一元一次方程的应用工程问题
一元一次方程应用——工程问题含答案
![一元一次方程应用——工程问题含答案](https://img.taocdn.com/s3/m/882d2deb7e192279168884868762caaedd33ba38.png)
一元一次方程应用——工程问题含答案1.两人共同完成一份文件,小李独立完成需要6小时,小王独立完成需要8小时。
求他们两人一起完成需要多长时间。
2.甲单独完成一项工程需要10天,乙单独完成需要15天。
两人合作4天后,剩下的部分由乙单独完成,问还需要几天才能完成整个工程。
3.加工一批机器零件,甲单独完成需要4天,乙单独完成需要6天。
现在乙先做1天,然后两人合作完成,共付给报酬600元。
如果按个人完成的工作量付给报酬,应该如何分配?4.机械厂加工车间有27名工人,平均每人每天可以加工12个小齿轮或10个大齿轮。
2个大齿轮和3个小齿轮配成一套,问需要分别安排多少名工人加工大齿轮和小齿轮,才能使每天加工的大小齿轮刚好配套?5.整理一批图书,一个人单独完成需要60小时。
现在先由一部分人用1小时整理,随后增加15人和他们一起又做了2小时,恰好完成整理工作。
假设每个人的工作效率相同,那么先安排整理的人员有多少人?6.某工厂原计划用26小时生产一批零件,结果每小时多生产5件,用24小时就完成了任务,而且还比原计划多生产了60件。
问原计划生产多少零件?7.某地为了打造风光带,将一段长为360米的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天。
已知甲工程队每天整治24米,乙工程队每天整治16米。
求甲、乙两个工程队分别整治了多长的河道。
8.政府准备修建一条公路,如果由甲工程队单独修建需要3个月完成,每月耗资12万元;如果由乙工程队单独修建需要6个月完成,每月耗资5万元。
现在甲工程队先做一段时间,剩下的由乙工程队单独完成,一共用了4个月完成修建任务。
这样安排一共耗资多少万元?(时间按整月计算)9.某蔬菜公司收购某种蔬菜116吨,准备加工后上市销售。
该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨。
1)问能否在14天以内完成加工任务?说明理由。
2)现计划用20天正好完成加工任务,则该公司应该安排多少天进行精加工,多少天进行粗加工?10.某工程交由甲、乙两个工程队来完成。
初一数学一元一次方程应用题的工程问题完整版
![初一数学一元一次方程应用题的工程问题完整版](https://img.taocdn.com/s3/m/7673cc734431b90d6c85c7c9.png)
初一数学一元一次方程应用题的工程问题Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】工程问题?基本的数量关系:⑴工作量=工作时间×工效?⑵⑶工作时间=工作量÷工效?⑷⑸工效=工作量÷工作时间?⑹常用的等量关系:⑴各部分工作量之和=工作总量?⑵各阶段工作时间之和=总时间?重要数据:①要清楚地表达出各个工作者的工作效率;②各阶段工作效率对应的工作时间。
题目类型:⑴有明确具体的工作量的工程问题:如运送1000吨煤,修一条长2500米的水渠,挖一个200m3的蓄水池等。
⑵没有具体准确的工作量的工程问题:如修一条公路(但公路的长度没有准确数据),做一项工程,挖一条水渠,这类题要把工作总量看作单位“1”。
利用时间可迅速表示出每个工作者的工作效率(这是七年级常用的方法)1、某工厂原计划用26天生产一批零件。
工作2天后,因改变了操作方法,每天比原来多生产5个零件,结果提前4天完成任务,则原来每天生产多少个零件这批零件有多少个2、某工程队派出大、小汽车共17辆去运75吨沙子,如果大汽车每辆每次可运沙子5吨,小汽车每辆每次可运沙子3吨,而且这些汽车恰好一次能运完这批沙子,那么其中大汽车有多少辆3、已知某水池有进水管一根,进水管工作15小时将空水池注满,出水管工作24小时可以将满池水放完;⑴如果单独打开进水管,每小时可以注入的水占水池的几分之几⑵如果单独打开出水管,每小时可以放出的水占水池的几分之几⑶如果将两管同时打开,每小时的效果如何如何列式。
⑷对于空池,如果进水管先开2小时,再同时打开两管,问注满水池还需要多少时间4、一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天才能完成?5、一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做,剩下的部分需要几小时完成?6、某工程,甲队单独完成需要16天,乙队单独完成需要12天。
一元一次方程的应用-工程问题
![一元一次方程的应用-工程问题](https://img.taocdn.com/s3/m/d65f5eb0aff8941ea76e58fafab069dc502247f3.png)
一元一次方程在工程问题中通常涉及工作效率、工作时间和工作量等概念。根 据题目的具体描述,可以判断出题目的类型,从而明确解题思路。
善于归纳总结,形成自己知识体系
总结一元一次方程在工程问题中的常见应用
例如,工程进度问题、工程合作与分工问题等。通过总结这些常见应用,可以形 成自己的知识体系,更好地掌握解题技巧。
学员自我评价与反思
知识掌握情况
学员应对自己的知识掌握情况进行自我评价,包括是否理解了一元 一次方程在工程问题中的应用,是否能够独立分析并解决问题等。
学习方法与态度
学员应反思自己的学习方法是否得当,是否积极主动参与课堂讨论 和练习,是否善于总结归纳知识点等。
不足之处与改进方向
学员应诚实地反映自己的不足之处,如对某些知识点理解不够深入、 解题速度较慢等,并提出相应的改进方向。
都是未知数或已知数。
02
多个主体完成同一项工作
当有多个主体(如多个工人或多个机器)共同完成同一项工作时,需要
分别计算每个主体完成的工作量,然后将它们相加得到总工作量。
03
工作分配问题
在分配工作时,需要考虑每个主体的能力和效率,以确保工作能够按时
完成。
如何将实际问题转化为一元一次方程
确定未知数和已知数
逻辑思维能力和数学素养。
02 典型工程问题解析
工作效率、时间与总量关系问题
工作效率、时间和总量之间的基本关系
01
工作效率=总量/时间,时间=总量/工作效率,总量=工作效率×
时间。这些关系是解决工程问题的基础。
单一工作量的计算
02
当已知工作效率和时间时,可以直接使用公式计算出完成的总
量。
比较不同工作效率下的完成情况
(完整版)一元一次方程应用题工程问题
![(完整版)一元一次方程应用题工程问题](https://img.taocdn.com/s3/m/80664eeeddccda38376bafd1.png)
