同步电机变频调速
TYP系列永磁同步变频调速电动机概述
附加位置传感器可对电动机的转向位置进行严格
的定位控制。如果再附加制动器,就可对电动机进
行安全制动由于变频器转速输出显示为电动机的
极数和电源输出频率的计算值,与异步电动机的实
际转速有很大区别,使用一般异步变频电动机时,
由于异步电动机的转差率是由电动机的制造工艺
决定,离散性很大,并且负载的变化直接影响电动
机的转速,要准确控制电动机的转速只能采用光电
编码器进行闭环控制,当单机控制时转速精度由编
码器的脉冲数决定,当多机控制时,多台电动机的
转速就无法严格同步。这是异步电动机先天所决定
的。TYP 系列永磁同步电动机的尺寸与 YVP 系列产
品相同规格电动机具有相同的安装尺寸和外形尺
TYP绕线式异步电动机 /
TYP 系列永磁同步变频电动机与普通异步变频
电动机不同即一旦频率固定,转速即随频率而恒定
不变,电动机转速与电源的输出频率保持严格的同
步关系,在额定输出范围内,负载的变化不会影响
转速的恒定性能,变频器可精确指示电动机的转
寸,符合 IEC 国际标准,用户可以很方便的对原有
的设备进行更新改造。
同步电机的变频调速系统
图2-3由交-交变压变频器供电的大型低速同步电动机调速系统
2.4
为了获得高动态性能,同步电动机变压变频调速系统也可以采用矢量控制,其基本原理和异步电动机矢量控制相似,也是通过坐标变换,把同步电动机等效成直流电动机,再模仿直流电动机的控制方法进行控制。但由于同步电动机的转子结构与异步电动机不同,其矢量坐标变换也有自己的特色。
(1)在电动机轴端装有一台转子位置检测器BQ(见图8-7),由它发出的信号控制变压变频装置的逆变器U I换流,从而改变同步电动机的供电频率,保证转子转速与供电频率同步。调速时则由外部信号或脉宽调制(PWM)控制UI的输入直流电压。
(2)从电动机本身看,它是一台同步电动机,但是如果把它和逆变器UI、转子位置检测器BQ合起来看,就象是一台直流电动机。直流电动机电枢里面的电流本来就是交变的,只是经过换向器和电刷才在外部电路表现为直流,这时,换向器相当于机械式的逆变器,电刷相当于磁极位置检测器。这里,则采用电力电子逆变器和转子位置检测器替代机械式换向器和电刷。
(3)同步电动机和异步电动机的定子都有同样的交流绕组,一般都是三相的,而转子绕组则不同,同步电动机转子除直流励磁绕组(或永久磁钢)外,还可能有自身短路的阻尼绕组。
(4)异步电动机的气隙是均匀的,而同步电动机则有隐极与凸极之分,隐极式电机气隙均匀,凸极式则不均匀,两轴的电感系数不等,造成数学模型上的复杂性。但凸极效应能产生平均转矩,单靠凸极效应运行的同步电动机称作磁阻式同步电动机。
在同步电动机中,除转子直流励磁外,定子磁动势还产生电枢反应,直流励磁与电枢反应合成起来产生气隙磁通,合成磁通在定子中感应的电动势与外加电压基本平衡。
第三章 同步电动机的变频调速控制
30年代
铝镍钴、铁氧体
差
易去磁
1
2 3
90年代 60年代 后期
铁氧体 稀土永磁: SmC05
3.6~4.0 24 33 38~40
价格低 (稀土的1/10) 热稳定性好 不怕去磁 钴含量高、价格高
70年代 初期
第三代
稀土永磁: SmC017 稀土永磁: 钕铁硼 Nd-Fe-B
我国储量世界第一, 温度可达200℃?
图示位置是转子磁极轴线 从某相绕组轴线转过30°的位 置,在此瞬间触发该相晶闸管, 从产生转矩的角度看是最有利 的。在此位置下,在绕组通电 的1/3周期里,载流导体正好 处于比较强的磁场中,所产生 的转矩平均值最大,脉动最小。 从时间相位上看,晶闸管触发 瞬间正好是该感应电势交变过 零之后的30°相位处,习惯上 将此点选作晶闸管触发相位的 基准点,称为空载换流超前 角 。
结 论
0 0 、 三相式,对转矩最为有利。
矛盾:
晶闸管靠反电势自然换流,要求 0 超前,目前常取 0 60 ,或按负载的 动态调节。转矩脉动大:凸极式无换向电 机中,还存在磁阻转矩,当 超前时为 0 负值,将使输出转矩减小。
二、逆变器晶闸管的换流问题
问题的提出: 直流无换向器电机的晶闸管直接接在直流电 源上,导通后无法自行关断,换流困难。必须采取 特殊的换流措施。 解决: 在过激状态下向逆变器提供超前的无功电流, 可利用电机的反电势来实现自然换流。
优点: (1) 只要精确地控制变频电源的频率就能准确控 制转速,无需速度反馈控制。 (2) 转矩干扰只影响同步电动机的功角,不影响 电机的转速可以在极低的转速下运行,调速范围 较宽。 (3)可以调节转子励磁来调节电机的功率因数,甚 至可在 下运行。 (4) 运行在超前功率因数下,有可能利用电动机 的反电势实现负载换流,克服强迫换流的弊病 (晶闸管)。 缺点:同步电机本身结构稍微复杂
变频调速在双电机同步传动中的应用探讨
随着现代科技的发展 , 在许多工业场合提出了对大功率拖动 系统 的 要求。而单 电机的功率受 制造等原因限制不能做得过大 , 因此在 电器控 制中 , 经常遇到两个 电机同时驱动 一台设备 的情况 , 从驱 动电机之间 的 链 接关系来 看一般 可以分为三类 : 第一类是各 电机之 间相互独立 , 电机 之 间不存在物力链接 , 二类是各 电机间存在柔 性的物力链 接 , 第 橡皮带 等、 电机的工作状态有 相互影 响: 各 第三类 是两 台电机之间硬轴链接 , 转 速严格一致 , 目前已有一些专家 学者对 双电机和多电机的 同步传动方法 进行 了一定的研究和总结 , 出了基 于同一 给定 电压的的串 、 提 并联方法 、 基 于补偿原 理的控 制方法 ( 电流负反馈法 和差速法反馈法 等 ) 差 和基 于现代控制理论的控制方法 等 , 两台电机由于制造 的原因参数不可能 完全相等 , 后两种方法较好地解决 了前一种方法 中因存在的启动速度滞 式 女 后 和偏差 问题 , 且抗 干扰性 较强 , 以上一些方法 主要针对前 两种 同步传 动方案 , 且主要针对速度 同步问题 , 但是在双 电机 同步传 动中 , N , D 三 每台载荷 三 J 分配是否合理 , 电机输 出功率 是否均衡 是必须要考虑I 的问题 , 如果 两台 I 电机间的功率分配没有很好地得到解决 。 R 可能出现在拖动过程中一台过
