内蒙古兴安盟兴安盟中考数学试题
2024届内蒙古兴安盟地区两旗一县市级名校中考联考数学试题含解析
2024学年内蒙古兴安盟地区两旗一县市级名校中考联考数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.抛物线经过第一、三、四象限,则抛物线的顶点必在()A.第一象限B.第二象限C.第三象限D.第四象限2.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米3.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于()A.2 B.3 C.4 D.64.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-5.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A.甲的速度是10km/h B.乙的速度是20km/hC.乙出发13h后与甲相遇D.甲比乙晚到B地2h6.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣57.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.8.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.91032π⎛⎫-⎪⎝⎭米2B.932π⎛⎫-⎪⎝⎭米2C.9632π⎛⎫-⎪⎝⎭米2D.()693π-米29.81的算术平方根是()A.9 B.±9 C.±3 D.310.如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,有如下五个结论①AE⊥AF;②EF:AF=2:1;③AF2=FH•FE;④∠AFE=∠DAE+∠CFE ⑤ FB:FC=HB:EC.则正确的结论有()A.2个B.3个C.4个D.5个11.下列各式正确的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣201812.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为.14.如图,四边形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则△CQR 的周长的最小值为_________ .15.在Rt△ABC中,∠C=90°,sinA=12,那么cosA=________.16.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.17.分解因式:4x2﹣36=___________.18.点(1,–2)关于坐标原点O 的对称点坐标是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有人,m=,n=;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.20.(6分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.21.(6分)先化简,再求值:2569122x xx x-+⎛⎫-÷⎪++⎝⎭,其中x=-522.(8分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C 在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:2≈1.41,3≈1.73,10≈3.16)23.(8分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?24.(10分)对于平面直角坐标系xOy 中的点()(),0Q x y x ≠,将它的纵坐标y 与横坐标x 的比yx称为点Q 的“理想值”,记作Q L .如()1,2Q -的“理想值”221Q L ==--.(1)①若点()1,Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_______; ②如图,)3,1C,C 的半径为1.若点Q 在C 上,则点Q 的“理想值”Q L 的取值范围是_______.(2)点D 在直线33y x =+上,D 的半径为1,点Q 在D 上运动时都有03Q L ≤≤求点D 的横坐标D x 的取值范围;(3)()()2,0M m m >,Q 是以r 为半径的M 上任意一点,当022Q L ≤≤写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)25.(10分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图(1)中画出一个等腰△ABE ,使其面积为3.5;(2)在图(2)中画出一个直角△CDF ,使其面积为5,并直接写出DF 的长.26.(12分)在平面直角坐标系中,关于x 的一次函数的图象经过点(47)M ,,且平行于直线2y x =. (1)求该一次函数表达式;(2)若点Q (x ,y )是该一次函数图象上的点,且点Q 在直线32y x =+的下方,求x 的取值范围.27.(12分)计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、A 【解题分析】根据二次函数图象所在的象限大致画出图形,由此即可得出结论. 【题目详解】∵二次函数图象只经过第一、三、四象限,∴抛物线的顶点在第一象限. 故选A .【题目点拨】本题考查了二次函数的性质以及二次函数的图象,大致画出函数图象,利用数形结合解决问题是解题的关键.2、C【解题分析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.3、C【解题分析】设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,∴R=4cm.故选C.4、C【解题分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【题目详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【题目点拨】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.5、B【解题分析】由图可知,甲用4小时走完全程40km,可得速度为10km/h;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.故选B6、A【解题分析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.7、B【解题分析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.8、C【解题分析】连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=12OA=12×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴2222CD OD OC6333=-=-=.又∵CD333sin DOCOD62∠===,∴∠DOC=60°.∴2606193336336022DOCAODS S Sππ∆⋅⋅=-=-⨯⨯=-阴影扇形(米2).故选C.9、D【解题分析】根据算术平方根的定义求解.【题目详解】81,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.811.故选:D.【题目点拨】考核知识点:算术平方根.理解定义是关键.10、C【解题分析】由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否. 【题目详解】解:由题意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此选项①正确;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正确;∵△AEF是等腰直角三角形,有:1,故此选项②正确;∵△AEF与△AHF不相似,∴AF2=FH·FE不正确.故此选项③错误,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此选项⑤正确.故选:C【题目点拨】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.11、A【解题分析】根据去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则依次计算各项即可解答.【题目详解】选项A,﹣(﹣2018)=2018,故选项A正确;选项B,|﹣2018|=2018,故选项B错误;选项C,20180=1,故选项C错误;选项D,2018﹣1=12018,故选项D错误.故选A.【题目点拨】本题去括号法则、绝对值的性质、零指数幂的计算法则及负整数指数幂的计算法则,熟知去括号法则、绝对值的性质、零指数幂及负整数指数幂的计算法则是解决问题的关键.12、C【解题分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【题目详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【题目点拨】考核知识点:解不等式组.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1 6【解题分析】试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,∴两个骰子的点数相同的概率为:=.故答案为.考点:列表法与树状图法.14、462【解题分析】作C关于AB的对称点G,关于AD的对称点F,可得三角形CQR的周长=CQ+QR+CR=GQ+QR+RF≥GF.根据圆周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD 于H,可求BD的长,从而求出△CQR的周长的最小值.【题目详解】解:作C关于AB的对称点G,关于AD的对称点F,则三角形CQR的周长=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=12 CDAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四点共圆,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+2×cos30°=2226,∵CD=DF,CB=BG,∴GF=2BD=4246,△CQR的周长的最小值为426.【题目点拨】本题考查了轴对称问题,关键是根据轴对称的性质和两点之间线段最短解答.15、3 2【解题分析】∵Rt △ABC 中,∠C=90°,∴sinA=ac, ∵sinA=12,∴c=2a ,∴b=223c a a -= , ∴cosA=32b c =, 故答案为32.16、25【解题分析】根据随机事件概率大小的求法,找准两点: ①符合条件的情况数目; ②全部情况的总数.二者的比值就是其发生的概率的大小. 【题目详解】解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球, ∴从中任意摸出一个球,则摸出白球的概率是25. 故答案为:25. 【题目点拨】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.mn17、4(x+3)(x ﹣3) 【解题分析】分析:首先提取公因式4,然后再利用平方差公式进行因式分解. 详解:原式=()()()2494x 3x 3x -=+-.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.18、(-1,2)【解题分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【题目详解】A(1,-2)关于原点O的对称点的坐标是(-1,2),故答案为:(-1,2).【题目点拨】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、解:(1)400;15%;35%.(2)1.(3)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示:(4)列树状图得:∵从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,∴小明参加的概率为:P(数字之和为奇数)82 123 ==;小刚参加的概率为:P (数字之和为偶数)41123==. ∵P (数字之和为奇数)≠P (数字之和为偶数), ∴游戏规则不公平. 【解题分析】(1)根据“基本了解”的人数以及所占比例,可求得总人数:180÷45%=400人.在根据频数、百分比之间的关系,可得m ,n 的值:60m 100%15%n 15%15%45%35%400=⨯==---=,. (2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D 部分扇形所对应的圆心角:360°×35%=1°.(3)根据D 等级的人数为:400×35%=140,据此补全条形统计图. (4)用树状图或列表列举出所有可能,分别求出小明和小刚参加的概率,若概率相等,游戏规则公平;反之概率不相等,游戏规则不公平. 20、1【解题分析】解:取时,原式.21、13x -,-18【解题分析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.详解:2569122x x x x -+⎛⎫-÷⎪++⎝⎭()23223x x x x -+=⨯+- 13x =-. 当5x =-时,原式18=-. 点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点. 22、2.1.据题意得出tanB =13, 即可得出tanA, 在Rt△ADE中, 根据勾股定理可求得DE, 即可得出∠FCE的正切值, 再在Rt△CEF中, 设EF=x,即可求出x, 从而得出CF=1x的长.【题目详解】解:据题意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),∴CF=1x=≈2.1,∴该停车库限高2.1米.点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值.23、(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人. 【解题分析】(1)根据条形统计图,求个部分数量的和即可; (2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解. 【题目详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查. (2)最喜欢足球活动的有10人,10=20%50, ∴最喜欢足球活动的人占被调查人数的20%. (3)全校学生人数:400÷(1﹣30%﹣24%﹣26%) =400÷20% =2000(人)则全校学生中最喜欢篮球活动的人数约为2000×1850=720(人). 【题目点拨】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.24、(1)①﹣3;②0Q L ≤≤(2)4D x ≤≤(3 【解题分析】(1)①把Q (1,a )代入y=x-4,可求出a 值,根据理想值定义即可得答案;②由理想值越大,点与原点连线与x 轴夹角越大,可得直线OQ 与D 相切时理想值最大,C 与x 中相切时,理想值最小,即可得答案;(2)根据题意,讨论D 与x 轴及直线y =相切时,L Q 取最小值和最大值,求出D 点横坐标即可;(3)根据题意将点M 转化为直线2x =,Q 点理想值最大时点Q 在y =上,分析图形即可.(1)①∵点()1,Q a 在直线4y x =-上, ∴143a =-=-, ∴点Q 的“理想值”31Q L -==-3, 故答案为:﹣3. ②当点Q 在D 与x 轴切点时,点Q 的“理想值”最小为0.当点Q 纵坐标与横坐标比值最大时,Q 的“理想值”最大,此时直线OQ 与D 切于点Q ,设点Q (x ,y ),C 与x 轴切于A ,与OQ 切于Q ,∵C (3,1),∴tan ∠COA=CA OA =33, ∴∠COA=30°, ∵OQ 、OA 是C 的切线,∴∠QOA=2∠COA=60°, ∴yx=tan ∠QOA=tan60°=3, ∴点Q 的“理想值”为3,故答案为:03Q L ≤≤(2)设直线与x 轴、y 轴的交点分别为点A ,点B , 当x=0时,y=3, 当y=0时,3-,解得:x=33 ∴()33,0A ,()0,3B .∴33OA =,3OB =,∴tan ∠OAB=33OB OA =, ∴30OAB ∠=. ∵03Q L ≤≤,∴①如图,作直线3y x =. 当D 与x 轴相切时,L Q =0,相应的圆心1D 满足题意,其横坐标取到最大值.作11D E x ⊥轴于点1E , ∴11D E OB ,∴111D E AE BO AO=. ∵D 的半径为1,∴111D E =. ∴13AE =,∴1123OE OA AE =-=. ∴123D x =.②如图 当D 与直线3y x =相切时,L Q 3,相应的圆心2D 满足题意,其横坐标取到最小值.作22D E x ⊥轴于点2E ,则22D E OA ⊥. 设直线3y x =与直线33y x =+的交点为F .∵直线3y x =中,k=3, ∴60AOF ∠=,∴OF AB ⊥,点F 与Q 重合, 则39cos 3322AF OA OAF =⋅∠=⨯=. ∵D 的半径为1,∴21D F =. ∴2272AD AF D F =-=. ∴227373cos 224AE AD OAF =⋅∠=⨯=, ∴22534OE OA AE =-=. ∴2534D x =.由①②可得,D x 的取值范围是5334D x ≤≤ (3)∵M (2,m ), ∴M 点在直线x=2上, ∵022Q L ≤≤ ∴L Q 取最大值时,yx=22 ∴作直线y=22,与x=2交于点N ,当M与ON和x轴同时相切时,半径r最大,根据题意作图如下:M与ON相切于Q,与x轴相切于E,把x=2代入y=22x得:y=42,∴NE=42,OE=2,ON=22NE OE+=6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴NQM NEO∆∆,∴MQ MN NE MEOE ON ON-==,即4226r r-=,解得:r=2.∴最大半径为2.【题目点拨】本题是一次函数和圆的综合题,主要考查了一次函数和圆的切线的性质,解答时要注意做好数形结合,根据图形进行分类讨论.25、(1)见解析;(2)DF10【解题分析】(1)直接利用等腰三角形的定义结合勾股定理得出答案;(2)利用直角三角的定义结合勾股定理得出符合题意的答案.【题目详解】(1)如图(1)所示:△ABE,即为所求;(2)如图(2)所示:△CDF即为所求,10.【题目点拨】此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键.26、(1)2-1y x =;(2)3x >-.【解题分析】(1)由题意可设该一次函数的解析式为:2y x b =+,将点M (4,7)代入所设解析式求出b 的值即可得到一次函数的解析式;(2)根据直线上的点Q (x ,y )在直线32y x =+的下方可得2x -1<3x +2,解不等式即得结果.【题目详解】解:(1)∵一次函数平行于直线2y x =,∴可设该一次函数的解析式为:2y x b =+,∵直线2y x b =+过点M (4,7),∴8+b =7,解得b =-1,∴一次函数的解析式为:y =2x -1;(2)∵点Q (x ,y )是该一次函数图象上的点,∴y =2x -1,又∵点Q 在直线32y x =+的下方,如图,∴2x -1<3x +2,解得x >-3.【题目点拨】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.-27、823【解题分析】直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.【题目详解】-原式=9﹣2+1﹣3=823【题目点拨】本题考查了实数运算,正确化简各数是解题的关键.。