1.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天2.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?4. 已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何?如何列式?(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?5. 有一个水池,用两个水管注水。
如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。
①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。
问还需要多少时间才能把水池注满?②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。
如果三管同时开放,多少小时才能把一空池注满水?6.检修某场区的自来水管,甲独做需14天完成,乙独做18天完成,丙独做12天完成。
前7天由甲乙两人一起合作,但乙中途离开了一段时间;后一部分甲乙合作2天完成,问乙中途离开了几天?7.某项工程计划用300人在若干天内完成,为了缩短工期,实际施工时,实行了承包责任制,工作效率提高50%因此只用了250人,还提前20天完成任务,问原计划多少天完成这项工程?8.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天9.一组割草人去割两块草地,大的一块比小的一块大一倍,上午全部人都在大的一块草地割草,下午一半人留在大草地上,到傍晚时把草割完,另一半人去割小草地的草,到傍晚还剩一块,这一块由一个割草人在用一天时间刚好割完,问,这组割草人共有多少人(按习惯,从早晨到傍晚算一天工作,上午、下午各占一半)10.整理一批数据,由一个人做需80小时完成。
一元一次方程应用题(50道)
![一元一次方程应用题(50道)](https://img.taocdn.com/s3/m/70b99d925a8102d277a22f85.png)
1•某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进•已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.求甲、乙两个班组平均每天各掘进多少米?2•将一个内部长、宽、高分别为300cm, 300mm和80mm的长方体容器内装满水,然后倒入一个内径是200mm ,高是200mm的圆柱形容器内,问水是否溢出来?3•北京市实施交通管理新措施以来,全市公共交通客运量显著增加•据统计,2010年10月11日到2011年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次•在此期间,地面公交和轨道交通日均客运量各为多少万人次?4•全班同学去划船,如果减少一条船,每条船正好坐正9位同学;如果增加一条船,每条船上好坐6位同学。
问这个班有多少位同学?5•在收获季节的某星期天,某中学抽调七年级(1)、(2)两班部分学生去果园帮助村民采摘椪柑,其中,七年级(1)班抽调男同学2人,女同学8人,共摘得柑840千克;七年级(2)班调男同学4人, 女同学6人,共摘得椪柑880千克,问这天被抽调的同学中,男同学每人平均摘椪柑多少千克?女同学每人平均摘椪柑多少千克?6•某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?7. 学校有校舍20000平方米,计划拆除部分旧校舍,建造新校舍,新校舍的建造面积是旧校舍的3倍还多1000平方米。
这样建设完成后的校舍面积比现有校舍面积增加20%,拆除的旧校舍和新建的校舍面积各是多少?已知拆除旧校舍每平方米需费用80元,建造新校舍每平方米需费用700元,完成该计划需多少费用?8. 某山中学组织七年级师生秋游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.(1)求参加秋游的人数?(2)已知45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,问:租用哪种车更合算?9. 学校组织各班开展“阳光体育”活动,某班体育委员第一次到时商店购买了5个毽子和8根跳绳,花费34元,第二次又去购买了3个毽子和4根跳绳,花费18元,求每个毽子和每个跳绳各多少元?10. 在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?11. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?12. 在高铁上运行的一列“和谐号”动车组有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个.试求该列车一等车厢和二等车厢各有多少节?13•某小学在6月1日组织师生共110人到趵突泉公园游览•趵突泉公园规定:成人票价每位40元,学生票价每位20元.该校购票共花费2400元.在这次游览活动中,教师和学生各有多少人?14•某车间每个工人能生产螺栓12个或螺母18个,每个螺栓要有两个螺母配套,现在有工人28人,怎样分配生产螺栓和螺母的工人数,才能使每天生产量刚好配套?15•用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?16•食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输. 某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?17•古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A、B两工程队先后接力....完成.A工作队每天整治12米,B工程队每天整治8米,共用时20天.求A、B两工程队分别整治河道多少米.18•某中学组织七年级学生春游,如果租用45座的客车,则有15个人没有座位,如果租用同样数量的60座的客车,则除多出一辆外,其余恰好坐满。
工程问题的解题思路一元一次方程
![工程问题的解题思路一元一次方程](https://img.taocdn.com/s3/m/2af36740e97101f69e3143323968011ca300f7af.png)