:
一
L
p
一
正
, R' L p c。 + l lL
0 O
Lp m
0 由 i 产生 ,与 i 无关 , 成 为定子 电流励磁分量 , i 与 i 之间的传递函数是一阶惯性环 节 , 磁分量 突变时 的变化 当励 要搜到励磁惯性 的阻扰 , 和直 流电机励磁绕组 的惯性作用是一致的。 这 i 是定子 电流的转矩 分量 , i 不变 , 她不变时 , 当 即 如果 i发生 变 化, 转矩 立即随之成正 比地 变化 , 没有滞后 , 因此 ,- d q坐标 系安转 子 磁场顶向后 , 在定子 电流 的两个 分量之间实现 了解耦 , 由i 决定 i 只 影响转矩 , 与直流电机 中的励磁 电流 和电枢电流相对应 , 这样大大简化 了多变量强耦合 的脚力变频调速系统 的控制问题 , 2 图 是矢量控 制核心
同步电机变频调速 我
u A Rs u 0 B uC 0
Pm 2E p I p
电磁转矩
0 Rs 0
0 iA L i 0 0 B Rs iC 0
0 L 0
0 i A eA d 0 iB eB dt L iC eC
(2)重载时有振荡,甚至存在失步危险;
问题的根源: 供电电源频率固定不变。由于改变交流电的频率较 为困难,以前一般工业设备很少采用同步电动机拖 动。 解决办法: 现代电力电子技术的发展,解决了交流电源的变压变 频问题,采用电压-频率协调控制,可解决由固定频 率电源供电而产生的问题。
对于起动问题: 通过变频电源频率的平滑调节,使电机转速逐渐上 升,实现软起动。 对于振荡和失步问题:
所以起动费事、重载时振荡或失步等问题也已不再是同步 电动机广泛应用的障碍。
四.同步电动机调速系统的特点
同步:同步电动机的转子转速就是旋转磁场的同步转速, 转差为0; 优点: (1)转速与电压频率严格同步; (2)可以通过控制励磁来调节其功率因数,可使功率因 数提高到1.0,甚至超前;
存在的问题:
(1)起动困难;
自控变频同步电动机调速系统
需要两套可控功率单元,系统结构复杂
自控变频同步电动机调速原理图 UI——逆变器 BQ——转子位置检测器
自控变频同步电动机调速系统
在基频以下调速时,需要电压频率协调 控制。
需要一套直流调压装置,为逆变器提供 可调的直流电源。
调速时改变直流电压,转速将随之变化 ,逆变器的输出频率自动跟踪转速。 在表面上只控制了电压,实际上也自动 地控制了频率,这就是自控变频同步电 动机变压变频调速。 采用PWM逆变器,既完成变频,又实现 调压。
变频器的六大调速方法
电动机知识变频器的六大调速方法1.变极对数调速方法这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、[1]方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。
本方法适用于要求精度高、调速性能较好场合。
变频调速分为基频以下调速和基频以上调速,基频以下调速属于恒转矩调速方式,基频以上调速属于恒功率调速方式。
2.串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。
大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。
根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。
本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。
变频器调速原理及调速方法3.绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。
变频器调速的基本工作原理
变频器调速的基本工作原理根据电机转速的公式 n=n1(1-s)(1) N1=60f/p(2)式中:n-电机转速;n1-电机的同步转速;s-滑差;f-旋转磁场频率;P-电机极对数可知改变电机转速的方法有改变滑差s、改变旋转磁场频率f、改变电机极对数p三种。
变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。
是由由主电路和控制带电路组成的。
主电路是给异步电动机提供可控电源的电力转换部分,变频器的主电路分为两类,其中电压型是将电压源的直流变换为交流的变频器,直流回路的滤波部分是电容。
电流型是将电流源的直流变换为交流的变频器,其直流回路滤波部分是电感。
它由三部分构成,将工频电源变换为直流功率的整流部分,吸收在转变中产生的电压脉动的平波回路部分,将直流功率变换为交流功率的逆变部分。
控制电路是给主电路提供控制信号的回路,它有决定频率和电压的运算电路,检测主电路数值的电压、电流检测电路,检测电动机速度的的速度检测电路,将运算电路的控制信号放大的驱动电路,以及对逆变器和电动机进行保护的保护电路组成。
现在大多数的变频器基本都采用交直交方式(VVVF变频或矢量控制),将工频交流电源通过整流器转换为直流电源,再把直流电源转换成近似于正弦波可控的交流电以供给电动机。
以图1为例简单说明一下变频器的工作原理。
三相交流电经过VD1~VD6整流后,正极经过RL,RL在这里是防止电流忽然变大。
经过RL电流趋于稳定,晶闸管触点会导通。
之后直流电压加在了滤波电容CF1、CF2上,这两个电容的作用是让直流电波形变得更加平滑。
之所以是两个电容是由于一个电容的耐压有限,所以用两个电容串联起来使用。
均压电阻R1、R2是让CF1和CF2上的电压一样,两个电容的容量不同的话,分压就会不同,所以各并联了一个均压电阻。
