(完整word版)(总结)midasgen学习总结讲解

合集下载

Midas自己使用问题总结

Midas自己使用问题总结

Midas Gen自己使用问题总结注意:Midas Gen使用操作内容绝大部分都可以在“程序主菜单-帮助”系统中查到,非常方便。

一、零散问题总结1、Midas中的质量MIDAS中转换“质量”分两种,一种是“自重”,一种是“其他荷载”,前者在“模型-〉结构类型”中,后者在“模型-〉质量-〉将荷载转换成质量”中。

在MIDAS/Gen中,“模型> 质量> 将荷载转换成质量...”中不能将单元的自重转换为质量。

如果要做动力分析(包括地震动力分析),将结构的自重转化为质量,必须要在结构类型中设定相关条目。

即:可以通过“模型-〉结构类型-〉将结构的自重转换为质量”将模型中的单元质量自动转换为动力分析或计算静力等效地震荷载所需的集中质量。

2、Midas“由荷载组合建立荷载工况”该项目将荷载组合中的各荷载工况的组合建立为新的荷载工况。

对非线性单元(如索、只受拉或只受压单元)由于其非线性特性,单纯将各荷载工况的分析结果进行线性组合(荷载组合)是错误的,此时应该使用该功能将荷载组合(如1.2D+1.4L)定义为一个荷载工况作用于结构上,方能得到正确的分析结果。

路径:从主菜单中选择荷载> 由荷载组合建立荷载工况...或者….从树形菜单中选择静力荷载> 由荷载组合建立荷载工况...3、“刚域效果”与“设定梁端部刚域”刚域效果:自动考虑杆系结构中柱构件和梁构件(与柱连接的水平单元)连接节点区的刚域效应,刚域效应反映在梁单元中,平行于整体坐标系Z轴的梁单元将被视为柱构件,整体坐标系X-Y平面内的梁单元将被视为梁构件。

路径:从主菜单中选择模型> 边界条件> 刚域效果...或者从树形菜单的菜单表单中选择模型> 边界条件> 刚域效果设定梁端部刚域:该功能主要适用于梁单元(梁、柱)间的偏心设定。

当梁单元间倾斜相交,用户要考虑节点刚域效果时,需使用该功能进行设定。

在“主菜单中的模型>边界条件>刚域效果”只能考虑梁柱直交时的效果。

(总结)midasgen学习总结讲解

(总结)midasgen学习总结讲解

Midas Gen 学习总结一、YJK导入gen(详见“YJK模型转midas模型程序功能与使用”)1.版本选择选择版本V7.30,YJK中的地震反应谱函数和反应谱工况的相关内容不转换V8.00则进行转换。

建议取V8.00。

2.质量来源(质量源)同YJK:查看midas工作树形菜单中“质量”只有节点质量,各节点的质量大小及分布与YJK完全一致,不需要在gen中再将荷载和自重转换为质量。

建议取此选项。

Midas自算:查看midas工作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将自重转化为质量”也自动勾选。

转入了在YJK定义的各种材料重度及密度。

3.墙体转换板:墙与连梁(墙开洞方式)都转换成midas的板单元,自动网格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。

墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。

分析结果没有板单元精确,但能按规范给出配筋设计。

4. 楼板表现楼板分块:导入到midas楼板为3节点或4节点楼板,需要在midas划分网格。

YJK网格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导入midas网格已划分,同时梁也实现分割,与板边界耦合。

4.楼屋面荷载板上均布荷载:导入midas楼面荷载同YJK。

导入后查看是否存在整层节点“刚性连接”。

导到周围梁墙:导入midas楼面荷载分配到周边梁墙。

二、gen建模、分析1、建模过程:(cad导入法)①前期准备:修改模型单位(mm)→定义材料、截面和厚度;②构件建模:从cad中导入梁→单元扩展生成柱墙→墙体分割与开洞→定义楼板类型(刚性板/弹性板);③施加荷载:定义静力荷载工况(恒、活、X/Y风)→分配楼面荷载和施加梁荷载→定义风荷载→定义反应谱和地震作用(Rx、Ry)→定义自重;④补充定义:荷载转化成质量→结构自重转化成质量→定义边界(支承条件、释放约束)→定义结构类型和层数据;⑤运行分析:先设定特征值的振型数量,然后点击运行分析。

(完整word版)(总结)midasgen学习总结讲解

(完整word版)(总结)midasgen学习总结讲解

Midas Gen 学习总结一、YJK导入gen(详见“YJK模型转midas模型程序功能与使用”)1.版本选择选择版本V7.30,YJK中的地震反应谱函数和反应谱工况的相关内容不转换V8.00则进行转换。

建议取V8.00。

2.质量来源(质量源)同YJK:查看midas工作树形菜单中“质量”只有节点质量,各节点的质量大小及分布与YJK完全一致,不需要在gen中再将荷载和自重转换为质量。

建议取此选项。

Midas自算:查看midas工作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将自重转化为质量”也自动勾选。

转入了在YJK定义的各种材料重度及密度。

3.墙体转换板:墙与连梁(墙开洞方式)都转换成midas的板单元,自动网格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。

墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。

分析结果没有板单元精确,但能按规范给出配筋设计。

4. 楼板表现楼板分块:导入到midas楼板为3节点或4节点楼板,需要在midas划分网格。

YJK网格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导入midas网格已划分,同时梁也实现分割,与板边界耦合。

4.楼屋面荷载板上均布荷载:导入midas楼面荷载同YJK。

导入后查看是否存在整层节点“刚性连接”。

导到周围梁墙:导入midas楼面荷载分配到周边梁墙。

二、gen建模、分析1、建模过程:(cad导入法)①前期准备:修改模型单位(mm)→定义材料、截面和厚度;②构件建模:从cad中导入梁→单元扩展生成柱墙→墙体分割与开洞→定义楼板类型(刚性板/弹性板);③施加荷载:定义静力荷载工况(恒、活、X/Y风)→分配楼面荷载和施加梁荷载→定义风荷载→定义反应谱和地震作用(Rx、Ry)→定义自重;④补充定义:荷载转化成质量→结构自重转化成质量→定义边界(支承条件、释放约束)→定义结构类型和层数据;⑤运行分析:先设定特征值的振型数量,然后点击运行分析。