工程问题的解题思路一元一次方程在实际的工程问题中,我们经常会遇到需要解决一元一次方程的情况。
一元一次方程是一种常见的数学工具,用来描述工程问题中的线性关系。
解题思路的正确运用可以帮助我们有效地解决各种工程问题。
本文将介绍一元一次方程的基本概念,解题方法以及在工程问题中的应用。
一、一元一次方程的基本概念一元一次方程是指只包含一个未知数,并且这个未知数的最高次数为一的方程。
一元一次方程的一般形式为:ax + b = 0,其中a和b为已知数,a≠0。
在工程问题中,未知数通常表示我们需要求解的物理量,而已知数则是已知的条件或者数据。
二、一元一次方程的解题方法1. 消元法消元法是一种常用的解一元一次方程的方法。
当方程中含有多个未知数时,我们可以通过变换等式两侧或者联立多个方程进行消元,将方程转化为只有一个未知数的一元一次方程。
2. 因式分解法如果方程可以经过因式分解得到两个或多个因式,且其中一个因式可以整除另一个因式,那么我们可以根据因式关系来求解方程。
这种方法常用于较为简单的一元一次方程。
3. 代入法代入法是通过已知条件将方程中的一个变量表达式代入到另一个变量表达式中,从而减少方程中的未知数的个数。
通过代入已知的数值,我们可以求解方程中的未知数。
三、一元一次方程在工程问题中的应用1. 比例问题在工程问题中,常常涉及到比例关系。
通过建立相应的比例关系,我们可以将工程问题转化为一元一次方程,并通过求解方程来得到所需的结果。
2. 调和平均问题调和平均是工程问题中一种常见的求均值的方法。
当我们需要求解一组数据的调和平均值时,可以将调和平均的定义转化为一元一次方程,并通过求解方程来得到所需的结果。
3. 增减问题增减问题在工程中也十分常见。
通过建立增减关系的一元一次方程,我们可以求解变化量、增长率、变化趋势等问题。
四、工程问题解题思路的总结在解决工程问题中的一元一次方程时,我们需要注意以下几点:1. 仔细分析问题,明确给出的已知条件和要求的未知数。
一元一次方程应用题——工程问题
![一元一次方程应用题——工程问题](https://img.taocdn.com/s3/m/3f15f346974bcf84b9d528ea81c758f5f61f29e7.png)
一元一次方程应用题——工程问题话说有一天,小明和他的好朋友小李在一起聊天,聊到了他们的家乡。
小明说:“哎呀,我家附近要修建一个大型公园,到时候肯定很漂亮!”小李好奇地问:“那你们家离公园多远啊?”小明想了想,说:“大概有五公里吧。
”小李点点头,表示理解。
这时候,小明突然想起了一个问题:“你知道吗,我妈妈最近在做一个工程,就是要修建一个长廊,长度是五公里。
这个长廊要连接我们家和公园,这样我们就可以在家门口散步,然后直接走到公园了。
”小李听了,觉得很神奇,于是问:“那这个长廊是怎么修建的呢?”小明笑着说:“这个问题就简单了,我们可以用一元一次方程来解决!”小明给小李讲了一下一元一次方程的基本概念。
他说:“一元一次方程就是只有一个未知数的方程,我们可以通过解方程的方法找到这个未知数的值。
比如说,我们要解决的问题是:小明家到公园的距离是多少?”小李点点头,表示明白了。
接下来,小明开始给小李讲解如何用一元一次方程来解决这个问题。
他说:“我们要确定两个已知的条件。
一个条件是小明家到公园的距离是五公里;另一个条件是小明妈妈要做的长廊长度也是五公里。
”小李点点头,表示理解。
小明接着说:“那么,我们可以用一元一次方程来表示这个问题。
设小明家到公园的距离为x公里,那么我们可以得到这样一个方程:$x+5=10$ 。
”小李疑惑地看着小明,说:“这个方程看起来有点复杂啊,怎么解呢?”小明笑着说:“别着急,我们一步一步来解。
我们要把5移到等式右边,这样就变成了:$x=10-5$ 。
”小李恍然大悟,说:“原来是这样啊!那我们怎么求出x的值呢?”小明说:“我们可以用减法来求解:$x=5$。
所以,小明家到公园的距离是5公里。
”小李听了,觉得非常简单,于是又问:“那如果我们知道长廊的宽度是10米,那么长廊的面积是多少平方米呢?”小明笑着说:“这个问题也很简单,我们还是可以用一元一次方程来解决。
设长廊的长度为y米,那么我们可以得到这样一个方程:$y\times10=500$ 。
一元一次方程实际应用-工程问题讲课用
![一元一次方程实际应用-工程问题讲课用](https://img.taocdn.com/s3/m/3f0beac485868762caaedd3383c4bb4cf7ecb7ee.png)
折扣与利润率
分析商品打折销售或加价出售时 的利润变化情况。
成本与定价策略
考虑商品生产或销售过程中的成 本控制和定价策略。
其他典型工程问题
工程进度问题
01
解决工程建设中时间、进度和费用等方面的规划和管理问题。
资源分配问题
02
分析如何合理分配人力、物力和虑如何在满足工程要求和约束条件下,实现工程效益最大化。
。
检验解的合理性
将求得的解代入原方程进行检 验,确保解符合问题的实际要
求。
03 典型工程问题解析
路程、速度、时间问题
路程=速度×时间
解决车辆行驶、人员行走 等直线运动的路程问题。
相遇与追及问题
分析两物体同向或相向运 动时的路程、速度和时间 关系。
流水行船问题
考虑水流速度对船只实际 速度和行驶路程的影响。
工作效率问题
1 2
工作总量=工作效率×工作时间 解决人员或机器完成某项工作的效率问题。
合作与分工问题
分析多人或多机器合作完成同一工作或分工完成 不同工作的效率关系。
3
工作效率变化问题
考虑工作过程中效率变化对完成工作所需时间的 影响。
利润、折扣、成本问题
利润=售价-进价
解决商品买卖中的盈利和亏损问 题。
求。
建模方法
根据题目中的条件,设出未知 数,建立等量关系,列出方程 。
解方程技巧
利用等式的性质,对方程进行 变形和化简,求出未知数的值 。
检验与反思
将求得的解代入原方程进行检 验,确保解的合理性;同时反 思解题过程,总结经验教训。
课程学习建议与展望
学习建议 掌握一元一次方程的基本概念和解法;
理解工程问题中的基本量和基本关系;
一元一次方程的应用——工程问题
![一元一次方程的应用——工程问题](https://img.taocdn.com/s3/m/78f4b829aaea998fcc220e36.png)
。
1、一件工作甲单独做20小时完 成,已单独做12小时完成,两 人合作多少小时完成?
2、一件工作,甲单独做需50天才能 完成,乙独做需要45天完成。问在 乙单独做7天以后,甲、乙合作多 少天可以完成?
全部工作量=乙独做工作量+甲、乙合作的工作 量
3、甲每天生产某种零件80个,甲生 产3天后,已也加入生产同一种零 件,再经过5天,两人共生产这种 零件940个,问乙每天生产这种零 件多少个?