而中间的放电回路作用则是释放掉感性负载启动或停止时的反电势,用来保护逆变管V1~V6和整流管VD1~VD6。
同步电机与异步电机利用变频调速的区别
同步电机与异步电机利用变频调速的区别
一、同步电机的变频调速
同步变频调速电机的转子是有与定子绕组的极数相同的直流磁极,当电机起动完毕后,电机转入正常运行,定子旋转磁场带动转子进行同步运行,此时电机的转速根据电机的极数和电机输入电源频率形成严格的对应关系,转速不受负载和其他因数影响。
由于电机的转速和电源频率的严格对应关系,使得电机的转速精度主要就取决于变频器输出电源频率的精度,控制系统简单,对一台变频器控制多台电机实现多台电机的转速一致,也不需要昂贵的光学编码器进行闭环控制。
同步变频调速电机附加了一个独立式强迫冷却风机,以适应电机在低速运行时的高效散热和降低电机在高速运行时的风摩耗。
二、异步电机的变频调速
异步变频调速电机是由普通异步电机派生而来,由于要适应变频器输出电源的特性,电机在转子槽型,绝缘工艺,电磁设计校核等作了很大的改动,特别是电机的通风散热,它在一般情况下附加了一个独立式强迫冷却风机,以适应电机在低速运行时的高效散热和降低电机在高速运行时的风摩耗。
变频器的输出一般显示电源的输出频率,转速输出显示为电机的极数和电源输出频率的计算值,与异步电机的实际转速有很大区别。
由于异步电机的转差率是由电机的制造工艺决定,故其离散性很大,并且负载的变化直接影响电机的转速,要精确控制电机的转速只能采用光电编码器进行闭环控制,当单机控制时转速的精度由编码器的脉冲数决定,当多机控制时,多台电机的转速就无法严格同步,这是异步电机先天所决定的。
变频调速的工作原理
变频调速的工作原理变频器的功用是将频率固定的(通常为50Hz的)交流电(三相或单相)变成频率联系可调(多数为O-4OOH0的三相交流电。
由公式:n0=60f/p其中n0为旋转磁场的转速通常称为同步转速f 为电流的频率p 为旋转磁场的磁极对数当频率f连续可调时(一般P为定数),电动机的同步转速也连续可调。
又因为异步电动机的转子转速总是比同步转速略低一些,所以,当同步转速连续可调时,异步电动机转子的转速也是连续可调的。
变频器就是通过改变f (电流的频率)来使电动机调速的在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。
如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。
一、静态测试1、测试整流电路找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R S T,应该有大约几十欧的阻值,且基本平衡。
相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。
将红表棒接到N 端,重复以上步骤,都应得到相同结果。
如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。
B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。
2、测试逆变电路将红表棒接到P端,黑表棒分别接U V W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。
将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障二、动态测试在静态测试结果正常以后,才可进行动态测试,即上电试机。
在上电前后必须注意以下几点:1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。
2、检查变频器各接播口是否已正确连接,连接是否有松动, 连接异常有时可能导致变频器出现故障, 严重时会出现炸机等情况。
3、上电后检测故障显示内容, 并初步断定故障及原因。
变频调速技术及应用复习提纲
复习提纲1、根据公式,说明交流异步电动机和同步电动机调速的方法各有哪些?交流电机同步转速交流感应电机转速交流异步电动机调速的方法:(1)变频调速(2)变极调速(3)变转差率调速第一:改变感应电机的极对数p ,从而改变电动机的转速。
这种方法只能一级一级地调速,不能平滑调节,而且电机体积较大,接线复杂,电机运行性能较差; 第二:改变感应电机转差率s 。
绕线式感应电动机通过在转子中外加调速电阻,实现改变转差率,使得转速改变。
缺点是调速电阻需要消耗一定能量,绕线式电动机结构较复杂,适用于中小容量电动机;第三:改变电源频率f1。
通过改变电源频率来改变交流电动机转速。
是当前应用最广泛的交流调速技术。
既适用于同步电机,也适用于感应电机。
交流同步电机转速 只有变频调速根据交流异步电机的转速公式n=n1(1-s)=60f1/p(1-s)可知:交流异步电动机有以下三种基本调速方法:(1)改变定子极对数p 调速。
(2)改变电源频率f1调速。
(3)改变转差率s 调速。
()()116011=-=-f n n s s p1160=f n p 1160=f n p2、按电动机能量类型可将异步电机调速分为几种类型?(1)转差功率消耗型调速系统(2)转差功率馈送型调速系统(3)转差功率不变型调速系统3、现代交流调速系统由哪些部分组成?现代交流调速系统的组成4、目前应用最多、最广泛的交流调速方法是哪种?主要应用于哪些场合?变频调速:改变电源频率f1。
通过改变电源频率来改变交流电动机转速。
是当前应用最广泛的交流调速技术。
既适用于同步电机,也适用于感应电机。
5、叙述异步电动机工作原理、铭牌的意义、旋转方向等工作原理:三相交流异步电动机工作原理:(1)当三相异步电机接入三相交流电源时,三相定子绕组流过三相对称电流产生的三相磁动势(定子旋转磁动势)并产生旋转磁场。
(2)该旋转磁场与转子导体有相对切割运动,根据电磁感应原理,转子导体产生感应电动势并产生感应电流。
变频调速原理及概述
