初中数学八年级下册矩形的判定

合集下载

矩形的判定公式

矩形的判定公式

矩形的判定公式矩形是我们在数学学习中经常会碰到的一个几何图形,它有着独特的性质和判定公式。

在我们的日常生活中,矩形无处不在。

就比如说我家的窗户,那就是一个标准的矩形。

每次阳光透过窗户洒进来,那整齐的光影就好像是矩形在向我展示它的魅力。

咱们先来说说矩形的定义哈,有一个角是直角的平行四边形叫做矩形。

那怎么来判定一个四边形是不是矩形呢?这就有几个关键的公式和方法啦。

第一种判定方法,如果一个四边形的三个角都是直角,那它肯定就是矩形。

这就好比我们搭积木,当你已经确定了三块积木的角度都是直角,那剩下的那个角也必然是直角,整个图形也就成了矩形。

第二种判定方法是对角线相等的平行四边形是矩形。

想象一下,你有两根长度相等的绳子,把它们的两端分别固定在四个点上,形成一个平行四边形,如果这两根绳子长度一样,那这个平行四边形就很有可能是矩形。

还有一种判定方法是有一个角为直角的平行四边形是矩形。

这个就比较好理解啦,一个平行四边形,只要有一个角是直角,那其他的角就会跟着“随大流”,也变成直角,于是它就成了矩形。

就拿我之前装修房子的时候来说吧,师傅在给我做电视背景墙的时候,就需要先确定一个矩形的框架。

他们先是测量了几个角的度数,确保有一个角是直角,然后再看看对角线是不是相等,通过这些判定方法,才做出了一个完美的矩形背景墙。

在数学的世界里,矩形的判定公式就像是一把把神奇的钥匙,能够帮助我们打开认识和解决问题的大门。

我们通过这些公式,可以准确地判断一个四边形是不是矩形,从而解决各种与矩形相关的数学问题。

比如说在几何证明题中,如果已知条件给了我们一些关于角度或者对角线的信息,我们就可以利用矩形的判定公式来证明这个图形是不是矩形,进而得出其他相关的结论。

在实际应用中,矩形的判定公式也大有用处。

像建筑设计中,工程师们需要准确地确定建筑物的某些部分是不是矩形,以保证结构的稳定性和美观性。

总之,矩形的判定公式虽然看起来简单,但却蕴含着深刻的数学原理和广泛的应用价值。

人教版初中数学八年级下册18.2.1矩形(2)《矩形的判定》教案

人教版初中数学八年级下册18.2.1矩形(2)《矩形的判定》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“矩形判定在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了矩形的判定方法、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对矩形判定的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.相关例题及练习题;
5.课堂小结与作业布置。
二、核心素养目标
1.让学生掌握矩形的判定方法,提高空间想象能力和逻辑推理能力;
2.培养学生运用矩形性质解决实际问题的能力,提高学以致用的素养;
3.培养学生的合作意识和团队精神,提高交流表达能力和问题解决能力;
4.激发学生对数学学科的兴趣,培养良好的数学学习习惯和探究精神。
b.在矩形中,已知对角线长度,求矩形的边长;
c.在实际问题中,如何判断一个图形是否为矩形,并运用矩形性质解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《矩形的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断一个图形是否为矩形的情况?”(如判断黑板的形状)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索矩形判定的奥秘。

矩形的判定-教学设计

矩形的判定-教学设计

八年级数学《矩形的判定》教学设计一、教材分析:1、教材所处的地位和作用:本节教材是人教版八年级数学下册第19章《四边形》的第二节的内容,是初中数学的重要内容之一。

本节内容是在学习矩形的性质与平行四边形知识经验基础上进行教学的,因此我认为本节起着承前启后的作用。

2、教学目标:知识与技能目标:理解矩形的判定定理,能有理有据的推理证明,并会用判定方法解决相关的问题。

过程与方法目标:经历探索矩形判定的过程,发展学生实验探索能力;形成几何分析思路和方法。

情感态度与价值观:注重培养推理能力,会根据需要选择有关的结论证明,体会理论来自于实践的需要。

使学生在数学活动中获取成功的体验,增强自信心。

3、教学重点、难点:教学重点:理解矩形的判定定理及证明过程。

教学难点:矩形判定方法的证明以及应用下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:二、教法与学法:1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。

2、学法:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。

通过开放式命题,尝试从不同角度寻求解决问题的方法。

三、教学过程(一)、创设情境、导入新课回顾:1、矩形的定义。

2、矩形的性质:对边:对边平行且相等。

对角:四个角相等,都是直角。

对角线:互相平分且相等。

3、平行四边形判定定理。

设计意图:通过对矩形定义等几个知识点的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。

(二)、演示操作,探索新知:1、教师拿出教具进行操作,将平行四边形逐渐变为矩形,然后让学生明确判定矩形的第一种方法是通过定义来判定。

学生观察教具,回忆矩形定义,深刻理解定义可以作为矩形判定方法之一,师生共同归纳出矩形判定定理一:有一个角是直角的平行四边形是矩形。

明确证题过程:先证平行四边形,再证一个角是直角,得出矩形的结论。

2、教师继续拿出教具进行操作,探究,提问:当矩形一个角变为90度后,其余三个角同时变为90度,两条对角线成为相等的线段,这个变形中你们想到什么,从中得到什么启发?学生观察、联想,提出见解。

2020年春人教版初中数学八年级下册同步课件 第十八章 18.2 18.2.1 第2课时 矩形的判定

2020年春人教版初中数学八年级下册同步课件 第十八章  18.2  18.2.1  第2课时 矩形的判定

下页
3.下列命题中,假命题是( ) A.有一组对角是直角且一组对边平行的四边形是矩形 B.有一组对角是直角且一组对边相等的四边形是矩形 C.有两个内角是直角且一组对边平行的四边形是矩形 D.有两个内角是直角且一组对边相等的四边形是矩形 解析:有一组对角是直角且一组对边平行可得到两组对边平行或四个角均是直角,故四 边形是矩形;有一组对角是直角且一组对边相等可以得到其两组对边平行,四边形是矩 形;有两个内角是直角且一组对边平行的四边形可能是矩形,也可能是直角梯形;有两 个内角是直角且一组对边相等可以得到其两组对边相等,所以该四边形是矩形. 答案:C
返回导航 上页
下页Biblioteka 判定矩形的方法“图示”八年级数学 ·下
返回导航 上页
下页
[学以致用] 如图所示,在▱ABCD中,AC,BD相交于点O,△AOB是等边三 角形,AB=4 cm. (1)判断▱ABCD是否为矩形,说明你的理由; (2)求▱ABCD的面积.
八年级数学 ·下
返回导航 上页
下页
解析:(1)▱ABCD是矩形.理由如下: ∵△AOB是等边三角形,∴OA=OB=AB=4 cm.∵四边形ABCD是平行四边形,∴ AC=2OA,BD=2OB,∴AC=BD,∴平行四边形ABCD是矩形. (2)由(1)知OA=AB=4 cm,AC=2OA=8 cm,∵四边形ABCD是矩形,∴∠ABC= 90°.在Rt△ABC中,由勾股定理得BC= AC2-AB2= 82-42=4 3, ∴▱ABCD的面积是AB×BC=4×4 3=16 3 (cm2).
八年级数学 ·下
返回导航 上页
下页
[核心素养] 1.数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组的4 位同学拟订的方案,其中正确的是( ) A.测量对角线是否互相平分 B.测量两组对边是否分别相等 C.测量一组对角是否都为直角 D.测量三个角是否为直角

《矩形的判定》 讲义

《矩形的判定》 讲义

《矩形的判定》讲义一、矩形的定义矩形是一种特殊的平行四边形,它具有平行四边形的所有性质。

矩形的定义为:有一个角是直角的平行四边形叫做矩形。

从这个定义出发,我们可以得出矩形的两个重要特征:一是它是平行四边形,二是其中有一个角是直角。

二、矩形的判定方法1、定义判定如果一个平行四边形中有一个角是直角,那么这个平行四边形就是矩形。

例如,在平行四边形 ABCD 中,如果∠A = 90°,那么平行四边形ABCD 就是矩形。

2、对角线相等的平行四边形是矩形我们知道,平行四边形的对角线互相平分。

如果在这个基础上,两条对角线还相等,那么这个平行四边形就是矩形。

证明如下:假设平行四边形 ABCD 的对角线 AC = BD。

因为平行四边形的对角线互相平分,所以 OA = OC,OB = OD。

又因为 AC = BD,所以△OAB≌△OCD(SSS)。

所以∠OAB =∠OCD。

因为 AB∥CD,所以∠OAB +∠OCD = 180°。

所以∠OAB =∠OCD = 90°。

所以平行四边形 ABCD 是矩形。

3、有三个角是直角的四边形是矩形如果一个四边形中有三个角是直角,那么第四个角也一定是直角。

因为四边形的内角和为 360°,三个直角的和为 270°,所以第四个角为90°。

证明如下:在四边形 ABCD 中,∠A =∠B =∠C = 90°。

因为四边形的内角和为 360°,所以∠D = 360°(∠A +∠B +∠C)= 360° 270°= 90°。

所以四边形 ABCD 是矩形。

三、矩形判定的应用1、几何证明题在几何证明题中,如果需要证明一个四边形是矩形,可以根据已知条件选择合适的判定方法。

例如,已知一个平行四边形的对角线相等,那么就可以用“对角线相等的平行四边形是矩形”这个判定方法来证明它是矩形。

2、实际问题中的应用在实际生活中,矩形的判定也有很多应用。

人教版初中数学八年级下册《矩形的判定》的说课稿

人教版初中数学八年级下册《矩形的判定》的说课稿

人教版初中数学八年级下册《矩形的判定》的说课稿一. 教材分析《矩形的判定》是人教版初中数学八年级下册的一章内容,本节内容是在学生已经掌握了四边形的性质和图形的初步认识的基础上进行学习的。

