪声电压
xi (t )为样本函数
每一个样本函数都是 一个确定的时间函数 随机过程在任意时刻 的状态是一随机变量
连续随机过程 离散随机过程
连续随机序列 离散随机序列
随机过程是一族时间函数的集合
6
设正弦波随机过程为 X (t ) A cos 0t 其中 0 为常数 A为均匀分布在(0,1)内的随机变量, 画出随机过程X (t ) 的几个样本函数的图形.
2 (t ) 就表征消耗在单位电阻 上的瞬时交流功率的统 计平均值 .
25
三、自相关函数
表征了随机过程在任意两个时刻之间的关联程度
m X (t ) X (t ) mY (t ) Y (t )
m X (t )
mY (t )
m X (t ) X (t )
X (t )起伏慢
Y (t )起伏快
2 2 若 A , 则 X (t ) cos 0t 为一个确定性函数 3 3
7
设正弦波随机过程为 X (t ) A cos 0t 其中 0 为常数 A为均匀分布在(0,1)内的随机变量, 画出随机过程X (t ) 的几个样本函数的图形.
若 A 0, 则 X (t ) 0 为一个确定性函数



[ x m X (t1 )][ y mY (t 2 )] f XY ( x, y; t1 , t 2 )dxdy
C XY (t1 , t 2 ) RXY (t1 , t 2 ) m X (t1 )mY (t 2 )
若对任意t1 , t 2 都有RXY (t1 , t 2 ) 0, 则称X (t ), Y (t )是正交过程, 此时有C XY (t1 , t 2 ) m X (t1 )mY (t 2 )

第二章随机过程基本概念.

第二章随机过程基本概念.
(1若有的一维密度函数。
为称使可积
}: ({ , ( , ( , (, 0 , (1111T t t X t x f dx
t x f t x F t x f x
Î=³ò¥-(2若有的一维概率分布。
为称满足}: ({}{1
, 0} ({T t t X p p
p p x t X P k k k k k
k Î=³==å
¥¥-k k iux X k k iux X p e
u t p x t X P t X dx t x f e u t t x f t X k , ( (( ( 2 , ( , ( , ( (111jj则有分布列若(,则
有密度若(
有时也需要利用常用的一些特征函数来求随机变量的分布函数,由特征函数与分布函数的一一对应性有:
cos(
(Q
+
=t
a
t
X w
的均值函数,方差函数和自相关函数。其中, a , w为常数, Q是在(0, 2p上均匀分布的随机变量。例4试求随机相位余弦波
2随机过程的特征函数
的一维特征函数。
为称为随机变量,记
由于给定( , ( ( ( , ( (, ( (t X u t u e
E u t t X T t X t X t iuX X jjjÙ==Îåò====
为X (t的有限维分布函数族。
为随机过程的n维分布函数。称关于随机过程X (t的所有有限维分布函数的集合
注意:随机过程的n维分布函数描述了随机过程在任意n不同时刻的状态之间的联系。
随机过程X (t的有限维分布函数族的意义何在?随机过程的n维分布函数(或概率密度能够近似地描述随机过程的统计特性,而且, n越大,则n维分布函数越趋完善地描述随机过程的统计特性。

第二章 随机过程

第二章 随机过程
• 方差描述在该时刻对其数学期望的偏离程度。 • 数学期望、均方值和均方差只能描述随机过
程孤 立的时间点上的统计特性。 • 随机过程孤立的时间点上的统计特性不能反
映随机过程的起伏程度, 故采用两时刻或更多 时刻状态的相关性去描述起伏程度。
4.自相关函数
设和
分别是随机过程 在时刻
和的状态,称它们的二阶原点混合矩
统计特性也可分为:
1、幅值域描述: 数学期望、均方值、方差 等; 2、时间域描述: 自相关函数、互相关函数 ; 3.频率域描述: 功率谱密度函数、互功率谱 密度函数;
2.2.1.随机过程的概率分布
随机过程 , 在任意固定时刻 , 都 是随机变量。 随机事件:
发生概率:
1.一维分布函数
与 和 都有直接的关系,是 二元函数,记为:
7、当平稳随机过程含有均值 , 那它的自相 关函数也将会含有一个常数项 。
8、平稳随机过程的自相关函数的傅里叶变换在 整个频率轴上是非负的,即
且对于所有 都成立。 注: 即不含有阶跃函数的因子,如: 平顶、垂
直边或幅度上的任何不连续。
用平稳过程的自相关函数表示数字特征: (1).数学期望
(2) 均方值 (3) 方差 (4).协方差
• 随机过程 具有以下四种含义:
1.若 和 在发生变 一族时间函数,或化一,族则随随机机变过量程,是构成 了随机过程的完整概念; 2.若和 都固定,则随机过程是一个 确定值;
3.若 取固定值,则随机过程是一个确定 的时间函数,即样本函数,对应于某次试 验的结果;
4.若 取固定值,则随机过程是一个随 机变量;
图 随机过程数字特征
例2-14.设随机过程 的自相关函数为
求它的均值、均方值、方差和自协函数方差。 解:

随机过程

随机过程
1 一维概率分布
对于某个特定的时刻 t , X (t) 是一个随机变量,设 x 为任意实数,我们定义
FX (x,t) = P{X (t) ≤ x} 为 X (t) 的一维分布。
(2.2.1)
很显然,由于对不同的时刻 t ,随机变量 X (t) 是不同的,因而相应地也有不同的分布函数,因
此,随机过程的一维分布不仅是实数 x 的函数,而且也是时间 t 的函数。
设一质点在 x 轴上随机游动,质点在 t=0 时刻处于 x 轴的原点,在 t=1,2,3…质点向正向(概
率为 p)或反向移动(概率为 q=1-p)一个距离单元,设 X(n)示质点在 t=n 时刻与原点的距离,如果
X(n-1)=k,那么,
X
(n)
=
⎧k ⎨⎩k
+1 −1
质点正向移动一个距离单元 质点反向移动一个距离单元
定义 1: 设随机试验 E 的样本空间为 S = {e} ,对其每一个元素 ei (i = 1,2,...) 都以某种法则确 定一个样本函数 x(t, ei ) ,由全部元素{e} 所确定的一族样本函数 X (t, e) 称为随机过程,简记为 X (t) 。在电子系统中,我们通常把随机过程叫做随机信号,在本书中,随机信号和随机过程代表
50
60
70
80
0
-1
0
10
20
30
40
50
60
70
80
图2.1 随机相位信 例 2.2 接收机的噪声 我们用示波器来观察记录某个接收机输出的噪声电压波形,假定在接收机输入端没有信号,但 由于接收机内部元件如电阻、晶体管等会发热产生热噪声,经过放大后,在输出端会有电压输出,
假定在第一次观测中示波器观测记录到的一条波形为 x1 (t) ,而在第二次观测中记录到的是 x2 (t) , 第三次观测中记录的是 x3 (t) ,┄,每次观测记录到的波形都是不相同的,而在某次观测中究竟会 记录到一条什么样的波形,事先不能预知,由所有可能的结果 x1 (t) , x2 (t) , x3 (t) ,…构成了 X (t) 。

随机过程第二章

随机过程第二章

X (t)
Y (t)
mX (t)
mY (t)
其中 X (随t)时间变化缓慢,这个过程在两个不同 时刻的状态之间有较强的相关性; 而 Y的(样t) 本函数变化激烈,波动性大,其不同时刻 的状态之间的联系不明显,且时刻间隔越大,联系越
弱.
因此,必须引入描述随机过程在不同时刻 之间相关程度的数字特征。
自相关函数(简称相关函数)就是用来描 述随机过程两个不同时刻,状态之间内在联 系的重要数字特征。
随机过程数字特征之间的关系:
(1)
2 X
(t)
RX
(t,t)
(2)
2 X
(t)
BX
(t,t)
RX
(t,t)
m2 X
(t)
(3)
BX (t1,t2 ) RX (t1,t2 ) mX (t1)mX (t2 )
从这些关系式看出,均值函数
mX (t)
和相关函数 RX (t1,t是2 ) 最基本的两个数字特征,其它
称为样本函数,对应于e的一个样本轨道或实现,
变动e ,则得到一族样本函数, 样本函数的全e为一个数, 即在t时刻系统所
处的某一个状态。
对接收机的输出噪声电压,作一次“长 时间的观察”,测量获得的噪声电压Xt是一 个样本函数
e 1, x1(t) e 2, x2 (t) e 3, x3(t) e k, xk (t)
随机变量, 当t连续变化时, 即得一族随机变量,
所以X t,0 t 是一个连续参数, 连续状态
的随机过程, 称为随机相位正弦波。 例. 某电话交换台在时间段[0,t)内接收到的呼叫
次数X (t)是与t有关的随机变量, 对于固定的t, X (t)是一个取非负整数的随机变量,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 随机过程的概念
第二章 随机过程的概念与基本类型
1 随机过程的定义 2 随机过程的数字特征 3 复随机过程 4 几种重要的随机过程
2020/11/12
2
随机数学的研究对象
映射的值域
概率空间
随机变量
n
随机向量
随机过程
信息工程大学四院六教
2.1 随机过程的定义—— 引例
例2.1 生物群体的增长问题
2020/11/12
18
随机过程的分布函数
这些分布函数的全体
F {Ft1,t2, ,tn (x1, x2, , xn ) : t1,t2, , tn T, n 1}
称为 {X(t),t T} 的有限维分布函数族。
随机过程
Kolmogorov定理 定理2.1
对应关系
有限维分布 函数族
2020/11/12
2020/11/12
14
随机过程的分类
(一)根据参数集T 及状态空间I 是离散或连 续,可把随机过程分为以下四种类型:
T 和 I 都是离散的; T 连续,I 离散; T 离散,I 连续; T 和 I 都连续。
2020/11/12
15