变频调速原理及概述异步电机调速系统的种类很多,但是效率最高、性能最好、应用最广的是变频调速,它可以构成高动态性能的交流调速系统来取代直流调速系统,是交流调速的主要发展方向。
变频调速是以变频器向交流电机供电,并构成开环或闭环系统,从而实现对交流电机的宽范围内无极调速。
变频器可把固定电压、固定频率的交流电压变换为可调电压、可调频率的交流电。
在变换过程中。
没有直流环节的称为交-交变频器,有中间直流环节的称为交-直-交变频器。
由直流电变为交流电的变换器称为逆变器。
目前应用最广的是交-直-交变频器,通常由整流器、中间直流储能电路和逆变器三部分组成。
人们所说的交流调速传动,主要是指采用电子式电力变换器对交流电动机的变频调速传动,除变频以外的另外一些简单的调速方案,例如变极调速、定子调压调速、转差离合器调速等,由于其性能较差,终将会被变频调速所取代。
交流调速传动控制技术之所以发展的如此迅速,和如下一些关键性技术的突破性进展有关,它们是电力电子器件(包括半控型和全控型器件)的制造技术、基于电力电子电路的电力变换技术、交流电动机的矢量变换控制技术、直接转矩控制技术、PWM(Pulse Width Modulation)技术以及以微型计算机和大规模集成电路为基础的全数字化控制技术等。
变频器的发展:近二十年来,以功率晶体管GTR为逆变器功率元件、8位微处理器为控制核心、按压频比U/f控制原理实现异步机调速的变频器,在性能和品种上出现了巨大的技术进步。
其一,是所用的电力电子器件GTR以基本上为绝缘栅双极晶体管IGBT所替代,进而广泛采用性能更为完善的智能功率模块IPM,使得变频器的容量和电压等级不断地扩大和提高。
其二,是8位微处理器基本上为16位微处理器所替代,进而有采用功能更强的32位微处理器或双CPU,使得变频器的功能从单一的变频调速功能发展为含有逻辑和智能控制的综合功能。
其三,是在改善压频比控制性能的同时,推出能实现矢量控制和转矩直接控制的变频器,使得变频器不仅能实现调速,还可进行伺服控制。
PWM变频调速多电机同步传动控制系统设计
PWM变频调速多电机同步传动系统控制系统摘要:本设计给出了一种用PWM变频调速控制系统,用来控制多台普通三相交流异步电机。
该控制系统用8031单片机最小系统,以及HEF4752大规模继承芯片来实现,产生的控制信号用来控制逆变元件的开关,从而产生可以调整的PWM信号来控制交流电机,完成对多台电机实现同步传动的控制,它既可以统一控制,又能微调各个电机。
该系统具有工作可靠,调节范围宽,控制精度高,同步效果好的特点,本文给出了它的硬件组成电路以及控制程序的流程软件设计。
关键词:PWM 变频调速控制多台电机Multi-motor synchronous PWM inverter driving system controlsystemAbstract:This introduced a PWM frequency control system which can be used to regular the speed of some electrical electromotor. This system used MCS-51 SCM and HEF4752 PWM chip which can make control signal to control the system. And the PWM signal produced by them can control whether the switch is open or close in this way, the PWM signal feed to the electromotor can be produced .Moreover the signal can be controlled. The system can control both single electromotor or several electromotor. The strongpoint of the system is that: reliable, wide control, high-precision. This article gives the composition of its hardware and circuit design software flow control procedures.Key Word:PWM Frequency conversion modulates velocity The multi-motor synchronization目录第一章内容概要 (1)第一节变频调速的基本知识 (4)第二节PWM原理 (5)第三节PWM变频调速主电路 (6)1 变频器的分类 (6)2 GRT驱动电路 (8)第二章数字控制系统 (10)第一节HEF4752的电路功能 (10)第二节8031单片机最小系统 (14)18031最小系统 (14)28031最小系统控制HEF4752芯片 (16)第三节测速电路 (18)第四节系统的工作过程 (21)第三章系统的抗干扰及保护 (23)第一节系统的抗干扰 (23)第二节保护电路 (24)第四章软件的设计 (26)第一节程序流程图 (26)第二节地址空间分布表 (31)程序清单 (32)第五章英文文献翻译 (45)结束语 (50)参考文献 (51)附录:英文原文 (52)第一章内容概要在纺织工业中的印花,染色,纺织,整理联合机,通常采用多台直流电机或者交流电动机传动。
三相永磁同步电动机变频调速系统设计
三相永磁同步电动机变频调速系统设计运动控制系统课程设计题目:三相永磁同步电动机变频调速系统设计专业班级:自动化姓名:学号:指导教师:摘要本论文在研究永磁同步电动机运行原理的基础上详细讨论了其变频调速的理论而且设计了一套基于DSP的永磁同步电动机磁场定向矢量控制系统。