内蒙古自治区呼伦贝尔市、兴安盟2024届中考数学押题试卷含解析
内蒙古自治区呼伦贝尔市、兴安盟2024年中考数学押题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是()A.5a+2b=5(a+b)B.a+a2=a3C.2a3•3a2=6a5D.(a3)2=a52.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为()A.8米B.米C.米D.米3.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为()A.18元B.36元C.54元D.72元4.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为()A.5 B.7 C.8 D.105.如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.26.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是()A.8 B.10 C.21 D.227.下列说法中,错误的是()A.两个全等三角形一定是相似形B.两个等腰三角形一定相似C.两个等边三角形一定相似D.两个等腰直角三角形一定相似8.已知一组数据1x ,2x ,3x ,4x ,5x 的平均数是2,方差是13,那么另一组数据132x -,232x -,332x -,432x -,532x -,的平均数和方差分别是( ).A .12,3B .2,1C .24,3D .4,39.(﹣1)0+|﹣1|=( ) A .2 B .1 C .0 D .﹣110.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )A .正方体B .球C .圆锥D .圆柱体二、填空题(本大题共6个小题,每小题3分,共18分) 11.已知a+b=4,a-b=3,则a 2-b 2=____________. 12.在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为_____. 13.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_____环的成绩. 14.等腰梯形是__________对称图形.15.已知一个正数的平方根是3x -2和5x -6,则这个数是_____.16.如图,在△ABC 中,∠ACB =90°,点D 是CB 边上一点,过点D 作DE ⊥AB 于点E ,点F 是AD 的中点,连结EF 、FC 、CE .若AD =2,∠CFE =90°,则CE =_____.三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA ,OC 为邻边作矩形 OABC , 动点 M ,N 以每秒 1 个单位长度的速度分别从点 A 、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N 沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP ⊥BC ,交 OB 于点 P ,连接 MP .(1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;(2)记△OMP 的面积为 S ,求 S 与 t 的函数关系式()06t <<;并求 t 为何值时,S 有最大值,并求出最大值. 18.(8分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a 、b.队别 平均分 中位数 方差 合格率 优秀率 七年级 6.7 m 3.41 90% n 八年级7.17.51.6980%10%(1)请依据图表中的数据,求a 、b 的值; (2)直接写出表中的m 、n 的值;(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.19.(8分)为了提高中学生身体素质,学校开设了A :篮球、B :足球、C :跳绳、D :羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.20.(8分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?21.(8分)某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?22.(10分)如图,已知A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点.(1)若a=1,求反比例函数的解析式及b的值;(2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?(3)若a﹣b=4,求一次函数的函数解析式.23.(12分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线.(2)如果⊙O的半径为5,sin∠ADE=45,求BF的长.24.如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC 于点G,交AB于点F,FB恰为⊙O的直径.(1)判断AE与⊙O的位置关系,并说明理由;(2)若BC=6,AC=4CE时,求⊙O的半径.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.【题目详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a3•3a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误.故选C.【题目点拨】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.2、C【解题分析】此题考查的是解直角三角形如图:AC=4,AC⊥BC,∵梯子的倾斜角(梯子与地面的夹角)不能>60°.∴∠ABC≤60°,最大角为60°.即梯子的长至少为米,故选C.3、D【解题分析】设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.【题目详解】解:根据题意设y=kπx2,∵当x=3时,y=18,∴18=kπ•9,则k=2,∴y=kπx2=2π•π•x2=2x2,当x=6时,y=2×36=72,故选:D.【题目点拨】本题考查了二次函数的应用,解答时求出函数的解析式是关键.4、A【解题分析】解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长=1.故选A.5、B【解题分析】根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【题目详解】解:∵△ABC绕点A顺时针旋转 60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【题目点拨】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.6、D【解题分析】分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.故选D.点睛:考查中位数的定义,看懂条形统计图是解题的关键.7、B根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.【题目详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B.【题目点拨】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.8、D【解题分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【题目详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为13,∴数据3x1,3x2,3x3,3x4,3x5的方差是13×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D.【题目点拨】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.9、A【解题分析】根据绝对值和数的0次幂的概念作答即可.【题目详解】原式=1+1=2故答案为:A.本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.10、D【解题分析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【题目详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【题目点拨】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.【解题分析】a2-b2=(a+b)(a-b)=4×3=1.故答案为:1.考点:平方差公式.12、4【解题分析】根据锐角的余弦值等于邻边比对边列式求解即可.【题目详解】∵∠C=90°,AB=6,∴2cos3BCBAB==,∴BC=23AB=4.【题目点拨】本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中,sinAA∠=的对边斜边,cosAA∠=的邻边斜边,tanAAA∠=∠的对边的邻边.13、8为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环. 设第8次射击环数为x 环,根据题意列出一元一次不等式 62+x +2×10>89 解之,得 x >7x 表示环数,故x 为正整数且x >7,则 x 的最小值为8 即第8次至少应打8环.点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”——不等式,再由不等式的相关知识确定问题的答案. 14、轴 【解题分析】根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线. 【题目详解】 画图如下:结合图形,根据轴对称的定义及等腰梯形的特征可知, 等腰梯形是轴对称图形. 故答案为:轴 【题目点拨】本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形. 15、1 【解题分析】试题解析:根据题意,得:32560,x x -+-= 解得:1,x =321,56 1.x x ∴-=-=-()21 1.±=故答案为1【题目点拨】:一个正数有2个平方根,它们互为相反数.16【解题分析】根据直角三角形的中点性质结合勾股定理解答即可.【题目详解】解:ACB 90∠︒=,点F 是AD 的中点,11290112CF AD DE AB AED EF AD ︒∴==⊥∴∠=∴==90CF EFCFE CE ︒∴=∠=∴=== ..【题目点拨】此题重点考查学生对勾股定理的理解。
内蒙古兴安盟中考数学试卷
内蒙古兴安盟中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2016·海曙模拟) 实数-2016的绝对值是().A . 2016B . ﹣2016C . ±2016D .2. (2分)如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A .B .C .D .3. (2分)下列计算正确的是()A .B .C .D .4. (2分) (2019九下·建湖期中) 如图,点A,B,C在半径为9的⊙O上,OA∥BC,∠OAB=70°,则弧AC 的长为()A .B .C .D .5. (2分) (2017九下·张掖期中) 已知圆柱体体积V(m3)一定,则它的底面积Y(m2)与高x(m)之间的函数图象大致为()A .B .C .D .6. (2分) (2017九上·灯塔期中) 如图,中,两点分别在边上,且∥ ,如果,,则()A . 3B . 4C . 9D . 127. (2分)(2018·滨州) 已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A .B .C .D .8. (2分)下面是某同学在一次数学测验中,解答的填空题,其中答对的是()A . 若x2=5 ,则x=B . 若x2=,则x=C . x2+x-m=0的一根为-1,则m=0D . 以上都不对9. (2分) (2019九上·龙湖期末) 在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A . 12个B . 14个C . 18个D . 28个10. (2分)(2020·温州模拟) 如图,直线y=-x与反比例函数y= 的图象交于A,B两点,过点B作BD∥x 轴,交y轴于点D,直线AD交反比例函数y= 的图象于另一点C,则的值为()A . 1:3B . 1:2C . 2:7D . 3:10二、填空题 (共8题;共8分)11. (1分)(2017·深圳模拟) 将4x2﹣4分解因式得________.12. (1分) (2016七上·连州期末) 某年我国的粮食总产量约为8920000000吨,这个数用科学记数法表示为________吨.13. (1分) (2019八上·闵行月考) 计算:()2016 ·(- )2017 =________14. (1分)甲、乙两位同学参加跳远训练,在相同条件下各跳了6次,统计平均数,方差S甲2<S乙2 ,则成绩较稳定的同学是________(填“甲”或“乙”).15. (1分)(2018·海陵模拟) 已知一个圆锥形的零件的母线长为5cm,底面半径为3cm,则这个圆锥形的零件的侧面积为________ cm2 .(用π表示).16. (1分)如图,菱形的周长为,对角线与相交于点,,,垂足为,则 ________.17. (1分)(2019·高新模拟) 如图,在△ABC中,∠ACB=90°.按以下步骤作图,分别以点A和点B为圆心,大于的长为半径作圆弧,两弧交于点E和点F;作直线EF交AB于点D;连结CD,若AC=8,BC=6,则CD的长为________.18. (1分) (2017八下·红桥期中) 在平面直角坐标系中,点A,B,C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在平面直角坐标系内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是________.三、解答题 (共8题;共68分)19. (5分)先化简,再求• 的值,其中x= .20. (6分) (2017九上·鄞州月考) 已知一个口袋中装有4个只有颜色不同的球,其中3个白球,1个黑球.(1)求从中随机抽取出一个黑球的概率是多少;(2)若从口袋中摸出一个球,记下颜色后不放回,再摸出一个球。
2024年内蒙古兴安盟中考数学真题试卷及答案
2024年内蒙古兴安盟中考数学真题试卷一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分)1.110-的绝对值是()A.110 B.10 C.110-D.10-2.下列计算正确的是()A.()341226a a -=- B.253a a a -÷=C.111a a a a +-= D.()()2233a b a ab b a b +-+=+3.如图是由七个完全相同的小正方体组成的立体图形,选项给出的四个平面图形中不属于其三视图的是()A. B. C. D.4.新时代十年来,我国建成世界上规模最大的社会保障体系,其中基本医疗保险的参保人数由5.4亿增加到13.6亿,参保率稳定在95%.将数据13.6亿用科学记数法表示为()A.813.610⨯ B.81.3610⨯ C.91.3610⨯ D.913.610⨯5.下列说法正确的是()A.任意画一个三角形,其内角和是360︒是必然事件B.调查某批次汽车的抗撞击能力,适宜全面调查.C.一组数据2,4,6,x,7,4,6,9的众数是4,则这组数据的中位数是4D.在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,两团女演员的身高平均数相同,方差分别为221.5,2.5S S ==甲乙,则甲芭蕾舞团的女演员身高更整齐6.如图,,AD BC AB AC ⊥∥,若135.8∠= ,则B ∠的度数是()A.3548'︒B.5512'︒C.5412'︒D.5452'︒7.实数,a b 在数轴上的对应位置如图所示,()2b a ---的化简结果是()A.2B.22a -C.22b -D.-28.点(),P x y 在直线344y x =-+上,坐标(),x y 是二元一次方程5633x y -=的解,则点P 的位置在()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在ABC 中,90,30C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧分别交,AB AC 于点M 和点N ,再分别以点,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .若ACD 的面积为8,则ABD △的面积是()A.8B.16C.12D.2410.A,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30千克,A 型机器人搬运900千克所用时间与B 型机器人搬运600千克所用时间相等.A,B 两种机器人每小时分别搬运多少干克化工原料?()A.60,30 B.90,120 C.60,90 D.90,6011.如图,边长为2的正方形ABCD 的对角线AC 与BD 相交于点O .E 是BC 边上一点,F 是BD 上一点,连接,DE EF .若DEF 与DEC 关于直线DE 对称,则BEF △的周长是()A. B.2 C.4- D.12.已知某同学家、体育场、图书馆在同一条直线上.下面的图象反映的过程是:该同学从家跑步去体育场,在那里锻炼了一阵后又步行回家吃早餐,饭后骑自行车到图书馆.图中用x 表示时间,y 表示该同学离家的距离.结合图象给出下列结论:(1)体育场离该同学家2.5千米;(2)该同学在体育场锻炼了15分钟;(3)该同学跑步的平均速度是步行平均速度的2倍;(4)若该同学骑行的平均速度是跑步平均速度的1.5倍,则a 的值是3.75;其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本题5个小题,每小题3分,共15分)13.分解因式:22a ab ab ++=______.14.如图,点()0,2A -,()1,0B ,将线段AB 平移得到线段DC ,若90ABC ∠=︒,2BC AB =,则点D 的坐标是_____.15.为了促进城乡协调发展,实现共同富裕,某乡镇计划修建公路.如图: AB 与 CD是公路弯道的外、内边线,它们有共同的圆心O,所对的圆心角都是72︒,点A,C,O 在同一条直线上,公路弯道外侧边线比内侧边线多36米,则公路宽AC 的长是____米.(π取3.14,计算结果精确到0.1)16.对于实数a ,b 定义运算“※”为3a b a b =+※,例如5253211=+⨯=※,则关于x 的不等式2x m <※有且只有一个正整数解时,m 的取值范围是____.17.如图,在平面直角坐标系中,点A ,B 的坐标分别为()5,0,()2,6,过点B 作BC x ∥轴交y 轴于点C ,点D 为线段AB 上的一点,且2BD AD =.反比例函数(0)k y x x=>的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是_____.三、解答题(本题4个小题,每小题6分,共24分)18.计算:301tan6032(π2024)2-⎛⎫--+︒++- ⎪⎝⎭.19.先化简,再求值:22422324x x x x x -⎛⎫+-÷+ ⎪+-⎝⎭,其中72x =-.20.