通过学习本节内容,让学生了解矩形的性质,掌握矩形的判定方法,为后续学习其他图形的性质和判定打下基础。

教材从实际生活中的实例引入矩形的概念,然后通过一系列的探究活动,让学生自主发现矩形的性质。

在教材的编写中,注重让学生通过实际操作,培养学生的观察能力、操作能力和推理能力。

二. 学情分析学生在学习本节内容时,已经具备了一定的几何图形的知识基础,对图形的性质和判定有一定的了解。

但是,对于矩形的性质和判定方法,学生可能还比较陌生。

因此,在教学过程中,需要教师通过生动形象的讲解,引导学生积极参与,激发学生的学习兴趣。

三. 说教学目标1.知识与技能目标:让学生掌握矩形的性质,学会用矩形的性质判定一个四边形是不是矩形。

2.过程与方法目标:通过观察、操作、推理等活动,培养学生的观察能力、操作能力和推理能力。

3.情感态度与价值观目标:让学生在解决实际问题的过程中,体验数学的价值,增强学习数学的兴趣。

四. 说教学重难点1.教学重点:矩形的性质,矩形的判定方法。

2.教学难点:矩形的判定方法的灵活运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、合作学习法等,引导学生主动参与,培养学生的观察能力、操作能力和推理能力。

2.教学手段:利用多媒体课件、实物模型、几何画板等教学辅助工具,帮助学生直观地理解矩形的性质和判定方法。

六. 说教学过程1.导入:通过展示实际生活中的矩形物体,如矩形桌子、矩形门等,引导学生回顾矩形的概念,激发学生的学习兴趣。

2.探究矩形的性质:让学生通过观察、操作、推理等活动,发现矩形的性质,如矩形的对边平行且相等,矩形的对角相等等。

3.学习矩形的判定方法:让学生通过实际操作,发现矩形的判定方法,如有一个角是直角的平行四边形是矩形,有三个角是直角的四边形是矩形等。

矩形的判定(5种题型)(解析版)

矩形的判定(5种题型)(解析版)