Midas自己使用问题总结

Midas自己使用问题总结

Midas自己使用问题总结Midas Gen自己使用问题总结注意:Midas Gen使用操作内容绝大部分都可以在“程序主菜单-帮助”系统中查到,非常方便。

一、零散问题总结1、Midas中的质量MIDAS中转换“质量”分两种,一种是“自重”,一种是“其他荷载”,前者在“模型-〉结构类型”中,后者在“模型-〉质量-〉将荷载转换成质量”中。

在MIDAS/Gen中,“模型> 质量> 将荷载转换成质量...”中不能将单元的自重转换为质量。

如果要做动力分析(包括地震动力分析),将结构的自重转化为质量,必须要在结构类型中设定相关条目。

即:可以通过“模型-〉结构类型-〉将结构的自重转换为质量”将模型中的单元质量自动转换为动力分析或计算静力等效地震荷载所需的集中质量。

2、Midas“由荷载组合建立荷载工况”该项目将荷载组合中的各荷载工况的组合建立为新的荷载工况。

对非线性单元(如索、只受拉或只受压单元)由于其非线性特性,单纯将各荷载工况的分析结果进行线性组合(荷载组合)是错误的,此时应该使用该功能将荷载组合(如 1.2D+1.4L)定义为一个荷载工况作用于结构上,方能得到正确的分析结果。

路径:从主菜单中选择荷载> 由荷载组合建立荷载工况...或者….从树形菜单中选择静力荷载> 由荷载组合建立荷载工况...3、“刚域效果”与“设定梁端部刚域”刚域效果:自动考虑杆系结构中柱构件和梁构件(与柱连接的水平单元)连接节点区的刚域效应,刚域效应反映在梁单元中,平行于整体坐标系Z轴的梁单元将被视为柱构件,整体坐标系X-Y平面内的梁单元将被视为梁构件。

路径:从主菜单中选择模型> 边界条件> 刚域效果...或者从树形菜单的菜单表单中选择模型> 边界条件> 刚域效果设定梁端部刚域:该功能主要适用于梁单元(梁、柱)间的偏心设定。

当梁单元间倾斜相交,用户要考虑节点刚域效果时,需使用该功能进行设定。

(完整word版)MIDAS新手问题之GEN篇

(完整word版)MIDAS新手问题之GEN篇

MIDAS新手问题之GEN篇问1:midas采用弹性楼板时,能自动考虑梁翼缘的作用吗?即自动刚度放大!答:梁翼缘作用在分析时主要是反应在梁刚度放大上,在程序中可以通过“截面特性调整系数”这一选项进行修改边梁及中梁刚度。

另外在截面定义的时候也可以修改刚度值。

问2:midas建模是不是太复杂啊?可不可以先PKPM建模再调入计算分析!答:在midas中支持与其他软件的接口,例如pkpm、sap、staad及CAD等程序进行数据转换。

在pkpm中经过SATWE计算后的模型可以转换到midas中,其中需要有个转换的程序,这个是midas自带的。

转换后的模型中包括材料特性、模型特征、楼面荷载等信息。

如果熟悉程序的话midas建模也是相当快的,比画图也差不多了多少。

问3:请教面荷载的输入方法?我知道一个方法:一个个地点一个封闭平面的节点去选择一个面,然后输入荷载,还有其它快捷的方法吗?如像PKPM的面荷载输入?答:面荷载的输入分为2种情况:a 、一种是结构存在竖向面荷载——例如楼面荷载、屋面荷载,b、一种是横向面荷载——如风荷载,水压力或土压力。

在竖向荷载布置的时候,可以通过选择四个角点来布置已经定义的楼面荷载值或压力荷载(注意:只需要选择最外围的角点即可,不需要逐个房间点取)。

在不规则结构中无法形成刚性板因此无法由程序直接计算风荷载,此时需要在结构立面建立一个专为导荷载而用的“虚面”——即该板单元刚度和重量对结构的影响可以忽略不计。

在虚面上进行加载,可以形成实际的风荷载。

问4:若模型中有只拉单元,是不是还要加个非线性工况?怎么加?怎么组合?答:模型中的只受拉单元在一般计算时通常是等代为桁架单元来计算的,因此在非线性分析才显示出只受拉单元的特性。

做非线性的时候按照常规组合即可,读取内力、位移等数值时查看只受拉单元就OK. 至于你想做个自定义的工况的话,在形成荷载组合那个菜单里自己修改参数定义一下就行。

注意:该种情况用的不多,通常程序已经按照荷载规范中荷载组合方式进行组合了,先看看组合说明再做,别做无用功。

midasgen学习总结(参照材料)

midasgen学习总结(参照材料)

midasgen学习总结(参照材料)Midas Gen 学习总结⼀、YJK导⼊gen(详见“YJK模型转midas模型程序功能与使⽤”)1.版本选择选择版本V7.30,YJK中的地震反应谱函数和反应谱⼯况的相关内容不转换V8.00则进⾏转换。

建议取V8.00。

2.质量来源(质量源)同YJK:查看midas⼯作树形菜单中“质量”只有节点质量,各节点的质量⼤⼩及分布与YJK完全⼀致,不需要在gen中再将荷载和⾃重转换为质量。

建议取此选项。

Midas⾃算:查看midas⼯作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将⾃重转化为质量”也⾃动勾选。

转⼊了在YJK定义的各种材料重度及密度。

3.墙体转换板:墙与连梁(墙开洞⽅式)都转换成midas的板单元,⾃动⽹格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。

墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。

分析结果没有板单元精确,但能按规范给出配筋设计。

4. 楼板表现楼板分块:导⼊到midas楼板为3节点或4节点楼板,需要在midas划分⽹格。

YJK⽹格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导⼊midas⽹格已划分,同时梁也实现分割,与板边界耦合。

4.楼屋⾯荷载板上均布荷载:导⼊midas楼⾯荷载同YJK。

导⼊后查看是否存在整层节点“刚性连接”。

导到周围梁墙:导⼊midas楼⾯荷载分配到周边梁墙。

⼆、gen建模、分析1、建模过程:(cad导⼊法)①前期准备:修改模型单位(mm)→定义材料、截⾯和厚度;②构件建模:从cad中导⼊梁→单元扩展⽣成柱墙→墙体分割与开洞→定义楼板类型(刚性板/弹性板);③施加荷载:定义静⼒荷载⼯况(恒、活、X/Y风)→分配楼⾯荷载和施加梁荷载→定义风荷载→定义反应谱和地震作⽤(Rx、Ry)→定义⾃重;④补充定义:荷载转化成质量→结构⾃重转化成质量→定义边界(⽀承条件、释放约束)→定义结构类型和层数据;⑤运⾏分析:先设定特征值的振型数量,然后点击运⾏分析。

Midas学习总结-典尚设计

Midas学习总结-典尚设计

一、活载1、活载基本输入在定义车道中定义桥梁跨度的意义在于,一个是程序根据输入的值按JTG D60-2004的4.3.1条自动选择公路-I级荷载Pk值、按4.3.5自动选择人群荷载标准值;二是用于计算冲击系数,当用户在分析>移动荷载分析控制中选择按输入的跨度计算冲击系数时,将按在定义车道时输入的跨度计算冲击,选择跨度实始点的用途: 当用户在分析>移动荷载分析控制中选择按影响线加载长度计算冲击时,程序将根据跨度始点间的距离计算冲击。

程序不能自动考虑汽车荷载的纵向折减,当跨径大于150m时,用户应在定义移动荷载分析子荷载工况时,在系数中自行输入纵向折减系数。

连续梁桥的各跨跨度不同时,程序自动按在定义车道时输入的各跨跨度中最大值选用Pk值(偏于安全)。

选择的公路工程技术标准(JTG B01-2003)的荷载,程序默认为公路-I级荷载,当为公路-II 级荷载时,应在分析>移动荷载分析控制中选择公路-II级,程序会自动将公路-I级荷载乘0.75的系数。

汽车离心力:可按下列步骤加载: 首先进行一般的移动荷载分析,在后处理利用移动荷载追踪器功能获得某项结果的最不利加载位置和荷载,然后通过按JTG D60-2004的4.3.3条计算离心力系数,将其与最不利荷载相乘,用梁单元荷载中集中荷载方式(局部坐标系)加载到最不利加载位置。

因为离心力不考虑冲击的影响,而程序中提供的最不利荷载中包括了冲击系数,所以在将离心力与最不利荷载相乘时应除以(1+μ)。

人群荷载:在荷载>移动荷载分析数据>车辆中选择公路工程技术标准(JTG B01-2003)的荷注意:a. 人群荷载也要单独定义一个车道b. 当在移动荷载工况中分别将汽车荷载和人群荷载定义为子荷载工况,并在移动荷载工况中将其定义为组合时,人群荷载的加载车道也将被认为是一个车道参与横向车道折减,定义人群荷载子荷载工况时,系数取0.8(根据通用规范4.1.6条第1项)。

Gen演示技巧汇总-上机操作

Gen演示技巧汇总-上机操作
某平板网架
腹杆: P 50x2.5 柱: HN 400x200x8/13
7. 常用工程
(2)弧形屋盖厂房
使用扩展单元可快速建立弧形屋盖,通过点 墙、平面应力、平面应变、对称单元。 线可生成柱,线 面生成板、
钢材:Q345 上弦:P 140x4.5 下弦: P 102x3.5 腹杆: P 50x2.5 柱: HN 400x200x8/13
腹杆: P 50x2.5
柱: HW 400x400x13/21
8. 常用输出
(1)混凝土平法输出 1)配筋面积图
8. 常用输出
(1)混凝土平法输出 2)实配钢筋图
8. 常用输出
(2)钢结构平法输出
钢柱验算结果
钢梁验算结果
8. 常用输出
(3)钢结构应力云图输出
8. 常用输出
(4)钢结构截面搜索和更新 1)搜索截面
2. 论坛推荐
(1) 官方支持、专人维护(/BBS)
2. 论坛推荐
(2) 24小时回帖、最新资料下载、同行交流、资源共享
3. 帮助汉化
(1) 在线帮助:及时更新、即时解惑、背景知识,是用Gen的第一个良师益友
3. 帮助汉化
(2) 全面汉化:子菜单的深度汉化、所有菜单和帮助文件汉化
(8)Excel表格兼容和操作:复制、排序、筛选等 一键生成Excel文件、地震波数据直接复制
7. 常用工程
(1)平板网架 可以快速建立平板网架模型,并对钢结构进行截面验算及优化设计,并提供强 度控制优化和位移控制优化两种优化方法。
钢材:Q345 上弦:P 140x4.5
下弦: P 102x3.5
一次性选择复杂模型中的水平梁构件、竖向构件
例如:分配弹塑性铰的操作就经常用到

工作总结范文精选:Midas应用个人心得与总结分享

工作总结范文精选:Midas应用个人心得与总结分享

Midas应用个人心得与总结分享一、钢筋混凝土弯桥:刚工作后接触的第一个计算:4*20半径70m。

用gqjs直线桥、midas空间梁单元弯桥、桥博梁格法分别建模计算。

midas思路:当时做法excel中计算节点坐标,pl导入cad,dxf导入midas。

注意局部坐标系的建立,支座与主梁采用刚性连接。

仅与其他软件比较弯矩内力和支反力,未考虑支座预偏心。

二、3-30滑模施工:为与桥博作比较,截面顶面中心对齐,建模节点与梁底节点加刚性连接。

顺便做了模态分析,基频计算与规范理论计算差不多。

通过有效宽度系数考虑应力验算的有效宽度。

注意梯度温差中B的取值、支座沉降组沉降的正负、施工阶段分析中的单元组、混凝土龄期、边界组取变形后、psc设计注意施工阶段用的荷载定义为施工阶段荷载。

荷载组合中预应力乘以0.8需要手动修改,,但是psc设计用的混凝土设计中的组合系数不用修改,程序自动考虑,三、横向预应力:等效荷载我是定义为用户定义荷载;自动生成组合后用包络再与用户定义荷载组合。