综合实践活动中,数学兴趣小组利用无人机测量大楼的高度.如图,无人机在离地面40米的D 处,测得操控者A 的俯角为30︒,测得楼BC 楼顶C 处的俯角为45︒,又经过人工测量得到操控者A 和大楼BC 之间的水平距离是80米,则楼BC 的高度是多少米?(点A B C D ,,,都在同一平面内,参考数据3 1.7≈)21.从一副普通的扑克牌中取出五张牌,它们的牌面数字分别是4,4,5,5,6.(1)将这五张扑克牌背面朝上,洗匀后从中随机抽取一张,则抽取的这张牌的牌面数字是4的概率是多少?(2)将这五张扑克牌背面朝上,洗匀后从中随机抽取一张(不放回),再从中随机抽取第二张.请用列表或画树状图的方法,求抽取的这两张牌的牌面数字之和为奇数的概率.四、解答题(本题7分)22.如图,在平行四边形ABCD 中,点F 在边AD 上,AB AF =,连接BF ,点O 为BF 的中点,AO 的延长线交边BC 于点E ,连接EE(1)求证:四边形ABEF 是菱形:(2)若平行四边形ABCD 的周长为22,1,120CE BAD =∠=︒,求AE 的长.五、解答题(本题7分)23.某市某校组织本校学生参加“市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的学生只参加其中一项.为了解各项目参与情况,该校随机调查了部分参加志愿者服务的学生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的学生共有______人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角的度数;(3)该校共有2000名学生,若有60%的学生参加志愿者服务,请你估计参加“文明宣传”项目的学生人数.六、解答题(本题8分)24.如图,在ABC 中,以AB 为直径的O 交BC 于点,D DE AC ⊥,垂足为E .O 的两条弦,FB FD 相交于点,F DAE BFD ∠∠=.(1)求证:DE 是O 的切线;(2)若30,C CD ∠=︒=,求扇形OBD 的面积.七、解答题(本题10分)25.某超市从某水果种植基地购进甲、乙两种优质水果,经调查,这两种水果的进价和售价如表所示:水果种类进价(元/千克)售价(元/千克)甲a 22乙b25该超市购进甲种水果18千克和乙种水果6千克需366元:购进甲种水果30千克和乙种水果15千克需705元.(1)求,a b 的值;(2)该超市决定每天购进甲、乙两种水果共150千克进行销售,其中甲种水果的数量不少于50千克,且不大于120千克.实际销售时,若甲种水果超过80千克,则超过部分按每千克降价5元销售.求超市当天销售完这两种水果获得的利润y (元)与购进甲种水果的数量x (千克)之间的函数关系式(写出自变量x 的取值范围),并求出在获得最大利润时,超市的进货方案以及最大利润.八、解答题(本题13分)26.如图,在平面直角坐标系中,二次函数()20y ax bx c a =++≠的图像经过原点和点()4,0A .经过点A 的直线与该二次函数图象交于点()1,3B ,与y 轴交于点C .(1)求二次函数的解析式及点C 的坐标;(2)点P 是二次函数图象上的一个动点,当点P 在直线AB 上方时,过点P 作PE x ⊥轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①m 为何值时线段PD 的长度最大,并求出最大值;②是否存在点P ,使得BPD △与AOC 相似.若存在,请求出点P 坐标;若不存在,请说明理由.2024年内蒙古兴安盟中考数学真题试卷答案一、选择题.1.【答案】A2.【答案】D3.【答案】C4.【答案】C5.【答案】D6.【答案】C7.【答案】A8.【答案】D9.【答案】B10.【答案】D11.【答案】A12.【答案】C二、填空题.13.【答案】2(1)a b +14.【答案】()4,4-15.【答案】28.716.【答案】103m ≤<17.【答案】12三、解答题.18.【答案】1119.【答案】3x +,12-20.【答案】楼BC 的高度为()40-米.21.【答案】(1)25(2)35四、解答题.22.【答案】(1)见解析(2)5AE =五、解答题.23.【答案】(1)200,画图略(2)144︒(3)360人六、解答题.24.【答案】(1)见解析(2)43π七、解答题.25.【答案】(1)14a =,19b =(2)()()290050803130080120x x y x x ⎧+≤≤⎪=⎨-+<≤⎪⎩,购进甲种水果80千克,乙种水果70千克,最大利润为1060元八、解答题.26.【答案】(1)24y x x =-+,()0,4C (2)①当52m =时,PD 有最大值为94;②当P 的坐标为()2,4或()3,3时,BPD △与AOC 相似。
内蒙古兴安盟地区两旗一县2024届中考适应性考试数学试题含解析
内蒙古兴安盟地区两旗一县2024年中考适应性考试数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)1.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=kx(k≠0)的图象恰好经过点C和点D,则k的值为()A.81325B.81316C.8135D.81342.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC 的面积之比等于()A.1∶3 B.2∶3 C3∶2 D3 34.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC与△BDA 相似,可以添加一个条件.下列添加的条件中错误的是( )A .∠ACD =∠DAB B .AD =DEC .AD·AB =CD·BD D .AD 2=BD·CD5.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( )A .50,50B .50,30C .80,50D .30,506.如图,在扇形CAB 中,CA=4,∠CAB=120°,D 为CA 的中点,P 为弧BC 上一动点(不与C ,B 重合),则2PD+PB 的最小值为( )A .B .C .10D .7.已知二次函数2y ax bx c =++的图象与x 轴交于点()2,0-、()1,0x ,且112x <<,与y 轴的正半轴的交点在()0,2的下方.下列结论:①420a b c -+=;②0a b c -+<;③20a c +>;④210a b -+>.其中正确结论的个数是( )个. A .4个B .3个C .2个D .1个8.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( ) A .8B .9C .10D .119.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则图中相似三角形共有( )A .1对B .2对C .3对D .4对A .x 2+x 2=x 4B .x 6÷x 3=x 2C .(x 3)2=x 6D .x -1=x二、填空题(本大题共6个小题,每小题3分,共18分)11.一个布袋里装有10个只有颜色不同的球,这10个球中有m 个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m 的值约为__________. 12.学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_____对. 13.分解因式:2x +xy =_______.14.若圆锥的地面半径为5cm ,侧面积为265cm π,则圆锥的母线是__________cm . 15x 的取值范围是_____________. 16.若不等式组130x a bx ->⎧⎨+≥⎩的解集是﹣1<x≤1,则a =_____,b =_____.三、解答题(共8题,共72分)17.(8分)4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少?18.(8分)佳佳向探究一元三次方程x 3+2x 2﹣x ﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b (k≠0)的图象与x 轴交点的横坐标即为一元一次方程kx+b (k≠0)的解,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交点的横坐标即为一元二次方程ax 2+bx+c=0(a≠0)的解,如:二次函数y=x 2﹣2x ﹣3的图象与x 轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x 2﹣2x ﹣3=0的解.根据以上方程与函数的关系,如果我们直到函数y=x 3+2x 2﹣x ﹣2的图象与x 轴交点的横坐标,即可知方程x 3+2x 2﹣x ﹣2=0的解.佳佳为了解函数y=x 3+2x 2﹣x ﹣2的图象,通过描点法画出函数的图象.(1)直接写出m 的值,并画出函数图象;(2)根据表格和图象可知,方程的解有 个,分别为 ;(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.19.(8分)先化简,后求值:22321113x x xx x-++⋅---,其中21x=+.20.(8分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ 的面积最大?求出这个最大值.(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?21.(8分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.(1)求证:四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的长.22.(10分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥.(可以直接用第(1)问的结论)在第(2)问的条件下,如果AED ∆恰好是等边三角形,请求出此时矩形的两条邻边AB 与BC 的数量关系.23.(12分)已知关于x 的一元二次方程22410x x k ++-=有实数根. (1)求k 的取值范围;(2)若k 为正整数,且方程有两个非零的整数根,求k 的取值.24.如图,在等边三角形ABC 中,点D ,E 分别在BC, AB 上,且∠ADE=60°.求证:△ADC~△DEB .参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.设BD=a,则OC=3a.∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=32a,CE=22OC OE-=332a,∴点C(32a,332a).同理,可求出点D的坐标为(1﹣12a,32a).∵反比例函数kyx=(k≠0)的图象恰好经过点C和点D,∴k=32a×332a=(1﹣12a)×32a,∴a=65,k=81325.故选A.2、B【解题分析】由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积=12lr=12×6π×5=15π,故选B3、A【解题分析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,同理可得:∠B =∠DFE ,∠A =DEF , ∴△DEF ∽△CAB ,∴△DEF 与△ABC 的面积之比=2DE AC ⎛⎫ ⎪⎝⎭,又∵△ABC 为正三角形, ∴∠B =∠C =∠A =60° ∴△EFD 是等边三角形, ∴EF =DE =DF ,又∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC , ∴△AEF ≌△CDE ≌△BFD , ∴BF =AE =CD ,AF =BD =EC , 在Rt △DEC 中, DE =DC ×sin ∠C,EC =cos ∠C ×DC =12DC ,又∵DC +BD =BC =AC =32DC ,∴232DE AC DC ==, ∴△DEF 与△ABC的面积之比等于:221:33DE AC ⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭故选A .点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DEAC之比,进而得到面积比. 4、D 【解题分析】解:∵∠ADC=∠ADB ,∠ACD=∠DAB , ∴△ADC ∽△BDA ,故A 选项正确; ∵AD=DE , ∴AD DE = ,∴△ADC∽△BDA,∴故B选项正确;∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误,故选:D.考点:1.圆周角定理2.相似三角形的判定5、A【解题分析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).故选A.点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.6、D【解题分析】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.【题目详解】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2, ∵=2,∴△APD ∽△ABP′, ∴BP′=2PD ,∴2PD+PB=BP′+PB≥PP′, ∴PP′=,∴2PD+PB≥4,∴2PD+PB 的最小值为4,故选D . 【题目点拨】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键. 7、B 【解题分析】分析:根据已知画出图象,把x =−2代入得:4a −2b +c =0,把x =−1代入得:y =a −b +c >0,根据122cx x a⋅=<-,不等式的两边都乘以a (a <0)得:c >−2a ,由4a −2b +c =0得22c a b -=-,而0<c <2,得到102c-<-<即可求出2a −b +1>0. 详解:根据二次函数y =ax 2+bx +c 的图象与x 轴交于点(−2,0)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x =−1代入得:y =a −b +c >0,如图A 点,∴②错误; ∵(−2,0)、(x 1,0),且1<x 1,∴取符合条件1<x 1<2的任何一个x 1,−2⋅x 1<−2, ∴由一元二次方程根与系数的关系知122cx x a⋅=<-, ∴不等式的两边都乘以a (a <0)得:c >−2a , ∴2a +c >0,∴③正确;④由4a −2b +c =0得22c a b -=-, 而0<c <2,∴102c-<-< ∴−1<2a −b <0 ∴2a −b +1>0, ∴④正确.所以①③④三项正确. 故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与x 轴的交点,属于常考题型. 8、A 【解题分析】分析:根据多边形的内角和公式及外角的特征计算. 详解:多边形的外角和是360°,根据题意得: 110°•(n-2)=3×360° 解得n=1. 故选A .点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决. 9、C 【解题分析】∵∠ACB=90°,CD ⊥AB , ∴△ABC ∽△ACD , △ACD ∽CBD , △ABC ∽CBD ,故选C .10、C【解题分析】根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.【题目详解】A. x 2+x 2=2x 2 ,故不正确;B. x 6÷x 3=x 3 ,故不正确; C. (x 3)2=x 6 ,故正确;D. x ﹣1=1x,故不正确; 故选C.【题目点拨】本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.二、填空题(本大题共6个小题,每小题3分,共18分)11、3【解题分析】在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【题目详解】解:根据题意得,10m =0.3,解得m =3. 故答案为:3.【题目点拨】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.12、1【解题分析】利用树状图展示所有1种等可能的结果数.【题目详解】解:画树状图为:共有1种等可能的结果数.故答案为1.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.13、()x x+y .【解题分析】将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【题目详解】直接提取公因式x 即可:2x xy x(x y)+=+.14、13【解题分析】试题解析:圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.设母线长为R ,则:65ππ5R =⨯,解得:13.R cm =故答案为13.15、x<12【解题分析】由题意得:1﹣2x >0,解得:12x <, 故答案为12x <. 16、-2 -3【解题分析】先求出每个不等式的解集, 再求出不等式组的解集, 即可得出关于a 、b 的方程, 求出即可.【题目详解】解:由题意得:1?30? x abx->⎧⎨+≥⎩①②解不等式①得: x>1+a ,解不等式②得:x≤3 b -不等式组的解集为: 1+a<x≤3 b -不等式组的解集是﹣1<x≤1,∴..1+a=-1,3b-=1,解得:a=-2,b=-3故答案为: -2, -3.【题目点拨】本题主要考查解含参数的不等式组.三、解答题(共8题,共72分)17、(1)14;(2)12;(3)x=1.【解题分析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【题目详解】解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=14;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)=612=12;(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴34xx++=0.95,解得:x=1.【题目点拨】本题考查利用频率估计概率;概率公式;列表法与树状图法.18、(1)2;(2)3,﹣2,或﹣1或1.(3)﹣2<x<﹣1或x>1.【解题分析】试题分析:(1)求出x=﹣1时的函数值即可解决问题;利用描点法画出图象即可;(2)利用图象以及表格即可解决问题;(3)不等式x3+2x2>x+2的解集,即为函数y=x3+2x2﹣x﹣2的函数值大于2的自变量的取值范围,观察图象即可解决问题.试题解析:(1)由题意m=﹣1+2+1﹣2=2.函数图象如图所示.(2)根据表格和图象可知,方程的解有3个,分别为﹣2,或﹣1或1.(3)不等式x3+2x2>x+2的解集,即为函数y=x3+2x2﹣x﹣2的函数值大于2的自变量的取值范围.观察图象可知,﹣2<x<﹣1或x>1.19、21x-2【解题分析】分析:先把分值分母因式分解后约分,再进行通分得到原式=21x-,然后把x的值代入计算即可.详解:原式=311x x x -+-()()•213x x ()+-﹣1 =11x x +-﹣11x x -- =21x - 当x =2+1时,原式=2211+-=2. 点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.20、(1)证明见解析;(2)当t=3时,△AEQ 的面积最大为934cm 2;(3)(3,0)或(6,33)或(0,33) 【解题分析】(1)由三角形ABC 为等边三角形,以及AD=BE=CF ,进而得出三角形ADF 与三角形CFE 与三角形BED 全等,利用全等三角形对应边相等得到BF=DF=DE ,即可得证;(2)先表示出三角形AEC 面积,根据EQ 与AB 平行,得到三角形CEQ 与三角形ABC 相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ 面积,进而表示出AEQ 面积,利用二次函数的性质求出面积最大值,并求出此时Q 的坐标即可;(3)当△AEQ 的面积最大时,D 、E 、F 都是中点,分两种情形讨论即 可解决问题;【题目详解】(1)如图①中,∵C (6,0),∴BC=6在等边三角形ABC 中,AB=BC=AC=6,∠A=∠B=∠C=60°,由题意知,当0<t <6时,AD=BE=CF=t ,∴BD=CE=AF=6﹣t ,∴△ADF ≌△CFE ≌△BED (SAS ),∴EF=DF=DE ,∴△DEF 是等边三角形,∴不论t 如何变化,△DEF 始终为等边三角形;(2)如图②中,作AH ⊥BC 于H ,则AH=AB•sin60°=33, ∴S △AEC =12×33×(6﹣t )=33(6)2t -, ∵EQ ∥AB ,∴△CEQ ∽△ABC ,∴CEQ ABC S S =(CE CB )2=2(6)36t -,即S △CEQ =2(6)36t -S △ABC =2(6)36t -×93=23(6)4t -, ∴S △AEQ =S △AEC ﹣S △CEQ =33(6)2t -﹣23(6)4t -=﹣34(t ﹣3)2+934, ∵a=﹣34<0, ∴抛物线开口向下,有最大值,∴当t=3时,△AEQ 的面积最大为934cm 2, (3)如图③中,由(2)知,E 点为BC 的中点,线段EQ 为△ABC 的中位线,当AD 为菱形的边时,可得P 1(3,0),P 3(6,3,当AD 为对角线时,P 2(0,3),综上所述,满足条件的点P 坐标为(3,0)或(6,30,3.【题目点拨】本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.21、(1)见解析;(2)23【解题分析】(1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可;方法二: 只要证明△AEB≌△AFD. 可得AB=AD即可解决问题;(2) 在Rt△ACF, 根据AF=CF·tan∠ACF计算即可.【题目详解】(1)证法一:连接AC,如图.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四边形ABCD是菱形.证法二:如图,∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四边形ABCD是菱形.(2)连接AC,如图.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四边形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF•tan∠3【题目点拨】本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。
