常见焊接缺陷及X射线无损检测.

合集下载

焊接工艺中的射线检测与无损检测

焊接工艺中的射线检测与无损检测

焊接工艺中的射线检测与无损检测焊接是一种常见的金属连接方法,广泛应用于建筑、制造业、航空航天等领域。

然而,焊接过程中常常存在焊缝质量问题,这对于相关产品的安全性和可靠性产生了重要影响。

为了确保焊缝的质量,射线检测与无损检测成为了必不可少的方法。

本文将重点讨论焊接工艺中的射线检测与无损检测。

一、射线检测在焊接工艺中的应用射线检测是一种利用射线通过被测对象来获取材料内部结构信息的方法。

在焊接工艺中,射线检测主要用于检测焊缝的质量,包括焊接接头的缺陷、孔洞、裂纹等问题。

常用的射线检测方法包括X射线检测和γ射线检测。

1. X射线检测X射线检测是利用X射线通过被测对象后形成的透射或散射图像来判断焊缝的质量。

这种方法具有迅速、高效的特点,能够有效发现焊缝中的各类缺陷。

X射线检测设备主要包括射线源、探测器和显像设备。

在进行X射线检测时,需要严格遵守相关的安全操作规程,以避免对人体造成伤害。

2. γ射线检测γ射线检测是利用γ射线通过被测对象后形成的透射或散射图像来检测焊缝的质量。

与X射线检测相比,γ射线的穿透能力更强,可以检测更厚的金属焊缝。

γ射线检测设备与X射线检测设备类似,但射线源的选择以及防护措施会有所不同。

二、无损检测在焊接工艺中的应用无损检测是一种在不破坏被测对象外部结构的前提下,通过检测技术来获取内部缺陷信息的方法。

在焊接工艺中,无损检测主要用于检测焊缝的质量以及焊接接头的可靠性。

1. 超声波检测超声波检测是利用超声波在材料中传播时受到材料内部结构变化的影响而产生回波信号的方法。

在焊接工艺中,超声波检测可以检测焊缝中的各类缺陷,如焊缝结构不均匀、气孔、裂纹等。

该方法非常灵敏,可以检测出微小的缺陷,并可定量评估焊缝的可靠性。

2. 磁粉检测磁粉检测是利用磁场在被测对象表面形成漏磁场,从而检测材料内部缺陷的方法。

在焊接工艺中,磁粉检测可以发现焊缝中的裂纹、缺陷等问题。

该方法操作简单,适用性广泛,并且对于表面缺陷的检测效果较好。

无损检测射线常见缺陷图集及分析

无损检测射线常见缺陷图集及分析

气孔缺陷定义:在金属材料中气孔是由于熔炼或 浇注过程中气体在金属内部未能全部逸出而形成 的空穴。
气孔缺陷图集展示:展示不同类型的气孔缺陷图 谱包括圆形气孔、椭圆形气孔、链状气孔等。
气孔缺陷产生原因:主要由于金属材料熔 炼或浇注过程中气体在金属内部未能全部 逸出或者由于金属材料中含有易形成气体 的元素所致。
无损检测射线常见缺 陷图集及分析
汇报人:
目录
添加目录标题
无损检测射线技术 简介
常见缺陷图集展示
缺陷图集分析
无损检测射线技术 发展趋势
结论
添加章节标题
无损检测射线技术 简介
通过检测衰减后射线的强度 或透射后的影像进行分析
利用射线穿透物质时产生的 衰减作用进行检测
可用于检测各种材料和产品 内部缺陷
降低维护成本:及时发现设备故障 避免重大事故发生降低维护成本。
添加标题
添加标题
添加标题添ຫໍສະໝຸດ 标题提高生产效率:通过快速检测减少 生产过程中的停机时间提高生产效 率。
促进工业发展:无损检测技术的应 用提高了工业生产的可靠性和安全 性推动了工业的发展。
提高检测精度和可 靠性
降低漏检和误检率
促进缺陷识别和分 类标准化
常见缺陷图集展示
裂纹缺陷定义:裂纹是一种常见的缺陷类型通常是由于材料受到外力作用或内部应力过大而产生的断裂现象。
裂纹缺陷图集展示:展示不同材料、不同形状和尺寸的裂纹缺陷图像以便更好地了解裂纹的形成和分布情况。
裂纹缺陷分析:对裂纹缺陷进行详细分析包括裂纹的形态、走向、大小等方面以便更好地了解裂纹的性质和产生 原因。
缺点:无损检测 射线技术需要使 用放射性物质存 在一定的安全风 险同时检测成本 较高设备也较为 昂贵。