4、由3个工程队合修一条公路, 第一工程队修全路的1/3,第二 工程队修剩下的1/3 ,第三工程 队修了20千米把这条公路修问题
准备知识
工程问题中的等量关系:
1.工作总量 = 工作效率×工作时间 2.各队合作的效率=各队工作效率之 和
引例
一件工作,甲单独做x小时完成,乙单 独做y小时完成,那么甲、乙的工作效率分 别为
1 1 ;甲、乙合作3天可以完成 x、 y
或
3 3 x y
1 1 3 x y 的工作量为
一元一次方程应用题工程问题经典例题
![一元一次方程应用题工程问题经典例题](https://img.taocdn.com/s3/m/b960c3a49a89680203d8ce2f0066f5335b81676d.png)
一元一次方程应用题工程问题经典例题一元一次方程应用题工程问题经典例题在做工程问题这类的应用题时,我们的解题思路是:一般情况下把工作总量看成单位1。
用到的基本公式是:工作时间×工作效率=工作总量(单位1)。
例1:某件文件需要打印,小李独立完成需要6个小时,小王独立完成需要8个小时,如果两人合作的话,需要多少时间可以完成,分析:要求两人合作的工作时间,只需用公式即可找到等量关系。
合作的工作总量即:合作的工作时间=合作的工作效率1我们把工作总量当成单位1。
根据已知我们可得:小李的工作效率=,小王的6 1工作效率= 8解:设两人合作需要X小时完成。
1 x,11+6824解得X= 724答:两人合作需要小时完成。
7(附:这道题,我们也可以直接用普通的计算方法,而不必设未知数求解。
) 举一反三:例2:一项工作甲工程队单独施工需要30天才能完成,乙队单独需要20天才能完成。
现在由甲队单独工作5天之后,剩下的工作再由两队合作完成,问他们需要合作多少天,1分析:此题比上题稍微复杂一点,但我们仍是先表示出甲的工作效率=,乙的301工作效率=。
根据题知,此题的等量关系为:甲完成的工作量+乙完成的工作20量=工作总量。
解:设他们合作需要X天。
111,5×+()X=1 302030解得X=10答:两队合作需要10天完成。
变式:例3:一项工程,甲独做需8天完成,乙独做需12天完成,甲乙合作了4天后,甲被调出,乙继续做,完成任务时一共用了6天。
问甲被调出几天, 分析:等量关系:甲乙合作的天数+乙单独做的天数=611 甲的工作效率=,乙的工作效率=。
812解:设甲被调出X天。
111,()×4+X=1 81212解得X=2答:甲被调出2天。
一元一次方程应用题 工程问题
![一元一次方程应用题 工程问题](https://img.taocdn.com/s3/m/3b0c4f4ff68a6529647d27284b73f242326c316a.png)
一元一次方程应用题工程问题一元一次方程是工程问题中常见的数学模型之一,它描述了工程问题中所涉及的线性关系,对于工程师来说,掌握一元一次方程的应用是至关重要的。
在工程实践中,一元一次方程常常被用来描述物理量之间的关系。
例如,在机械工程中,弹簧的伸长量与所受外力之间的关系可以用一元一次方程来描述;在电路工程中,电阻与电流之间的关系同样可以用一元一次方程来描述。
此外,一元一次方程还可以用来解决工程问题中的优化、规划等相关问题,比如用线性规划模型来优化生产成本、最大化利润等问题。
接下来,我们将通过几个具体的工程问题来说明一元一次方程的应用。
1.汽车行驶问题:假设一辆汽车以匀速v(m/s)行驶t(s)时间,汽车行驶的路程可以用以下一元一次方程表示:S = vt。
其中S为路程,v为速度,t为时间。
假设汽车以60m/s的速度行驶10s,问汽车行驶了多远?解:根据上述一元一次方程S = vt,代入v=60m/s,t=10s,得到S = 60 * 10 = 600m。
因此,汽车行驶了600米。
2.水泵排水问题:一台水泵每秒排水量为q(m³/s),已知一池塘中的水量为V0(m³),若水泵工作了t(s),池塘中的水量可以用以下一元一次方程表示:V = V0 - qt。
其中V为池塘中的水量。
假设水泵每秒排水0.5m³,池塘中的水量为100m³,问工作了多少时间后,池塘中的水量为0?解:根据上述一元一次方程V = V0 - qt,代入q=0.5m³/s,V0=100m³,V=0m³,得到0 = 100 - 0.5t。
解方程得到t = 200s。
因此,水泵工作了200秒后,池塘中的水量为0。
3.电阻计算问题:假设电阻R1(Ω)和R2(Ω)并联连接在电路中,总电阻可以用以下一元一次方程表示:1/R = 1/R1 + 1/R2。
假设R1=4Ω,R2=6Ω,问并联后的总电阻为多少?解:根据上述一元一次方程1/R = 1/R1 + 1/R2,代入R1=4Ω,R2=6Ω,得到1/R = 1/4 + 1/6。
一元一次方程应用——工程问题含答案
![一元一次方程应用——工程问题含答案](https://img.taocdn.com/s3/m/cd0378a4f46527d3250ce0c4.png)
一元一次方程应用——工程问题含答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一元一次方程应用——工程问题1.一份文件需要打印,小李独立做需要6小时完成,小王独立做需要8小时完成.如果他们两人共同做,需要多长时间完成2.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成3.现加工一批机器零件,甲单独完成需4天,乙单独完成需6天,现由乙先做1天,然后两人合作完成,共付给报酬600元,若按个人完成的工作量付给报酬,该如何分配4.机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套5.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人6.某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件7.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.8.政府准备修建一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.若由甲工程队先做一段时间,剩下的由乙工程队单独完成,一共用了4个月完成修建任务,这样安排共耗资多少万元(时间按整月计算)9.某蔬菜公司收购某种蔬菜116吨,准备加工后上市销售.该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨.(1)问能否在14天以内完成加工任务说明理由.(2)现计划用20天正好完成加工任务,则该公司应安排几天精加工,几天粗加工10.某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时天(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务11.2018元旦,王东和吴童相约一起去登香山.王东比吴童早18分钟到香山山脚,并以每分钟登高8米的速度直接开始登山;吴童到达香山山脚后没有休息,也直接以每分钟登高12米的速度开始登山,最后两人同时到达山顶.你能据此计算出香山山高多少米吗12.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池13.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天(2)甲队施工一天需付工程款万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱还是由甲乙两队全程合作完成该工程省钱14.抗震救灾重建家园,为了修建在地震中受损的一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1)请问甲、乙两工程队合作修建需几个月完成共耗资多少万元(2)若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整月计算)15.【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工资,雇工每天工作8小时.【问题解决】(1)一个雇工手工采摘棉花,一天能采摘多少公斤(2)一个雇工手工采摘棉花天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘.两家采摘完毕,采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少16.某牛奶厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;若制成酸奶销售,每吨可获取利润1200元;若制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是,如果制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行;受气温限制这批牛奶必须4天内全部销售或加工完毕.为此该厂设计了三种方案:方案一:将鲜奶全部制成酸奶销售;方案二:尽可能地制成奶片,其余的直接销售鲜奶;方案三:将一部分制成奶片,其余的制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多参考答案与试题解析1.