2020年内蒙古兴安盟中考数学试卷-解析版
2020年内蒙古兴安盟中考数学试卷一、选择题(本大题共12小题,共36.0分) 1. −2020的绝对值是( )A. −2020B. 2020C. −12020D. 120202. 下列计算正确的是( )A. a 2⋅a 3=a 6B. (x +y)2=x 2+y 2C. (a 5÷a 2)2=a 6D. (−3xy)2=9xy 23. 下列图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.4. 由5个相同的小正方体组成的几何体如图所示,该几何体的俯视图是( )A.B. C. D.5. 下列事件是必然事件的是( )A. 任意一个五边形的外角和为540°B. 抛掷一枚均匀的硬币100次,正面朝上的次数为50次C. 13个人参加一个集会,他们中至少有两个人的出生月份是相同的D. 太阳从西方升起6. 如图,直线AB//CD ,AE ⊥CE 于点E ,若∠EAB =120°,则∠ECD 的度数是( )A. 120°B. 100°C. 150°D. 160°7. 已知实数a 在数轴上的对应点位置如图所示,则化简|a −1|−√(a −2)2的结果是( ) A. 3−2a B. −1 C. 1D. 2a −38. 不等式组{5x +2>3(x −1)12x −1≤7−32x的非负整数解有( )A. 4个B. 5个C. 6个D. 7个9. 甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A. 240x =280130−x B. 240130−x =280xC.240x+280x=130 D.240x−130=280x10.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A. 25°B. 20°C. 30°D. 15°11.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD⊥CE于点O,点M,N分别OB,OC的中点,若OB=8,OC=6,则四边形DEMN的周长是()A. 14B. 20C. 22D. 2812.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则反比例函数y=a与一次函数y=−cx+b在同一平面直角坐标系x内的图象可能是()A. B.C. D.二、填空题(本大题共5小题,共15.0分)13.中国的领水面积约为370000km2,将370000科学记数法表示为______.14.分解因式:a2b−4b3=______.15.若一个扇形的弧长是2πcm,面积是6πcm2,则扇形的圆心角是______度.m−1)x2−x+1=0有实数根,则m的取值范围是16.已知关于x的一元二次方程(14______.17.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的正半轴上.直线y=x−1分别与边AB,OA相交于D,(x>0)的图象经过点D并与M两点,反比例函数y=kx边BC相交于点N,连接MN.点P是直线DM上的动点,当CP=MN时,点P的坐标是______.三、计算题(本大题共1小题,共6.0分) 18. 计算:(−12)−1+√83+2cos60°−(π−1)0.四、解答题(本大题共8小题,共63.0分) 19. 先化简,再求值:x 2−4x+4x 2−4÷x−2x 2+2x+3,其中x =−4.20. A ,B 两地间有一段笔直的高速铁路,长度为100km.某时发生的地震对地面上以点C 为圆心,30km 为半径的圆形区域内的建筑物有影响.分别从A ,B 两地处测得点C 的方位角如图所示,tanα=1.776,tanβ=1.224.高速铁路是否会受到地震的影响?请通过计算说明理由.21. 一个不透明的口袋中装有三个完全相同的小球,上面分别标有数字√2,√3,5.(1)从口袋中随机摸出一个小球,求摸出小球上的数字是无理数的概率(直接写出结果);(2)先从口袋中随机摸出一个小球,将小球上的数字记为x ,把小球放回口袋中并搅匀,再从口袋中随机摸出一个小球,将小球上的数字记为y.请用列表法或画树状图法求出x 与y 的乘积是有理数的概率.22.已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别是边BC,CD上的点,且∠EOF=90°.求证:CE=DF.23.某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为______人,扇形统计图中的m=______,条形统计图中的n=______;(2)所调查的初中学生每天睡眠时间的众数是______,方差是______;(3)该校共有1600名初中学生,根据样本数据,估计该校初中学生每天睡眠时间不足8小时的人数.24.如图,⊙O是△ABC的外接圆,直线EG与⊙O相切于点E,EG//BC,连接AE交BC于点D.(1)求证:AE平分∠BAC;(2)若∠ABC的平分线BF交AD于点F,且DE=3,DF=2,求AF的长.25.某商店销售一种销售成本为每件40元的玩具,若按每件50元销售,一个月可售出500件,销售价每涨1元,月销量就减少10件.设销售价为每件x元(x≥50),月销量为y件,月销售利润为w元.(1)写出y与x的函数解析式和w与x的函数解析式;(2)商店要在月销售成本不超过10000的情况下,使月销售利润达到8000元,销售价应定为每件多少元?(3)当销售价定为每件多少元时会获得最大利润?求出最大利润.x2+bx+c与x轴交于点26.如图,抛物线y=−12A(−1,0)和点B(4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.(1)求抛物线的解析式和点C的坐标;(2)当△BCQ的面积等于2时,求m的值;(3)在点P运动过程中,PQ是否存在最大值?若存在,求出最大值;若不存在,请AP说明理由.答案和解析1.【答案】B【解析】解:根据绝对值的概念可知:|−2020|=2020,故选:B.根据绝对值的定义直接解答.本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】C【解析】解:A、a2⋅a3=a5,故选项错误;B、(x+y)2=x2+y2+2xy,故选项错误;C、(a5÷a2)2=a6,故选项正确;D、(−3xy)2=9xy2,故选项错误;故选:C.根据同底数幂的乘法,完全平方公式,同底数幂的除法,幂的乘方与积的乘方法则逐项判断即可.本题考查了同底数幂的乘法,完全平方公式,同底数幂的除法,幂的乘方与积的乘方,掌握运算法则是解题的关键.3.【答案】C【解析】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】B【解析】解:从上边看第一列是一个小正方形,第二列是两个小正方形且第一个小正方形位于第一层,第三列是一个小正方形,且位于第二层,故B选项符合题意,故选:B.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.【答案】C【解析】解:A.任意一个五边形的外角和等于540,属于不可能事件,不合题意;B.投掷一枚均匀的硬币100次,正面朝上的次数为50次是随机事件,不合题意;C.13个人参加一个集会,他们中至少有两个人的出生月份是相同的,属于必然事件,符合题意;D.太阳从西方升起,属于不可能事件,不合题意;故选:C.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件.本题主要考查了随机事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件.6.【答案】C【解析】解:延长AE,与DC的延长线交于点F,∵AB//CD,∴∠A+∠AFC=180°,∵∠EAB=120°,∴∠AFC=60°,∵AE⊥CE,∴∠AEC=90°,而∠AEC=∠AFC+∠ECF,∴∠ECF=∠AEC−∠F=30°,∴∠ECD=180°−30°=150°,故选:C.延长AE,与DC的延长线交于点F,根据平行线的性质,求出∠AFC的度数,再利用外角的性质求出∠ECF,从而求出∠ECD.本题考查平行线的性质和外角的性质,正确作出辅助线和平行线的性质是解题的关键.7.【答案】D【解析】解:由图知:1<a<2,∴a−1>0,a−2<0,原式=a−1+=a−1+(a−2)=2a−3.故选:D.根据数轴上a点的位置,判断出(a−1)和(a−2)的符号,再根据非负数的性质进行化简.此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键.8.【答案】B【解析】解:{5x+2>3(x−1)①12x−1≤7−32x②,解不等式①得:x>−2.5,解不等式②得:x≤4,∴不等式组的解集为:−2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,共5个,故选:B.分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.9.【答案】A【解析】解:设甲每天做x个零件,根据题意得:240 x =280130−x,故选:A.设甲每天做x个零件,根据甲做240个零件与乙做280个零件所用的时间相同,列出方程即可.此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.10.【答案】D【解析】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°−65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC−∠ABD=15°,故选:D.根据等要三角形的性质得到∠ABC,再根据垂直平分线的性质求出∠ABD,从而可得结果.本题考查了等腰三角形的性质和垂直平分线的性质,解题的关键是掌握相应的性质定理.11.【答案】B【解析】解:∵BD和CE分别是△ABC的中线,∴DE=BC,DE//BC,∵M和N分别是OB和OC的中点,OB=8,OC=6,∴MN=12BC,MN//BC,OM=12OB=4,ON=12OC=3,∴四边形MNDE为平行四边形,∵BD⊥CE,∴平行四边形MNDE为菱形,∴OE=ON=3∴BC=√OB2+OC2=10,∴DE=MN=EM=DN=5,∴四边形MNDE的周长为20,故选:B.根据已知条件证明四边形MNDE为菱形,结合OB和OC的长求出MN,OM,OE,计算出EM,可得结果.本题考查了菱形的判定,中位线定理,勾股定理,解题的关键是掌握菱形的判定.12.【答案】C【解析】解:根据二次函数图象与y轴的交点可得c>0,根据抛物线开口向下可得a<0,由对称轴在y轴右边可得a、b异号,故b>0,则反比例函数y=ax的图象在第二、四象限,一次函数y=−cx+b经过第一、二、四象限,故选:C.首先根据二次函数图象与y轴的交点可得c>0,根据抛物线开口向下可得a<0,由对称轴在y轴右边可得a、b异号,故b>0,再根据反比例函数的性质与一次函数图象与系数的关系画出图象可得答案.此题主要考查了二次函数图象,一次函数图象,反比例函数图象,关键是根据二次函数图象确定出a、b、c的符号.13.【答案】3.7×105【解析】解:370000=3.7×105,故答案为:3.7×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】b(a+2b)(a−2b)【解析】解:a2b−4b3=b(a2−4b2)=b(a+2b)(a−2b).故答案为b(a+2b)(a−2b).先提取公因式b,再根据平方差公式进行二次分解.平方差公式:a2−b2=(a+b)(a−b).本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.15.【答案】60【解析】解:扇形的面积=12lr=6π,解得:r=6,又∵l=nπ×6180=2π,∴n=60.故答案为:60.根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法.16.【答案】m≤5且m≠4【解析】解:∵一元二次方程有实数根,∴△=1−4×(14m−1)≥0且14m−1≠0,解得:m≤5且m≠4,故答案为:m≤5且m≠4.根据一元二次方程的定义和根的判别式得到△≥0且二次项系数≠0,然后求出两不等式的公共部分即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.17.【答案】(1,0)或(3,2)【解析】解:∵点C 的坐标为(0,3), ∴B(3,3),A(3,0),∵直线y =x −1分别与边AB ,OA 相交于D ,M 两点, ∴可得:D(3,2),M(1,0), ∵反比例函数y =kx 经过点D , ∴k =3×2=6,∴反比例函数的表达式为y =6x ,令y =3, 解得:x =2,∴点N 的坐标为(2,3),∴MN =√(2−1)2+(3−0)2=√10, ∵点P 在直线DM 上,设点P 的坐标为(m,m −1),∴CP =√(m −0)2+(m −1−3)2=√10, 解得:m =1或3,∴点P 的坐标为(1,0)或(3,2). 故答案为:(1,0)或(3,2).根据正方形的性质以及一次函数表达式求出点D 和点M 坐标,从而求出反比例函数表达式,得到点N 的坐标,求出MN ,设点P 坐标为(m,m −1),根据两点间距离表示出CP ,得到方程,求解即可.本题考查了正方形的性质,一次函数图象上点的坐标特征,两点之间的距离,反比例函数图象上点的坐标特征,解题的关键是根据点的坐标,利用待定系数法求出反比例函数解析式.18.【答案】解:原式=−2+2+2×12−1=0,故答案为:0.【解析】先化简各项,再作加减法,即可计算.此题考查实数的混合运算以及特殊角的三角函数值,关键是掌握运算法则和运算顺序.19.【答案】解:原式=(x−2)2(x+2)(x−2)×x(x+2)x−2+3=x +3,将x =−4代入得:原式=−4+3=−1.【解析】先根据分式混合运算的法则把原式进行化简,再把x =−4代入进行计算即可. 本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 20.【答案】解:如图,过C 作CD ⊥AB 于D , ∴∠ACD =α,∠BCD =β,∴tan∠ACD =tanα=ADCD ,tan∠BCD =tanβ=BDCD , ∴AD =CD ⋅tanα,BD =CD ⋅tanβ,由AD +BD =AB ,得CD ⋅tanα+CD ⋅tanβ=AB =100, 则CD =ABtanα+tanβ=1003>30,∴高速公路不会受到地震影响.【解析】首先过C作CD⊥AB与D,由题意得AD=CD⋅tanα,BD=CD⋅tanβ,继而可得CD⋅tanα+CD⋅tanβ=AB,则可求得CD的长,再进行比较,即可得出高速公路是否穿过地震区.此题考查了三角函数的实际应用,此题难度适中注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.21.【答案】解:(1)摸出小球上的数字是无理数的概率=23;(2)画树状图如下:可知:共有9种等可能的结果,其中两个数字的乘积为有理数的有3种,∴两次摸出的小球所标数字乘积是有理数的概率为39=13.【解析】(1)直接利用概率公式计算可得;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个球上数字乘积是有理数的情况,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.【答案】解:∵四边形ABCD为正方形,∴OD=OC,∠ODF=∠OCE=45°,∠COD=90°,∵∠EOF=90°,即∠COE+∠COF=90°,∴∠COE=∠DOF,∴△COE≌△DOF(ASA),∴CE=DF.【解析】由正方形的性质得出OD=OC,∠ODF=∠OCE=45°,再证明∠COE=∠DOF,从而得到△COE≌△DOF,即可证明CE=DF.本题考查了正方形的性质,全等三角形的判定和性质,解题的关键是根据正方形的性质得出条件证明全等.23.【答案】40 25 15 7h 1.15【解析】解:(1)本次接受调查的初中学生有:4÷10%=40(人),m%=10÷40×100%=25%,n=40×37.5%=15,故答案为:40,25,15;(2)由条形统计图可得,众数是7h,×(5×4+6×8+7×15+8×10+9×3)=7,x−=140[(5−7)2×4+(6−7)2×8+(7−7)2×15+(8−7)2×10+(9−7)2×3]= s2=1401.15,故答案为:7h,1.15;(3)1600×4+8+15=1080(人),40即该校初中学生每天睡眠时间不足8小时的有1080人.(1)根据5h的人数和所占的百分比,可以求得本次接受调查的初中学生人数,然后即可计算出m和n的值;(2)根据统计图中的数据,可以得到众数,计算出方差;(3)根据题目中的数据,可以计算出该校初中学生每天睡眠时间不足8小时的人数.本题考查条形统计图、扇形统计图、用样本估计总体、众数、方差,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】解:(1)连接OE.∵直线l与⊙O相切于E,∴OE⊥l,∵l//BC,∴OE⊥BC,∴BE⏜=CE⏜,∴∠BAE=∠CAE.