探讨长输管道焊接施工常见的焊接缺陷及防治要点分析

探讨长输管道焊接施工常见的焊接缺陷及防治要点分析

探讨长输管道焊接施工常见的焊接缺陷及防治要点分析二十一世纪,随着国家经济的快速发展,我国的能源的供需矛盾日益加剧。

随着国家能源的供应紧张问题的出现,长输管道已经成为了能源供应中不可或缺的工具之一。

长输管道容易受到多方面因素的影响,因而需要经常对其进行焊接。

以下就主要针对长输管道在焊接过程中常见的缺陷及防治要点进行具体分析。

标签:长输管道;焊接施工;焊接缺陷;防治要点0 引言近几年来,各个地区都逐渐出现了能源不足的问题。

能源是加快经济发展不可缺少的关键因素。

在油田管道的应用中,长输管道的使用范围越来越广。

长输管道在油田中扮演着关键的角色,不可替代。

长输管道的焊接是一项十分关键的程序,焊接過程容易受到多种因素的影响,从而引起焊接缺陷。

以下就主要针对出现的焊接缺陷提出对应的防治措施。

1 长输管道焊接过程中常见的焊接缺陷及防治要点分析综合之前长输管道的焊接过程进行分析,焊接过程中出现的焊接缺陷种类繁多。

有些缺陷的存在,严重降低了长输管道的使用质量,针对于这种缺陷,必须要严加重视,及时采取防治措施,降低产生的危害。

(1)气孔缺陷及防治要点分析。

对长输管道进行焊接时,由于熔池中的气体在熔化金属凝固之前没有及时地逸出来,未逸出的气体就会在管道内部形成气孔。

根据焊接的类型不同,形成气孔的大小也有不同,有的是深度极大的柱孔,有的是面积较大的圆孔,也有一些危害性较小的其他气孔,有些气孔甚至还会产生止裂倾向。

不论是哪一种气孔,都会对后续长输气孔的使用产生影响。

综合气孔产生的原因,主要可以概述为以下四种原因:①在焊接的过程中没有及时对坡口、焊接的材料进行全面的清洁处理,使得材料表面的油污、铁锈等杂质进入到焊接的过程中;②在焊接的过程中,焊接使用的电源电压不稳定,由此产生的电流也极其不稳定;③焊接的速度过快,没有适应不同条件焊接的需求;④焊接过程中对长输管道采取的保护方式不合理,反而影响了管道的质量,引发了气孔的产生。

防治要点:为了降低气孔产生的概率,严格控制焊接过程。

焊缝、铸件缺陷及伪缺陷在X射线底片上影像特征的分析

焊缝、铸件缺陷及伪缺陷在X射线底片上影像特征的分析

焊缝、铸件缺陷及伪缺陷在X 射线底片上影像特征的分析樊星明一 .单个气孔 (分散气孔 )1.特征和分布状态单个气孔缺陷在焊接内部多呈单一状态均匀分布,在焊缝上部,气孔体积不大 ,呈球状或椭圆形,外表光滑。

2.X 射线检测单个气孔与 X 射线底片上能清晰地显示出气孔的球状,椭圆状轮廓,由于经常采用射线方向与焊缝纵向垂直的透照方法,我们在底片上看到的都是气孔的正投影图象,所以,在 X 射线底片上都不能反映单个气孔缺陷在焊缝横向所处位置,即不能说明单个气孔是在焊缝的上部、中部或下部。