注意1.单向张拉钢束特征值的数据;2.长期组合中仅考虑恒活载,其余可不计。

附:1.根部弯矩一般比计算值大0.15-0.3,可参考城市规范,自己酌情考虑。

2.规范中冲击系数为1.3,有疑问,一般为0.3吧,布置是否笔误。

取1.3的话,承载能力要求太高了。

四、下部结构的联合计算:1)m法对节点采用节点弹性支撑系数的计算。

2)支座刚度的计算,在墩顶考虑支座加了约束3)截面特征系数的调整:0.67或0.85。

五.小箱梁上下部联合计算:验算小箱梁预应力,计算盖梁与qlt简支计算结果作比较,结论桥梁通简支计算偏不安全。

支座节点与箱梁节点采用弹性连接,支座与盖梁,盖梁与墩柱连接用刚性连接。

小箱梁之间释放端部约束,释放参数就拷各人把握了。

车道按照不利位置分几个模型分别加载,取其包络来控制盖梁配筋。

3-30预应力横向预应力计算考虑桩土作用墩子小箱梁个人总结,抛砖引玉26,4-50半径350滑模施工:做了特征值和反应谱计算,基频采用计算值。

Midas自己使用问题总结

Midas自己使用问题总结

Midas Gen自己使用问题总结注意:Midas Gen使用操作内容绝大部分都可以在“程序主菜单-帮助”系统中查到,非常方便。

一、零散问题总结1、Midas中的质量MIDAS中转换“质量”分两种,一种是“自重”,一种是“其他荷载”,前者在“模型-〉结构类型”中,后者在“模型-〉质量-〉将荷载转换成质量”中。

在MIDAS/Gen中,“模型 > 质量 > 将荷载转换成质量...”中不能将单元的自重转换为质量。

如果要做动力分析(包括地震动力分析),将结构的自重转化为质量,必须要在结构类型中设定相关条目。

即:可以通过“模型-〉结构类型-〉将结构的自重转换为质量”将模型中的单元质量自动转换为动力分析或计算静力等效地震荷载所需的集中质量。

2、Midas“由荷载组合建立荷载工况”该项目将荷载组合中的各荷载工况的组合建立为新的荷载工况。

对非线性单元(如索、只受拉或只受压单元)由于其非线性特性,单纯将各荷载工况的分析结果进行线性组合(荷载组合)是错误的,此时应该使用该功能将荷载组合(如1.2D+1.4L)定义为一个荷载工况作用于结构上,方能得到正确的分析结果。

路径:从主菜单中选择荷载 > 由荷载组合建立荷载工况...或者….从树形菜单中选择静力荷载 > 由荷载组合建立荷载工况...3、“刚域效果”与“设定梁端部刚域”刚域效果:自动考虑杆系结构中柱构件和梁构件(与柱连接的水平单元)连接节点区的刚域效应,刚域效应反映在梁单元中,平行于整体坐标系Z轴的梁单元将被视为柱构件,整体坐标系X-Y平面内的梁单元将被视为梁构件。

路径:从主菜单中选择模型 > 边界条件 > 刚域效果...或者从树形菜单的菜单表单中选择模型 > 边界条件 > 刚域效果设定梁端部刚域:该功能主要适用于梁单元(梁、柱)间的偏心设定。

当梁单元间倾斜相交,用户要考虑节点刚域效果时,需使用该功能进行设定。

在“主菜单中的模型>边界条件>刚域效果”只能考虑梁柱直交时的效果。

Midas自己使用问题总结

Midas自己使用问题总结

Midas Gen自己使用问题总结注意:Midas Gen使用操作内容绝大部分都可以在“程序主菜单-帮助”系统中查到,非常方便。

一、零散问题总结1、Midas中的质量MIDAS中转换“质量”分两种,一种是“自重”,一种是“其他荷载”,前者在“模型-〉结构类型”中,后者在“模型-〉质量-〉将荷载转换成质量”中。

在MIDAS/Gen中,“模型> 质量> 将荷载转换成质量...”中不能将单元的自重转换为质量。

如果要做动力分析(包括地震动力分析),将结构的自重转化为质量,必须要在结构类型中设定相关条目。

即:可以通过“模型-〉结构类型-〉将结构的自重转换为质量”将模型中的单元质量自动转换为动力分析或计算静力等效地震荷载所需的集中质量。

2、Midas“由荷载组合建立荷载工况”该项目将荷载组合中的各荷载工况的组合建立为新的荷载工况。

对非线性单元(如索、只受拉或只受压单元)由于其非线性特性,单纯将各荷载工况的分析结果进行线性组合(荷载组合)是错误的,此时应该使用该功能将荷载组合(如 1.2D+1.4L)定义为一个荷载工况作用于结构上,方能得到正确的分析结果。

路径:从主菜单中选择荷载> 由荷载组合建立荷载工况...或者….从树形菜单中选择静力荷载> 由荷载组合建立荷载工况...3、“刚域效果”与“设定梁端部刚域”刚域效果:自动考虑杆系结构中柱构件和梁构件(与柱连接的水平单元)连接节点区的刚域效应,刚域效应反映在梁单元中,平行于整体坐标系Z轴的梁单元将被视为柱构件,整体坐标系X-Y平面内的梁单元将被视为梁构件。