矩形的判定(5种题型)【知识梳理】一、矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)要点诠释:②证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.二.矩形的判定与性质(1)关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.在处理许多几何问题中,若能灵活运用矩形的这些性质,则可以简捷地解决与角、线段等有关的问题.(2)下面的结论对于证题也是有用的:①△OAB、△OBC都是等腰三角形;②∠OAB=∠OBA,∠OCB=∠OBC;③点O到三个顶点的距离都相等.【考点剖析】题型一:矩形的判定定理的理解例1.(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AD B.AC⊥BD C.AB=AC D.AC=BD【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A.∵▱ABCD中,AB=AD,∴▱ABCD是菱形,故选项A不符合题意;B.∵▱ABCD中,AC⊥BD,∴▱ABCD是菱形,故选项B不符合题意;C.▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项C不符合题意;D.∵▱ABCD中,AC=BD,∴▱ABCD是矩形,故选项D符合题意;故选:D.【点评】本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识;熟练掌握矩形的判定和菱形的判定是解题的关键.【变式】已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,那么下列结论中正确的是()A.当AB=BC时,四边形ABCD是矩形B.当AC BD⊥时,四边形ABCD是矩形C.当OA=OB时,四边形ABCD是矩形D.当ABD CBD∠=∠时,四边形ABCD是矩形【答案】C【解析】C答案中,当OA=OB时,可知四边形ABCD的对角线相等,则可得平行四边形ABCD是矩形.【总结】考察矩形的证明方法.题型二:添加一个条件使四边形是矩形例2.(2022•甘肃)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是.【分析】先证四边形ABCD是平行四边形,再由矩形的判定即可得出结论.【解答】解:需添加的一个条件是∠A=90°,理由如下:∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,又∵∠A=90°,∴平行四边形ABCD是矩形,故答案为:∠A=90°(答案不唯一).【点评】本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.【变式】(2022•前进区一模)如图,已知四边形ABCD为平行四边形,对角线AC与BD交于点O,试添加一个条件,使▱ABCD为矩形.【分析】根据对角线相等的平行四边形是矩形可添加的条件是AC=BD.【解答】解:∵AC=BD,四边形ABCD为平行四边形,∴四边形ABCD为矩形.故答案为:AC=BD.【点评】本题考查矩形的判定,熟练掌握矩形的判定方法是解决本题的关键.题型三:证明四边形是矩形例3.(2022•巴中)如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC 至点G,使CG=CE,连接DG、DE、FG.(1)求证:△ABE≌△FCE;(2)若AD=2AB,求证:四边形DEFG是矩形.【分析】(1)由平行四边形的性质推出AB∥CD,根据平行线的性质推出∠EAB=∠CFE,利用AAS即可判定△ABE≌△FCE;(2)先证明四边形DEFG是平行四边形,再证明DF=EG,即可证明四边形DEFG是矩形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠CFE,又∵E为BC的中点,∴EC=EB,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);(2)∵△ABE≌△FCE,∴AB=CF,∵四边形ABCD是平行四边形,∴AB=DC,∴DC=CF,又∵CE=CG,∴四边形DEFG是平行四边形,∵E为BC的中点,CE=CG,∴BC=EG,又∵AD=BC=EG=2AB,DF=CD+CF=2CD=2AB,∴DF=EG,∴平行四边形DEFG是矩形.【点评】本题考查了矩形的判定,平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定与性质,证明△ABE≌△FCE是解题的关键.【变式1】(2022•六盘水)如图,在平行四边形ABCD中,AE平分∠BAC,CF平分∠ACD.(1)求证:△ABE≌△CDF;(2)当△ABC AECF是矩形?请写出证明过程.【分析】(1)由ASA证△ABE≌△CDF即可;(2)由(1)可知,∠CAE=∠ACF,则AE∥CF,再由全等三角形的性质得AE=CF,则四边形AECF是平行四边形,然后由等腰三角形的在得∠AEC=90°,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AB∥CD,∴∠BAC=∠ACD,∵AE平分∠BAC、CF平分∠ACD,∴∠BAE=∠CAE=∠BAC,∠DCF=∠ACF=∠ACD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)解:当△ABC满足AB=AC时,四边形AECF是矩形,理由如下:由(1)可知,∠CAE=∠ACF,∴AE∥CF,∵△ABE≌△CDF,∴AE=CF,∴四边形AECF是平行四边形,又∵AB=AC,AE平分∠BAC,∴AE⊥BC,∴∠AEC=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形的判定、全等三角形的判定与性质、等腰三角形的性质等知识,熟练掌握矩形的判定是解题的关键.【变式2】(2022•十堰)如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设=k,当k为何值时,四边形DEBF是矩形?请说明理由.【分析】(1)利用平行四边形的性质,即可得到BO=OD,EO=FO,进而得出四边形BFDE是平行四边形,进而得到BE=DF;(2)先确定当OE=OD时,四边形DEBF是矩形,从而得k的值.【解答】(1)证明:如图,连接DE ,BF ,∵四边形ABCD 是平行四边形,∴BO =OD ,AO =OC ,∵E ,F 分别为AO ,OC 的中点,∴EO =OA ,OF =OC ,∴EO =FO ,∵BO =OD ,EO =FO ,∴四边形BFDE 是平行四边形,∴BE =DF ;(2)解:当k =2时,四边形DEBF 是矩形;理由如下:当BD =EF 时,四边形DEBF 是矩形,∴当OD =OE 时,四边形DEBF 是矩形,∵AE =OE ,∴AC =2BD ,∴当k =2时,四边形DEBF 是矩形.【点评】本题主要考查了平行四边形的判定与性质,矩形的判定,注意对角线互相平分的四边形是平行四边形.题型四:矩形的性质与判定求线段长 例4.(2022秋·广东佛山·九年级校考阶段练习)如图,在ABCD Y 中,AE BC ⊥于点E ,延长BC 至点F ,使CF E =,连接DF ,AF 与DE 交于点O .(1)求证:四边形AEFD 为矩形;(2)若3AB =,2OE =,5BF =,求DF 的长.【答案】(1)见解析 (2)125【分析】(1)根据线段的和差关系可得BC EF =,根据平行四边形的性质可得AD ∥BC ,AD BC =,即可得出AD EF =,可证明四边形AEFD 为平行四边形,根据AE BC ⊥即可得结论;(2)根据矩形的性质可得AF DE =,可得BAF 为直角三角形,利用“面积法”可求出AE 的长,即可得答案.【详解】(1)BE CF =,BE CE CF CE ∴+=+,即BC EF =, ABCD 是平行四边形,AD ∴∥BC ,AD BC =,AD EF ∴=, AD ∥EF ,∴四边形AEFD 为平行四边形,AE BC ⊥,90AEF ∴∠=︒,∴四边形AEFD 为矩形.(2)四边形AEFD 为矩形,AF DE ∴=,DF AE =,2OE =,∴4DE =,∵3AB =,5BF =,∴222AB AF BF +=,BAF ∴为直角三角形,90BAF ∠=︒,∴1122ABFS AB AF BF AE=⨯=⨯,∴125 AE=,∴125 DF AE==.【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.【变式】如图,平行四边形ABCD中P是AD上一点,E为BP上一点,且AE=BE=EP.(1)求证:四边形ABCD是矩形;(2)过E作EF⊥BP于E,交BC于F,若BP=BC,S△BEF=5,CD=4,求CF.【答案】(1)证明:AE=BE=EP,∴∠EAB=∠EBA,∠EAD=∠EPA,∵∠ABE+∠EAB+∠EAP+∠APE=180°,2∠EAB+2∠EAP=180°,∴∠EAB+∠EAP=90°,∴∠BAD=90°,∵平行四边形ABCD∴四边形ABCD为矩形;(2)解:如图连接PF,作PM⊥BC于M,EN⊥BC于N,∵四边形ABCD为矩形,∴∠C=∠D=∠PMC=90°,∴四边形PMCD为矩形,同理四边形ABMP为矩形,∴PM=CD=4,∠PMC=∠PMF=90°,∵BE=EP,EN∥PM,∴BN=NM ,∴EN=12PM=2, ∵12·BF ·EN=5,∴BF=5,∵EF ⊥BP ,BE=EP∴PF=BF=5,∴FM=3,∴AP=BM=8,∴BC=BP=∴CF=BC-BF=.题型五:矩形的性质与判定求面积例5.(2022•云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°.(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .【分析】(1)由四边形ABCD 是平行四边形,得∠BAE =∠FDE ,而点E 是AD 的中点,可得△BEA ≌△FED (ASA ),即知EF =EB ,从而四边形ABDF 是平行四边形,又∠BDF =90°,即得四边形ABDF 是矩形;(2)由∠AFD =90°,AB =DF =3,AF =BD ,得AF ===4,S 矩形ABDF =DF •AF =12,四边形ABCD 是平行四边形,得CD =AB =3,从而S △BCD =BD •CD =6,即可得四边形ABCF 的面积S 为18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF===∴S矩形ABDF=DF•AF=3×4=12,BD=AF=4,∵四边形ABCD是平行四边形,∴CD=AB=3,∴S△BCD=BD•CD=×4×3=6,∴四边形ABCF的面积S=S矩形ABDF+S△BCD=12+6=18,答:四边形ABCF的面积S为18.【点评】本题考查平行四边形性质及应用,涉及矩形的判定,全等三角形判定与性质,勾股定理及应用等,解题的关键是掌握全等三角形判定定理,证明△BEA≌△FED.【变式1】已知ABCD 的对角线AC ,BD 相交于O ,△ABO 是等边三角形,AB =4,求这个平行四边形的面积.【答案】 解: ∵四边形ABCD 是平行四边形.∴△ABO ≌△DCO又∵△ABO 是等边三角形∴△DCO 也是等边三角形,即AO =BO =CO =DO∴AC =BD∴ ABCD 为矩形.∵AB =4,AC =AO +CO∴AC =8在Rt △ABC 中,由勾股定理得:BC =∴矩形ABCD 的面积为:AB BC =16 【变式2】(2023春·江苏南京·九年级统考期中)如图,O 为矩形ABCD 的对角线AC 的中点,过O 作EF AC ⊥分别交AD ,BC 于点E ,F .(1)求证:四边形AFCE 是菱形.(2)若6AB =,12BC =,求菱形AFCE 的面积.【答案】(1)见解析(2)45【分析】(1)先根据矩形的性质可得OA OC =,AD BC ∥,再根据ASA 定理证出AOE COF ≌,根据全等cm cm cm cm 2cm三角形的性质可得OE OF =,然后根据菱形的判定即可得证;(2)设菱形AFCE 的边长为x ,则12BF x =−,在Rt ABF 中,利用勾股定理求出x 的值,然后根据菱形的面积公式即可得.【详解】(1)证明:四边形ABCD 是矩形,∴OA OC =,AD BC ∥,OAE OCF ∴∠=∠,∵O 为矩形ABCD 的对角线AC 的中点,∴OA OC =,在AOE △和COF 中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA AOE COF ∴≌, OE OF ∴=,∴四边形AECF 是平行四边形,又EF AC ⊥,∴四边形AECF 是菱形.(2)解:四边形ABCD 是矩形,90ABC ∴∠=︒,设菱形AFCE 的边长为x ,则AF CF x ==,12BC =,12BF BC CF x ∴=−=−,在Rt ABF 中,222AB BF AF +=,即()222612x x +−=,解得7.5x =, 7.5CF ∴=,则四边形AFCE 的面积为7.5645CF AB ⋅=⨯=.【点睛】本题考查了矩形的性质、菱形的判定与性质、勾股定理等知识点,熟练掌握菱形的判定与性质是解题关键.【过关检测】一、单选题 1.(2023·河北邯郸·统考模拟预测)如图,在四边形ABCD 中,给出部分数据,若添加一个数据后,四边形ABCD 是矩形,则添加的数据是( )A .4CD =B .2CD =C .2OD = D .4OD =【答案】D 【分析】根据对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形即可得到答案.【详解】解:当4OD =时,由题意可知,4AO CO ==,4BO DO ==,∴四边形ABCD 是平行四边形,∵8AC BD ==,∴四边形ABCD 是矩形,故选:D【点睛】此题考查了矩形的判定,熟练掌握矩形的判定方法是解题的关键.2.(2023·浙江湖州·统考模拟预测)如图,在Rt △ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 的中点,AC =8,BC =6,则四边形CEDF 的面积是( )A .6B .12C .24D .48【答案】B【分析】利用三角形的中位线定理,先证明四边形DECF 是矩形,再利用矩形的面积公式进行计算即可. 【详解】解: 点D ,E ,F 分别是边AB ,AC ,BC 的中点,AC =8,BC =6,11//,3,//,4,22DE BC DE BC DF AC DF AC ∴====∴ 四边形DECF 是平行四边形,90,C ∠=︒∴ 四边形DECF 是矩形,3412.DECF S ∴=⨯=矩形故选:.B【点睛】本题考查的是三角形的中位线的性质,矩形的判定与性质,掌握利用三角形的中位线证明四边形是平行四边形是解题的关键. A .3B .【答案】A 【分析】连接AC ,由菱形的性质可证ABC 和ACD 是等边三角形,从而求得2AC =,根据点E 、F 是AB 、CD 的中点可得CE AB ⊥,AF CD ⊥,进而证明四边形AECF 是矩形,再利用勾股定理求出=EC 即可求出结果.【详解】解:连接AC ,∵四边形ABCD 是菱形,ABC ∠︒=60,2AB =,==60B D ∴∠∠︒ ,====2AB BC CD AD ,==120BAD BCD ∠∠︒,==60BAC BCA ∴∠∠︒,==60DAC DCA ∠∠︒,∴ABC 和ACD 是等边三角形,2AC AB ==,∵点E 、F 是AB 、CD 的中点,CE AB ∴⊥,AF CD ⊥,==30CAF ACE ∠∠︒,==90BAF DCE ∴∠∠︒,∴四边形AECF 是矩形, 1==12AE AB ,∴在Rt AEC 中,EC∴矩形AECF 的面积为:=1AE EC ⨯故选:A .【点睛】本题考查了菱形的性质、矩形的判定和性质及等边三角形的判定和性质和勾股定理,熟练运用相关知识,正确作出辅助线是解题的关键. A .232−B .2【答案】C 【分析】根据矩形的性质得出AD BC ∥,得出DEC BCE ∠=∠,证明45ABE AEB ∠==︒,得出2AB AE ==,根据勾股定理求出BE =【详解】解:∵四边形ABCD 是矩形,∴AD BC ∥,∴DEC BCE ∠=∠,∵EC 平分DEB ∠,∴DEC BEC ∠=∠,∴BEC ECB ∠=∠,∴BE BC =,∵四边形ABCD 是矩形,∴90A ∠=︒,∵=45ABE ∠︒,∴45ABE AEB ∠=∠=︒,∴2AB AE ==.∵由勾股定理得:BE ===,∴BC BE ==∴2DE AD AE BC AB =−=−=,故选:C .【点睛】本题主要考查了矩形的性质、角平分线的性质、等腰三角形的性质、勾股定理的应用等知识;要学会添加常用的辅助线,构造特殊三角形来解决问题.熟练掌握矩形的性质、等腰三角形的判定与性质是解决问题的关键. 5.(2023·江苏无锡·校考一模)如图,ABCD Y 的对角线AC 与BD 相交于点O ,添加下列条件不能证明ABCD Y 是菱形的是( )A .ABD ADB ∠=∠ B .AC BD ⊥C .AB BC =D .AC BD =【答案】D 【分析】由菱形的判定、矩形的判定分别对各个选项进行判断即可.【详解】解:A 、∵ABD ADB ∠=∠,∴AB AD =,∴ABCD Y 是菱形,故选项不符合题意;B 、∵四边形ABCD 是平行四边形,AC BD ⊥,∴ABCD Y 是菱形,故选项不符合题意;C 、∵四边形ABCD 是平行四边形,AB BC =,∴ABCD Y 是菱形,故选项不符合题意,D 、∵四边形ABCD 是平行四边形,AC BD =,∴ABCD Y 是矩形,故选项符合题意;故选:D .