例2.1 生物群体的增长问题
在描述群体的发展或演变过程中,以 Xt 表示 在时刻 t 群体的个数,则对每个固定的t, Xt 是一个随机变量。
{Xt,t [0, )} 是随机过程。
2020/11/12
5
பைடு நூலகம்
2.1 随机过程的定义—— 引例
例2.3 某交通路口在[0, t]内通过的车辆数是一 个与 t 有关的随机变量 Xt 。对于固定的 t ,Xt 是一个取非负整值的随机变量。 而 t变动时,
{Xt,t [0, )} 是随机过程。
2020/11/12
6
2.1 随机过程的定义
❖定义1:设 ( , F, P) 是概率空间,T 是给定
的指标集,若对T 中的每个 t,有一个随机
变量X(t,e)与之对应,则称 {X(t,e),t T} 是 ( , F, P) 上的随机过程,简记为{X(t),t T}
❖我们常把 t 解释成时间,并称X(t)是过程在 时刻t的状态。
时 间上的相关性 连续性与离散性 随机过程的导数 微 分、积分、卷积、级数展开 微分方程、积分方程等。
2020/11/12
13
随机过程的研究范围
❖3. 依据随机过程的二重性的联合特征,相 应的研究内容应包括:
互相关函数 空间的遍历性 时域平均与集总平均的关系 随机抽样、滤波理论 估计与预测方法 等。
19
随机过程的分布函数——例
❖例:设 X(n) 是参数为p的Bernoulli独立同
分布序列,其和过程
S (n )
n X(i)
i1
表示前n次试验中某事件发生的次数,称为
二项计数过程。
则其一维概率分布列为
P{S(n)
k}
C
k n
pk
(1
p)n k, 0
k
n
2020/11/12
20
随机过程的分布函数——例
2020/11/12
11
随机过程的研究范围
❖1. 依据随机过程单样本值为随机变量的特 点,相应的研究内容包括:
连续型随机过程 离散型随机过程
❖具体的研究对象包括:均值、方差、协方 差、有限维联合分布等。
2020/11/12
12
随机过程的研究范围
❖2. 依据随机过程的函数特性,相应的研究 内容应包括:
假设从 t =0开始每隔一天对群体的个数观察
一次,则
{Xt,t 0, 1, }
是随机过程。
信息工程大学四院六教
随机过程的分类
(二)根据 X(t) 之间的关系,可将随机过 程分为几个研究较多且用途较广的主要类 型:
马尔可夫过程 独立增量过程; 平稳过程; 鞅过程; ……
2020/11/12
T 称为参数集或指标集,每个 t 对应一个随机 变量;
X(t) 的所有可能状态(所有可能取值)所构成 的集合称为状态空间或相空间,记为I。
2020/11/12
7
2.1 随机过程的定义
➢如果参数集T是一个可数集,则称 XT 为一 个离散时间的随机过程;而如果T是一个连 续集,则称它为连续时间过程。
2020/11/12
22
2.2 随机过程的数字特征
➢称随机过程 {X(t), t T}为实值(复值) 的,如果其状态空间I是实值(复值)的。
2020/11/12
8
理解随机过程
随机过程具有二重性: (1)随机性:当t 固定时,X(t, ) 是 ( , F, P)
上之随机变量;
T中有多少元素,随机过程就含有多少个随机变量!
(2)函数特性:当e固定时,X( ,e)是定义在T上 的普通实值函数,称其为随机过程对于e的 样本函数(轨道、实现)。
Ω中有多少基本事件,随机过程就有多少个样本函数!
2020/11/12
9
理解随机过程
❖随机过程是普通函数概念的推广
普通函数 f : R R
随机过程
t f (t)
确定的实数
XT : T t
所有随机变量构成的集合
X (t )
随机变量
2020/11/12
10
理解随机过程的定义
❖随机过程是时间t的“函数” ❖在任意时刻观察,它是一个随机变量
❖其二维分布列为
P{S(n1) k1,S(n2 ) k2}
P{S(n1) k1}P{S(n2 n1) k2 k1}
C C p (1 k2 k1 n2 n1
k1 k2 n1
p)n2 k2
2020/11/12
21
第二章 随机过程的概念与基本类型
1 随机过程的定义 2 随机过程的数字特征 3 复随机过程 4 几种重要的随机过程
在描述群体的发展或演变过程中,以 Xt 表示 在时刻 t 群体的个数,则对每个固定的t, Xt 是一个随机变量。
假设从 t =0开始每隔一天对群体的个数观察
一次,则
{Xt,t 0, 1, }
是随机过程。
2020/11/12
4
2.1 随机过程的定义—— 引例
例2.2 某电话交换台在时间段[0, t ]内接到的 呼唤次数是与 t 有关的随机变量 Xt ,对于固 定的t,Xt 是一个取非负整数的随机变量。而 t变动时,
17
随机过程的分布函数
如何用分布函数刻画随机过程? ❖定义2.2 设{X(t),t T} 是随机过程,对任
意n 1 和 t1,t2, ,tn T, 随机向量 X(t1), X(t2), , X(tn ) 的分布函数为 Ft1,t2, ,tn (x1, x2, , xn ) P{X(t1) x1, X(t2 ) x2, , X(tn ) xn }
相关文档
最新文档