路径:从主菜单中选择模型> 边界条件> 刚域效果...或者从树形菜单的菜单表单中选择模型> 边界条件> 刚域效果设定梁端部刚域:该功能主要适用于梁单元(梁、柱)间的偏心设定。

当梁单元间倾斜相交,用户要考虑节点刚域效果时,需使用该功能进行设定。

在“主菜单中的模型>边界条件>刚域效果”只能考虑梁柱直交时的效果。

midas学习总结2(2011-11-5)

midas学习总结2(2011-11-5)

midas学习总结2(2011-11-5)第一篇:midas学习总结2(2011-11-5)midas学习总结2(2011-11-5)今天学习了“细部分析”。

——进行细部分析主要包括以下两种方法。

1)通过将细部模型插入整体模型而进行分析的方法。

2)将整体分析的变形结果以强制位移输入到细部模型的方法。

——建立板单元的方法是使用“单元>扩展单元”中的“扩展类型>线单元 平面单元”功能,由临时的梁单元得到板单元。

注意在此之前要先定义板的厚度。

——将细部模型插入整体模型而进行分析时,要在梁与板相同坐标的节点处,建立“刚性连接”,使它们具有相同的变形。

——使用第二种方法时,在细部模型上要施加与简化结构相同的荷载,同时还要施加强制位移。

——由于在细部模型中输入强制位移,等同于将一个很大的荷载施加在模型上,因此若要查看由自重所引起的微小变形是比较困难的。

在MIDAS/CIVIL中,可通过选择显示相对位移的方式来查看微小变形。

方法:点击“变形”后的,在弹出的对话框里,选中“相对变形”即可。

——板单元是通过在高斯点进行分析后用外插法计算来输出节点处的结果的,因此即使是相同的节点也会根据与其连接的单元的不同而输出不同的计算结果。

选项中若选择单元,则输出各单元的节点的计算值;若选择节点平均值,则输出各单元在该节点的计算结果的平均值。

通常使用节点平均值,然而需要注意的是,对于水平单元与竖向单元相连接处的节点而言,如果选择节点平均值,则有可能输出毫无意义的结果。

(详细资料请参照在线帮助手册)Sig-XX:正应力Sig-EFF:有效应力(主应力,von Mises stress)第二篇:MIDAS CC总结MIDAS实战技巧50条1、如何利用板单元建立变截面连续梁(连续刚构)的模型?建立模型后如何输入预应力钢束?使用板单元建立连续刚构(变截面的方法)可简单说明如下:1)首先建立抛物线(变截面下翼缘);2)使用单元扩展功能由直线扩展成板单元,扩展时选择投影,投影到上翼缘处。

(总结)midasgen学习总结

(总结)midasgen学习总结

Midas Gen 学习总结一、YJK导入gen(详见“YJK模型转midas模型程序功能与使用”)1.版本选择选择版本V7.30,YJK中的地震反应谱函数和反应谱工况的相关内容不转换V8.00则进行转换。

建议取V8.00。

2.质量来源(质量源)同YJK:查看midas工作树形菜单中“质量”只有节点质量,各节点的质量大小及分布与YJK完全一致,不需要在gen中再将荷载和自重转换为质量。

建议取此选项。

Midas自算:查看midas工作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将自重转化为质量”也自动勾选。

转入了在YJK定义的各种材料重度及密度。

3.墙体转换板:墙与连梁(墙开洞方式)都转换成midas的板单元,自动网格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。

墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。

分析结果没有板单元精确,但能按规范给出配筋设计。

4. 楼板表现楼板分块:导入到midas楼板为3节点或4节点楼板,需要在midas划分网格。

YJK网格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导入midas网格已划分,同时梁也实现分割,与板边界耦合。

4.楼屋面荷载板上均布荷载:导入midas楼面荷载同YJK。

导入后查看是否存在整层节点“刚性连接”。

导到周围梁墙:导入midas楼面荷载分配到周边梁墙。

二、gen建模、分析1、建模过程:(cad导入法)①前期准备:修改模型单位(mm)→定义材料、截面和厚度;②构件建模:从cad中导入梁→单元扩展生成柱墙→墙体分割与开洞→定义楼板类型(刚性板/弹性板);③施加荷载:定义静力荷载工况(恒、活、X/Y风)→分配楼面荷载和施加梁荷载→定义风荷载→定义反应谱和地震作用(Rx、Ry)→定义自重;④补充定义:荷载转化成质量→结构自重转化成质量→定义边界(支承条件、释放约束)→定义结构类型和层数据;⑤运行分析:先设定特征值的振型数量,然后点击运行分析。

迈达斯学习总结

迈达斯学习总结

迈达斯学习总结
一.定义材料属性及构件截面二.建立轴网及布置构件
(1)梁(弧形梁,选中线-建立曲线并分割单元)(2)柱(选中节点-扩展)
(3)墙(选中线-扩展,墙开洞-分割单元)
三.复制或定义层数据四.定义荷载:
(1)静力工况荷载
(2)定义楼面荷载类型将荷载转换为质量

3)楼面荷载分配(4)梁单元荷载
(5)风荷载(两个方向,迈达斯中迎风面取楼层上下各半层)(6)添加反应谱数据(7)自重
将自重转换为质量
五.结构边界条件
柱低:约束所有方向
嵌固层:约束X 、Y 方向平动和Z 方向转动
恒载 DEAD 活载 LIVE 风载 WX 风载 WY
一.定义材料属性及构件截面
二.建立轴网及布置构件
(1)弧形梁,选中线-建立曲线并分割单元
次梁采用复制单元和移动, 或者拖放功能
(2)柱:选中柱节点—单元扩展
(3)墙(选中线-扩展,墙开洞-分割单元)
墙开洞口用分割:
三.复制或定义层数据
四.定义荷载
(1)静力工况荷载
(2)定义楼面荷载类型(5)风荷载
(6)添加反应谱数据(7)自重
五.结构边界条件
柱低:约束所有方向。

midas学习总结1(2011-11-4)

midas学习总结1(2011-11-4)