∴AE平分∠BAC;(2)如图,∵AE平分∠BAC,∴∠1=∠4,∵∠1=∠5,∴∠4=∠5,∵BF平分∠ABC,∴∠2=∠3,∵∠6=∠3+∠4=∠2+∠5,即∠6=∠EBF,∴EB=EF,∵DE=3,DF=2,∴BE =EF =DE +DF =5,∵∠5=∠4,∠BED =∠AEB ,∴△EBD∽△EAB , ∴BE EA =DE BE ,即5EA =35, ∴AE =253,∴AF =AE −EF =253−5=103.【解析】(1)连接OE ,利用垂径定理、圆周角、弧、弦的关系证得结论;(2)根据题意证明BE =EF ,得到BE 的长,再证明△EBD∽△EAB 得BE EA =DEBE ,求出AE ,从而得到AF .本题考查了垂径定理,圆周角定理,圆周角、弧、弦的关系,相似三角形的判定和性质,掌握定理并熟练运用是解题必备的能力.25.【答案】解:(1)由题意得:y =500−10(x −50)=1000−10x ,w =(x −40)(1000−10x)=−10x 2+1400x −40000;(2)由题意得:−10x 2+1400x −40000=8000,解得:x 1=60,x 2=80,当x =60时,成本=40×[500−10(60−50)]=16000>10000不符合要求,舍去, 当x =80时,成本=40×[500−10(80−50)]=8000<10000符合要求, ∴销售价应定为每件80元;(3)w =−10x 2+1400x −40000,当x =70时,w 取最大值9000,故销售价定为每件70元时会获得最大利润9000元.【解析】(1)根据题意一个月能售出500件,若销售单价每涨1元,每周销量就减少10件,可得y =500−10(x −50),再利用一个月的销售量×每件销售利润=一个月的销售利润列出一个月的销售利润为w ,写出W 与x 的函数关系式;(2)令w =8000,求出x 的取值即可;(3)根据二次函数最值的求法求解即可.此题主要考查了二次函数的应用,准确分析题意,列出二次函数关系式是解题关键. 26.【答案】解:(1)∵抛物线经过A(−1,0),B(4,0),可得:{0=−12−b +c 0=−12×16+4b +c ,解得:{b =32c =2, ∴抛物线的解析式为:y =−12x 2+32x +2,令x =0,则y =2,∴点C 的坐标为(0,2);(2)连接OQ , ∵点Q 的横坐标为m ,∴Q(m,−12m 2+32m +2),∴S =S △OCQ +S △OBQ −S △OBC=12×2×m +12×4×(−12m 2+32m +2)−12×2×4 =−m 2+4m ,令S =2,解得:m =2+√2或2−√2,(3)如图,过点Q 作QH ⊥BC 于H ,∵AC =√12+22=√5,BC =√42+22=√20,AB =5,满足AC 2+BC 2=AB 2,∴∠ACB =90°,又∠QHP =90°,∠APC =∠QPH ,∴△APC∽△QPH ,∴PQAP =QHAC =√5, ∵S △BCQ =12BC ⋅QH =√5QH ,∴QH =△BCQ √5, ∴PQ AP =√5= S 5=15(−m 2+4m)=−15(m −2)2+45,∴当m =2时,PQ AP 存在最大值45.【解析】(1)将点A和点B的坐标代入抛物线表达式,求解即可;(2)连接OQ,得到点Q的坐标,利用S=S△OCQ+S△OBQ−S△OBC得出△BCQ的面积,再令S=2,即可解出m的值;(3)证明△APC∽△QPH,根据相似三角形的判定与性质,可得PQAP =QHAC,根据三角形的面积,可得QH=△BCQ√5,根据二次函数的性质,可得答案.本题考查了二次函数综合题,涉及到相似三角形的判定与性质,三角形面积求法,待定系数法,勾股定理,综合性强,有一定难度,解题时要注意数形结合.。
2021年内蒙古兴安盟中考数学试卷(a卷)(含答案解析版)
2021年内蒙古兴安盟中考数学试卷(a卷)(含答案解析版)2021年内蒙古兴安盟中考数学试卷(A卷)一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分)1.(3分)(2021?兴安盟) 2的相反数是() A. 2 B.? 2C.± 2 D. ?22.(3分)(2021?兴安盟)某几何体的三视图如图所示,则该几何体是()A.圆柱 B.圆锥 C.三棱锥 D.三棱柱3.(3分)(2021?兴安盟)下列各式计算正确的是()A.3x+x=4x2 B.(��a)2?a6=��a8 C.(��y)3÷(��y)=y2(y≠0)D.(a2b3c)2=a4b6c4.(3分)(2021?兴安盟)下列长度的三条线段能组成锐角三角形的是() A.6,8,8 B.6,8,10C.6,8,12D.6,8,145.(3分)(2021?兴安盟)纳米技术是一种高新技术,纳米是非常小的长度单位,1纳米等于0.000000001米,将1纳米用科学记数法表示为() A.10��7米B.10��8米 C.10��9米 D.10��10米6.(3分)(2021?兴安盟)如图,在⊙O中,OA⊥BC,∠AOB=48°,D为⊙O上一点,则∠ADC的度数是()A.24° B.42° C.48° D.12°7.(3分)(2021?兴安盟)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的鞋销售量如下表:第1页(共28页)尺码/厘米销售量/双 22 1 22.5 2 23 5 23.5 11 24 7 24.5 3 25 1 鞋店老板比较关注哪种尺码的鞋最畅销,也就是关注卖出鞋的尺码组成一组数据的()A.平均数 B.中位数 C.众数D.方差8.(3分)(2021?兴安盟)一元二次方程16x2��8x+1=0的根的情况是()A.有两个不相等的实数根 B.没有实数根 C.只有一个实数根 D.有两个相等的实数根9.(3分)(2021?兴安盟)下列命题正确的是() A.对角线互相垂直的四边形是菱形 B.对角线互相垂直的平行四边形是正方形 C.对角线相等的四边形是矩形 D.对角线相等的菱形是正方形10.(3分)(2021?兴安盟)甲、乙两人匀速在400米环形跑道上跑步,同时同地出发,如果相向而行,每隔1分钟相遇一次;如果同向而行,每隔5分钟相遇一次,已知甲比乙的速度快.设甲每分钟跑x米,乙每分钟跑y米,根据题意,列出方程组正确的是() 60??+60??=400A.300???300??=400??+??=400B.5???5??=40060??+60??=400C.300???300??=400??+??=400D.5???5??=400311.(3分)(2021?兴安盟)下列关于反比例函数y=???的说法正确的是()3A.y随x的增大而增大 B.函数图象过点(2,)2C.图象位于第一、第三象限 D.x>0时,y随x的增大而增大12.(3分)(2021?兴安盟)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E 分别是AB、BC边上的动点,则AE+DE的最小值为()第2页(共28页)4824A. B. C.555D.125二、填空题(共5小题,每小题3分,满分15分) 13.(3分)(2021?兴安盟)分解因式:2a3��8a= .14.(3分)(2021?兴安盟)如图,以正六边形ABCDEF的中心为坐标原点建立平面直角坐标系,顶点C、F在x轴上,顶点A的坐标为(1, 3),则顶点D的坐标为.15.(3分)(2021?兴安盟)计算:45°39′+65°41′= .16.(3分)(2021?兴安盟)一组数据5,2,x,6,4的平均数是4,这组数据的方差是.17.(3分)(2021?兴安盟)如图,下列各图中的三个数之间具有相同规律.依此规律用含m,n的代数式表示y,则y= .三、解答题(本题4个小题,每小题6分,共24分) 18.(6分)(2021?兴安盟)计算:5 5��|2�� 5|+(��2)��2��(π��3.14)0.19.(6分)(2021?兴安盟)先化简,再求值:a(a��2b)��(a+b)(a��b),其中a=,b=��1. 2第3页(共28页)120.(6分)(2021?兴安盟)如图,在平面直角坐标系中,抛物线的顶点为A(1,��4),且与x轴交于B、C两点,点B的坐标为(3,0).(1)写出C点的坐标,并求出抛物线的解析式;(2)观察图象直接写出函数值为正数时,自变量的取值范围.21.(6分)(2021?兴安盟)甲袋中装有4个相同的小球,分别标有3,4,5,6;乙袋中装有3个相同的小球,分别标有7,8,9.芳芳和明明用摸球记数的方法在如图所示的正六边形ABCDEF的边上做游戏,游戏规则为:游戏者从口袋中随机摸出一个小球,小球上的数字是几,就从顶点A按顺时针方向连续跳动几个边长,跳回起点者获胜;芳芳只从甲袋中摸出一个小球,明明先后从甲、乙口袋中各摸出一个小球.如:先后摸出标有4和7的小球,就先从点A按顺时针连跳4个边长,跳到点E,再从点E顺时针连跳7个边长,跳到点F.分别求出芳芳、明明跳回起点A的概率,并指出游戏规则是否公平.四、(本题7分)22.(7分)(2021?兴安盟)如图,在平行四边形ABCD中,AD>AB.(1)作∠BAD的平分线交BC于点E,在AD边上截取AF=AB,连接EF(要求:尺规作图,保留作图痕迹,不写作法);(2)判断四边形ABEF的形状,并说明理由.第4页(共28页)五、(本题7分)23.(7分)(2021?兴安盟)为了了解某中学学生的身高情况,随机对该校男、女生的身高进行抽样调查.抽取的样本中,男、女生的人数相同,根据所得数据绘制成如图所示的统计图表.组别 A B C D E 男女生身高(cm)150≤x<155 155≤x<160 160≤x<165 165≤x <170 170≤x<175 根据图表中提供的信息,回答下列问题:(1)在样本中,男生身高的中位数落在组(填组别序号),女生身高在B组的有人;(2)在样本中,身高在170≤x<175之间的共有人,人数最多的是组(填组别序号)(3)已知该校共有男生500人,女生480人,请估计身高在160≤x<170之间第5页(共28页)感谢您的阅读,祝您生活愉快。
2024年内蒙古兴安盟中考数学模拟考试卷及答案
2024年内蒙古兴安盟中考数学模拟考试卷及答案学校:___________姓名:___________班级:___________考号:___________ 一单选题1.的倒数是()A.B.C.5 D.2.由大小相同的正方体搭成的几何体如图所示其左视图是()A.B.C.D.3.下列运算正确的是()A.B.C.D.4.将一副直角三角板按如图所示的方式摆放点在的延长线上且则的度数为()A.B.C.D.5.不等式的正整数解的个数有()A.3个B.4个C.5个D.6个6.下列命题正确的是()A.“经过有交通信号灯的路口遇到红灯”是必然事件B.精确到十分位C.点关于轴的对称点坐标是D.甲乙两人参加环保知识竞赛他们的平均成绩相同方差分别是则甲成绩比乙的稳定7.某校举行篮球赛每场比赛都要分出胜负每队胜一场得2分负一场得1分.某队在12场比赛中得20分.设该队胜场负场则根据题意列出关于的二元一次方程组正确的是()A.B.C.D.8.若实数是一元二次方程的两个根且则点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限9.如图在菱形中顺次连接菱形各边中点则四边形的周长为()A.B.C.D.10.如图直线与双曲线交于点和点则不等式的解集是()A.B.C.或D.或11.如图在中以点为圆心以的长为半径画弧交于点连接再分别以点为圆心大于的长为半径画弧两弧交于点作射线交于点交于点连接则的值是()A.B.C.D.12.将矩形纸板剪掉一个小矩形后剩余部分如图1所示动点P从点A出发沿路径匀速运动速度为点P到达终点F后停止运动的面积与点P运动的时间的关系如图2所示根据图象获取了以下的信息:①②③点从点运动到点需要④矩形纸板裁剪前后周长均为.其中正确信息的个数有()A.4个B.3个C.2个D.1个二填空题13.分解因式:= .14.如图在平面直角坐标系中点坐标连接将绕点逆时针旋转得到则点的坐标为.15.实数在数轴上对应点的位置如图所示化简:.16.如图正六边形的边长为2 以点A为圆心为半径画弧得到扇形(阴影部分).若扇形正好是一个圆锥的侧面展开图则该圆锥的底面圆的半径是.17.观察下列各式:…请利用你所发现的规律计算:.三解答题18.计算:.19.先化简再求值:其中.20.如图两个带指针的转盘分别被分成三个面积相等的扇形转盘上的数字分别是 5 转盘上的数字分别是6 4(两个转盘除表面数字不同外其他完全相同).小聪和小明同时转动两个转盘使之旋转(规定:指针恰好停留在分界线上则重新转一次).(1)转动转盘转盘指针指向正数的概率是________(2)若同时转动两个转盘转盘指针所指的数字记为转盘指针所指的数字记为若则小聪获胜若则小明获胜请用列表法或树状图法说明这个游戏是否公平.21.某数学兴趣小组借助无人机测量一条河流的宽度.如图所示一架水平飞行的无人机在处测得河流左岸处的俯角为无人机沿水平线方向继续飞行12米至处测得河流右岸处的俯角为线段米为无人机距地面的铅直高度点在同一条直线上其中.求河流的宽度(结果精确到1米参考数据:).22.为了激发学生的航天兴趣某校举行了太空科普知识竞赛竞赛结束后随机抽取了部分学生成绩进行统计按成绩分为如下5组(满分100分)组:组:组:组:组:并绘制了如下不完整的统计图表.请结合统计图表解答如下问题:学生成绩统计表组别成绩频数2014445(1)本次调查的样本容量为________ 学生成绩统计表中________(2)所抽取学生成绩的中位数落在________组(3)求出扇形统计图中“”所在扇形的圆心角度数(4)若成绩在90分及以上为优秀学校共有2000名学生估计该校成绩优秀的学生有多少名?23.如图是⊙的直径为⊙上的一点点是的中点连接过点的直线垂直于的延长线于点交的延长线于点.(1)求证:为⊙的切线(2)若求的长.24.端午节吃粽子是中华民族的传统习俗.市场上豆沙粽礼盒的进价比肉粽礼盒的进价每盒便宜10元某商家用2500元购进的肉粽和用2000元购进的豆沙粽盒数相同.(1)求每盒肉粽和每盒豆沙粽的进价(2)商家计划只购买豆沙粽礼盒销售经调查了解到有A两个厂家可供选择两个厂家针对价格相同的豆沙粽礼盒给出了不同的优惠方案:A厂家:一律打8折出售.厂家:若一次性购买礼盒数量超过25盒超过的部分打7折.该商家计划购买豆沙粽礼盒盒设去A厂家购买应付元去厂家购买应付元其函数图象如图所示:①分别求出与之间的函数关系②若该商家只在一个厂家购买怎样买划算?25.已知正方形是对角线上一点.(1)如图1 连接.求证:(2)如图2 是延长线上一点交于点.判断的形状并说明理由(3)在第(2)题的条件下.求的值.26.如图在平面直角坐标系中抛物线与轴的交点分别为和(点在点的左侧)与轴交于点点是直线上方抛物线上一动点.(1)求抛物线的解析式(2)如图1 过点作轴平行线交于点过点作轴平行线交轴于点求的最大值及点的坐标(3)如图2 设点为抛物线对称轴上一动点当点点运动时在坐标轴上确定点使四边形为矩形求出所有符合条件的点的坐标.参考答案:1.A【分析】两个乘积是1的数互为倒数 0没有倒数根据倒数的定义即可求解.【详解】解:的倒数是.故选:A【点睛】本题考查倒数.熟悉倒数的概念是关键.2.B【分析】画出左视图即可.【详解】解:左视图如图:故选B.【点睛】本题考查三视图.熟练掌握三视图的画法是解题的关键.3.D【分析】根据二次根式加减的运算性质积的乘方的运算性质分式加减的运算性质分式乘除的运算性质判断即可.【详解】A 运算错误该选项不符合题意B 运算错误该选项不符合题意C 运算错误该选项不符合题意D 运算正确该选项符合题意.故选:D.【点睛】本题主要考查二次根式加减积的乘方分式的加减分式的乘除牢记二次根式加减的运算性质积的乘方的运算性质分式加减的运算性质分式乘除的运算性质是解题的关键.4.B【分析】平行线的性质得到再利用进行求解即可.【详解】解:由题意得:∵∴∴故选B.【点睛】本题考查平行线的性质三角板中角度的计算.正确的识图掌握平行线的性质是解题的关键.5.A【分析】首先利用不等式的基本性质解不等式再从不等式的解集中找出正整数解得个数.【详解】解:∴正整数解为:有个故选A.【点睛】本题考查了一元一次不等式的整数解正确解不等式求出解集是解答本题的关键.6.C【分析】A 根据必然事件和随机事件的定义即可判断该命题是否正确 B 根据小数精确度的定义即可判断该命题是否正确 C 根据轴对称图形的性质即可判断该命题是否正确 D 方差越大数据的波动越大方差越小数据的波动越小.【详解】A “经过有交通信号灯的路口遇到红灯”是随机事件命题错误该选项不符合题意B 精确到百分位命题错误该选项不符合题意C 点关于轴的对称点坐标是命题正确该选项符合题意D 甲乙两人参加环保知识竞赛他们的平均成绩相同方差分别是则乙成绩比甲的稳定命题错误该选项不符合题意.故选:C【点睛】本题主要考查必然事件和随机事件小数精确度轴对称图形方差牢记必然事件和随机事件的定义小数精确度的定义轴对称图形的性质方差的性质是解题的关键.7.D【分析】设该队胜场负场根据每队胜一场得2分负一场得1分在12场比赛中得20分列出方程组即可.【详解】解:设该队胜场负场根据题意得:故D正确.故选:D.【点睛】本题主要考查了列二元一次方程组解题的关键是找出题目中的等量关系.8.B【分析】根据一元二次方程的解法求出的值根据各象限点的特征即可求得.【详解】∵实数是一元二次方程的两个根且∴∴为∴在第二象限故选:B.【点睛】此题考查了一元二次方程的解法以及各象限点的特征解题的关键是熟练掌握一元二次方程的解法.9.C【分析】首先利用三角形的中位线定理证得四边形为平行四边形再求对角线长度然后利用三角形中位线定理求出此平行四边形边长即可求出周长.【详解】解:如图连接相交于点点分别是边的中点同理四边形是平行四边形四边形是菱形对角线互相垂直是等边三角形在中四边形的周长为.故选:C.【点睛】本题考查了中点四边形的知识解题的关键是灵活运用三角形的中位线定理菱形的性质及平行四边形的判定与性质进行计算.10.B【分析】利用数形相结合借助图象求出不等式的解集即可.【详解】解:∵把直线与双曲线交于点和点∴当时直线在双曲线的下方且直线在x轴的上方∴不等式的解集是:故选:B.【点睛】本题考查了一次函数与反比例函数的交点问题反比例函数图象上点的坐标特征利用数形相结合的思想是解此题的关键.11.A【分析】根据尺规作图可得是的平分线可得由三角形内角和定理可得由等腰三角形性质可得根据直角三角形的性质可得可推出根据三角形面积公式即可求解.【详解】解:由尺规作图可得是的平分线∴∵∴∴在中∴即∴故选:A.【点睛】本题考查基本作图含角直角三角形的性质等腰三角形的性质三角形的面积等知识角所对直角边长度是斜边的一半.12.C【分析】利用图表信息结合面积及逐个运动阶段得到计算数据逐个判断正误即可.【详解】由矩形及点P运动过程可知:时点P位于点B处则①正确时点P位于点D处故运动时间为10s 所以③正确时点P位于点C处所以②错误周长所以④错误故①③正确正确得有2个故选C.【点睛】本题考查动点面积计算问题能够在不同位置清晰计算面积及结合图表确认拐点位置是解题的关键.13.x(x+2)(x﹣2)【分析】先提取公因式再根据平方差公式分解因式即可.【详解】解:==x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法的综合运用掌握a2-b2=(a+b)(a-b)是解题的关键.14.【分析】过点作轴于点A过点作轴于点C易证即得出即.【详解】解:如图过点作轴于点A过点作轴于点C∵将绕点逆时针旋转得到∴∴.∵∴.又∵∴∴∴.故答案为:.【点睛】本题考查坐标与图形三角形全等的判定和性质.正确作出辅助线构造全等三角形是解题关键.15./【分析】利用二次根式的性质和绝对值的性质即可求解.【详解】由数轴位置可知.【点睛】本题考查二次根式化简运算掌握二次根式的性质是关键.16.【分析】首先确定扇形的圆心角的度数然后利用圆锥的底面圆周长是扇形的弧长计算即可.【详解】解:∵正六边形的外角和为∴每一个外角的度数为∴正六边形的每个内角的度数为设这个圆锥底面圆的半径是r根据题意得解得故答案为:.【点睛】本题考查正多边形和圆及圆锥的计算解题的关键是求得正六边形的内角的度数并理解圆锥的母线长是扇形的半径圆锥的底面圆周长是扇形的弧长.17./【分析】直接根据已知数据变化规律进而将原式变形求出答案.【详解】故答案为:.【点睛】本题考查数字变化规律正确将原式变形是解题的关键.18.【分析】根据实数的混合运算法则即可求解.【详解】原式【点睛】本题考查实数的混合运算.熟记特殊角的三角函数值求绝对值法则负指数幂的运算法则是解题关键.19. 45【分析】先按照完全平方公式平方差公式多项式乘以多项式计算整式的乘法再合并同类项即可.