永磁同步电动机相对感应电动机来说具有体积小、效率高以及功率密度大等优点,因此自从上个世纪80年代,随着永磁材料性能价格比的不断提高,以及电力电子器件的进一步发展,永磁同步电动机的研究也进入了一个新的阶段。
由于永磁同步电动机自身具有比感应电动机更为优越的性能,而且其dq变换算法相对简单、电机转子磁极的位置易于检测,因此交流调速的矢量控制理论在永磁同步电动机的控制领域也得到了同样的重视,有关永磁同步电动机矢量控制研究的成果陆续发表。
本文就是应用电压矢量控制SVPWM实现对永磁同步电机的转矩控制,使其拥有直流电机的性能。
关键词:永磁同步电机矢量控制 dq变换 DSP目录1 绪论............................................................................................................. (1)1.1 研究背景与意义 (1)1.2 研究现状及应用前景 (1)2 永磁同步电机的矢量控制方法 (3)3 硬件电路设计 (4)3.1 电流检测电路 (4)3.2 转速检测和转子磁极位置检测电路 (5)3.3 PWM发生电路 (6)3.4 IPM智能功率模块驱动电路 (7)3.5 系统保护电路 (8)3.6 人机接口电路 (9)4 软件设计............................................................................................................. . (9)设计心得............................................................................................................. .. (12)参考文献............................................................................................................. .. (13)1 绪论1.1 研究背景与意义众所周知,电动机是以磁场为媒介进行机械能和电能相互转换的电磁装置。
变频调速永磁同步电动机的设计
变频调速永磁同步电动机的设计作者:钟燕辉来源:《科技创新与应用》2020年第30期摘; 要:电动机在目前的生产实践中属于应用十分广泛的一种设备,并且在实际生产中发挥着十分重要的作用及价值,而变频调速永磁同步电动机属于应用比较广泛的一种电动机类型,并且也受到广泛欢迎,因而需要保证该类型电动机的应用合理性,也就需要对该类型电动机进行合理设计。
基于此,文章主要针对变频调速永磁同步电动机的设计进行分析,从而使变频调速永磁同步电动机的设计得到满意效果,实现该电动机的更合理应用。
关键词:变频调速;永磁同步电动机;设计中图分类号:TM341; ; ; ; ;文献标志码:A; ; ; ; ;文章编号:2095-2945(2020)30-0084-02Abstract: Motor is a kind of widely used equipment in the current production practice, and plays a very important role and value in the actual production. The frequency control permanent magnet synchronous motor is a kind of widely used motor type, and it is also widely welcomed, so it is necessary to ensure the rationality of the application of this type of motor, and it is also necessary to make a reasonable design of this type of motors. Based on this, this paper mainly analyzes the design of the variable frequency adjustable speed permanent magnet synchronous motor, so that the design of the variable frequency adjustable speed permanent magnet synchronous motor can achieve satisfactory results, and achieve a more reasonable application of the motor.Keywords: frequency control; permanent magnet synchronous motor; design隨着目前科学技术水平的不断提升及电动机应用越来越广泛,电动机的类型也越来越多,且功能也越来越全面,而变频调速永磁同步电动机就是其中比较重要的一种。
变频调速基本原理及控制原理
变频调速基本原理及控制原理1.基本原理:目前使用较多的是“交—直—交”变频,原理如图1所示,将50Hz交流整流为直流电Ud,再由三相逆变器将直流逆变为频率可调的三相交流供给鼠笼电机实现变频调速。
2.控制原理:变频调速装置主电路(见图2)由空气开关QF1,交流接触器KM1和变频器VF组成,由安装在配电柜面板上的转换开关SA,复位开关SB;或安装在现场防爆操作柱上启动按钮SB 和停止按钮SB2控制VF的运行:(1)启动VF时必须先合上QF1和QF2,使SA置于启动位置,KM1便带动电触点闭合,来电显示灯HL2亮;此时按下SB,也可以按下现场SB1使KA1带电触点闭合,VF投入运行同时运行指示灯HL3亮。