Midas学习总结1(2011-11-4)1界面操作类1)“工具>用户制定>工具条”中可以自定义显示在截面上的快捷图标;2)建模之前先简单介绍一下鼠标编辑功能。

在建立、复制节点和单元或者输入荷载等建模过程中,需输入坐标、距离、节点或单元的编号等数据,此时可使用鼠标点击输入的方式来代替传统的键盘输入方式。

用鼠标点击一下输入栏,其变为草绿色时,即可使用鼠标编辑功能。

对于大部分前处理工作都可使用鼠标编辑功能,用户手册或例题资料中的‘ ’标志即表示该处可使用鼠标编辑功能。

注意:输入单元时使用鼠标编辑功能的话,点击节点的同时会生成单元,故不需另行点击键。

说明:这一功能在“打开栅格”后建立简单的模型的时候比较实用。

其他的时候可以忽略。

3)MIDAS/CIVIL是三维空间结构分析程序,故每个节点有6个自由度(Dx, Dy, Dz, Rx, Ry, Rz)。

如图10所示,这6个自由度在模型中是由6个三角形按顺序组成的6边形表现的,被约束的自由度其三角形颜色会变成绿色,以便区分。

六个三角形分别代表的自由度见下图:4)输入节点荷载、梁单元荷载、压力荷载等荷载前,需先定义静力荷载工况(Static Load Case)。

5)MIDAS/CIVIL提供系统温度、节点温度、单元温度和温度梯度等与温度相关的荷载。

系统温度: 对整个模型输入的轴向温度荷载节点荷载: 对节点输入的轴向温度荷载,故如果选择了所有节点则等同于输入系统温度单元温度: 对单元输入的轴向温度荷载温度梯度: 对梁单元和板单元输入的上下/左右各面的温度差补充:由于弯矩是温度梯度的函数,故随着单元截面的高度或宽度不同,即使输入相同的温度差,其计算结果也会是不同的。

因此,如果建立的梁单元的尺寸与实际结构有差异,可选择‘使用截面的Hz’后输入计算温度梯度时要使用的截面高度。

6)复制单元时可钩选复制单元属性、复制节点属性,这样可同时复制节点和单元的边界条件、荷载和质量等。

学习midas心得---精品模板

学习midas心得---精品模板

练习midas时的心得首先在CAD中将需要导入的截面画好(注意截面必须是闭合的!),然后保存为DXF文件;在midas中打开截面特性计算器,选择与CAD一致的单位,再导入DXF文件,然后点生成截面、计算截面特性再保存为sec文件;在midas 中截面添加选择spc数值,点击导入spc截面就是保存的sec文件!然后只需要设置一些截面的参数就可以了!Merge straight lines 按钮关掉。

冲击系数的输入:分析/ 移动荷载分析控制/ 选择结构设计结果表格中应力压为正,拉为负。

一、荷载工况:施工荷载指的是临时荷载如挂蓝、临时设备,施工完就钝化,施工阶段荷载是指施工开始这个荷载已经存在并到施工结束后依然保留,施工阶段荷载更多的意思是指荷载从什么阶段开始出现。

ST:成桥阶段;CS:施工阶段。

(参见123页、P81),预应力、初应力、收缩及徐变均须为施工阶段荷载工况(CS),自重和二期恒载均应该为施工阶段荷载,施工步骤定义中施加的荷载都作为施工阶段荷载组合,即作为恒载组合了,比如预应力类型定义为预应力时,在定义施工步骤时施加了预应力,那么荷载组合时预应力组合在恒载中,同时又组合在CS中,组合了两次,因此预应力、初应力、收缩及徐变均定义荷载类型为施工阶段荷载;在定义施工步骤时,整体升温、桥面升温、风荷载等均不能定义在施工步骤中,荷载类型须选择各自类型,荷载组合作用成桥荷载(ST)进行组合;成桥阶段荷载(ST,postCS)(温度、风荷载、流水等)不应定义在施工步骤中。

混凝土徐变须定义一个是个阶段二、变截面定义和联合截面定义1、在截面数据中定义变截面,定义好后负给相应单元,然后定义变截面组,打开变截面组,运行添加和转化为变截面.2、联合截面定义是定义两种截面,定义施工阶段好后,再定义施工阶段联合截面,注意Cy和Cz表示对于User type,需要输入各位置的形心到联合后截面左下角的距离三、混凝土收缩和徐变定义1、定义依存性材料(徐变/收缩)(C),填混凝土强度、构建理论厚度(任意值,一般为1,厚度自动计算);2、定义依存性材料(抗压强度)(O),选择CEB—FIP规范,水泥类型选择N,R:0。

Midas自己使用问题总结

Midas自己使用问题总结

Midas Gen自己使用问题总结注意:Midas Gen使用操作内容绝大部分都可以在“程序主菜单-帮助”系统中查到,非常方便。

一、零散问题总结1、Midas中的质量MIDAS中转换“质量”分两种,一种是“自重”,一种是“其他荷载”,前者在“模型-〉结构类型”中,后者在“模型-〉质量-〉将荷载转换成质量”中。

在MIDAS/Gen中,“模型> 质量> 将荷载转换成质量...”中不能将单元的自重转换为质量。

如果要做动力分析(包括地震动力分析),将结构的自重转化为质量,必须要在结构类型中设定相关条目。

即:可以通过“模型-〉结构类型-〉将结构的自重转换为质量”将模型中的单元质量自动转换为动力分析或计算静力等效地震荷载所需的集中质量。

2、Midas“由荷载组合建立荷载工况”该项目将荷载组合中的各荷载工况的组合建立为新的荷载工况。

对非线性单元(如索、只受拉或只受压单元)由于其非线性特性,单纯将各荷载工况的分析结果进行线性组合(荷载组合)是错误的,此时应该使用该功能将荷载组合(如 1.2D+1.4L)定义为一个荷载工况作用于结构上,方能得到正确的分析结果。