【详解】原式.当时原式.【点睛】本题考查的是整式的化简求值同时考查了二次根式的混合运算掌握完全平方公式与平方差公式进行简便运算是解题的关键.20.(1)(2)这个游戏公平理由见解析【分析】(1)转盘指针指向正数的概率据此即可求解(2)通过列表找出事件的所有等可能结果分别计算小明获胜的概率小聪获胜的概率即可进行判断.【详解】(1)解:∵为正数∴转盘指针指向正数的概率为:(2)解:列表得:64一共有9种等可能的结果其中的有4种其中的有4种∴(小聪获胜)(小明获胜)(小聪获胜)(小明获胜)∴这个游戏公平【点睛】本题考查了概率的应用.熟记概率的计算公式以及列表法(或树状图)是解题关键.【分析】过点作于点分别解即可.【详解】解:过点作于点.则四边形是矩形.∴∵∴在中∴∴∴在中∴∴∴∴米【点睛】本题考查了关于俯仰角的解直角三角形的问题.作垂线构造直角三角形是解题关键.22.(1)400 176(2)(3)扇形统计图中“”所在扇形的圆心角度数为(4)估计该校成绩优秀的学生约有300名【分析】(1)利用组频数除以组所占百分比即可计算本次调查的样本容量利用样本容量乘以组所占百分比即可计算的值(2)根据中位数的定义分析判断即可(3)首先计算的值再计算扇形统计图中“”所在扇形的圆心角度数即可(4)首先计算本次调查学生成绩优秀的百分比然后利用该百分比乘以该校总人数即可获得答案.【详解】(1)本次调查的样本容量为.故答案为:400 176(2)此次共抽取了400名学生成绩将学生成绩按从低到高排序排在最中间的是第200个第201个这两个数的平均数是中位数∴中位数落在组.故答案为:(3)∵∴扇形统计图中“E”所在扇形的圆心角度数为答:扇形统计图中“”所在扇形的圆心角度数为.(4)答:估计该校成绩优秀的学生约有300名.【点睛】本题主要考查了频数分布统计表扇形统计图中位数样本估计总体等知识熟练掌握相关知识是解题关键.23.(1)见解析(2)【分析】(1)连接根据点是的中点可得进而证从而得证即可(2)解法一:连接交于根据及勾股定理求出再证明从而得到即可求出的值解法二:过点作于点按照解法一步骤求出然后证明四边形是矩形再证明求得进而求出的值.【详解】(1)证明:连接点是的中点是半径是的切线(2)解法一:连接交于在中或(不符合题意舍去)点是的中点是半径垂直平分是的中位线是直径解法二:过点作于点在中或(不符合题意舍去)四边形是矩形.【点睛】本题考查切线的判定圆的相关性质勾股定理平行线间线段成比例相似三角形的的判定与性质掌握并理解相关性质定理并能综合应用是关键.24.(1)每盒肉粽和每盒豆沙粽的进价分别为50元和40元(2)①(且为整数)②购买粽子礼盒少于75盒去A厂家购买划算购买粽子礼盒等于75盒去A厂家或厂家购买一样划算购买粽子礼盒多于75盒去厂家购买划算【分析】(1)设每盒豆沙粽的进价为元则每盒肉粽的进价为元列分式方程求解即可(2)①根据售价与数量单价间的关系即可列一次函数得解②由得解得结合图象即可得解.【详解】(1)解:设每盒豆沙粽的进价为元则每盒肉粽的进价为元方程两边乘得解得检验:当时∴是原方程的解答:每盒肉粽和每盒豆沙粽的进价分别为50元和40元.(2)解:①(且为整数)当且为整数时当且为整数时∴②当且为整数时由图象可知:购买粽子礼盒少于75盒去A厂家购买划算购买粽子礼盒等于75盒去A 厂家或厂家购买一样划算购买粽子礼盒多于75盒去厂家购买划算.【点睛】本题考查了求一次函数得解析式分式方程的应用以及一次函数的图像及性质正确找出等量关系列分式方程是解题的关键.25.(1)见解析(2)是等腰三角形理由见解析(3)【分析】(1)利用正方形的性质得出进而即可得到(2)先判断出进而判断出即可得到结论(3)先求出的长可证明是等腰直角三角形.从而得到的长再利用可证得进而得到从而可得到答案.【详解】(1)解:∵四边形是正方形是对角线∴在和中∴.(2)解:是等腰三角形理由如下:∵∴∵四边形是正方形∴∴∵∴∵∴∴∴∴∴是等腰三角形.(3)解:∵∴又∵∴是等腰直角三角形.∴∴∴∴∵∴∴∴.【点睛】本题考查四边形综合题主要考查了正方形的性质全等三角形等腰三角形以及相似三角形熟练掌握等腰三角形以及全等三角形的判定与性质是解题的关键.26.(1)(2)的最大值为点的坐标为(3)符合条件的点坐标为:或【分析】(1)利用待定系数法即可求解(2)先求得直线的解析式设则得到利用二次函数的性质求解即可(3)先求得抛物线的顶点对称轴为分当点在轴上和点在轴负半轴上时两种情况讨论当点在轴负半轴上时证明求得再证明求得点的坐标为由点在抛物线上列式计算求解即可.【详解】(1)解:∵抛物线与轴交于点与轴交于点解得抛物线的解析式为:(2)解:当时解得∴设直线的解析式为:把代入得:解得∴直线的解析式为设∵轴∴点的纵坐标为又∵点在直线上∴∴∴∵轴∴∴∵∴当时有最大值最大值为当时∴点的坐标为答:的最大值为点的坐标为(3)解:则抛物线的顶点对称轴为情况一:当点在轴上时为抛物线的顶点∵四边形为矩形∴与纵坐标相同∴情况二:当点在轴负半轴上时四边形为矩形过作轴的垂线垂足为过作轴的垂线垂足为设则∴∴∵∴又∵∴∴∵抛物线对称轴为点在对称轴上∴∴即∵∴∴∴∴∴点的坐标为∵点在抛物线上∴解得(舍去)∴综上所述:符合条件的点坐标为:或.【点睛】本题考查二次函数的综合应用涉及待定系数法相似三角形的判定和性质矩形的性质等知识解题的关键是方程思想的应用.。
内蒙古兴安盟中考数学试卷及答案
内蒙古兴安盟中考数学试卷及答案一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列计算结果为负数的是()A.﹣(﹣3)B.﹣|﹣3| C.D.()﹣12.(3分)锐角三角形的三个内角是∠A,∠B,∠C,如果α=∠A+∠B,β=∠B+∠C,γ=∠C+∠A,那么α,β,γ这三个角中()A.没有锐角B.有1个锐角C.有2个锐角D.有3个锐角3.(3分)10月15日9时10分,我国神舟五号载人飞船准确进入预定轨道.16日5时59分,返回舱与推进舱分离,返回地面.其间飞船绕地球共飞行了14圈,飞行的路程约60万千米,则神舟五号飞船绕地球平均每圈约飞行(用科学记数法表示保留三个有效数字)()A.4.28×104千米 B.4.29×104千米 C.4.28×105千米 D.4.29×105千米4.(3分)下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是()A.B.C.D.5.(3分)如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB 与CF相交于N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE=CF;④△ACN≌△ABM.其中正确的结论是()A.①③④B.②③④C.①②③D.①②④6.(3分)图中4个正方形的边长都相等,其中阴影部分面积相等的图形个数是()7.A.0B.2C.3D.47.(3分)甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为:9,9,x,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是()A.10 B.9C.8D.78.(3分)黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满.按第1,2,3个图案(如图)所示规律依次下去,则第n个图案中,黑色正三角形和白色正六边形的个数分别是()A.n2+n+2,2n+1 B.2n+2,2n+1 C.4n,n2﹣n+3 D.4n,2n+19.(3分)如图,已知⊙O的两条弦AB、CD相交于AB的中点E,且AB=4,DE=CE+3,则CD 的长为()A.4B.5C.8D.1010.(3分)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.(3分)函数y=中,自变量x的取值范围是_________ .12.(3分)把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为_________ .13.(3分)分解因式:a3+a2b﹣ab2﹣b3= _________ .14.(3分)如图,电路图上有四个开关,A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C,都可使小灯泡发光,现任意闭合其中两个开关,则小灯泡发光的概率为_________ .15.(3分)如果半径为2和7的两个圆相切,那么这两圆的圆心距为_________ .16.(3分)如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和点(1,0),且与y轴交于负半轴,给出下面四个结论:①abc<0;②2a+b>0;③a+c=1;④b2﹣4ac>0.其中正确结论的序号是_________ .(请将自己认为正确结论的序号都填上)17.(3分)如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC 的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是_________ m.(结果不取近似值)三、解答题(共9小题,满分69分)18.(6分)计算:(﹣1)﹣2007﹣+2cos30°﹣(﹣1)219.(6分)解方程:+=20.(6分)先化简分式:,然后请你给a选取一个合适的值,再求此时原式的值.21.(6分)某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.现要求加工甲种零件的人数不少于加工乙种零件人数的2倍,设每天所获利润为y元,那么多少人加工甲种零件时,每天所获利润最大,每天所获最大利润是多少元?22.(7分)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图,甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?23.(8分)如图,小岛A在港口P的南偏西45°方向,距离港口81海里处.甲船从A出发,沿AP方向以9海里/时的速度驶向港口,乙船从港口P出发,沿南偏东60°方向,以18海里/时的速度驶离港口,现两船同时出发.(1)出发后几小时两船与港口P的距离相等;(2)出发后几小时乙船在甲船的正东方向?(结果精确到0.1小时)(参照数据:≈1.41,≈1.73)24.(8分)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?25.(10分)有两个可以自由转动的均匀转盘A、B,分别被分成4等份、3等份,并在每份内均标有数字,如图所示,丁洋和王倩同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A和B;②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止);③如果和为0,丁洋获胜,否则,王倩获胜.(1)用列表法(或树状图)求丁洋获胜的概率;(2)你认为这个游戏对双方公平吗?请说明理由.26.(12分)图1是边长分别为和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD,BE,CE的延长线交AB于F(图2).探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论;(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3).探究:设△PQR移动的时间为x秒,△PQR与△AFC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.参照答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列计算结果为负数的是()D.A.﹣(﹣3)B.﹣|﹣3| C.()﹣1考点:负整数指数幂;相反数;绝对值;算术平方根.专题:计算题.解析:根据绝对值、相反数、负整数指数的运算法则计算即可.解答:解:A、﹣(﹣3)=3;B、﹣|﹣3|=﹣3;C、()﹣1=3;D、=3.故选B.点评:本题主要考查了相反数,绝对值,负整数指数和算术平方根,这些运算法则要牢记.2.(3分)锐角三角形的三个内角是∠A,∠B,∠C,如果α=∠A+∠B,β=∠B+∠C,γ=∠C+∠A,那么α,β,γ这三个角中()A.没有锐角B.有1个锐角C.有2个锐角D.有3个锐角考点:三角形的外角性质.解析:根据三角形的外角性质,及锐角三角形的性质作答.解答:解:由于锐角三角形中三个都是锐角,而α,β,γ分别是其外角,根据三角形外角的性质,可知α,β,γ这三个角都是钝角.故选A.点评:此题主要考查了三角形内角与外角的关系.(1)三角形的任一外角等于和它不相邻的两个内角之和;(2)三角形的任一外角>任何一个和它不相邻的内角.3.(3分)10月15日9时10分,我国神舟五号载人飞船准确进入预定轨道.16日5时59分,返回舱与推进舱分离,返回地面.其间飞船绕地球共飞行了14圈,飞行的路程约60万千米,则神舟五号飞船绕地球平均每圈约飞行(用科学记数法表示保留三个有效数字)()A.4.28×104千米 B.4.29×104千米 C.4.28×105千米 D.4.29×105千米考点:科学记数法与有效数字.专题:应用题.解析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.而保留三个有效数字,要观察第4个有效数字,四舍五入.解答:解:60万÷14≈4.29×104.故选B.点评:本题考查学生对科学记数法的掌握.科学记数法要求前面的部分是大于或等于1,而小于10,小数点向左移动4位,应该为4.29×104.4.(3分)下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是()A.B.C.D.考点:统计图的选择.专题:图表型.解析:此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:根据统计图的特点,知条形统计图能清楚地表示出每个项目的具体数目,也正符合这道题要把不同品种的奶牛的平均产奶量显示清楚的目的;而图B中的奶牛瓶这样一个立体物显示,容易使人们从体积的角度比较这几种不同品种奶牛的平均产奶量,从而扩大了它们的差距,是不合适的.故选D.点评:本题考查的是统计图的选择,注意条形统计图能看出具体产量的多少.此题虽是一道小题,但把三种统计图各自的特点和补足都进行了考查,而且还考查了数据与图形的关系所造成的误导,把各个知识点都融合在一道题中,非常巧妙,又顺理成章,很有新意.5.(3分)如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB 与CF相交于N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE=CF;④△ACN≌△ABM.其中正确的结论是()A.①③④B.②③④C.①②③D.①②④考点:全等三角形的判定与性质.解析:根据题目中所给的大部分选项先判断该证明哪两个三角形全等,然后对各选项采取排除法得到正确选项.解答:解:∵∠EAC=∠FAB∴∠EAB=∠CAF又∵∠E=∠F=90°,AE=AF∴△ABE≌△ACF∴∠B=∠C,BE=CF.由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正确)由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;故选A.点评:本题考查了全等三角形的判定和性质,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.6.(3分)图中4个正方形的边长都相等,其中阴影部分面积相等的图形个数是()A.0B.2C.3D.4考点:扇形面积的计算.解析:从图中可以看出阴影部分的面积=正方形的面积﹣圆的面积.解答:解:第一个阴影部分的面积=正方形的面积﹣圆的面积,圆的半径为边长的一半;第二个也是;第三个不是;第四个也是;所以有三个图形的阴影部分面积相等.故选C.点评:本题关键是看出阴影部分的面积公式是由哪几部分组成的.7.(3分)甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为:9,9,x,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是()A.10 B.9C.8D.7考点:中位数;算术平均数.专题:应用题.解析:将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.解答:解:因为这组数据的众数与平均数恰好相等,所以9+9+x+7=9×4,∴x=11;题目中数据共有4个,故中位数是按从小到大排列后第2,第3两个数的平均数作为中位数.故这组数据的中位数是(9+9)=9.故选B.点评:本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.8.(3分)黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满.按第1,2,3个图案(如图)所示规律依次下去,则第n个图案中,黑色正三角形和白色正六边形的个数分别是()A.n2+n+2,2n+1 B.2n+2,2n+1 C.4n,n2﹣n+3 D.4n,2n+1考点:平面镶嵌(密铺).专题:规律型.解析:第n个图案中,黑色正三角形和白色正六边形的个数分别是4n,3+(n﹣1)×2=2n+1.解答:解:第1个图案中,黑色正三角形和白色正六边形的个数分别是4,2×1+1=3;第2个图案中,黑色正三角形和白色正六边形的个数分别是2×4=8,2×2+1=5;第3个图案中,黑色正三角形和白色正六边形的个数分别是3×4=12,2×3+1=7;…第n个图案中,黑色正三角形和白色正六边形的个数分别是4n,3+(n﹣1)×2=2n+1.故选D.点评:找规律的题,应以第一个图象为基准,细心观察,得到第n个图形与第一个图形之间的关系.9.(3分)如图,已知⊙O的两条弦AB、CD相交于AB的中点E,且AB=4,DE=CE+3,则CD 的长为()A.4B.5C.8D.10考点:相交弦定理.专题:压轴题.解析:运用相交弦定理求解.解答:解:设CE=x,则DE=3+x.根据相交弦定理,得x(x+3)=2×2,x=1或x=﹣3(不合题意,应舍去).则CD=3+1+1=5.故选B.点评:此题可以根据相交弦定理列方程求解.10.(3分)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A.B.C.D.考点:翻折变换(折叠问题).专题:压轴题.解析:根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等和勾股定理求解.解答:解:根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.故选D.点评:本题利用了:1、折叠的性质;2、矩形的性质.二、填空题(共7小题,每小题3分,满分21分)11.(3分)函数y=中,自变量x的取值范围是x>﹣2 .考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.专题:压轴题.解析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.解答:解:根据题意得:x+2>0,解得x>﹣2.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.(3分)把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为±.考点:算术平方根;平方根;展开图折叠成几何体.解析:由于x﹣y的相对面是1,x+y的相对面是3,所以x﹣y=1,x+y=3,由此即可解得x和y的值,然后即可求出x的平方根与y的算术平方根之积.解答:解:依题意得x﹣y的相对面是1,x+y的相对面是3,∴x﹣y=1,x+y=3,∴x=2,y=1,∴x的平方根与y的算术平方根之积为±.故答案为:±.点评:此题主要考查了平方根、算术平方根的定义,解题关键是找出这个正方体的相对面,要求学生自己动手,慢慢体会哪二个面是相对面.13.(3分)分解因式:a3+a2b﹣ab2﹣b3= (a+b)2(a﹣b).