【分析】设他们两人共同做,需要x小时完成,根据工作效率×工作时间=总工作量,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设他们两人共同做,需要x小时完成,根据题意得:(+)x=1,解得:x=.答:他们两人共同做,需要小时完成.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.2.【分析】设工作量为1,根据甲单独做需要10天完成,乙单独做需要15天完成,即可求出甲乙的效率;等量关系为:甲的工作量+乙的工作量=1,列出方程,再求解即可.【解答】解:设乙还需x天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.【点评】本题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.3.【分析】在工程问题中,应把工作总量看作单位1,首先求出各自的工作量,再进一步求出报酬.【解答】解:设然后两人合作x天完成.则列方程:+=1,解得:x=2,则甲、乙各做了工作量的.故甲、乙平分300元.故若按个人完成的工作量付给报酬,甲、乙各分300元.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.4.【分析】设需安排x名工人加工大齿轮,安排(27﹣x)名工人加工小齿轮,根据“平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套”可列成方程求解.【解答】解:设需安排x名工人加工大齿轮,安排(27﹣x)名工人加工小齿轮,依题意得:12×(27﹣x)×2=10x×3解得x=12,则27﹣x=15.答:安排12名工人加工大齿轮,安排15名工人加工小齿轮.【点评】本题考查理解题意能力,关键是能准确2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.5.【分析】等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设先安排整理的人员有x人,依题意得:.解得:x=10.答:先安排整理的人员有10人.【点评】解决本题的关键是得到工作量1的等量关系;易错点是得到相应的人数及对应的工作时间.6.【分析】设原计划每小时生产x个零件,则实际生产26x+60件.题目中的相等关系是:实际24小时生产的件数=计划26小时生产的件数+60.根据相等关系就可以列出方程求解.【解答】解:设原计划每小时生产x个零件,由题意得:26x+60=24(x+5),解得:x=30,所以原计划生产零件个数为:26x=780,答:原计划生产780零件.【点评】此题主要考查了一元一次方程的应用,解题的关键是找到等量关系并列出方程.7.【分析】设甲队整治了x天,则乙队整治了(20﹣x)天,由两队一共整治了360m为等量关系建立方程求出其解即可.【解答】解:设甲队整治了x天,则乙队整治了(20﹣x)天,由题意,得24x+16(20﹣x)=360,解得:x=5,∴乙队整治了20﹣5=15天,∴甲队整治的河道长为:24×5=120m;乙队整治的河道长为:16×15=240m.答:甲、乙两个工程队分别整治了120m,240m.【点评】本题是一道工程问题,考查了列一元一次方程解实际问题的运用,设间接未知数解应用题的运用,解答时设间接未知数是解答本题的关键.8.【分析】根据题意可以列出相应的方程,求出甲队和乙队分别做了几个月,从而可以解答本题.【解答】解:设甲队做了x个月,则乙做了(4﹣x)个月,=1,解得,x=2,∴4﹣x=2.∴这样安排共耗资:12×2+5×2=34(万元),答:这样安排共耗资34万元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.9.【分析】(1)根据每天可以粗加工8吨,得出8×14=112,故比较得出答案;(2)利用现计划用20天正好完成加工任务,表示出总的加工吨数得出等式求出答案.【解答】解:(1)由题意可得:8×14=112<116,即使每天安排粗加工也无法完成加工任务;(2)设精加工x天,则粗加工(20﹣x)天,由题意可得:4x+8(20﹣x)=116,解得:x=11,则20﹣x=9,答:精加工11天,则粗加工9天.【点评】此题主要考查了一元一次方程的应用,正确得出等式是解题关键.10.【分析】(1)总的工作量是“1”,甲的工作效率是,乙的工作效率是,根据题意,利用甲的工作量+乙的工作量=1列出方程并解答;(2)设共需x天完成该工程任务,根据“甲的工作量+乙的工作量=1”列出方程并解答.【解答】解:(1)设剩余由乙工程队来完成,还需要用时x天,依题意得:+=1解得x=20.即剩余由乙工程队来完成,还需要用时20天故答案是:20;(2)设共需x天完成该工程任务,根据题意得+=1解得x=36答:共需36天完成该工程任务.【点评】考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.【分析】设香山山高x米,根据时间=路程÷速度结合王东比吴童多用18分钟,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设香山山高x米,根据题意得:﹣=18,解得:x=432.答:香山山高432米.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.【分析】设打开丙管后x小时可注满水池.等量关系为:甲注水量+乙注水量﹣丙排水量=1.据此列出方程并解答.【解答】解:设打开丙管后x小时可注满水池,由题意得,(+)(x+2)﹣=1,解这个方程,(x+2)﹣=1,21x+42﹣8x=72,13x=30,解得x=.答:打开丙管后小时可注满水池.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.13.【分析】(1)设甲、乙两队合作t天,甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天,所以乙队单独完成这项工程的速度是甲队单独完成这项工程的,由题意可列方程60﹣20=t(1+),解答即可;(2)把在工期内的情况进行比较即可;【解答】解:(1)设甲、乙两队合作t天,由题意得:乙队单独完成这项工程的速度是甲队单独完成这项工程的,∴60﹣20=t(1+)解得:t=24(2)(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.14.【分析】(1)设甲、乙两工程队合作需x个月完成,根据若请甲工程队单独做此项工程需3个月完成,若请乙工程队单独做此项工程需6个月完成可列方程求解,并求出钱数;(2)由于这项工程最迟4个月完成,并且最大限度节省资金,乙队省钱,但是乙队4个月只能做全部的,剩下,所以应该让甲参与其中的,所以甲,乙合做一段时间,剩下的乙来做,就可以.【解答】解:(1)设甲、乙两工程队合作需x个月完成,(+)x=1,解得x=2.(12+5)×2=34万元.答:甲、乙两工程队合作修建需要两个月完成,共耗资34万元;(2)设甲乙合做y个月,剩下的由乙来完成.(+)y+=1,解得y=1.故甲乙合作1个月,剩下的由乙来做3个月就可以.【点评】本题考查一元一次方程的应用,关键是根据工作量=工作时间×工作效率列方程求解.15.【分析】(1)先根据一个人操作采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的倍,求出一个人手工采摘棉花的效率,再乘以工作时间8小时,即可求解;(2)根据一个雇工手工采摘棉花天获得的全部工钱正好购买一台采棉机,列出关于a的方程,解方程即可;(3)设张家雇人x人,则王家雇人2x人,其中机械采摘的有人,手工采摘的有人,由“采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元”列出方程解答.【解答】解:(1)35÷×8=80(公斤);(2)×8×10×a=900解得a=(元);(3)设张家雇人x人,则王家雇人2x人,其中机械采摘的有人,手工采摘的有人,∵张家付给雇工工钱总额为14400元∴8×10××x×8=14400解得x=15王家这次采摘棉花的总重量是:8×35××8+8×10××8=35200(公斤).【点评】本题考查了一元一次方程及列代数式在实际生产与生活中的应用,抓住关键语句,找出等量关系是解题的关键,本题难度适中.16.【分析】设方案三中有x天生产酸奶,(4﹣x)天生产奶片,根据共有9吨,以及获利情况分别求出这三种方案的利润,找出获利最多的一种方案.【解答】解:方案一获利:9×1200=10800(元);方案二:由题意得,可以制成4吨奶片,剩余5吨直接销售,则获利为:4×2000+5×500=10500(元);方案三:设有x天生产酸奶,(4﹣x)天生产奶片,3x+(4﹣x)=9,x=,则获利为:1200××3+2000×(4﹣)=12000(元),综上可得,第三种方案获利最多.【点评】本题考查了一元一次方程的应用以及理解题意的能力,由已知设出x 天生产酸奶,(4﹣x)天生产奶片,共生产9吨,列出方程是解决问题的关键.。
列一元一次方程解应用题工程问题
![列一元一次方程解应用题工程问题](https://img.taocdn.com/s3/m/356065bb4bfe04a1b0717fd5360cba1aa8118cd5.png)
(4)合并同类项 (5)系数化为1.