【点睛】本题考查了菱形的判定、矩形的判定,熟练掌握菱形的判定方法是解题的关键.【答案】C【分析】根据矩形的判定定理逐一判断即可.【详解】解:A 、一组对角相等的平行四边形不一定是矩形,是假命题,不符合题意;B 、对角线相等且平分的四边形是矩形,是假命题,不符合题意;C 、顺次连接菱形四边中点得到的四边形是矩形,是真命题,符合题意;如图所示,在菱形ABCD 中,E F G H 、、、分别是AB BC CD AD 、、、的中点,∴EH 是ABD △的中位线,∴12EH BD EH BD =,∥,同理得111222EF AC EF AC FG BD GH AC ===,∥,,, ∴EH FG EF GH ==,,∴四边形EFGH 是平行四边形,∵四边形ABCD 是菱形,∴AC BD ⊥,∴EH EF ⊥,∴四边形EFGH 是矩形;D 、对角线相等的四边形不一定是矩形,也有可能是等腰梯形,是假命题,不符合题意;故选C .【点睛】本题主要考查了判断命题真假,矩形的判定,熟知矩形的判定定理是解题的关键.【答案】C【分析】连接CM ,先证四边形PCQM 是矩形,得PQ CM =,再由勾股定理得3BD =,当CM BD ⊥时,CM 最小,则PQ 最小,然后由面积法求出CM 的长,即可得出结论.【详解】解:如图,连接CM ,MP CD ⊥于点P ,MQ BC ⊥于点Q ,90CPM CQM ∴∠=∠=︒,四边形ABCD 是矩形,6BC AD ∴==,8CD AB ==,90BCD ∠=︒,∴四边形PCQM 是矩形,PQ CM ∴=,由勾股定理得:10BD ==,当CM BD ⊥时,CM 最小,则PQ 最小, 此时,1122BCD S BD CM BC CD =⋅=⋅△, 即11106822CM ⨯⨯=⨯⨯,245CM ∴=, PQ ∴的最小值为245,故选:C .【点睛】勾股定理、垂线段最短以及三角形面积等知识,熟练掌握矩形的判定与性质是解题的关键. 8.(2023·山东德州·统考二模)如图,矩形ABCD 中,6AB =,4=AD ,点E ,F 分别是AB ,DC 上的动点,EF BC ∥,则BF DE +最小值是( )A .13B .10C .12D .5【答案】B 【分析】延长AD ,取点M ,使得AD DM =,连接MP ,根据全等三角形的判定得到ADE DMF ≌,得到DE MF =,故当B ,F ,M 三点共线时,BF DE +的值最小,即为BM 的值.【详解】延长AD ,取点M ,使得AD DM =,连接MP ,如图∵EF BC ∥,四边形ABCD 是矩形∴四边形AEFD 和四边形EBCF 是矩形∵AD DM =,AE DF =,90EAD FDM ==︒∠∠∴ADE DMF ≌∴DE MF =∴=BF DE BF FM ++∵点E ,F 分别是AB ,DC 上的动点故当B ,F ,M 三点共线时,BF DE +的值最小,且BF DE +的值等于BM 的值在Rt BAM △中,10BM ===故选:B . 【点睛】本题考查了矩形的判定和性质,全等三角形的判定和性质,勾股定理等,做出辅助线,构建DMF 使得ADE DMF ≌是解决本题的关键.二、填空题 9.(2023·甘肃武威·统考三模)如图矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E ,F ,AB =3,BC =4,则图中阴影部分的面积为_____.【答案】6.【分析】首先结合矩形的性质证明△AOE ≌△COF ,得△AOE 、△COF 的面积相等,从而将阴影部分的面积转化为△BCD 的面积.【详解】∵四边形ABCD 是矩形,∴OA =OC ,∠AEO =∠CFO ;又∵∠AOE =∠COF ,在△AOE 和△COF 中,∵AEO CFO OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠∠⎩=,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,∴S 阴影=S △AOE+S △BOF+S △COD =S △AOE+S △BOF+S △COD =S △BCD ;∵S △BCD =12BC•CD =6,∴S 阴影=6.故答案为6.【点睛】本题主要考查矩形的性质,三角形全等的判定和性质定理,掌握三角形的判定和性质定理,是解题的关键.【答案】AE BC ⊥(答案不唯一)【分析】根据矩形的判定方法即可求解.【详解】解:菱形ABCD ,BE DF =,∴AD DF BC BE −=−,即CE AF =,且AF CE =,∴四边形AECF 是平行四边形,根据矩形的判定,①四边形AECF 是平行四边形,AE BC ⊥,∴90AEC ∠=︒,平行四边形AECF 是矩形;②四边形AECF 是平行四边形,若CF AD ⊥,∴90AFC ∠=︒,平行四边形AECF 是矩形;故答案为:AE BC ⊥(答案不唯一).【点睛】本题主要考查矩形,掌握矩形的判定方法是解题的关键. 11.(2023春·吉林·八年级期中)如图,在ABCD Y 中AC BD 、相交于点O ,8AC =,当OD =______时,ABCD Y 是矩形.【答案】4【分析】根据矩形的判定与性质即可解答.【详解】解:四边形ABCD 为平行四边形,∴要使四边形ABCD 为矩形,则8BD AC ==,142OD BD ∴==,故答案为:4.【点睛】本题主要考查了矩形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解题的关键.12.(2023·江苏徐州·统考一模)如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A′B′C′=S △ABC ,BC=B′C′,BC ∥B′C′,∴四边形B′C′CB 为平行四边形,∵BB′⊥BC ,∴四边形B′C′CB 为矩形,∵阴影部分的面积=S △A′B′C′+S 矩形B′C′CB-S △ABC=S 矩形B′C′CB=4×2=8(cm2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【答案】14【分析】有矩形的性质和勾股定理分别求出EJ FJ =AK BK ==【详解】解:在矩形ABCD 中,∵4590BAF ABF ∠=︒∠=︒,,∴45454ABG AFB AB BF ∠=︒∠=︒==,,,∵6BC =,∴2BE CF AH DG ====,∴2HG EF ==,∴EJ FJ =∵4AB =,∴AK BK ===∴(24614S ⎡⎤=⨯−=⎢⎥⎣⎦阴影.故答案为:14.【点睛】本题主要考查矩形的性质、勾股定理,掌握相关知识并理解题意是解题的关键. 统考一模)如图,ABC 的边,将ABC 平移得到A B C ''',且 【答案】62【分析】利用平行的性质可得2BB CC ''==,BC B C ''==A ABC B C '''≌△△,利用两组对边分别相等的四边形是平行四边形,可证四边形BCC B ''是平行四边形,同时可证得ABC A B C S S '''=△△,再证明四边形BCC B ''是矩形,由此可得阴影部分的面积等于矩形BCC B ''的面积,然后利用矩形的面积公式进行计算.【详解】解:∵将ABC 平移2cm 得到A B C ''',∴2BB CC ''==,BC B C ''==A ABC B C '''≌△△, ∴四边形BCC B ''是平行四边形,∵BB BC '⊥,90B BC ∴='∠︒,∴四边形BCC B ''是矩形,∴22BCC B S S ''==⨯=阴影,故答案为:【点睛】本题考查了平移的性质、平行四边形的判定与性质、矩形的判定与性质,熟练掌握平移的性质,证明四边形BCC B ''是矩形是解题的关键.三、解答题 分别是ABC 各边的中点. 请你为ABC 添加一个条件,使得四边形【答案】(1)四边形ADEF 为平行四边形,证明见解析(2)90DAF ∠=︒,四边形ADEF 为矩形,证明见解析【分析】(1)根据三角形中位线定理得到DE AC EF AB ∥,∥,根据平行四边形的判定定理证明结论;(2)根据矩形的判定定理证明.【详解】(1)解:四边形ADEF 为平行四边形,理由如下:∵D ,E ,F 分别是ABC 各边的中点,∴DE AC EF AB ∥,∥,∴四边形ADEF 是平行四边形;(2)90DAF ∠=︒,四边形ADEF 为矩形,理由如下:由(1)得:四边形ADEF 为平行四边形,又∵90DAF ∠=°,∴平行四边形ADEF 是矩形.【点睛】本题考查的是三角形中位线定理、平行四边形和矩形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. (1)求证:四边形ABCF (2)若ED EC =,求证:【答案】(1)见解析(2)见解析【分析】(1)根据,AB DC FC AB =∥,可得四边形ABCF 是平行四边形,再由90BCD ∠=︒,即可求证;(2)根据四边形ABCF 是矩形,90AFD AFC ∠=∠=︒,从而得到90,90DAF D CGF ECD ∠=︒−∠∠=︒−∠,再由ED EC =,可得D ECD ∠=∠,从而得到DAF CGF ∠=∠,进而得到EAG EGA ∠=∠,即可求证.【详解】(1)证明:∵,AB DC FC AB =∥,∴四边形ABCF 是平行四边形.∵90BCD ∠=︒,∴四边形ABCF 是矩形.(2)证明:∵四边形ABCF 是矩形,∴90AFD AFC ∠=∠=︒,∴90,90DAF D CGF ECD ∠=︒−∠∠=︒−∠.∵ED EC =,∴D ECD ∠=∠.∴DAF CGF ∠=∠.∵EGA CGF ∠=∠,∴EAG EGA ∠=∠.∴EA EG =.【点睛】本题主要考查了矩形的判定和性质,等腰三角形的判定和性质,熟练掌握矩形的判定和性质,等腰三角形的判定和性质是解题的关键.【答案】见解析【分析】首先证明四边形ABCD 是平行四边形,得出OA OC =,OB OD =,根据OA OD =,得出AC BD =,即可证明.【详解】解:证明:∵AB CD =,AB CD ∥,∴四边形ABCD 为平行四边形,∴OA OC =,OB OD =.又∵OA OD =,∴AC BD =,∴平行四边形ABCD 为矩形.【点睛】本题考查了矩形的判定、平行四边形的判定与性质;熟练掌握矩形的判定是解题的关键. 18.(2023·湖北恩施·统考二模)如图,在平行四边形ABCD 中,对角线,BD AC 相交于点,,O AE BD BF AC ⊥⊥,垂足分别为,E F .若CF DE =,求证:四边形ABCD 为矩形.【答案】见解析【分析】利用HL 证明ADE BCF ≌,得出AE BF =,利用AAS 证明AOE BOF △≌△,得出AO BO =,结合平行四边形的性质可得出AC BD =,然后利用矩形的判定即可证明.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC =,2AC AO =,2BD BO =,∵,AE BD BF AC ⊥⊥,∴90AED AEO BFC BFO ∠=∠=∠=∠=︒,又CF DE =∴()Rt Rt HL ADE BCF ≌,∴AE BF =,又AOE BOF ∠=∠,∴()AAS AOE BOF ≌,∴AO BO =,又2AC AO =,2BD BO =,∴平行四边形ABCD 是矩形.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,矩形的判定等知识,证明AO BO =是解题的关键. 19.(2023·湖南岳阳·模拟预测)如图所示,ABC 中,D 是BC 中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF BD =,连接BF .请从以下三个条件:①AB AC =;②FB AD =;③E 是AD 的中点,选择一个合适作为已知条件,使四边形AFBD 为矩形.(1)你添加的条件是 ;(填序号)(2)添加条件后,请证明四边形AFBD 为矩形.【答案】(1)①(2)见解析【分析】(1)根据已知可得四边形AFBD 是平行四边形,添加条件能证明四边形是矩形即可求解;(2)先证明四边形AFBD 是平行四边形,①根据三线合一得出AD BD ⊥,能证明四边形是矩形;②只能证明四边形为平行四边形;③证明AFE DCE △≌△,可得AF DC =,进而根据已知得出BD AF =,不能证明四边形是矩形.【详解】(1)解:添加的条件是①故答案为:①.(2)证明:∵AF BC ∥,AF BD =,∴四边形AFBD 是平行四边形,①AB AC =;∵ABC 中,D 是BC 中点,∴四边形AFBD 是矩形;②添加FB AD =;四边形AFBD 是平行四边形,不能证明四边形AFBD 是矩形;③E 是AD 的中点∴AE DE =,∵AF BC ∥,∴FAE DCE ∠=∠,又AEF DEC ∠=∠,∴()AAS AFE DCE ≌,∴DC AF =,又BD CD =,∴BD AF =,∴③不能证明四边形AFBD 是矩形.【点睛】本题考查了矩形的判定,熟练掌握矩形的判定定理是解题的关键. (1)求证:四边形OCED 是矩形;(2)设AC =12,BD =16,求OE 的长.【答案】(1)见解析(2)10【分析】(1)先证明平行四边形ABCD 为菱形,可得AC BD ⊥,通过CE BD ∥,DE AC ∥证明四边形OCED 为平行四边形,结合AC BD ⊥即可证明;(2)由(1)可得平行四边形ABCD 为菱形,故12OC AO AC ==,12OB DO BD ==,结合四边形OCED 是矩形,运用勾股定理即可求得OE 的长. 【详解】(1)∵四边形ABCD 为平行四边形,AB BC =,∴平行四边形ABCD 为菱形,∴AC BD ⊥,∵CE BD ∥,DE AC ∥,∴四边形OCED 为平行四边形,又∵AC BD ⊥,∴四边形OCED 为矩形.(2)∵=12AC ,16BD =, ∴162OC AC ==,182DO BD ==,在Rt COD 中,10CD =,由(1)知四边形OCED 为矩形,∴10OE CD ==.【点睛】本题考查了菱形的判定和性质,矩形的判定和性质,勾股定理等,熟练掌握四边形的判定和性质是解题的关键. 21.(2023·湖南长沙·校考二模)如图,平行四边形ABCD 中,AC BC ⊥,过点D 作∥DE A C 交BC 的延长线于点E ,点M 为AB 的中点,连接CM .(1)求证:四边形ADEC 是矩形;(2)若5CM =,且8AC =,求四边形ADEB 的周长.【答案】(1)证明见解析(2)36【分析】(1)根据平行四边形的性质得到AD BC ∥,由∥DE A C 即可证明四边形ADEC 是平行四边形,再由AC BC ⊥即可证明平行四边形四边形ADEC 是矩形;(2)先根据直角三角形斜边上的中线等于斜边的一半求出10AB =,进而利用勾股定理求出6BC =,再利用平行四边形的性质得到6AD =,由此即可利用矩形周长公式求出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∵∥DE A C , ∴四边形ADEC 是平行四边形,∵AC BC ⊥,即A C C E ⊥,∴平行四边形四边形ADEC 是矩形;(2)解:∵AC BC ⊥,点M 为AB 的中点,5CM =,∴210AB CM ==,在Rt ABC △中,由勾股定理得6BC ==, ∵四边形ABCD 是平行四边形,四边形ADEC 是矩形∴6AD BC CE ===,8DE AC ==∴四边形ADEB 的周长68661036AD DE CE CB AB =++++=++++=.【点睛】本题主要考查了矩形的性质与判定,平行四边形的性质与判定,勾股定理,直角三角形斜边上的中线的性质,熟知矩形的性质与判定定理是解题的关键. 22.(2023·山东济南·统考三模)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,DF ⊥AC 于点F . 求证:AE =DF .【答案】见解析【分析】根据矩形的性质得到OA =OC =OB =OD ,再根据AE ⊥BD ,DF ⊥AC 得出∠AEO =∠DFO ,从而证明出△AOE ≌△DOF 即可.【详解】证明:∵四边形ABCD 是矩形,对角线AC ,BD 相交于点O ,∴OA =OC =OB =OD ,∵AE ⊥BD ,DF ⊥AC ,∴∠AEO =∠DFO =90°,在△AOE 和△DOF 中,AEO DFO AOE DOFAO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△DOF (AAS ),∴AE =DF .【点睛】本题主要考查矩形的性质和三角形全等的判定与性质,解题关键是找到全等三角形,熟练运用全等三角形的判定进行证明. 八年级北京交通大学附属中学校考期中)如图,在ABC 中,点(1)求证:四边形ADFE 为矩形;(2)若30C ∠=︒,2AF =,写出矩形【答案】(1)证明见解析(2)2【分析】(1)连接DE ,先根据三角形的中位线的性质证明四边形ADFE 是平行四边形,再根据对角线相等的平行四边形是矩形证明即可;(2)根据矩形的性质得出90BAC FEC ∠=∠=︒,再根据直角三角形斜边上的中线等于斜边的一半得出4BC =,2CF =,然后解直角三角形求出矩形的边长即可得出矩形的周长.【详解】(1)连接DE ,如图,∵点E ,F 分别是边AC ,BC 的中点,∴EF AB ∥,12EF AB =.∵点D 是边AB 的中点, ∴12AD AB =.∴AD EF =.∴四边形ADFE 是平行四边形.∵点D ,E 分别是边AB ,AC 的中点, ∴12DE BC =. ∵2BC AF =,∴AF DE =.∴平行四边形ADFE 是矩形.(2)∵四边形ADFE 为矩形,∴90BAC FEC ∠=∠=︒.∵2AF =,点F 是边BC 的中点,∴24BC AF ==,2CF AF ==.∵30C ∠=︒,∴1EF =,CE∴AE CE ==∴矩形ADFE 的周长为:())2212AE EF +==.【点睛】本题主要考查了矩形的判定和性质,三角形的中位线的性质,直角三角形的性质以及解直角三角形,熟练掌握矩形的判定和性质是解题的关键.。