考点:因式分解-分组分解法.解析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题前两项、后两项都有公因式,且分解后还能继续分解,故使前两项一组,后两项一组.解答:解:a3+a2b﹣ab2﹣b3,=a2(a+b)﹣b2(a+b),=(a+b)(a2﹣b2),=(a+b)2(a﹣b).点评:本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.此题主要用到了提取公因式法和平方差公式进行因式分解.14.(3分)如图,电路图上有四个开关,A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C,都可使小灯泡发光,现任意闭合其中两个开关,则小灯泡发光的概率为.考点:概率公式.专题:跨学科.解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:.故本题答案为:.点评:本题考查了概率的公式,用满足条件的个数除以总的个数即可得出概率的值.15.(3分)如果半径为2和7的两个圆相切,那么这两圆的圆心距为9或5 .考点:圆与圆的位置关系.解析:两圆相切,包括两圆外切或两圆内切.当两圆外切时,圆心距等于两圆半径之和;当两圆内切时,圆心距等于两圆半径之差.解答:解:当两圆外切时d=7+2=9;内切时d=7﹣2=5.所以两圆的圆心距为9或5.点评:本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法.16.(3分)如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和点(1,0),且与y轴交于负半轴,给出下面四个结论:①abc<0;②2a+b>0;③a+c=1;④b2﹣4ac>0.其中正确结论的序号是②,③,④.(请将自己认为正确结论的序号都填上)考点:二次函数图象与系数的关系.专题:压轴题.解析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①图象开口向上,与y轴交于负半轴,对称轴在y轴右侧,能得到:a>0,c<0,﹣>0,b<0,∴abc>0,错误;②∵对称轴在1的左边,∴﹣<1,又a>0,∴2a+b>0,正确;③图象经过点(﹣1,2)和点(1,0),可得,消去b项可得:a+c=1,正确;④图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,正确.故正确结论的序号是②,③,④.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.(3分)如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC 的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)考点:平面展开-最短路径问题.专题:压轴题;转化思想.解析:求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.解答:解:圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=m.故小猫经过的最短距离是m.故答案是:3.点评:正确判断小猫经过的路线,把曲面的问题转化为平面的问题是解题的关键.三、解答题(共9小题,满分69分)18.(6分)计算:(﹣1)﹣2007﹣+2cos30°﹣(﹣1)2考点:实数的运算;立方根;负整数指数幂;特殊角的三角函数值.解析:根据负整数指数幂、特殊角的三角函数值、三次根式化简,平方的计算四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣4+﹣3+2﹣1=3﹣9.点评:本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、立方根的运算、平方等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;平方的运算;三次根式的化简.19.(6分)解方程:+=考点:解分式方程.专题:计算题.解析:把各分母进行因式分解,可得到最简公分母是x(x+1)(x﹣1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.解答:解:方程两边都乘x(x+1)(x﹣1),得7(x﹣1)+3(x+1)=6x,解得x=1.经检验:x=1是增根.∴此方程无解.点评:(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.20.(6分)先化简分式:,然后请你给a 选取一个合适的值,再求此时原式的值.21.(6分)某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.现要求加工甲种零件的人数不少于加工乙种零件人数的2倍,设每天所获利润为y 元,那么多少人加工甲种零件时,每天所获利润最大,每天所获最大利润是多少元?考点: 二次函数的应用.解析: 人数安排:设安排x 人加工甲种零件,则(20﹣x )人加工乙种零件;每天所获利润=甲每天所获利润+乙每天所获利润,根据基本等量关系列出一次函数,由“要求加工甲种零件的人数不少于加工乙种零件人数的2倍”,得出自变量x 范围,求函数最大值.解答: 解:设安排x 人加工甲种零件,则(20﹣x )人加工乙种零件依题意得:y=5x •16+4(20﹣x )•24=﹣16x+1920考点:分式的化简求值. 专题:开放型. 解析:首先把除法运算转化成乘法运算,然后进行约分,最后进行加减运算. 解答: 解:原式=1﹣× =1﹣=﹣ 当a=2时,原式=﹣.点评: 本题主要考查分式的化简求值这一知识点,把分式化到最简是解答的关键,代值时一定注意分母的值不能为0.又x≥2(20﹣x),x≥13∵y是x的一次函数,且﹣16<0∴当x=14时,y最大=1696即安排14人加工甲种零件时,每天所获利润最大,每天所获最大利润是1696元.点评:本题考查了列一次函数解决实际问题的能力,此题为数学建模题,借助一次函数解决实际问题.22.(7分)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图,甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?考点:频数(率)分布直方图;频数与频率;中位数.专题:常规题型;压轴题.解析:(1)根据题意:结合各小组频数之和等于数据总和,各小组频率之和等于1;易得第二组的频率0.08;再由频率、频数的关系频率=;可得总人数.(2)根据题意:从左至右第二、三、四组的频数比为4:17:15,和(1)的结论;容易求得各组的人数,这样就能求出优秀率.(3)由中位数的意义,作答即可.解答:解:(1)第一组的频率为1﹣0.96=0.04,第二组的频率为0.12﹣0.04=0.08,故总人数为=150(人),即这次共抽调了150人;(2)第一组人数为150×0.04=6(人),第三、四组人数分别为51人、45人,这次测试的优秀率为×100%=24%;(3)前三组的人数为69,而中位数是第75和第76个数的平均数,而120是第四组中最小的数值,因而第75和第76都是120,所以成绩为120次的学生至少有76﹣69=7人.点评:本题考查了中位数的运用和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、解析、研究统计图,才能作出正确的判断和解决问题.同时对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系频率=.23.(8分)如图,小岛A在港口P的南偏西45°方向,距离港口81海里处.甲船从A出发,沿AP方向以9海里/时的速度驶向港口,乙船从港口P出发,沿南偏东60°方向,以18海里/时的速度驶离港口,现两船同时出发.(1)出发后几小时两船与港口P的距离相等;(2)出发后几小时乙船在甲船的正东方向?(结果精确到0.1小时)(参照数据:≈1.41,≈1.73)考点:解直角三角形的应用-方向角问题.专题:应用题;压轴题.解析:(1)求几小时后两船与港口的距离相等,可以转化为方程的问题解决.(2)过点P作PE⊥CD,垂足为E.则点E在点P的正南方向,则得到相等关系,C、D两点到在南北方向上经过的距离相等,因而根据方程就可以解决.解答:解:(1)设出发后x小时两船与港口P的距离相等.根据题意得81﹣9x=18x.解这个方程得x=3.∴出发后3小时两船与港口P的距离相等.(2)设出发后y小时乙船在甲船的正东方向,此时甲、乙两船的位置分别在点C,D处.连接CD,过点P作PE⊥CD,垂足为E.则点E在点P的正南方向.在Rt△CEP中,∠CPE=45°,∴PE=PC•cos45°.在Rt△PED中,∠EPD=60°,∴PE=PD•cos60°.∴PC•cos45°=PD•cos60°.∴(81﹣9y)cos45°=18y•cos60°.解这个方程,得y≈3.7.答:出发后约3.7小时乙船在甲船的正东方向.点评:在船舶运动过程中,构建解直角三角形的问题,考查学生对所学知识的变式认识能力.24.(8分)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?考点:一元二次方程的应用.专题:销售问题;压轴题.解析:设应将每千克小型西瓜的售价降低x元.那么每千克的利润为:(3﹣2﹣x),由于这种小型西瓜每降价O.1元/千克,每天可多售出40千克.所以降价x元,则每天售出数量为:。
2022年内蒙古呼伦贝尔市、兴安盟中考数学试卷(学生版+解析版)
2022年内蒙古呼伦贝尔市、兴安盟中考数学试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)−45的相反数是()A.−45B.45C.−54D.542.(3分)下列计算正确的是()A.a3+a3=a6B.a÷b•1b=aC.2aa−1−2a−1=2D.(ba2)3=b3a53.(3分)由5个相同的小正方体组成的几何体,如图所示,该几何体的左视图是()A.B.C.D.4.(3分)下列说法正确的是()A.调查中央电视台《开学第一课》的收视率,应采用全面调查的方式B.数据3,5,4,1,﹣2的中位数是4C.一个抽奖活动中,中奖概率为120,表示抽奖20次就有1次中奖D.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数相等,方差分别为S甲2=0.4,S乙2=2,则甲的成绩比乙的稳定5.(3分)实数a在数轴上的对应位置如图所示,则√a2+1+|a﹣1|的化简结果是()A .1B .2C .2aD .1﹣2a6.(3分)如图,直线a ∥b ,截线c ,d 相交成30°角,∠1=146°33′,则∠2的度数是( )A .63°27′B .64°27′C .64°33′D .63°33′7.(3分)对于实数a ,b 定义运算“⊗”为a ⊗b =b 2﹣ab ,例如3⊗2=22﹣3×2=﹣2,则关于x 的方程(k ﹣3)⊗x =k ﹣1的根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .无法确定8.(3分)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72022的结果的个位数字是( ) A .0B .1C .7D .89.(3分)某班学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为xkm /h ,下列方程正确的是( ) A .10x−102x =20 B .102x−10x =20C .102x−10x=13D .10x−102x=1310.(3分)如图,在△ABC 中,AB =BC ,以B 为圆心,适当长为半径画弧交BA 于点M ,交BC 于点N ,分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧相交于点D ,射线BD 交AC 于点E ,点F 为BC 的中点,连接EF ,若BE =AC =4,则△CEF 的周长是( )A .8B .2√3+2C .2√5+6D .2√5+211.(3分)如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°到正方形AB ′C ′D ′,图中阴影部分的面积为( )A .12B .√33C .1−√33D .1−√3412.(3分)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x =1,下列结论:①abc <0②3a +c =0③当y >0时,x 的取值范围是﹣1≤x <3④点(﹣2,y 1),(2,y 2)都在抛物线上,则有y 1<0<y 2.其中结论正确的个数是( )A .1个B .2个C .3个D .4个二、填空题:本题共5小题,每小题3分,共15分。
初中数学 2023年内蒙古呼伦贝尔市、兴安盟中考数学试卷
2023年内蒙古呼伦贝尔市、兴安盟中考数学试卷一、选择题(共10小题,每小题4分,满分40分)A .-2B .2C .2D .121.(4分)2的相反数是( )√A .a 2+ab +b 2B .a 2+2a+2C .a 2-2b +b 2D .a 2+2a +12.(4分)下列式子中是完全平方式的是( )A .25.1×10-6米B .0.251×10-4米C .2.51×105米D .2.51×10-5米3.(4分)长度单位1纳米=10-9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A .14B .12C .12或14D .以上都不对4.(4分)三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,则该三角形的周长为( )A .8B .9C .10D .115.(4分)如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,设AD =2,BC =3,则四边形AEFD 的周长是( )A .0.3B .0.4C .0.5D .0.66.(4分)动物学家通过大量的调查估计出,某种动物活到20岁的概率是0.8,活到25岁的概率是0.5,活到30岁的概率是0.3,现年25岁到这种动物活到30岁的概率是( )A .m ≥1B .m >1C .m ≤1D .m <17.(4分)若分式1x 2−2x +m 不论x 取何值总有意义,则m 的取值范围是( )8.(4分)如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上二、填空题(本大题共4小题,每小题5分,满分20分)三、(本大题共2小题,每小题8分,满分16分)A.23B.26C.3D.6有一点P,使PD+PE的和最小,则这个最小值为( )√√√A.3B.4C.5D.6 9.(4分)如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O 分别作OE⊥AP于E,OF⊥PB于F,则EF的长为( )A.B.C.D.10.(4分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2-4ac与反比例函数y=a+b+cx在同一坐标系内的图象大致为( )11.(5分)分解因式:2x2-12x+18=.12.(5分)如图,正方形ABCD的边长是4cm,点G在边AB上,以BG为边向外作正方形GBFE,连接AE、AC、CE,则△AEC的面积是cm2.13.(5分)若|x|+3=|x-3|,则x的取值范围是.14.(5分)如图,点A、B是双曲线y=3x上的点,分别经过A、B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=.15.(8分)计算:2sin60°−3tan30°+(13)0+(−1)2010.四、(本大题共2小题,每小题8分,满分16分)五、(本大题共2小题,每小题10分,满分20分)六、(本题满分12分)16.(8分)如图所示,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC = ,BC = ;(2)判断△ABC 与△DEF 是否相似?并证明你的结论.17.(8分)某市今年1月1日起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月份多6立方米,求该市今年居民用水的价格.18.(8分)青少年视力水平的下降已经引起全社会的关注,某校为了了解初中毕业年级500名学生的视力情况,从中抽查了一部分学生视力,通过数据处理,得到如下频率分布表和频率分布直方图:分 组频 数频 率3.95~4.2520.044.25~4.5560.124.55~4.8525 4.85~5.155.15~5.4520.04合 计 1.00请你根据给出的图表回答:(1)填写频率分布表中未完成部分的数据;(2)在这个问题中,总体是 ,样本容量是 .(3)请你用样本估计总体,可以得到哪些信息?(写一条即可).19.(10分)如图,某军港有一雷达站P ,军舰M 停泊在雷达站P 的南偏东60°方向20海里处,另一艘军舰N 位于军舰M 的正西方向,与雷达站P 相距102海里.求:(1)军舰N 在雷达站P 的什么方向?(2)两军舰M 、N 的距离.(结果保留根号)√20.(10分)如图,在△ABC 中,D 为AC 上一点,CD =2DA ,∠BAC =45°,∠BDC =60°,CE ⊥BD ,E 为垂足,连接AE .(1)写出图中所有相等的线段,并选择其中一对给予证明.(2)若AD =1,求BE 的长.七、(本题满分12分)八、(本题满分14分)21.(12分)如图,一次函数y =ax +b 的图象与反比例函数y =kx 的图象交于A ,B 两点,与x 轴交于点C ,与y 轴交于点D ,已知OA =10,tan ∠AOC =13,点B 的坐标为(m ,-2).(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)在y 轴上存在一点P ,使得△PDC 与△ODC 相似,请你求出P 点的坐标.√22.(12分)如图,Rt △ABC 内接于⊙O ,AC =BC ,∠BAC 的平分线AD 与⊙O 交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连接CD ,G 是CD 的中点,连接OG .(1)判断OG 与CD 的位置关系,写出你的结论并证明.(2)求证:AE =BF .23.(14分)如图,边长为4的正方形OABC 的顶点O 为坐标原点,点A 在x 轴的正半轴上,点C 在y轴的正半轴上.动点D 在线段BC 上移动(不与B ,C 重合),连接OD ,过点D 作DE ⊥OD ,交边AB 于点E ,连接OE .(1)当CD =1时,求点E 的坐标;(2)如果设CD =t ,梯形COEB 的面积为S ,那么是否存在S 的最大值?若存在,请求出这个最大值及此时t 的值;若不存在,请说明理由.。
内蒙古兴安盟中考数学试卷及答案