路径:从主菜单中选择荷载> 由荷载组合建立荷载工况...或者….从树形菜单中选择静力荷载> 由荷载组合建立荷载工况...3、“刚域效果”与“设定梁端部刚域”刚域效果:自动考虑杆系结构中柱构件和梁构件(与柱连接的水平单元)连接节点区的刚域效应,刚域效应反映在梁单元中,平行于整体坐标系Z轴的梁单元将被视为柱构件,整体坐标系X-Y平面内的梁单元将被视为梁构件。

路径:从主菜单中选择模型> 边界条件> 刚域效果...或者从树形菜单的菜单表单中选择模型> 边界条件> 刚域效果设定梁端部刚域:该功能主要适用于梁单元(梁、柱)间的偏心设定。

当梁单元间倾斜相交,用户要考虑节点刚域效果时,需使用该功能进行设定。

在“主菜单中的模型>边界条件>刚域效果”只能考虑梁柱直交时的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Midas Gen 学习总结一、YJK导入gen(详见“YJK模型转midas模型程序功能与使用”)1.版本选择选择版本V7.30,YJK中的地震反应谱函数和反应谱工况的相关内容不转换V8.00则进行转换。

建议取V8.00。

2.质量来源(质量源)同YJK:查看midas工作树形菜单中“质量”只有节点质量,各节点的质量大小及分布与YJK完全一致,不需要在gen中再将荷载和自重转换为质量。

建议取此选项。

Midas自算:查看midas工作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将自重转化为质量”也自动勾选。

转入了在YJK定义的各种材料重度及密度。

3.墙体转换板:墙与连梁(墙开洞方式)都转换成midas的板单元,自动网格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。

墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。

分析结果没有板单元精确,但能按规范给出配筋设计。

4. 楼板表现楼板分块:导入到midas楼板为3节点或4节点楼板,需要在midas划分网格。

YJK网格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导入midas网格已划分,同时梁也实现分割,与板边界耦合。

4.楼屋面荷载板上均布荷载:导入midas楼面荷载同YJK。

导入后查看是否存在整层节点“刚性连接”。

导到周围梁墙:导入midas楼面荷载分配到周边梁墙。

二、gen建模、分析1、建模过程:(cad导入法)①前期准备:修改模型单位(mm)→定义材料、截面和厚度;②构件建模:从cad中导入梁→单元扩展生成柱墙→墙体分割与开洞→定义楼板类型(刚性板/弹性板);③施加荷载:定义静力荷载工况(恒、活、X/Y风)→分配楼面荷载和施加梁荷载→定义风荷载→定义反应谱和地震作用(Rx、Ry)→定义自重;④补充定义:荷载转化成质量→结构自重转化成质量→定义边界(支承条件、释放约束)→定义结构类型和层数据;⑤运行分析:先设定特征值的振型数量,然后点击运行分析。

2、分析结果①添加荷载组合;②周期与振型(对应周期比,与YJK对比分析的第一步);③稳定验算(对应刚重比);④侧向刚度不规则验算(对应侧向刚度比,考虑Ex、Ey);⑤楼层承载力突变验算(对应层剪力比,考虑Ex、Ey);⑥层剪重比(反应谱分析)(对应剪重比, ,考虑Ex、Ey);⑦层间位移角(对应层间位移角,考虑Wx、Wy、Ex、Ey);⑧扭转不规则验算(对应层间位移比,考虑Ex、Ey、ECCX(RS)、ECCY(RS))。

⑨层位移(对应位移比,考虑Ex、Ey、ECCX(RS)、ECCY(RS))还可以查看:反力、变形、内力、应力、倾覆弯矩、质量比、偏心率等结果。

三、相关设计要点1.Gen提供了自动生成风荷载的功能,该功能一般适用于各层均有刚性楼板的结构上。

Q:要是弹性楼板,风荷载还能自动生成吗?2.P-Delta分析控制:此处应指重力二阶效应P-△(应注意区分构件挠曲二阶效应P-δ,两者组成了建筑结构的几何非线性二阶效应)。

Gen推荐只考虑恒载工况,而YJK为恒活工况组合。

另外Gen做P-Delta分析建议解除刚性板假定。

3.特征值分析:gen默认采用Lanczos,YJK默认采用WYD-Ritz。

4.Gen关于楼板的定义①如何考虑YJK中楼板的定义:注:局部楼板为弹性楼板,在midas gen中如何实现?答:在“边界条件”中的“解除刚膜连接”来实现。

②厚板与薄板:厚板考虑了横向剪切变形的影响,与板的实际情况更符合。

③约束平面内旋转自由度:勾选,板单元与梁单元间的连接为刚接,不勾选则铰接。

④楼板是否建入模型中楼板即使建入,也不能考虑板对梁翼缘的刚度贡献,即梁刚度还是需手动设放大系数。

当采用“分配楼面荷载”输入时,可不建板。

但当按“压力荷载”输入时,必须有楼板,此情况适用于楼板温度应力、舒适度、大开洞、异形板分析等情况。

5.如何建立虚梁截面定义为100x100,弹性模量设为较小值,容重设置为0。

6.midas/gen应用实例教程及疑难解答8.4.1.9条指出“程序规定将风荷载加在楼板刚心上,如果解除其中一层刚性楼板假定,会把风荷载分配到相邻上下两层中。

”经实践,V8.00勾选“对弹性板考虑风荷载和静力地震作用”,将风荷载自动分配到本楼层的所有节点上。

四、板单元内力与应力查看1.板单元内力:Mxx:作用在与局部坐标系或用户坐标系x轴垂直平面内,绕y轴旋转的单位宽度弯矩(绕Myy:作用在与局部坐标系或用户坐标系y轴垂直平面内,绕x轴旋转的单位宽度弯矩(绕Mxy:作用在与局部坐标系或用户坐标系x轴垂直平面内,绕x轴旋转的单位宽度扭矩(Mxy=Myx)。