3.形成原因A焊接前未将焊缝坡口处金属上的铁锈、油污和油漆等清理干净。

B电焊条潮湿,水分在电弧高温作用下分解成氢气和氧气等气体,溶解于液态金属中,此时假设焊缝中液态金属凝固过快,熔解气休不能及时自焊缝中逸出。

C由于电弧加热母材温度不够高,焊接速度又过快等不合理工艺因素影响。

二 .链式气孔缺陷1.特征与分布状态链式乞孔在焊缝中呈一直线分布,气孔边沿相互衔接,状如链条,链的中心与焊缝轴线平行。

在埋弧焊中带出现在母材与焊缝之间。

在单面对接焊缝中常出现在焊接底部,链式乞孔缺陷很容易和未焊透缺陷混淆。

为了与未焊透缺陷区别,链状乞孔又称细线气孔。

在焊缝边沿的纵剖面上可以看到链状气孔,在母材与焊缝分界面上呈链环状影像。

在焊缝横剖面上链状气孔是呈单个分布,并有一定距离。

链状气孔之所以有以上所述的分布状态是由于母材与焊缝边界处冷却速度大,液态金属在此处受母材激冷,首先在此处凝固。

而氢气泡在固相外表上形成时消耗的功又小,因此氢气在熔池中析出即在此处元集形成气泡,来不及逸出。

2.X 射线检测链式气孔缺陷在X 射线底片上能清晰地显示出来,有的链环状分布,连续长度有30mm 以上有的那么呈断链状。

一段一段分布在焊缝与母材边沿部位底片上呈暗色图像,在链的边沿可清楚扯到气孔圆形轮廓。

3.形成原因主要是由氢引起的,氢来源于潮湿的助熔剂和没有充分枯燥的焊条涂料中的水分。

焊接无损检测

焊接无损检测

焊接无损检测1. 引言焊接是一种常见的金属连接方法,广泛应用于工业制造、建筑、航空航天等领域。

焊接质量的可靠性对于确保焊接连接的强度和耐久性至关重要。

然而,焊接过程中难免会产生一些缺陷或隐患,如裂纹、气孔、熔合不良等,这些缺陷可能会导致焊接部件的断裂或失效。

因此,在焊接过程中进行无损检测显得尤为重要。

2. 焊接无损检测技术分类焊接无损检测技术主要包括以下几种方法:2.1 X射线检测X射线检测(RT)是一种应用广泛的焊接无损检测方法。

通过使用X射线或γ射线穿透焊接件,利用射线的吸收、散射和透射特性来检测焊接接头的缺陷。

其优点是对不同材料和结构的焊接接头都能进行检测,但存在辐射危险。

2.2 超声波检测超声波检测(UT)是一种利用超声波在材料中传播及反射的原理来检测焊接接头缺陷的方法。

通过计算超声波的传播时间和信号强度,可以确定焊接接头中的缺陷类型、位置和尺寸,同时也可以评估焊接接头的质量。

其优点是非破坏性检测,适用于各种焊接材料和形式。

2.3 磁粉检测磁粉检测(MT)是一种利用电磁感应原理来检测焊接接头缺陷的方法。

通过在焊接接头周围施加磁场,并在表面涂覆磁粉,当存在裂纹或表面缺陷时,磁粉会在缺陷处形成磁通量漏磁,通过观察磁粉的聚集情况可以确定焊接接头的缺陷。

其优点是简单易行,适用于各种材料和形状的焊接接头。

2.4 渗透检测渗透检测(PT)是一种利用液体渗透性的原理来检测焊接接头缺陷的方法。

通过在焊接接头表面施加渗透液,待一定时间后擦拭干净,再施加显像液,缺陷处的渗透液会被显像液吸收,形成可见的缺陷信号。

其优点是适用于各种形状和材料的焊接接头,但不能检测到深藏在焊接接头内部的缺陷。

3. 焊接无损检测的应用焊接无损检测在工业制造、建筑、航空航天等领域都有广泛的应用,具体包括以下几个方面:•工业制造:焊接无损检测可以确保工业制造过程中的焊接质量,检测焊接接头的缺陷,避免因焊接质量不合格而造成的产品失效。