内蒙古兴安盟中考数学试卷及答案一、选择题(共 10 小题,每小题 3 分,共 30 分. 下列各题中的四个选项中只有一个正确,请将正确答案选出来,并将其字母填入下面表格中相对应的栏内.)1. −3 的相反数是()A. 3 −B. 3C. ±3D.2. 下列运算正确的是()3. 国家游泳中心——“水立方”是北京 2008 年奥运会场馆之一,它的外层膜的展开面积约为 260000 平方米,将 260000 用科学记数法表示应为()4. 五名同学在抗震救灾“爱心捐助”活动中,捐款数额为: 8, 10, 10, 4, 6(单位:元) .这组数据的中位数是()A. 10B. 9C. 8D. 65. 一个几何体的三视图如图所示,这个几何体是()A. 正方体B. 球C. 圆锥D. 圆柱6. 将一张正方形纸片按如图方式经过两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()7. 已知:⊙O1的半径 r 为 3cm,⊙O2的半径 R 为 4cm,两圆的圆心距O1O2为 1cm,则这两个圆的位置关系是()A.相交B. 内含C. 内切D. 外切8. 当 x<0 时,反比例函数的()A. 图象在第二象限内, y 随 x 的增大而减小B. 图象在第二象限内, y 随 x 的增大而增大C. 图象在第三象限内, y 随 x 的增大而减小D. 图象在第三象限内, y 随 x 的增大而增大9. 圆锥的底面直径是 8,母线长为 12,则这个圆锥的侧面展开图的圆心角是()A. 60°B. 120°C. 150°D. 180°10. 国家实施惠农政策后,某镇农民人均收入经过两年由 1 万元提高到 1.44 万元. 这两年该镇农民人均收入的平均增长率是()A. 20%B. 22%C. 10%D. 11%二、填空题(共 7 小题,每小题 3 分,共 21 分)11. 分解因式: 2x2−18=________________________.12. 函数中自变量 x 的取值范围是______________________.13. 计算:14. 已知:∠ A= 60°,则∠A 的补角是_________.15. 如图所示的乙树是由甲树经过___________变换得到的.16. 现有甲、乙两个球队,每个球队队员身高平均数为 1.70 米,方差分别为,则身高较整齐的球队是______队.(填“甲”或“乙”)17. 用火柴棒按照如图所示的方式摆图形,则第 n 个图形中,所需火柴棒的根数是______.三、解答题(共 4 小题,每小题 6 分,共 24 分)18. 计算:19.解方程:20. 如图,, D、 E 分别是半径 OA 和 OB 的中点, CD 与 CE 的大小有什么关系?为什么?21. 如图,在梯形 ABCD 中, AD∥BC, AD= DC= AB ,∠C= 60°, AE⊥BD 于 E, AE=1. 求梯形 ABCD 的高.四、(本题满分 7 分)22. 如图(1),有四张编号为 1, 2, 3, 4 的卡片,卡片的背面完全相同,现将它们洗匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图(2)所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.五、(本题满分 7 分)23. 如图,某幢大楼顶部有一块广告牌 CD,甲、乙两人分别在相距 8m 的 A、 B 两处测得 D点和 C 点的仰角分别为 45°和 60°,且 A、 B、 E 三点在一条直线上. 若BE=15m,求这块广告牌的高度. (取≈1.73,计算结果保留整数)六、(本题满分 8 分)24. 《中学生体质健康标准》规定学生体质健康等级标准为: 86 分以上为优秀, 76 分——85 分为良好, 60 分——75 分为及格, 59 分以下为不及格. 某学校从九年级学生中随机抽取了 10%的学生进行了体质健康测试,得分情况如下图.(1)在抽取的学生中不及格人数所占的百分比是______.(2)小明按以下方法计算出抽取学生的平均得分是:(90+78+66+42)÷4=69. 根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式(不必计算出结果) .(3)若不及格学生的总分恰好等于某一个良好等级学生的分数,请估算出该校九年级学生中优秀等级的人数.七、(本题满分 10 分)25. 为迎接市运动会,某单位准备用 800 元订购 10 套下表中的运动服.(1)若全部资金用来订购男装甲和女装,问他们可以各订多少套?(2)若在现有资金 800 元允许的范围内和运动服总套数不变的前提下,他们想订购表中的三种运动服,其中男装甲和男装乙的套数相同,且女装费用不超过男装甲的费用,求他们能订购三种运动服各多少套?八、(本题满分 12 分)26. 如图,已知抛物线的顶点为 A(2, 1),且经过原点 O,与 x 轴的另一个交点为 B. (1)求抛物线的解析式;(2)在抛物线上求点 M,使△MOB 的面积是△AOB 面积的 3 倍;(3)连结 OA、 AB,在 x 轴下方的抛物线上是否存在点 N,使△OBN与△OAB 相似?若存在,求出 N点的坐标;若不存在,所们理由.参照答案及评分标准一、选择题(每小题 3 分,共 30 分)二、填空题(每小题 3 分,共 21 分)三、解答题(每小题 6 分,共 24 分)。
兴安盟中考数学试卷
兴安盟中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·乐清模拟) -9的相反数是()A .B .C . 9D . -92. (2分)下列四个图案中,轴对称图形的个数是()A . 1B . 2C . 3D . 43. (2分) (2020九下·龙岗期中) 在今年十一期间,汝州风穴寺景区共接待游客8. 7275万人次,旅游总收入为2094. 6万元. 将2094. 6万元用科学记数法表示为()A . 元B . 元C . 元D . 元4. (2分)(2016·兰州) 如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A .B .C .D .5. (2分)若式子有意义,则x的取值范围是()A . x≥3B . x≤3C . x>3D . x=36. (2分) (2018九上·襄汾期中) 如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A . 60mB . 40mC . 30mD . 20m7. (2分)若是关于x的方程的一个根,则方程的另一个根是()A . 9B . 4C . 4D . 38. (2分)(2017·诸城模拟) 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A . 10πB . 15πC . 20πD . 30π9. (2分) (2018·沙湾模拟) 如图,正方形中,点、分别是边,的中点,连接、交于点,则下列结论错误的是()A .B .C .D .10. (2分)若二次函数y=x2+x+m(m﹣2)的图象经过原点,则m的值必为()A . 0或2B . 0C . 2D . 无法确定11. (2分)(2020·抚顺模拟) 正方形ABCD的边长为4,P 为BC上的动点,连接PA,作PQ⊥PA,PQ交CD 于Q,连接AQ ,则AQ的最小值是()A . 5B .C .D . 412. (2分) (2019七上·滨江期末) 有两桶水,甲桶装有升水,乙桶中的水比甲桶中的水多3升.现将甲桶中倒一半到乙桶中,然后再将此时乙桶中总水量的倒给甲桶,假定桶足够大,水不会溢岀.我们将上述两个步骤称为一次操作,进行重复操作,则()A . 每操作一次,甲桶中的水量都会减小,最后甲桶中的水会全部倒入乙桶B . 每操作一次,甲桶中的水量都会减小,但永远倒不完C . 每操作一次,甲桶中的水量都会增加,反复操作,最后甲桶中的水会比乙桶多D . 每操作一次,甲桶中的水量都会增加,但永远比乙桶中的水量要少二、填空题 (共6题;共6分)13. (1分) (2016九上·长清开学考) 分解因式:x3﹣6x2+9x=________.14. (1分) (2019九上·柳南期末) 分式方程的解为 ________.15. (1分)木工师傅要检验一块长方形木板的一组对边是否平行,先用直角尺的一边紧靠木板边缘,读出与这边相对的另一边缘在直角尺上的刻度,换一个位置再读一次.试问这两次的读数相是否相等________16. (1分) (2016九下·大庆期末) 一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是________.17. (1分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,点D,E分别是AB,AC的中点,点G,F 在BC边上(均不与端点重合),DG∥EF.将△BDG绕点D顺时针旋转180°,将△CEF绕点E逆时针旋转180°,拼成四边形MGFN,则四边形MGFN周长l的取值范围是________.18. (1分) (2019八下·永春期中) 已知□ABCD的三个顶点坐标分别为点 A(0,8)、B(0,﹣2)、C(x,y),并且 x,y 满足x﹣y+5=0,则 CD长的最小值为________.三、解答题 (共7题;共90分)19. (5分)(2017·鄂州) 先化简,再求值:(x﹣1+ )÷ ,其中x的值从不等式组的整数解中选取.20. (15分)某商场对今年中秋节这天销售A、B、C三种品牌的月饼情况进行了统计,绘制了如图所示的条形和扇形统计图.根据图中信息解答下列问题:(1)哪一种品牌月饼的销售量最大?(2)写出A品牌月饼在扇形统计图所对应的圆心角的度数.(3)根据上述统计信息,明年中秋节期间该商场对A、B、C三种品牌的月饼如何进货?请你提一条合理化的建议.21. (10分)为了迎接2006年世界杯足球赛,某足协举办了一次足球联赛,其记分规划及奖励办法如下表所示:胜一场平一场负一场积分310奖励(元/人)15007000A队当比赛进行12场时,积分共19分(1)通过计算,A队胜,平、负各几场?(2)若每赛一场,每名参赛队员可得出场费500元.若A队一名队员参加了这次比赛,在(1)条件下,该名队员在A队胜几场时所获奖金最多,奖金是多少?22. (15分)(2019·澄海模拟) 如图,在平面直角坐标系中,直线l1:y=﹣ x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣ x>的解集;(3)将直线l1:y= x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.23. (15分) (2019九上·上海月考) 如图,在边长为6的正方形ABCD中,点E为AD边上的一个动点(与点A、D不重合),∠EBM=45°,BE交对角线AC于点F , BM交对角线AC于点G、交CD于点M .(1)如图1,联结BD ,求证:,并写出的值;(2)联结EG ,如图2,若设,求y关于的函数解析式,并写出函数的定义域;(3)当M为边DC的三等分点时,求的面积.24. (15分) (2019九上·五常月考) 内接于边于点,连接.(1)如图1,求证: ;(2)如图2,延长交于点,点在线段上,射线交边于点,连接,若,求证: ;(3)如图3,在的条件下,连接,若,,求线段的长.25. (15分)如图1,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=- x -与⊙M相切于点H,交x轴于点E,交y轴于点F.(1)请直接写出OE、⊙M的半径r、CH的长;(2)如图2,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图3,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a ,始终满足MN·MK=a ,如果存在,请求出a的值;如果不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共90分)19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。
内蒙古兴安盟2020年(春秋版)中考数学试卷(II)卷
内蒙古兴安盟2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题:每小题4分,共40分 (共10题;共20分)1. (2分)的平方根是()A . 2B . ±2C .D . ±2. (2分)想表示某种品牌奶粉中蛋白质、钙、维生素、糖、其它物质的含量的百分比,应该利用():A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上都可以3. (2分) (2020八上·集贤期末) 已知:x= +1,y=﹣1,求x2﹣y2的值()A . 1B . 2C .D . 44. (2分)已知关于x的一元二次方程有两个不相等的实数根,那么m的值为()A .B .C .D .5. (2分) (2017八下·房山期末) 如图,在ABCD中,AB=4,AD=7,∠ABC的平分线BE交AD于点E ,则DE的长是()A . 4B . 3C . 3.5D . 26. (2分) (2019七下·巴南月考) 不等式的正整数解有().A . 1个B . 2个C . 3个D . 4个7. (2分)若点A(-, y1),B(-1,y2),C(, y3)都在抛物线y=-x2-4x+m上,则y1 , y2 , y3的大小关系是()A . y1>y2>y3B . y1<y2<y3C . y1>y3>y2D . y2>y1>y38. (2分) (2018八上·慈溪期中) 如图,在△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A . 18°B . 24°C . 30°D . 36°9. (2分)(2016·龙岗模拟) 已知函数y= ,则自变量x的取值范围是()A . x<﹣1B . x>﹣1C . x≤﹣1D . x≥﹣110. (2分)关于直角三角形,下列说法正确的是()A . 所有的直角三角形一定相似;B . 如果直角三角形的两边长分别是3和4,那么第三边的长一定是5;C . 如果已知直角三角形两个元素(直角除外),那么这个直角三角形一定可解;D . 如果已知直角三角形一锐角的三角函数值,那么这个直角三角形的三边之比一定确定.二、填空题:本大题共4小题,每小题4分,共16分 (共4题;共4分)11. (1分)(2017·达州) 如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3 ,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE= CE;④S阴影= .其中正确结论的序号是________.12. (1分)(2018·徐汇模拟) 在△ABC中,∠C=90°,AC=3,BC=4(如图),将△ACB绕点A顺时针方向旋转得△ADE(点C、B的对应点分别为D、E),点D恰好落在直线BE上和直线AC交于点F,则线段AF的长为________.13. (1分)(2019·福建) 如图,菱形ABCD顶点A在例函数y= (x>0)的图象上,函数 y= (k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k的值为________.14. (1分)(2019·开江模拟) 有9张卡片,分别写有这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则关于x的不等式组有解的概率为________.三、解答题:本大题共8小题,每小题8分,共64分 (共8题;共91分)15. (15分)计算:(1)(8985+10023﹣7932)0;(2)(﹣3)2×(﹣3)0+(﹣3)﹣2×(﹣3)2;(3)(1.1×10﹣6)(1.2×107).16. (5分) (2015七下·双峰期中) 为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和 410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?17. (10分)(2017·吉林模拟) 如图,在矩形ABCD中,E是边AB的中点,连接DE,△ADE沿DE折叠后得到△FDE,点F在矩形ABCD的内部,延长DF交于BC于点G.(1)求证:FG=BG;(2)若AB=6,BC=4,求DG的长.18. (11分)(2020·长春模拟) (感知)如图①,点C是AB中点,CD⊥AB,P是CD上任意一点,由三角形全等的判定方法“SAS”易证△PAC≌△PBC,得到线段垂直平分线的一条性质“线段垂直平分线上的点到线段两端的距离相等”(探究)如图②,(1)在平面直角坐标系中,直线y=- x+1分别交x轴、y轴于点A和点B,点C是AB中点,CD⊥AB交OA 于点D,连结BD,求BD的长(2)将线段AB绕点A顺时针旋转90°得到线段AB′,请在图③网格中画出线段AB;(3)若存在一点P,使得PA=PB′,且∠APB′≠90°,当点P的横、纵坐标均为整数时,则AP长度的最小值为________.19. (10分)如图,点A、B在⊙O上,点C在⊙O外,连接AB和OC交于D,且OB⊥OC,AC=CD.(1)判断AC与⊙O的位置关系,请证明你的结论;(2)若OC=17,OD=2,求⊙O的半径及tanB.20. (10分)(2016·铜仁) 在四个完全相同的小球上分别标上1,2,3,4四个数字,然后装入一个不透明的口袋里搅匀,小明同学随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号.(1)请你用画树状图或列表的方法分别表示小明同学摸球的所有可能出现的结果.(2)按照小明同学的摸球方法,把第一次取出的小球的数字作为点M的横坐标,把第二次取出的小球的数字作为点M的纵坐标,试求出点M(x,y)落在直线y=x上的概率是多少?21. (10分) (2018九上·浦东期中) 如图:四边形ABCD对角线AC与BD相交于点O,OD=2OA,OC=2OB.(1)求证:△AOB∽△DOC;(2)点E在线段OC上,若AB∥DE,求证:OD2=OE•OC.22. (20分)(2019·石家庄模拟) 已知:直线与y轴交于A ,与x轴交于D ,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求抛物线的解析式;(2)点P是直线AE上一动点,当△PBC周长最小时,求点P坐标;(3)动点Q在x轴上移动,当△QAE是直角三角形时,求点Q的坐标;(4)在y轴上是否存在一点M ,使得点M到C点的距离与到直线AD的距离恰好相等?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案一、选择题:每小题4分,共40分 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题:本大题共4小题,每小题4分,共16分 (共4题;共4分) 11-1、12-1、13-1、14-1、三、解答题:本大题共8小题,每小题8分,共64分 (共8题;共91分) 15-1、15-2、15-3、16-1、17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、22-4、。
内蒙古兴安盟九年级上学期数学中考试卷
内蒙古兴安盟九年级上学期数学中考试卷姓名:________ 班级:________ 成绩:________一、解答题 (共8题;共68分)1. (8分)已知A(﹣4,2),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)将一次函数y=kx+b的图象沿y轴向上平移n个单位长度,交y轴于点C,若S△ABC=12,求n的值.2. (8分)已知道y=y1+y2 , y1与x2成正比例,y2与x+3成反比例.并且x=0时,y=2,x=1时,y=0.试求函数y的解析式,并指出自变量的取值范围.3. (10分)(1,)是反比例函数图象上的一点,直线AC经过坐标原点且与反比例函数图象的另一支交于点C ,求C的坐标及反比例函数的表达式.4. (8分)如图,一次函数y=mx+4的图象与x轴相交于点A,与反比例函数y=的图象相交于点B (1,6).(1)求一次函数和反比例函数的解析式;(2)设点P是x轴上一点,若S△APB=18,直接写出点P的坐标.5. (10分)已知y=y1+y2 ,其中y1与x成反比例,y2与(x﹣2)成正比例.当x=1时,y=﹣1;x=3时,y=3.求:(1)y与x的函数关系式;(2)当x=﹣1时,y的值.6. (8分)△ABC在直角坐标系内的位置如图所示.(1)在这个坐标系内画出△A1B1C1 ,使△A1B1C1与△ABC关于y轴对称;(2)求△ABC的面积.7. (8分)(2017·嘉兴) 如图,一次函数()与反比例函数()的图象交于点,.(1)求这两个函数的表达式;(2)在轴上是否存在点,使为等腰三角形?若存在,求的值;若不存在,说明理由.8. (8分)写出下列函数关系式,并指出其中的反比例函数及正比例函数.(1)当圆柱的体积是50cm3时,他的高h(cm)与底面圆的面积S(cm2)的关系;(2)玲玲用200元钱全部用来买营养品送给她妈妈,那么她所能购买营养品的数量y(kg)与单价x(元/kg)的关系.参考答案一、解答题 (共8题;共68分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、答案:6-2、考点:解析:答案:7-1、答案:7-2、考点:解析:答案:8-1、考点:解析:。