(2)需要停止VF时,按下SB2使KA1失电,VF停止运行,此时HL3灭;置SA于停止位置,KM1断开同时HL1亮表示停机。
(3)如果在运行过程中VF有故障FLA、FLC端口将短接,KA2带电,KM带电其触点断开,同时故障指示灯HL3亮并报警。
由于工艺条件复杂,实际运行过程中有多方面不确定因素,为安全其见,每台变频器均加有一旁路接触器KM2;如果KM1或VF发生故障时保证电机仍能变频运行。
变频调速实行闭环负反馈自动控制即由仪表装置供给变频器1V和CC端口4~20MA电信号,靠信号大小改变来控制VF频率高低变化达到调节电动机转速和输出功率的目的,使泵流量和实际工艺需求最佳匹配,实现仪表电气联合自动控制体系。
二、实际运用分析1.变频调速实行工艺过程控制,由于生产流程和工艺条件的复杂性;不通过实践有些问题不被人们认识,只有通过实践才能找出解决这此问题方法和途径。
在闭环控制回路中,变频器作用类似风开式调节阀,对于实用风关式调节阀控制回路需在变频器上设定最低下降频率,当仪表装置故障时变频器输出最低频率,保证电机运转,维持工艺流程最低安全量,不至于生产中断。
变频器下限频率设定必须通过实际测试,不能随意变动。
就拿P6101A 脱丙烷塔进料泵来说,当时调试时当仪表信号4AM时,变频器输出频率10Hz,此时根本达不到工艺需要流量,通过仪表、电气专业人员多测试设定4MA信号输出23Hz能达到最低安全量,故23Hz 便没定为法定下限参数,这样既可保证工艺安全运行又有27Hz的频率调节范围。
永磁同步变频调速一体机在带式输送机上的应用概述
永磁同步变频调速一体机在带式输送机上的应用概述摘要:煤矿带式输送机是保证煤矿高产高效的主要运输设备之一,其运行质量和效率决定了矿井安全生产的效率和企业效益。
传统的输送机驱动方式有:(1)电机+耦合器+减速机驱动,(2)电机+液黏软启动+减速机;(3)电机+CST减速箱等驱动方式。
上述的三种驱动方式都存在传动方式复杂、传动效率低、维护工作量大、智能化程度低的问题,不符合国家绿色、高效智慧矿山的发展战略。
随着永磁材料技术的进步,永磁同步变频直驱技术在带式输送机广泛应用,相较于传统的驱动方式,永磁直驱系统具有传动结构简单、传动效率高、免维护等优点,契合绿色环保、安全高效的智慧化矿山发展方向,值得推广应用。
1 带式输送机对驱动装置及控制系统的基本要求驱动装置是带式输送机的动力来源,电动机作为驱动装置的动力源通过联轴器与减速机连接,带动传统滚筒转动,使传送带运动。
为了减缓电动机启动阶段对输送机的冲击,通过耦合器、软启动器或CST减速机来缓冲冲击,此类传动方式单纯从传动的角度确实能够满足驱动需要,但是随着技术的发展进步,我们对传动的要求不再局限于物料的运输,更是赋予了新的时代特征,我们希望输送机的传动能满足以下的基本要求。
(1)传动装置具有优异的起动特性,既要实现平滑软启动减少对设备的冲击,同时还要满足重载起动需要,确保输送机再重载条件下的平滑起动。
(2)传动装置有良好的调速性能,根据不同负载工况实现自动调速功能,达到节能降耗,减少磨损的效果。
(3)传动装置有很好的多机功率平衡调节能力,实现多机传动的均衡出力。
(4)传动装置有较高的传动效率,实现高效节能。
(5)传动装置技术先进,有完善的数据监测和保护功能,满足智能化和自动化的监控需要。
(6)传动装置维护量小,满足减员增效的目的。
2 永磁变频一体机驱动系统的组成近年来,变频调速技术的发展很好的符合了前文中所说的输送机对传动装置的要求,像平滑软启动、重载起动、多机动态功率平衡调节,智能化监测等。
变频调速永磁同步电动机的设计
变频调速永磁同步电动机的设计随着科技的不断发展,变频调速技术日益成为工业领域中重要的节能技术之一。
变频调速技术通过改变电源频率,实现对电动机的速度控制。
在众多类型的电动机中,永磁同步电动机因其高效、节能、高精度控制等优点,逐渐得到广泛应用。
本文将探讨变频调速永磁同步电动机的设计方法。
变频调速技术主要通过改变电源频率来改变电动机的转速。
根据异步电动机的转速公式 n=f(1-s)/p,其中n为转速,f为电源频率,s为转差率,p为极对数,可知当f改变时,n也会相应改变。
变频调速技术具有调速范围广、精度高、节能等优点,被广泛应用于各种工业领域。
永磁同步电动机是一种利用永磁体产生磁场的高效电动机。
其特点如下:效率高:永磁同步电动机的磁场由永磁体产生,可降低铁损和额定负载下的铜损,从而提高效率。
节能:由于其高效率,永磁同步电动机在长期运行中可节省大量能源。
调速性能好:永磁同步电动机的转速与电源频率成正比,因此可通过变频调速技术实现对电动机的速度精确控制。
维护成本低:永磁同步电动机结构简单,故障率低,维护成本相对较低。
变频调速永磁同步电动机的设计原则是在满足额定负载要求的前提下,尽可能提高电动机效率,同时确保调速性能优越。
为此,设计时需考虑以下几个方面:(1)优化电磁设计:通过合理选择永磁体的尺寸和位置,以及优化定子绕组的设计,降低铁损和铜损。
(2)转子结构设计:保证转子的强度和稳定性,同时考虑散热问题,防止因转子故障导致电动机损坏。
(3)控制系统设计:选择合适的控制算法和硬件设施,实现对电动机速度的精确控制。
(1)明确设计需求:根据应用场景和负载要求,确定电动机的功率、转速、电压、电流等参数。
(2)选择合适的永磁材料:根据需求和市场供应情况,选择合适的永磁材料,如钕铁硼等。
(3)设计定子结构:根据电磁负荷要求,设计定子的槽数、绕组形式等结构参数。
(4)优化转子设计:根据强度和稳定性要求,设计转子的结构形式,选择合适的材料和加工工艺。
变频调速的基本原理
变频器多段速度控制1.变频调速的原理异步电机的转速n可以表示为式中,n2为同步转速,Δn1为转差损失的转速,p为磁极对数,s为转差率,f为电源的频率。
可见,改变电源频率就可以改变同步转速和电机转速。
频率的下降会导致磁通的增加,造成磁路饱和,励磁电流增加,功率因数下降,铁心和线圈过热。