•建筑:焊接无损检测可用于建筑结构的焊接缺陷检测和评估,确保建筑物的结构强度和安全性。

对接焊接接头X射线检测工艺

对接焊接接头X射线检测工艺

对接焊接接头X射线检测工艺1. 简介对接焊接接头X射线检测工艺是一种常用的无损检测方法,用于对焊接接头的质量进行评估和确认。

本文将介绍对接焊接接头X射线检测的基本原理、设备要求、操作流程以及结果分析等内容。

2. 检测原理对接焊接接头X射线检测利用X射线通过被检测材料时的吸收、散射和透射等特性,来获取材料内部的缺陷信息。

其原理基于不同材料对X射线的不同吸收能力,通过观察X射线的透射图像,可以判断焊接接头内部是否存在缺陷。

3. 设备要求对接焊接接头X射线检测需要以下设备: - X射线发生器:用于产生高能量的X射线。

- X射线探测器:用于接收和转换透射的X射线成像。

- 显示设备:用于显示X射线透射图像,如计算机屏幕或投影仪。

4. 操作流程对接焊接接头X射线检测的操作流程如下: 1. 准备设备:确保X射线发生器和探测器正常工作,并进行校准。

2. 准备样本:将待检测的焊接接头放置在适当的位置,确保接头完全暴露在X射线的射束之下。

3. 开始检测:启动X射线发生器,发射X射线束通过焊接接头。

探测器将接收并转换透射的X射线信号成为图像。

4. 结果分析:对X射线透射图像进行观察和分析,判断焊接接头是否存在缺陷,如裂纹、气孔等。

根据检测结果,做出相应的评估和处理。

5. 结果分析与评估对接焊接接头X射线检测的结果分析首先需要对透射图像进行观察,判断是否存在缺陷。

一般来说,正常的焊接接头应该呈现均匀的透射图像,没有明显的黑点或白点。

如果出现黑点,则可能是由于焊接接头内部存在裂纹;如果出现白点,则可能是由于气孔或杂质等引起的。

根据缺陷的类型、数量和大小,可以对焊接接头的质量进行评估和分类。

6. 注意事项在进行对接焊接接头X射线检测时,需要注意以下事项: - 安全防护:X射线具有一定的辐射性,操作人员应佩戴适当的防护设备,如铅背心和铅眼镜,避免长时间接触X射线。

- 设备校准:定期对X射线发生器和探测器进行校准,确保设备的准确性和稳定性。

射线检测-焊缝缺陷图谱

射线检测-焊缝缺陷图谱

1.外部缺陷在焊缝的表面,用肉眼或低倍放大镜就可看到,如咬边,焊瘤,弧坑,表面气孔和裂纹等。

2.内部缺陷位于焊缝内部,必须通过各种无损检测方法或破坏性试验才能发现。

内部缺陷有未焊透,未熔合,夹渣,气孔,裂纹等,这些缺陷是我们无损检测人员检查的主要对象。

焊缝缺陷的危害性:1、由于缺陷的存在,减少了焊缝的承载截面积,削弱了静力拉伸强度。

2、由于缺陷形成缺口,缺口尖端会发生应力集中和脆化现象,容易产生裂纹并扩展。

3、缺陷可能穿透焊缝,发生泄漏,影响致密性。

焊缝纵向裂纹示意图一、焊缝纵向裂纹X光底片焊缝纵向裂纹1 焊缝纵向裂纹2焊缝纵向裂纹3 焊缝纵向裂纹4焊缝纵向裂纹5 焊缝纵向裂纹6焊缝纵向裂纹7 焊缝纵向裂纹8焊缝纵向裂纹9 焊缝纵向裂纹10焊缝纵向裂纹11 焊缝纵向裂纹12焊缝纵向裂纹13 焊缝纵向裂纹14焊缝纵向裂纹15 焊缝纵向裂纹16焊缝纵向裂纹17 焊缝纵向裂纹18焊缝纵向裂纹19 焊缝纵向裂纹20 纵向裂纹的表面特征是沿焊缝长度方向出现的黑线,它既可以是连续线条,也可以是间断线条。

纵向裂纹影像产生的原因是沿焊缝长度破裂而导致的不连续黑线。

二、热影响区纵向裂纹X光底片热影响区纵裂1 热影响区纵裂2 热影响区撕裂呈线性黑色锯齿状,平行于熔合线,穿晶扩展,表面无明显氧化色彩,属脆性断口的延迟裂纹。

焊缝横向裂纹示意图三、焊缝横向裂纹X光底片焊缝横向裂纹1 焊缝横向裂纹25焊缝横向裂纹3 焊缝横向裂纹4焊缝横向裂纹的表征是横在焊接影像上的一根细小黑线(直线或曲线),它产生的原因是由焊缝上的金属破裂引起的。