人教版八年级数学下册矩形的判定教案

人教版八年级数学下册矩形的判定教案

人教版八年级数学下册矩形的判定教案教学目标1.掌握矩形的判定方法;(重点)2.能够运用矩形的性质和判定解决实际问题.(难点)教学过程一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究探究点一:有一个角是直角的平行四边形是矩形如图,在△ABC中,AB=AC,AD 是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E.求证:四边形ADCE是矩形.解析:首先利用外角性质得出∠B=∠ACB=∠F AE=∠EAC,进而得到AE∥BC,即可得出四边形AEDB是平行四边形,再利用平行四边形的性质得出四边形ADCE是平行四边形,再根据AD是高即可得出四边形ADCE是矩形.证明:∵AB=AC,∴∠B=∠ACB.∵AE 是△BAC的外角平分线,∴∠F AE=∠EAC.∵∠B+∠ACB=∠F AE+∠EAC,∴∠B=∠ACB=∠F AE=∠EAC,∴AE∥BC.又∵DE∥AB,∴四边形AEDB 是平行四边形,∴AE平行且等于BD.又∵AB=AC,AD⊥BC,∴BD=DC,∴AE 平行且等于DC,故四边形ADCE是平行四边形.又∵∠ADC=90°,∴平行四边形ADCE是矩形.方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.探究点二:对角线相等的平行四边形是矩形如图,在平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.解析:首先由平行四边形ABCD可得OA=OC,OB=OD.若ON=OB,那么ON =OD.而CM=AN,即ON=OM.由此可证得四边形NDMB的对角线相等且互相平分,即可得证.证明:∵四边形ABCD为平行四边形,∴AO=OC,OD=OB.∵AN=CM,ON=OB,∴ON=OM=OD=OB,∴MN=BD,∴四边形NDMB为矩形.方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.探究点三:有三个角是直角的四边形是矩形如图,▱ABCD各内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH 是矩形.解析:利用“有三个内角是直角的四边形是矩形”证明四边形EFGH是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∵AH,BH分别平分∠DAB与∠ABC,∴∠HAB =12∠DAB,∠HBA=12∠ABC,∴∠HAB+∠HBA=12(∠DAB+∠ABC)=12×180°=90°,∴∠H=90°.同理∠HEF=∠F =90°,∴四边形EFGH是矩形.方法总结:题设中隐含多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.探究点四:矩形的性质和判定的综合运用【类型一】矩形的性质和判定的运用如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.解析:(1)证明四边形EFGH对角线相等且互相平分;(2)根据题设求出矩形的边长CD和BC,然后根据矩形面积公式求得.(1)证明:∵四边形ABCD是矩形,∴OA =OB=OC=OD.∵AE=BF=CG=DH,∴AO-AE=OB-BF=CO-CG=DO-DH,即OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,∴GO=GC.∵DG⊥AC,∴∠DGO=∠DGC=90°.又∵DG=DG,∴△DGC≌△DGO,∴CD =OD.∵F是BO中点,OF=2cm,∴BO=4cm.∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB=DB2-DC2=43cm,∴S矩形ABCD=4×43=163(cm2).方法总结:若题设条件与这个四边形的对角线有关,要证明一个四边形是矩形,通常证这个四边形的对角线相等且互相平分.【类型二】矩形的性质和判定与动点问题如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?解析:(1)设经过t s时,四边形PQCD 是平行四边形,根据DP=CQ,代入后求出即可;(2)设经过t′s时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可.解:(1)设经过t s,四边形PQCD为平行四边形,即PD=CQ,所以24-t=3t,解得t=6;(2)设经过t′s,四边形PQBA为矩形,即AP=BQ,所以t′=26-3t′,解得t′=132.方法总结:①证明一个四边形是平行四边形,若题设条件与这个四边形的边有关,通常证这个四边形的一组对边平行且相等;②题设中出现一个直角时,常采用“有一角是直角的平行四边形是矩形”来判定矩形.三、板书设计1.矩形的判定有一角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.矩形的性质和判定的综合运用教学反思在本节课的教学中,不仅要让学生掌握矩形判定的几种方法,更要注重学生在学习的过程中是否真正掌握了探究问题的基本思路和方法.教师在例题练习的教学中,若能适当地引导学生多做一些变式练习,类比、迁移地思考、做题,就能进一步拓展学生的思维,提高课堂教学的效率.。

人教版数学八年级下册矩形的判定课件

人教版数学八年级下册矩形的判定课件
方法2:
对角线相等的平行四边形是矩形 。
(对角线相等且互相平分的四边形是矩形。)
方法3:
有三个角是直角的四边形是矩形 。
辩一辩 下列各句判定矩形的说法是否正确?
(1)对角线相等的四边形是矩形; X
(2)对角线互相平分且相等的四边形是矩形;
(3)有一个角是直角的四边形是矩形; X (4)有三个角都相等的四边形是矩形; X
(5)有三个角是直角的四边形是矩形;
(6)四个角都相等的四边形是矩形;
(7)对角线相等,且有一个角是直角的四边形是矩形; X
(8)一组对角互补的平行四边形是矩形;
(9)对角线相等且互相垂直的四边形是矩形;
(10)一组邻边垂直,一组对边平行且相等的四边形是矩形;
用一用
1、如图,在平行四边形ABCD中对角线AC,BD相交 于点O,且OA=OD, ∠OAD=50°。求∠OAB的度数。
直角三角形的性质定理:
直角三角形斜边上的中线等于斜边的一半.
议一议
你知道如何判定一个平行四边形是矩形吗?
矩形的定义: 有一个角是直角的平行四边形是矩形。
ABCD ∠A=900
四边形ABCD是矩形
你还有其它的判定方法吗?
想一想
对角线相等的平行四边形是矩形吗?
已知:平行四边形ABCD,AC=BD
求证:四边形ABCD是矩形
A
D
B
C
说一说
矩形的判定方法:
对角线相等的平行四边形是矩形 。
(对角线相等且互相平分的四边形是矩形。)
几何语言:
A
D
∵四边形ABCD是平行四边形
AC=BD
O
∴四边形ABCD是矩形
(或OA=OC=OB=OD)