Vxx:作用在与局部坐标系或用户坐标系x轴垂直平面内,沿单元局部坐标系或用户坐标系z轴(厚度)方向上单位宽度的剪力。

Vyy:作用在与局部坐标系或用户坐标系y轴垂直平面内,沿单元局部坐标系或用户坐标系z轴(厚度)方向上单位宽度的剪力。

2.板单元应力在整体坐标系中Sig-XX:整体坐标系X轴方向的轴向应力。

Sig-YY:整体坐标系Y轴方向的轴向应力。

Sig-ZZ:整体坐标系Z轴方向的轴向应力。

Sig-XY:整体坐标系X-Y平面内的剪应力。

Sig-YZ:整体坐标系Y-Z平面内的剪应力。

Sig-XZ:整体坐标系X-Z平面内的剪应力。

Sig-Max:最大主应力。

Sig-Min:最小主应力。

Sig-EFF:有效应力(von-Mises 应力)。

在单元坐标系中Sig-xx:在单元局部坐标系x方向的轴向应力(垂直于局部坐标系y-z平面)Sig - yy:在单元局部坐标系y方向的轴向应力(垂直于局部坐标系x-z平面)Sig - xy:单元局部坐标系x-y平面内的剪应力(平面内剪应力)向量:用矢量显示最大和最小主应力。

3.通过板内力与应力求得配筋梁①普通工况(对于楼板,主要考虑恒活,对于墙,主要考虑风、地震)对于楼板,配筋可查看Mxx、Myy,而板顶和板底应力由Mxx和Myy引起,关系如下图:由图上可知,q1=q2=3.14Mpa,Mxx=8.84kN,板厚130mm,混凝土标号C35,a s=25mm,As=239.8mm2,取1m作为计算长度。

复核过程:Mxx=2M1=-2q1L2/3=-2x(-3.14)x652/3x1000=8.84x106N.mm=8.84kN.m。

配筋根据Mxx求As,计算截面取1000x130,使用探索者计算工具按抗弯构件正截面验算求得As=239.8mm2。

通过复核,数据吻合。

另外通过实践发现,应力和配筋之间的比值近似相同,具体详见“应力配筋法”。

②温度工况Gen在计算温度作用时,需注意:1.楼板释放刚性板假定,查看“刚性连接”和层数据;2.楼板面内面外厚度均按实际,同弹性板6,并进行网格划分;3.通常按“系统温度”输入,输入数值等于YJK输入温差乘以徐变折减系数(注意:YJK查看温度应力,应查看调整后,“调整后”即考虑徐变折减)。

通过查看Fxx和Fyy,按轴向受拉构件计算温降工况下的配筋量,分项系数取1.4,组合值系数取0.6(是否考虑0.6,要对比温度荷载和活荷载,判断温度荷载是否会成为主导活荷载或称第一活荷载,此系数对配筋影响很大)。

(参考资料中通常采用温度应力sig-xx和sig-yy 才表示温降工况的影响,sig-xx=Fxx/h,h为板厚)案例:湘东医院,框架结构,X向近120米,中间跨楼板Fxx大致为180kN,C30,板厚120,三级钢,不考虑组合值系数。

一层板底X向额外附加钢筋As1=1.4x180x1000/360/2=350mm2。

五、组合结构分析设计要点1、钢结构与混凝土的连接,一般取弹性连接;2、组阻尼:按应变能因子输入,在反应谱荷载工况的“阻尼比计算方法”选择应变能因子。

3、风荷载:定义速度压后,按面风压、梁单元风压、节点风压自动施加,不需要加蒙皮。

通过“风荷载形状”复核。

六、楼板舒适度分析1.竖向自振频率(混规3.4.6条和高钢规)①按弹性板建立模型,网格划分按成人步距,一般可取0.6~1.0m。

②定义质量:将自重转换为质量,转换为Z;将荷载转换成质量,方向为Z,取1.0恒+0.25活。

③振型数量:满足振型质量参与系数90%④结果查看:2.楼盖加速度峰值(高规3.7.7条)①前期准备弹性模量修改:midas杨工指出动力荷载作用下混凝土弹性模量可放大1.2倍。

初始荷载:先定义一个D+L的工况组合,然后“使用荷载组合”建立荷载工况。

②定义时程荷载工况参数中一般选择“线性”、“振型叠加法”、“瞬态”;分析时间:当采用连续步行荷载时,分析时间不小于荷载时间。

当采用单步(分单步单工况和单步多工况)步行荷载时,与荷载时间保持一致。

分析时间步长:取基本周期(midas杨工指出是取满足振型质量参与系数90%时,最大振型数对应的周期)的10%。

加载顺序:连续和单步单工况,初始条件取之前定义好的初始荷载D+L。

单步多工况时,第一工况无初始条件,后续工况按前一工况作为初始条件。

阻尼比:混凝土结构取0.05,钢结构取0.02。

③定义时程函数步行荷载工况时程函数:主要用到“行走1步”和“连续行走”,fs根据慢走和快走取1.6~2.4Hz,其中连续行走通过反复次数来控制荷载时间。

放大系数:单人行走取1,多人行走按以下取值:人群密度小于0.5人/m2,放大系数取人群总人数开根号,人群密度大于1人/m2,放大系数取人群总人数开根号,再乘以1.85。

④指定节点动力荷载连续步行:输入工况和函数,方向取Z,到达时间不用修改,系数取-1。

单步单工况:输入工况和函数,方向取Z,到达时间按路径上各节点依次输入,系数取-1。

单步多工况:输入第一个工况和单步函数,方向取Z,到达时间取0,系数取-1。

然后依次输入其他工况。

⑤分析结果查看时程图形,定义函数:选择节点,勾选加速度,成分取Z。

然后从函数列表添加到竖轴。

注:若严格按高规附录A进行验算,上述参数中时程函数放大选择“最大值”,阻尼比按附录A取值。

相关文档
最新文档