显然这是不允许的。
为此,要在降频的同时还要降压。
这就要求频率与电压协调控制。
此外,在许多场合,为了保持在调速时,电动机产生最大转矩不变,亦需要维持磁通不变,这亦由频率和电压协调控制来实现,故称为可变频率可变电压调速(VVVF),简称变频调速。
实现变频调速的装置称为变频器。
变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。
首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。
在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。
PWM的优点是能消除或抑制低次谐波,使负载电机在近似正弦波的交变电压下运行,转矩脉冲小,调速范围宽。
2.电机调速的分类按变换的环节分类(1)交-直-交变频器,则是先把工频交流通过整流器变成直流,然后再把直流变换成频率电压可调的交流,又称间接式变频器,是目前广泛应用的通用型变频器。
(2)可分为交-交变频器,即将工频交流直接变换成频率电压可调的交流,又称直接式变频器按直流电源性质分类(1)电压型变频器电压型变频器特点是中间直流环节的储能元件采用大电容,负载的无功功率将由它来缓冲,直流电压比较平稳,直流电源内阻较小,相当于电压源,故称电压型变频器,常选用于负载电压变化较大的场合。
(2)电流型变频器电流型变频器特点是中间直流环节采用大电感作为储能环节,缓冲无功功率,即扼制电流的变化,使电压接近正弦波,由于该直流内阻较大,故称电流源型变频器(电流型)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uB
0
Rs
0
iB
0
Ls Lm
0 iA eA
0
p
iB
eB
uC 0 0 Rs iC 0
0
Ls Lm iC eC
设梯形波永磁同步电动机的电动势与电流波形图中方波电流的峰值为 Ip ,梯形波电动 势的峰值为 Ep,在一般情况下,同时只有两相导通,从逆变器直流侧看进去,为两相绕组
1、转速开环恒压频比控制的同步电动机群调速系统,是一种最简单的他控变频调速系 统,多用于化纺工业小容量多电动机拖动系统中。
系统组成:
多台同步电动机的恒压频比控制调速系统
系统控制: 多台永磁或磁阻同步电动机并联接在公共的电压源型 PWM 变压变频器上,由统一
的频率给定信号 f * 同时调节各台电动机的转速。 带定子压降补偿的恒压频比控制保证了同步电动机气隙磁通恒定,缓慢地调节频率
数不等,造成数学模型上的复杂性。但凸极效应能产生平均转矩,单靠凸极效应运行的同步 电动机称作磁阻式同步电动机。
(4)同步电动机可通过调节转子的直流励磁电流,改变输入功率因数,可以滞后,也可 以超前。
(5)异步电动机要靠加大转差才能提高转矩,而同步电机只须加大功角就能增大转矩, 同步电动机比异步电动机具有更快的动态响应,在同样的条件下,调速范围比异步电动机更 宽。
对于一台 20 极的同步电动机,同步转速为 120~150r/min,直接用来拖动轧钢机等设备 是很合适的,可以省去庞大的齿轮传动装置。
系统组成:
由交-交变压变频器供电的大型低速同步电动机调速系统 2)自控变频同步电动机调速系统 基本结构与原理: (1)在电动机轴端装有一台转子位置检测器 BQ,由它发出的信号控制变压变频装置的 逆变器 UI 换流,从而改变同步电动机的供电频率,保证转子转速与供电频率同步。
同步机调速系统的类型: (1)他控变频调速系统 用独立的变压变频装置给同步电动机供电的系统。 (2)自控变频调速系统 用电动机本身轴上所带转子位置检测器或电动机反电动势波形提供的转子位置信号来 控制变压变频装置换相时刻的系统。 1)他控变频同步电动机调速系统 与异步电动机变压变频调速一样,用独立的变压变频装置给同步电动机供电的系统称作 他控变频调速系统。 (1)转速开环恒压频比控制的同步电动机群调速系统 (2)由交-直-交电流型负载换流变压变频器供电的同步电动机调速系统 (3)由交-交变压变频器供电的大型低速同步电动机调速系统
(3)同步电动机的气隙有隐极与凸极之分。凸极式转子上有明显凸出的成对磁极和励磁 线圈。如对水轮发电机来说,由于水轮机的转速较低,要发出工频电能,发电机的极数就比 较多,做成凸极式结构工艺上较为简单。另外,中小型同步电机多半也做成凸极式。
隐极式同步电机转子上没有凸出的磁极,气隙均匀。凸极式则不均匀,两轴的电感系
给定 f * 可以逐渐地同时改变各台电机的转速。 2、对于经常在高速运行的机械设备,定子常用交-直-交电流型变压变频器供电,
其电机侧变换器(即逆变器)比给异步电动机供电时更简单,可以省去强迫换流电路, 而利用同步电动机定子中的感应电动势实现换相。
这样的逆变器称作负载换流逆变器(Load-commutated Inverter,简称 LCI) 系统组成:
A、B 两相导通而 C 相关断,则可得无刷直流电动机的动态电压方程为
uA uB 2RsiA 2(Ls Lm ) piA 2eA
在上式中, ( uA – uB ) 是 A、B 两相之间输入的平均线电压,采用 PWM 控制时,设占 空比为ρ,则 uA – uB = ρUd ,于是,上式可改写成
由交-直-交电流型负载换流变压变频器供电的同步电动机调速系统 系统控制: 系统控制器的程序包括转速调节、负载换流控制和励磁电流控制,FBS 是测速反馈 环节。 由于变压变频装置是电流型的,还单独画出了电流控制器。 换流问题: LCI 同步调速系统在起动和低速时存在换流问题: 低速时同步电动机感应电动势不够大,不足以保证可靠换流; 当电机静止时,感应电动势为零,根本就无法换流。 解决方案: 这时,须采用“直流侧电流断续”的特殊方法,使中间直流环节电抗器的旁路晶闸 管导通,让电抗器放电,同时切断直流电流,允许逆变器换相,换相后再关断旁路晶闸