八年级数学下册教学课件《矩形的判定》

八年级数学下册教学课件《矩形的判定》

H
(3)将直角尺靠窗框的一个角,如图③,调整窗框的边框,当直角尺的两
条直角边与窗框无缝隙时, 如图④, 说明窗框合格, 这时窗框是 矩形 ,
根据的数学道理是 有一个角是直角的平行四边形叫做矩形 .
概念可以判定矩形,比照平行四边形的判定,那矩形性质的逆命题是
不是也可以用于矩形的判定呢? 我们来看下.
探索新知
∴四边形 ABCD 是矩形
对应训练
如图,在△ABC中,∠ACB=90°,D是AB的中点,DF,
DE分别是△BDC,△ADC的角平分线. 求证:四边形DECF是
矩形. 证明:∵ ∠ACB=90°,D是AB的中点,
A
∴AD=CD=BD.
E
D
∵DE是△ADC的角平分线, ∴DE⊥AC.
∴∠DEC=90°. 同理得∠CFD=90°. C
D F



G
H
(1)先截出两对符合规格的铝合金窗料,如图①,使AB=CD , EF=GH ; (2)摆放成如图②所示的四边形,则这时窗框的形状是 平行四边形 , 根据的数学道理是 两组对边分别相等的四边形是平行四边形 ;
情境导入
工人师傅做铝合金窗框,分下面三个步骤进行:
A
B
①C E
D F



G
A
m
hm
Bn
nC
课后作业
解:能拼成三种平行四边形. (1)如图①的矩形,其对角线长为m. (2)如图②的平行四边形. 其两条对角线长分别为n, 4h2 n2 (3)如图③的平行四边形, 其对角线长分别为h, 4n2 h2
Байду номын сангаас
m n
h ① mn

人教版初中八年级下册数学课件 《矩形》平行四边形(第2课时矩形的判定)

人教版初中八年级下册数学课件 《矩形》平行四边形(第2课时矩形的判定)
人教版八年级数学
矩形 第二课时矩形的判定
课标解读
1.理解矩形的定义,能够利用矩形的定义判定四边形是矩形。 2.掌握矩形的判定定理,并能灵活运用这些判定定理解决问题。 3.通过探索矩形的判定定理,进一步培养视图能力,以及推理论证 能力。
知识梳理 矩形的判定 1.定义法:有一个角是直角的平行四边形是矩形
4
4.八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花 摆成两条对角线.如果一条对角线用了38盆红花,还需要从花房运来 多少盆红花?为什么?如果一条对角线用了49盆呢?
解:还需要从花房运来38盆“红花”. 因为,矩形的对角线相等,所以另一条对角线也需38盆“红花”.且 不应除去两条对角线的交点,这是因为38盆是偶数,因此对较线的 交点没有摆花盆. 如果一条对角线用了49盆,那么应从花房运来48盆“红花”.因为矩 形的对角线相等,但由于49盆是奇数,因此对角线交点应已摆放花 盆,所以,另一条对角线上的花盆数应少1盆.
3.已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等 边三角形,AB=4cm. (1)这个平行四边形是矩形吗?说明你的理由; (2)求这个平行四边形的面积.
解:(1)是.∵△AOB是等边三角形,
∴AO=BO
1
1
又∵AO=2 AC,BO2= BD.
∴AC=BD.
∴ ABCD是矩形.
(2)S 1 ABCD= 2 3 4 4 16 3 2
已知:如图,∠A=∠B=∠C=90°.
A
D
求证:四边形ABCD是矩形
证明:∵∠A=∠B=∠C=90° ∴∠D=90°
B
C
∴∠A=∠C,∠B=∠D,
∴四边形ABCD是平行四边形 , ∵∠A=90°