• 2.解方程的五个步骤在解题时不一定 都需要,可根据题意灵活的选用.
• 3.去分母时不要忘记添括号,不漏乘 不含分母的项.
例1、某车间有22名工人,每人每天可以 生产1200个螺钉或2000个螺母。1个螺钉 需要配2个螺母,为使每天生产的螺钉和 螺母刚好配套,应安排生产螺钉和螺母的 工人各多少名?
解 方 程
实际问题的答案
检验
一元一次方程的解 (x=a)
这一过程包括设、列、解、检、答等步骤,即设未 知数,列方程,解方程,检验所得结果,确定答案。 正确分析问题中的相等关系是列方程的基础。
解:设应用x立方米钢材做A部件,则应用(6-x)立方米做 B部件,根据 题意得方程:
40x×3=(6-x) ×240 解方程,得
X=(6-x) ×2
3x=12
X=4பைடு நூலகம்6-x=2
答: 应用4立方米钢材做A部件,应用2立方米 钢材做B部件
例二:整理一批图书,由一个人做要40h完成。现 计划由一部分人先做4h,然后增加2人与他们一起做 8h,完成这项工作。假设这些人的工作效率相同, 具体应先安排多少人工作?
12x=24
解方程,得
X=2
答:应安排2人先做4h.
方法总结:
解这类问题常 常把总工作量 看作1,并利 用“工作量= 人均效率×人 数×时间”的 关系解题。
练习
2、一条地下管线由甲工程队单独铺设需要12天,
由乙工程队单独铺设需要24天。如果由这两个工
程队从两端同时施工,要多少天可以铺好这条管
线? 把工作量看作单位“1‘”,则甲的工作效
一元一次方程的应用题训练(工程类)
![一元一次方程的应用题训练(工程类)](https://img.taocdn.com/s3/m/966b961de3bd960590c69ec3d5bbfd0a7956d5e9.png)
一元一次方程的应用题训练(工程类)一.选择题1.一项工程,A独做10天完成,B独做15天完成,若A先做5天,再A、B合做,完成全部工程的,共需()A.8天B.7天C.6天D.5天2.甲、乙两个工程队共同承接了某村“煤改气”工程,甲队单独施工需10天完成,乙队单独施工需15天完成.若甲队先做5天,剩下部分由两队合做,则完成该工程还需要()A.2天B.3天C.4天D.8天3.师徒俩人检修一条煤气管道,师傅单独完成需10小时,徒弟单独完成需15小时.若师徒合作2小时后,师傅因事离开由徒弟一人完成工作,则一共需要多少小时完成?设共需x小时完成,可得方程为()A.+=1B.+=1C.+=1D.+=14.一项工程由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙两队合作完成,完成剩下的部分需要甲、乙两队合作()A.3天B.6天C.天D.一天5.为打造县城河道风光带,现有一段长为180米的河道整治任务由甲、乙两个工程队先后接力完成.甲工程队每天整治12米,乙工程队每天整治8米,共用时20天.则甲工程队共整治河道()A.60米B.80米C.100米D.120米6.某市一项重点工程,甲公司单独完成需3年,乙公司单独完成需6年,现在两公司合作完成整项工程后,该市共付工程款360万元,如果按两公司分别完成工作量的多少分配,则甲公司比乙公司多分得()A.120万元B.180万元C.200万元D.240万元7.完成某项工作,甲单独要10天,乙单独要15天,如果两队合作,工作效率可以提高20%,那么两队合作要多少天完成()A.7.5天B.20天C.5天D.6天8.检修一处住宅区的自来水管,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙丙合作完成,则乙中途离开的天数是()A.2天B.3天C.4天D.5天9.一项工程,甲单独完成需要9天,乙单独完成需要12天,丙单独完成需要15天.若甲、丙先合作3天后,甲因故离开,由乙接替甲的工作,则要完成这项工程的还需要的天数为()A.2B.3C.4D.510.某项工程,甲单独需a天完成,在甲做了c(c<a)天后,剩下工作由乙单独完成还需b天,若开始就由甲乙两人共同合作,则完成任务需()天.A.B.C.D.二.填空题11.一项工程,甲单独完成要20天,乙单独完成要25天,则由甲先做2天,然后甲、乙合做余下的部分还要天才能完成.12.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成,如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完工?设还需x天完成,列方程为.13.一项工程,甲单独做a天完成,乙单独做b天完成.(1)甲的工作效率为,乙的工作效率为.(2)现在甲、乙合作8天完成了这项工程,则可以列出等式为.(3)若甲先单独工作5天后,甲、乙又合作3天完成了这项工程,则可以列出等式为.(4)若甲先单独工作5天后,乙又单独工作2天,最后甲、乙合作2天终于完成了全部工程,则可以列出等式为.(5)若甲、乙合作m天完成了整个工程的﹣半,则可列等式为.(6)若乙单独工作c天,又与甲合作m天完成了整个工程的,则可列等式为.由以上各题可以总结出:工程问题中列方程用到的相等关系﹣般来说都是从工作量、工作效率、工作时间这三个量中的哪个量来找?.14.