因此,在没有变频电源的情况下,很难对同步电动机的转速进行控制。 同步电动机历来是以转速与电源频率保持严格同步著称的。只要电源频率保持恒定,同 步电动机的转速就绝对不变。 采用电力电子装置实现电压-频率协调控制,改变了同步电动机历来只能恒速运行不能 调速的面貌。起动费事、重载时振荡或失步等问题也已不再是同步电动机广泛应用的障碍。 同步电机的特点与问题: 优点: (1)转速与电压频率严格同步; (2)功率因数高到 1.0,甚至超前。 存在的问题: (1)起动困难; (2)重载时有振荡,甚至存在失步危险。 问题的根源: 供电电源频率固定不变 解决办法: 采用电压-频率协调控制 例如: 对于起动问题: 通过变频电源频率的平滑调节,使电机转速逐渐上升,实现软起动。 对于振荡和失步问题 : 可采用频率闭环控制,同步转速可以跟着频率改变,于是就不会振荡和失步了。 同步电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。 下图给出了最常用的同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽
自控变频同步电动机的分类: 自控变频同步电动机在其开发与发展的过程中,曾采用多种名称,有的至今仍习惯性地 使用着,它们是: 无换向器电动机 (多用于带直流励磁绕组的同步电机) 三相永磁同步电动机(输入正弦波电流时) 无刷直流电动机(采用方波电流时) 永磁同步电机和无刷直流电机机具有定子三相分布绕组和永磁转子,定子电流与转子永 磁磁通互相独立,转矩恒定性好,脉动小,可以获得很宽的调速范围,适用于要求高性能的 数控机床、机器人等场合。 目前已广泛应用于各种领域,如医疗仪器、过程控制、机床工业、纺织工业和轻工机械 等。 梯形波永磁同步电动机的自控变频调速系统: 无刷直流电动机实质上是一种特定类型的同步电动机,调速时只在表面上控制了输入电 压,实际上也自动地控制了频率,仍属于同步电动机的变压变频调速。 电动势与电流波形 永磁无刷直流电动机的转子磁极采用瓦形磁钢,经专门的磁路设计,可获得梯形波的气 隙磁场,定子采用集中整距绕组,因而感应的电动势也是梯形波的。 由逆变器提供与电动势严格同相的方波电流,同一相(例如 A 相)的电动势 eA 和电流 波 iA 形图如下图所示。
iA + iB + iC = 0
则
Lm iB + Lm iC = - Lm iA
Lm iC + Lm iA = - Lm iB
Lm iA + Lm iB = - Lm iC
代入上式,并整理后得
Lm iA eA
Lm
p
iB
eB
Ls iC eC
uA Rs 0 0 iA Ls Lm
0
eA iA
eA
iA
EP
IPOBiblioteka t梯形波永磁同步电动机的电动势与电流波形图
由于各相电流都是方波,逆变器的电压只须按直流 PWM 的方法进行控制,比各种交流 PWM 控制都要简单得多,这是设计梯形波永磁同步电动机的初衷。
然而由于绕组电感的作用,换相时电流波形不可能突跳,其波形实际上只能是近似梯形 的,因而通过气隙传送到转子的电磁功率也是梯形波。
当电动机中点与直流母线负极共地时,电动机的电压方程可以用下式表示
uA Rs 0 0 iA Ls Lm
uB
0
Rs
0
iB
Lm
Ls
uC 0 0 Rs iC Lm Lm
式中
uA、uB 、uC ——三相输入对地电压 iA、iB 、iC ——三相电流 eA、eB 、eC ——三相电动势
Rs——定子每相电阻 Ls——定子每相绕组的自感 Lm——定子任意两相绕组间的互感 由于三相定子绕组对称,故有
管,使电流恢复正常。 用这种换流方式可使电动机转速升到额定值的 3%~5%,然后再切换到负载电动势
换流。 3、另一类大型同步电动机变压变频调速系统用于低速的电力拖动,例如无齿轮传
动的可逆轧机、矿井提升机、水泥转窑等。 该系统由交-交变压变频器供电,其输出频率为 20~25Hz(当电网频率为 50Hz 时),
内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心 和绕组又称为电枢铁心和电枢绕组。
图中用 AX、BY、CZ 三个 在空间错开 120 电角度分布的线 圈代表三相对称交流绕组。
同步电机的运行方式:
同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。
同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高
网电压的目的。
同步调速系统的特点:
(1)交流电机旋转磁场的同步转速ω1 与定子电源频率 f1 有确定的关系
1
2 f1 np
同步电动机的稳态转速等于同步转速,转差 ωs = 0。 (2)异步电动机的磁场仅靠定子供电产生,而同步电动机除定子磁动势外,转子侧还有 独立的直流励磁,或者用永久磁钢励磁。
目前采用的直流励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁机 励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统。
串联,则电磁功率为 Pm = 2 Ep Ip。忽略电流换相过程的影响,电磁转矩为
Te
Pm 1
2np Ep I p 1
2np pIp
np
式中 ψp —梯形波励磁磁链的峰值,是恒定值。
由此可见,梯形波永磁同步电动机(即无刷直流电动机)的转矩与电流成正比,和一般
的直流电动机相当。 这样,其控制系统也和直流调速系统一样,要求不高时,可采用开环调速,对于动态性
同步电机变频调速
历史上最早出现的是直流电动机 19 世纪末,出现了交流电和交流电动机为了改善功率 因数,同步电动机应运而生。同步电动机也是一种交流电机。既可以做发电机用,也可做电 动机用,过去一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机等。