新人教版初中数学——特殊的平行四边形-知识点归纳及中考典型题解析

新人教版初中数学——特殊的平行四边形-知识点归纳及中考典型题解析

新人教版初中数学——特殊的平行四边形知识点归纳及中考题型解析一、矩形的性质与判定1.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S△ABD=4S△AOB.(如图)2.矩形的判定:(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.二、菱形的性质与判定1.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.2.菱形的判定:(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等的四边形.三、正方形的性质与判定1.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;(3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.四、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等;(8)有三个角都是直角.五、中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一矩形的性质与判定1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.典例1 如图,矩形ABCD的对角线交于点O,若∠BAO=55°,则∠AOD等于A.105°B.110°C.115°D.120°【答案】B【解析】∵四边形ABCD是矩形,∴OA=O B.∴∠BAO=∠ABO=55°.∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故选B.典例2 如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是–1,则对角线AC、BD的交点表示的数A.5.5 B.5 C.6 D.6.5【答案】A【解析】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴190,2B AE AC ∠==,∴13AC=,∴AE=6.5,∵点A表示的数是−1,∴OA=1,∴OE=AE−OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.1.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB =BC B .AC 垂直BD C .∠A =∠C D .AC =BD2.如图,在平行四边形ABCD 中,对角线AC BD 、交于点O ,并且6015DAC ADB ∠=︒∠=︒,,点E 是AD 边上一动点,延长EO 交于BC 点F ,当点E 从点D 向点A 移动过程中(点E 与点D ,A 不重合),则四边形AFCE 的变化是A .平行四边形→菱形→平行四边形→矩形→平行四边形B .平行四边形→矩形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→正方形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形考向二 菱形的性质与判定1.菱形除了具有平行四边形的一切性质外,具有自己单独的性质,即:菱形的四条边都相等; 菱形的对角线互相垂直,并且每一条对角线平分一组对角. 2.菱形的判定:四条边都相等的四边形是菱形; 对角线互相垂直的平行四边形是菱形.典例3 菱形具有而平行四边形不具有的性质是 A .两组对边分别平行 B .两组对边分别相等 C .一组邻边相等D .对角线互相平分【答案】C【解析】根据菱形的性质及平行四边形的性质进行比较,可发现A,B,D两者均具有,而C只有菱形具有平行四边形不具有,故选C.【名师点睛】有一组邻边相等的平行四边形是菱形.典例4如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件_____________,使四边形ABCD成为菱形.(只需添加一个即可)【答案】BO=DO(答案不唯一)【解析】四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD 互相平分(对角线互相垂直且平分的四边形是菱形).故答案为:BO=DO(答案不唯一).3.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为A.45°,135°B.60°,120°C.90°,90°D.30°,150°4.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.考向三正方形的性质与判定1.正方形的性质=矩形的性质+菱形的性质.2.正方形的判定:以矩形和菱形的判定为基础,可以引申出更多正方形的判定方法,如对角线互相垂直平分且相等的四边形是正方形.证明四边形是正方形的一般步骤是先证出四边形是矩形或菱形,再根据相应判定方法证明四边形是正方形.典例5面积为9㎝2的正方形以对角线为边长的正方形面积为A.18㎝2B.20㎝2C.24㎝2D.28㎝2【答案】A【解析】∵正方形的面积为9cm2,∴边长为3cm,∴根据勾股定理得对角线长cm,∴以=2=18cm2.故选A.典例6如图,在△ABC中,∠B=90°,AB=BC=4,把△ABC绕点A逆时针旋转45°得到△ADE,过点C作CF⊥AE于F,DE交CF于G,则四边形ADGF的周长是A.8 B.C.D.【答案】D【解析】如图,连接AG,∵∠B=90°,AB=BC=4,∴∠CAB=∠ACB=45°,AC,∵把△ABC绕点A逆时针旋转45°得到△ADE,∴AD=AB=4,∠EAD=∠CAB=45°,∴∠FAB=90°,CD=AC﹣AD﹣4,∵∠B=90°=∠FAB,CF⊥AE,∴四边形ABCF是矩形,且AB=BC=4,∴四边形ABCF是正方形,∴AF=CF=AB=4=AD,∠AFC=∠FCB=90°,∴∠GCD =45°,且∠GDC =90°,∴∠GCD =∠CGD =45°,∴CD =GD ﹣4,∵AF =AD ,AG =AG ,∴Rt △AGF ≌Rt △AGD (HL ),∴FG =GD ﹣4,∴四边形ADGF 的周长=AF +AD +FG +GD ﹣﹣,故选D .5.如图,在正方形ABCD 内一点E 连接BE 、CE ,过C 作CF ⊥CE 与BE 延长线交于点F ,连接DF 、DE .CE =CF =1,DE ,下列结论中:①△CBE ≌△CDF ;②BF ⊥DF ;③点D 到CF 的距离为2;④S 四边形DECF +1.其中正确结论的个数是A .1B .2C .3D .46.如图,在正方形ABCD 中,,2BE FC CF FD ==,AE 、BF 交于点G ,下列结论中错误的是A .AE BF ⊥B .AE BF =C .43BG GE =D .ABGCEGF S S=四边形考向四 中点四边形1.中点四边形一定是平行四边形;2.中点四边形的面积等于原四边形面积的一半.典例7如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH 为平行四边形,故C正确;D.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH 为菱形,故D错误,故选D.7.顺次连接下列四边形的四边中点所得图形一定是菱形的是A.平行四边形B.菱形C.矩形D.梯形8.如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.若四边形ABCD的面积记为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是A.S1=3S2B.2S1=3S2C.S1=2S2D.3S1=4S21.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=A.5 B.4 C.3.5 D.32.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有A.2条B.4条C.5条D.6条3.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF 的长为A.158B.154C.152D.154.如图,菱形ABCD的对角线交于点O,AC=8 cm,BD=6 cm,则菱形的高为A.485cm B.245cm C.125cm D.105cm5.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是A.108°B.72°C.90°D.100°6.如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF 交于点G.下列结论错误的是A.AE=BF B.∠DAE=∠BFCC.∠AEB+∠BFC=90°D.AE⊥BF7.如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=65°,则∠AEB=____________.8.如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP=_______.9.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.10.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.11.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形.直接写出答案,不需说明理由.1.下列命题正确的是A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形2.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于AB.C.D.203.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是A.0 B.4 C.6 D.84.如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为A.135B.125C.195D.1655.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE ,则GE的长为__________.6.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为A 点,D点的对称点为D点,若FPG,A EP90△的面积为1,则矩形ABCD的面积等于__________.△的面积为4,D PH7.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为__________.8.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.9.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.10.如图,在菱形ABCD中,点E.F分别为A D.CD边上的点,DE=DF,求证:∠1=∠2.11.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.12.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.1.【答案】D【解析】结合选项可知,添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.2.【答案】A【解析】点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,当15°<∠EOD <75°时,四边形AFCE 为平行四边形, 当∠EOD =75°时,∠AEF =90°,四边形AFCE 为矩形, 当75°<∠EOD <105°时,四边形AFCE 为平行四边形,故选A . 3.【答案】B【解析】如图,由题意知AB =BC =AC ,∵AB =BC =AC ,∴△ABC 为等边三角形,即60B ∠=︒,根据平行四边形的性质,18060120.BAD ∠=-=︒︒︒故选B .4.【解析】∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形, ∴∠FAD =∠EDA ,∵AD 是∠BAC 的平分线,∴∠EAD =∠FAD ,∴∠EAD =∠EDA , ∴AE =ED ,∴四边形AEDF 是菱形. 5.【答案】B【解析】∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°, ∵CF ⊥CE ,∴∠ECF =∠BCD =90°,∴∠BCE =∠DCF ,在△BCE 与△DCF 中,BC CDBCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),故①正确;∵△BCE ≌△DCF ,∴∠CBE =∠CDF ,∴∠DFB =∠BCD =90°,∴BF ⊥ED , 故②正确,过点D 作DM ⊥CF ,交CF 的延长线于点M ,∵∠ECF =90°,FC =EC =1,∴∠CFE =45°,∵∠DFM +∠CFB =90°,∴∠DFM =∠FDM =45°,∴FM =DM ,∴由勾股定理可求得:EF ,∵DE ,∴由勾股定理可得:DF =2,∵EF 2+BE 2=2BE 2=BF 2,∴DM =FM ∵△BCE ≌△DCF ,∴S △BCE =S △DCF ,∴S 四边形DECF =S △DCF +S △DCE =S △ECF +S △DEF =S △AFP +S △PFB =12B . 6.【答案】C【解析】在正方形ABCD 中,AB =BC ,∠ABE =∠C =90,又∵BE =CF ,∴△ABE ≌△BCF (SAS ),∴AE =BF ,∠BAE =∠CBF ,∴∠FBC +∠BEG =∠BAE +∠BEG =90°,∴∠BGE =90°,∴AE ⊥BF .故A 、B 正确; ∵CF =2FD ,∴CF :CD =2:3,∵BE =CF ,AB =CD ,32AB BE ∴=, ∵∠EBG +∠ABG =∠ABG +∠BAG =90°,∴∠EBG =∠BAG , ∵∠EGB =∠ABE =90°,∴△BGE ∽△ABE ,32BG AB GE BE ∴==,故C 不正确, ∵△ABE ≌△BCF ,∴S △ABE =S △BFC ,∴S △ABE –S △BEG =S △BFC –S △BEG ,∴S 四边形CEGF =S △ABG , 故D 正确.故选C .7.【答案】C【解析】∵顺次连接任意四边形的四边中点所得图形一定是平行四边形, 当对角线相等时,所得图形一定是菱形,故选C . 8.【答案】C【解析】如图,设AC 与EH 、FG 分别交于点N 、P ,BD 与EF 、HG 分别交于点K 、Q , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC , 同理可证EH ∥BD ,∴△EBK ∽△ABM ,△AEN ∽△EBK ,1.【答案】B【解析】∵四边形ABCD 是矩形,∴AC =BD ,OA =OC ,∠BAD =90°, ∵∠ADB =30°,∴AC =BD =2AB =8,∴OC =AC =4.故选B . 2.【答案】D【解析】∵AC =16,四边形ABCD 是矩形, ∴DC =AB ,BO =DO =12BD ,AO =OC =12AC =8,BD =AC , ∴BO =OD =AO =OC =8,∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形,∴AB =AO =8,∴DC =8,即图中长度为8的线段有AO 、CO 、BO 、DO 、AB 、DC 共6条,故选D . 3.【答案】B【解析】如图,连接AF .根据折叠的性质,得EF 垂直平分AC ,则设,则,在中,根据勾股定理,得,解得. 在中,根据勾股定理,得AC =5,则AO =2.5.12.AF CF =AF x =4BF x =-Rt △ABF 229(4)x x =+-258x =Rt △ABC在中,根据勾股定理,得 根据全等三角形的性质,可以证明则故选B .4.【答案】B【解析】∵菱形ABCD 的对角线∴AC ⊥BD ,OA =AC =4 cm ,OB =BD =3 cm ,根据勾股定理,(cm ).设菱形的高为h ,则菱形的面积,即,解得,即菱形的高为cm .故选B . 5.【答案】B【解析】如图,连接AP ,∵在菱形ABCD 中,∠ADC =72°,BD 为菱形ABCD 的对角线,∴∠ADP =∠CDP =12∠ADC =36°. ∵AD 的垂直平分线交对角线BD 于点P ,垂足为E ,∴PA =P D. ∴∠DAP =∠ADP =36°.∴∠APB =∠DAP +∠ADP =72°. 又∵菱形ABCD 是关于对角线BD 对称的,∴∠CPB =∠APB =72°.故选B.6.【答案】CRt △AOF 158,OF =,OE OF =154.EF=8cm 6cm AC BD ==,,12125AB ===12AB h AC BD =⋅=⋅15862h =⨯⨯245h =245【解析】∵AD//BC,∴∠DAE=∠AEB,∵BE=CF,AB=BC,∠ABE=∠BCF,∴△ABE≌△BCF,∴AE=BF,∠DAE=∠BFC,∵∠FBC+∠BFC=90°,∠AEB=∠BFC,∴∠FBC+AEB=90°,∴AE ⊥BF,所以A、B、D三个选项正确,∠AEB=∠BFC,故C选项错误,故选C.7.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.8.【答案】1【解析】∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,∵BP=2,∴PP,∵PC=3,∴CP,∴AP=CP′=1,故答案为1.9.【解析】(1)∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.【解析】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△ABE,∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BEBD=BE﹣DE1.11.【解析】(1)OE=OF,理由如下:因为CE平分∠ACB,所以∠1=∠2,又因为MN∥BC,所以∠1=∠3,所以∠3=∠2,所以EO=CO,同理,FO=CO,所以OE=OF.(2)当点O运动到AC的中点时,四边形AECF是矩形,理由如下:因为OE=OF,点O是AC的中点,所以四边形AECF是平行四边形,又因为CF平分∠BCA的外角,所以∠4=∠5,又因为∠1=∠2,所以∠1=∠2,∠2+∠4=11802⨯︒=90°,即∠ECF=90°,所以平行四边形AECF是矩形.(3)当△ABC是直角三角形时,即∠ACB=90°时,四边形AECF是正方形,理由如下:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,又因为∠ACB=90°,CE,CN分别是∠ACB与∠ACB的外角的平分线,所以∠1=∠2=∠3=∠4=∠5=45°,所以AC⊥MN,所以四边形AECF是正方形.1.【答案】A【解析】A.有一个角为直角的平行四边形是矩形满足判定条件;B.四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;故选A.【名师点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.2.【答案】C【解析】∵菱形ABCD的顶点A,B的坐标分别为(2,0),(0,1),∴AO=2,OB=1,AC⊥BD,∴由勾股定理知:AB==,∵四边形ABCD为菱形,∴AB=DC=BC=AD∴菱形ABCD的周长为:C.【名师点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.3.【答案】D【解析】如图,过E点作关于AB的对称点E′,则当E′,P,F三点共线时PE+PF取最小值,∵∠EAP=45°,∴∠EAE′=90°,又∵AE=EF=AE′=4,∴PE+PF的最小值为E′F=,∵满足PE+PF∴在边AB上存在两个P点使PE+PF=9,同理在其余各边上也都存在两个P点满足条件,∴满足PE+PF=9的点P的个数是8,故选D.【名师点睛】本题主要考查了正方形的性质以及根据轴对称求最短路径,有一定难度,巧妙的运用求最值的思想判断满足题意的点的个数是解题关键.4.【答案】A【解析】正方形ABCD 中,∵BC =4, ∴BC =CD =AD =4,∠BCE =∠CDF =90°, ∵AF =DE =1,∴DF =CE =3,∴BE =CF =5,在△BCE 和△CDF 中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CDF (SAS ),∴∠CBE =∠DCF , ∵∠CBE +∠CEB =∠ECG +∠CEB =90°=∠CGE , cos ∠CBE =cos ∠ECG =BC CGBE CE=, ∴453CG =,CG =125,∴GF =CF ﹣CG =5﹣125=135, 故选A .【名师点睛】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE ≌△CDF 是解本题的关键. 5.【答案】4913【解析】如图,令AE 与BF 的交点为M . 在正方形ABCD 中,∠BAD =∠D =90︒,∴∠BAM +∠FAM =90︒, 在Rt ADE △中,13==A E ,∵由折叠的性质可得ABF GBF △≌△, ∴AB =BG ,∠FBA =∠FBG , ∴BF 垂直平分AG , ∴AM =MG ,∠AMB =90︒, ∴∠BAM +∠ABM =90︒, ∴∠ABM =∠FAM ,∴ABM EAD △∽△,∴AM AB DE AE = ,∴12513AM =,∴AM =6013,∴AG =12013,∴GE =13–120491313=. 【名师点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键.6.【答案】【解析】∵A 'E ∥PF ,∴∠A 'EP =∠D 'PH ,又∵∠A =∠A '=90°,∠D =∠D '=90°,∴∠A '=∠D ',∴△A 'EP ~△D 'PH , 又∵AB =CD ,AB =A 'P ,CD =D 'P ,∴A 'P = D 'P , 设A 'P =D 'P =x ,∵S △A 'EP :S △D 'PH =4:1,∴A 'E =2D 'P =2x ,∴S △A 'EP =2112422A E A P x x x ''⨯⨯=⨯⨯==, ∵0x >,∴2x =,∴A 'P =D 'P =2,∴A 'E =2D 'P =4,∴EP ==∴1=2PH EP =112DH D H A P ''===,∴415AD AE EP PH DH =+++=+=+ ∴2AB A P '==,∴25)10ABCD S AB AD =⨯=⨯=矩形,【名师点睛】本题考查矩形的性质、折叠的性质,解题的关键是掌握矩形的性质、折叠的性质. 7.【答案】24【解析】∵四边形ABCD 是菱形, ∴AB =BC =CD =AD ,BO =DO , ∵点E 是BC 的中点, ∴OE 是△BCD 的中位线, ∴CD =2OE =2×3=6,∴菱形ABCD 的周长=4×6=24; 故答案为:24.【名师点睛】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.8.【解析】(1)∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,AB ADBAE ADF AE DF=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE,在Rt△ABE中,12AB×AE=12BE×AG,∴AG=435⨯=125.【名师点睛】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键.9.【解析】(1)∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,B DAEB CFD AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(AAS);(2)∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.【名师点睛】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.10.【解析】∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,AD CDD D DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CDE(SAS),∴∠1=∠2.【名师点睛】本题考查了菱形的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解题的关键.11.【答案】见解析.【解析】∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△CBE中,AD CBD B DF BE⎧=∠=∠=⎪⎨⎪⎩,∴△ADF≌△CBE(SAS),∴AF=CE.【名师点睛】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.12.【答案】见解析.【解析】∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.【名师点睛】本题考查了平行四边形的性质和判定,矩形的判定等知识点,能由题中已知信息推出四边形ABCD是平行四边形是关键.13.【解析】(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【名师点睛】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.。