一项工程,甲单独完成需要10天,乙单独完成需要15天,现两人合作需要天完成.15.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲,乙一起做,则需天完成.16.一项工程,A独做10天完成,B独做15天完成.若A先做5天,再A、B合做,要完成全部工程的三分之二,还需天.17.一次工程,甲独做5小时完成,乙独做比甲晚3小时才能完成,甲、乙二人合作需要小时完成.18.一件工作,甲独做要3小时完成,乙独做要5小时完成,两人合作完成这件工作的,需要小时完成.三.解答题19.某市要对水利工程进行改造,甲队单独做这项工程需要10天完成,乙队单独做这项工程需要15天完成.(1)甲的工作效率是,乙的工作效率是.(2)如果两队同时施工2天,然后由乙队单独施工,还需几天完成?20.一项工程,如果由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙合作完成.(1)(列方程解答)剩下的部分合作还需要几天完成?(2)若该工程的总费用为240万元,根据实际完成情况,甲乙两工程队各得多少万元?21.甲、乙两工程队共同承包了一段长9200米的某“村村通”道路硬化工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成460米,乙队平均每天比甲队多完成230米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?22.一项工程,甲队单独完成需要40天,乙队单独完成需要50天,现甲队单独做4天后两队合作.(1)求甲、乙两队合作多少天才能完成该工程.(2)在(1)的条件下,甲队每天的施工费为3000元,乙队每天的施工费为3500元,求完成此项工程需付给甲乙两队共多少元.23.列方程解应用题:为了治理大气污染,提升空气质量,现在广大农村正在实施“煤改气”工程.甲、乙两个工程队共同承接了某村“燃气壁挂炉注水”任务.若甲队单独施工需10天完成;若乙队单独施工需15天完成.(1)甲、乙两队合做需要几天完成?(2)若甲队先做5天,剩下部分由两队合做,还需要几天完成?24.哈市美化工程招标时,有甲、乙两个工程队投标、经测算:甲队单独完成这项工程需要30天,乙队单独完成这项工程需要45天,若由甲队先做10天,剩下的工程由甲、乙两队合作,共完成总工作量的.(1)求甲、乙两队合作了多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元,该工程由甲队先做若干天后,再由乙队完成剩余的工作,若要求完成此工程的工程款恰好是100万元,求甲队工作了几天?25.一项工程,如果甲队单独做5天可以完成全工程的;如果乙、丙两队合做2天可以完成全工程.三队合做多少天可以完成全工程?26.一项工程甲单独做需要10小时,乙单独做需要8小时,现甲单独做两小时后乙加入一起做,问这项工程完成共需几个小时?27.一项工程,甲独做10h完成,乙独做15h完成,丙独做20h完成,开始时三人合作,中途甲另有任务,由乙、丙两人完成,从开始到工程完成共用6h,问甲实际做了几小时?28.一项工程,甲单独做12小时完成,乙单独做8小时完成,甲先单独做9小时,后因甲由其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?。
一元一次方程应用题工程问题
![一元一次方程应用题工程问题](https://img.taocdn.com/s3/m/d194e50b647d27284b735145.png)
4 x 8( x 2) 1 40 40
4 x 8 x 40 16
12 x 24
x2
答:应先安排2名工人工作4小时。
例5 整理一批数据,由一个人做需80小时完成.现在计划 由一些人做2小时,再增加5人做8小时,完成这项工作 的 3 ,怎样安排参与整理数据的具体人数? 4
解:设计划先由 X 人做2小时。依题意,得:
3.一张饭桌由一个桌面和四条腿组成,若1立方米 木料可制作桌面50个或桌腿300条,现用5立方米 木料制作饭桌,则可制成多少张饭桌?
4.用白铁皮做罐头盒,每张铁皮可制盒身25个,或 制盒底40个,一个盒身与两个盒底配成一套.现在 有36张白铁皮,用多少张制盒身,多少张制盒底, 可使盒身与盒底正好配套? 5.某水利工地派48人去挖土和运土,如果每人每天 平均挖土5方或运土3方,那么应怎样安排人员,正 好能使挖出的土及时运走? 6.七年级170名学生参加植树活动,如果每个男生 能挖树坑3个,每个女生能种树7棵,正好能使每个 树坑种上一棵树,则应该安排男生、女生各有多少 人?
2x 80
8 ( x 5 ) 80
解得:x2源自3 4答:原计划先由2人做两小时。
大胆来尝试
☞
整理一块地,一个人做需要80小时完成。现
在一些人先做了2小时后,有4人因故离开,剩下
的人又做了4小时完成了这项工作,假设这些人
的工作效率相同,求一开始安排的人数。X人
各阶段的工作量之和=总工作量1
2 x 8( x 4) 1 80 80
x x 1 15 10
去分母,得 4x+6x=60 合并同类项,得 10x=60 系数化为1,得
x=6
答:两人合作6小时完成.