人教版八年级数学下册 第18章平行四边形 矩形第2课时矩形的判定说课稿

人教版八年级数学下册 第18章平行四边形 矩形第2课时矩形的判定说课稿

《矩形的判定》关于《矩形的判定》的说课稿各位评委、各位老师:你们好!今天我要为大家讲的课题是《矩形的判定》,根据新课标理念,对应本节,我将以教什么、怎样教以及为什么这样教为思路,从教材分析、教学目标分析、教学策略分析、教学过程分析四个方面加以说明。

一、教材分析(说教材):1、教材所处的地位和作用:本节教材是初中二年级第二册,第18章《平行四边形》的第二节的内容,是初中教学的重要内容之一。

一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。

因此我认为本节起着承前启后的作用。

2、教学目标: 1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。

2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。

培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。

3、使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。

3、教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:二、教学策略(说教法):1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。

2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。

通过开放式命题,尝试从不同角度寻求解决问题的方法。

三、教学过程环节一:创设情境、导入新课通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。

人教初中数学八年级下册18-2-1矩形的判定教案

人教初中数学八年级下册18-2-1矩形的判定教案
由矩形的另一条性质:
矩形的两条对角线相等
它的逆命题是什么?
证“对角线相等的平行四边形是矩形”这个命题是真命题.
发现矩形的不同判定方法及其推论.
提问练习1
某同学用画“边——直角——边——直角——边——直角——边”这样四步画出了一个四边形.
他说这就是矩形,他的判断正确吗?
为什么?
利用本节课总结的知识加以说明
教学过程
设计
(20分)
优(16~20分)
良(10~15分)
一般(0~10分)
设计合理的教学任务和教学策略;
有清晰的目标说明;
教学策略与目标基本统一,围绕总体目标的实现展开;
教学策略目标与总目标多处不一致,,缺乏层次性和差异性
教学评价(5分)
优(4~5分)
良(2~3分)
一般(0~1分)
体现形成性评价和过程性评价的观点;
②使学生能运用矩形的定义、判定等知识,解决简单的证明题和计算题,进一步培
养生的分析能力.
2、过程与方法
①能运用矩形的判定定理证明一个四边形是矩形
②通过证明性质定理的逆命题为真命题来证明判定定理.
3、情感、态度和价值观
①经历观察、操作、概括等探究过程,体验数学活动中既需要观察和操作,也需要进行合情的推理.
能够说明课的基本情况,以及课的意图
陈述不力,繁琐
教学思想
(10分)
优(8~10分)
良(5~7分)
一般(0~4分)
尊重学生差异;
体现学科教学的先进思想
在一定程度上体现了先进的教学思想
教学思想没有体现或比较陈旧
学习目标分析
(10分)
优(8~10分)
良(5~7分)
一般(0~4分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 矩形的判定
教学目标:
1.掌握矩形的判定方法;(重点) 2.能够运用矩形的性质和判定解决实际问题.(难点)
教学过程: 一、情境导入
我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?
矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:
1.两条对角线相等且互相平分; 2.四个内角都是直角. 这些性质,对我们寻找判定矩形的方法有什么启示?
二、合作探究
探究点一:有一个角是直角的平行四边形是矩形
如图,在△ABC 中,AB =AC ,
AD 是BC 边上的高,AE 是△BAC 的外角平分线,DE ∥AB 交AE 于点E .求证:四边形ADCE 是矩形.
解析:首先利用外角性质得出∠B =∠ACB =∠FAE =∠EAC ,进而得到
AE ∥BC ,即可得出四边形AEDB 是平行四边形,再利用平行四边形的性质得出四边形ADCE 是平行四边形,再根据
AD 是高即可得出四边形ADCE 是矩形.
证明:∵AB =AC ,∴∠B =∠ACB .∵AE 是△BAC 的外角平分线,∴∠FAE =∠EAC .∵∠B +∠ACB =∠FAE +∠EAC ,∴∠B =∠ACB =∠FAE =∠EAC ,∴AE ∥BC .又∵DE ∥AB ,∴四边形AEDB 是平行四边形,∴AE 平行且等于BD .又∵AB =AC ,AD ⊥BC ,∴BD =DC ,∴AE 平行且等于DC ,故四边形
ADCE 是平行四边形.又∵∠ADC =90°,∴平行四边形ADCE 是矩形.
方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.
探究点二:对角线相等的平行四
边形是矩形
如图,在平行四边形ABCD
中,对角线AC 、BD 相交于点O ,延长
OA 到N ,ON =OB ,再延长OC 至M ,使CM =AN .求证:四边形NDMB 为矩形.
解析:首先由平行四边形ABCD 可得OA =OC ,OB =OD .若ON =OB ,那么
ON =OD .而CM =AN ,即ON =OM .由此可证得四边形NDMB 的对角线相等且互相平分,即可得证.
证明:∵四边形ABCD 为平行四边形,∴AO =OC ,OD =OB .∵AN =CM ,ON =OB ,∴ON =OM =OD =OB ,∴MN =BD ,∴四边形NDMB 为矩形.
方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.
探究点三:有三个角是直角的四边形是矩形
如图,▱ABCD 各内角的平分
线分别相交于点E ,F ,G ,H .求证:四边形EFGH 是矩形.
解析:利用“有三个内角是直角的四边形是矩形”证明四边形EFGH 是矩形.
证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAB +∠ABC =
180°.∵AH ,BH 分别平分∠DAB 与∠ABC ,∴∠HAB =12∠DAB ,∠HBA =
1
2∠ABC ,∴∠HAB +∠HBA =1
2(∠DAB +
∠ABC )=1
2×180°=90°,∴∠H =
90°.同理∠HEF =∠F =90°,∴四边形EFGH 是矩形.
方法总结:题设中隐含多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.
探究点四:矩形的性质和判定的综合运用
【类型一】 矩形的性质和判定的
运用
如图,O 是矩形ABCD 的对角
线的交点,E 、F 、G 、H 分别是OA 、OB 、
OC 、OD 上的点,且AE =BF =CG =DH .
(1)求证:四边形EFGH 是矩形;
(2)若E 、F 、G 、H 分别是OA 、OB 、
OC 、OD 的中点,且DG ⊥AC ,OF =2cm ,求矩形ABCD 的面积.
解析:(1)证明四边形EFGH 对角线相等且互相平分;(2)根据题设求出矩形的边长CD 和BC ,然后根据矩形面
积公式求得.
(1)证明:∵四边形ABCD 是矩形,∴OA =OB =OC =OD .∵AE =BF =CG =
DH ,∴AO -AE =OB -BF =CO -CG =DO -DH ,即OE =OF =OG =OH ,∴四边形
EFGH 是矩形;
(2)解:∵G 是OC 的中点,∴GO =GC .∵DG ⊥AC ,∴∠DGO =∠DGC =90°.又∵DG =DG ,∴△DGC ≌△DGO ,∴CD =OD .∵F 是BO 中点,OF =2cm ,∴BO =4cm.∵四边形ABCD 是矩形,∴DO =BO =4cm ,∴DC =4cm ,DB =8cm ,∴CB =DB 2-DC 2=43cm ,∴S 矩形ABCD
=4×43=163(cm 2).
方法总结:若题设条件与这个四边形的对角线有关,要证明一个四边形是矩形,通常证这个四边形的对角线相等且互相平分.
【类型二】 矩形的性质和判定与
动点问题
如图所示,在梯形ABCD 中,
AD ∥BC ,∠B =90°,AD =24cm ,BC =26cm ,动点P 从点A 出发沿AD 方向向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿着CB 方向向点B 以3cm/s 的速度运动.点P 、Q 分别从点A 和点
C 同时出发,当其中一点到达端点时,
另一点随之停止运动.
(1)经过多长时间,四边形PQCD 是平行四边形?
(2)经过多长时间,四边形PQBA 是矩形?
解析:(1)设经过t s 时,四边形
PQCD 是平行四边形,根据DP =CQ ,代入后求出即可;(2)设经过t ′s 时,四边形PQBA 是矩形,根据AP =BQ ,代入后求出即可.
解:(1)设经过t s ,四边形PQCD 为平行四边形,即PD =CQ ,所以24-
t =3t ,解得t =6;
(2)设经过t ′s,四边形PQBA 为矩形,即AP =
BQ ,所以t ′=26-3t ′,解得t ′=
13
2
. 方法总结:①证明一个四边形是平行四边形,若题设条件与这个四边形的边有关,通常证这个四边形的一组对边平行且相等;②题设中出现一个直角时,常采用“有一角是直角的
平行四边形是矩形”来判定矩形.
三、板书设计 1.矩形的判定
有一角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
有三个角是直角的四边形是矩形.
2.矩形的性质和判定的综合运用
教学反思:
在本节课的教学中,不仅要让学生掌握矩形判定的几种方法,更要注重学生在学习的过程中是否真正掌握了探究问题的基本思路和方法.教师在例题练习的教学中,若能适当地引导学生多做一些变式练习,类比、迁移地思考、做题,就能进一步拓展学生的思维,提高课堂教学的效率.。

相关文档
最新文档