七年级数学一元一次方程工程问题总结
![七年级数学一元一次方程工程问题总结](https://img.taocdn.com/s3/m/9f8749ae80c758f5f61fb7360b4c2e3f572725c7.png)
一、引言数学作为一门理科学科,在学习过程中常常需要将所学知识运用到实际生活中。
而一元一次方程作为数学中的重要知识点,也经常出现在实际问题中。
本文将结合七年级数学一元一次方程工程问题,对其进行总结和分析,希望能够帮助同学们更好地掌握相关知识,并将它应用到实际的工程问题中。
二、一元一次方程的基本概念1. 一元一次方程的定义一元一次方程是指其中只含有一个未知数,并且未知数的最高次数为一的方程。
通常表示为ax + b = 0,其中a和b为已知数,x为未知数。
2. 一元一次方程的解法解一元一次方程可以通过移项和消元的方法来进行。
常用的解法包括加减消元法、代入法、加减法等。
三、实际工程问题中的一元一次方程应用1. 工程问题实例1:管道工程某工程项目需要从A地点输送水到B地点,已知管道的长度为L米,输送水的速度为v米/小时,输送水需要的时间为t小时。
根据已知条件,可以建立一元一次方程L = vt。
2. 工程问题实例2:成本问题某公司生产一种产品,已知生产该产品的总成本为C元,每个产品的成本为c元,生产的产品数量为n个。
根据已知条件,可以建立一元一次方程C =。
3. 工程问题实例3:工程进度问题某工程需要在规定的时间内完成,已知工程进度为p%,完成时间为t天。
根据已知条件,可以建立一元一次方程p = 100t。
四、一元一次方程在工程问题中的解决方法1. 代入法当已知数比较简单时,可以直接代入已知条件,解出未知数的值。
2. 图表法可以将一元一次方程表示为直线的形式,通过画图的方式解决工程问题。
3. 数学模型法通过建立数学模型,将实际问题转化为数学问题,然后进行求解。
五、七年级数学一元一次方程工程问题的总结1. 在解决工程问题时,需要学会将实际问题转化为数学问题,建立相应的一元一次方程。
2. 在解一元一次方程时,需要掌握各种解法的应用技巧,灵活运用于工程问题中。
3. 在实际解决工程问题时,需要综合考虑各个已知条件,善于利用一元一次方程解决实际问题。
(完整word版)一元一次方程应用题——工程问题
![(完整word版)一元一次方程应用题——工程问题](https://img.taocdn.com/s3/m/6352131148d7c1c708a145a8.png)
一元一次方程应用题----工程问题1.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天2.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?4. 已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何?如何列式?(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?5. 有一个水池,用两个水管注水。
如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。
①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。
问还需要多少时间才能把水池注满?②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。
如果三管同时开放,多少小时才能把一空池注满水?6.检修某场区的自来水管,甲独做需14天完成,乙独做18天完成,丙独做12天完成。
前7天由甲乙两人一起合作,但乙中途离开了一段时间;后一部分甲乙合作2天完成,问乙中途离开了几天?7.某项工程计划用300人在若干天内完成,为了缩短工期,实际施工时,实行了承包责任制,工作效率提高50%因此只用了250人,还提前20天完成任务,问原计划多少天完成这项工程?8.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天9.一组割草人去割两块草地,大的一块是小的一块的2倍,上午全部人都在大的一块草地割草,下午一半人留在大草地上,到傍晚时把草割完,另一半人去割小草地的草,到傍晚还剩一块,这一块由一个割草人在用一天时间刚好割完,问,这组割草人共有多少人?(按习惯,从早晨到傍晚算一天工作,上午、下午各占一半)10.整理一批数据,由一个人做需80小时完成。
一元一次方程的应用-工程问题
![一元一次方程的应用-工程问题](https://img.taocdn.com/s3/m/231ac5e8d0f34693daef5ef7ba0d4a7303766c67.png)
3
检查解
4
将解带入原方程,检查等式是否成立。
问题分析
仔细分析工程问题,确保理解所有的条件和 要求。
解方程
通过逐步操作和运算,解出方程,获得未知 数的值。
总结与应用拓展
一元一次方程在工程问题中扮演着重要角色。通过理解方程的基本概念和解 法,并将其应用到工程实践中,我们可以有效地解决各种实际问题。
一元一次方程的解法
解一元一次方程的常规方法是通过移项和分解系数的步骤,以求出未知数的 值。
工程问题中的一元一次方程应用
计算工程材料
通过方程式计算所需的材料数 量,以确保工程的顺利进行。
预测成本
通过方程式预测工程项目所需 的成本,以便进行预算和资源 管理。
计算时程
通过方程式计算工程项目所需 的时间,以安排和管理时间表。
工程问题案例介绍
建筑工地
通过一元一次方程,计算建筑材料 的需求和成本,以确保项目按计划 进展。
测量工具
使用一元一次方程,根据测量结果 计算出需要的尺寸和量度。
电气布线
通过方程,计算电线的长度,以安 装并保持电气系统的正常运转。
工程问题求解步骤
1
建立方程
2
根据问题中提供的信息,建立适当的一元一
次方程。
一元一次方程的应用-工 程问题
一元一次方程在工程中起着重要作用。通过解决方程,我们可以解决真实世 界中的实际问题,并提供可行的解决方案。
什么是一元一次方程
一元一次方程是一个包含一个未知数的等式,其中所有项的指数都是1。方程 的解就是未知数的值。
一元一次方程的定义
一元一次方程的一般形式为ax + b = 0,其中a和b是已知数,x是未知数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——————————— 完成工作总量的时间
解题关键是:审清题意,能用表格对题目进 行分析,找准相等关系,从而列出方程。
工程问题中的数量关系:
1) 工作效率=
工作总量 ———————————
完成工作总量的时间
2)工作总量=工作效率×工作时间 工作总量
3)工作时间= ————— 工作效率
4)合作效率=各队工作效率之和
5)工作总量=各队工作量之和
变式:若甲单独生产3天后,乙才加入合作,再经过 5天完成了生产940个零件的任务,且甲每天比乙 少生产32个零件,求甲、乙每天各生产多少个零 件?
分析:
甲
甲乙合作
功效
工时
工作量
小结: 1)工程问题或称工作量问题,一定要掌握效率、时
间、总量三者之间的关系。
2)部分工作量+部分工作量=总量
工作总量
工作效率=
x ≈8
答:。。。。。。
例题讲解
• 例2 甲每天生产某零件80个,甲生产3天后,乙 加入生产同一种零件,再经过5天,两人共生产 这种零件940个.问乙每天生产这种零件多少个?
全部工作量=甲乙两人工作量之和
列表法表示
甲乙
功效
工时
工作量
合作工作效率 还有其他方式找等量关系吗? 全部工作量=甲先做的+甲乙合作的
一元一次方程的应用工程问题
例题讲解
例1、 挖一条长为1210米长的水渠,由甲施工队
独做需要11天完成,乙施工队独做需要20天完成,
现在甲、乙两施工队从两头同时施工,挖完这条
水渠估计需几天?
工作效率=
工作总量 ———————————
完成工作总量的时间
解:设挖完这条水渠估计要x天.
等依量题关意系得: 1210 x 1210 x 1210 甲施工队挖的11米数+乙2施0 工队挖的米数=1210米
变式
挖要20天完成,现在甲、乙两施工 队从两头同时施工,挖完这条水渠估计需几天?
分析:通常把总量(即本题中的这条水渠)看成“1” 即本题的等量关系为甲完成工作量+乙完成工作量=1
解:设挖完这条水渠估计要x天. 由题意得: 1 x 1 x 1 11 20 x 220 31