当焊接应力为拉应力并与氢的析集和淬火脆化同时发生时,极易产生冷裂纹。

四、母材裂纹X光底片母材裂纹1 母材裂纹2裂纹:材料局部断裂形成的缺陷。

裂纹的分类方法:按延伸方向可分为纵向裂纹、横向裂纹、辐射状裂纹;按发生部位可分为焊缝裂纹、热影响区裂纹、熔合区裂纹、焊趾裂纹、弧坑裂纹、母材裂纹;按发生条件和时机可分为热裂纹、冷裂纹、再热裂纹。

无损检测射线底片缺陷评定

无损检测射线底片缺陷评定

15
16
17
18
⑷未熔合:可分为坡口未熔合、焊道之间未熔合、单面焊根部 未熔合。 ①坡口未熔合:按坡口型式可分为V型坡口和U型坡口未熔合: A.V型(X)型坡口未熔合:常出现在底片焊缝影像两侧边缘区 域,呈黑色条云状,靠母材侧呈直线状(保留坡口加工痕迹), 靠焊缝中心侧多为弯曲状(有时为曲齿状)。垂直透照时,黑 度较淡,靠焊缝中心侧轮廓欠清晰。沿坡口面方向透照时会获 得黑度大、轮廓清晰、近似于线状细夹渣的影像。在5×放大 镜观察仍可见靠母材侧具有坡口加工痕迹(直线状),靠焊缝 中心侧仍是弯曲状。该缺陷多伴随夹渣同生,故称黑色未熔合, 不含渣的气隙称为白色未熔合。垂直透照时,白色未熔合是很 难检出的。如图23所示。 B.U型(双U型)坡口未熔合:垂直透照时,出现在底片焊缝影 像两侧的边缘区域内,呈直线状的黑线条,如同未焊透影像, 在5X放大镜观察仍可见靠母材侧具有坡口加工痕迹(直线状), 而靠焊缝中心侧可见有曲齿状(或弧状),并在此侧常伴有点 状气孔。黑度均匀,轮廓清晰,也常伴有夹渣同生,倾斜透照 19 时,形态和V型的相同,如图24所示。
2
1.2缺陷在底片上成像的基本特征
1.2.1圆形缺陷 ⑴气孔:在焊缝中常见的气孔可分为球状气孔、条状气孔和 缩孔。 球状气孔:按其分布状态可分为均布气孔、密集气孔、链状 气孔、表面气孔。球孔,在底片上多呈现为黑色小圆形斑点, 外形较规则,黑度是中心大,沿边缘渐淡,轮廓清晰可见。 单个分散出现,且黑度淡,轮廓欠清晰的多为表面气孔。密 集成群(5个以上/cm2)叫密集气孔,大多在焊缝近表面, 是由空气中氮气进入熔池造成。平行于焊缝轴线成链状分布 (通常在1cm长在线有4个以上,其间距均≤最小的孔径)称 为链状气孔,它常和未焊透同生。一群均匀分布在整个焊缝 中的气孔,叫均布气孔,见图10示。

《常见焊接缺陷》课件

《常见焊接缺陷》课件
焊接材料:材料选择不当, 材料质量差
焊接环境:温度、湿度、风 速等环境因素影响
操作人员:操作技能不足, 操作不当
焊接缺陷对结构性能的影响
强度降低:焊接缺陷可能导致结构强度降低,影响其承载能力 刚度下降:焊接缺陷可能导致结构刚度下降,影响其稳定性 疲劳寿命缩短:焊接缺陷可能导致结构疲劳寿命缩短,影响其使用寿命 耐腐蚀性降低:焊接缺陷可能导致结构耐腐蚀性降低,影响其耐久性
选择合适的焊接材料,如不锈钢、铝合金等 控制焊接材料的质量,如化学成分、机械性能等 控制焊接材料的厚度,如薄板、厚板等 控制焊接材料的表面处理,如打磨、清洗等
焊接过程监控与检验
焊接前检查:确保 焊接设备、材料、 工艺参数等符合要 求
焊接中监控:实时 监测焊接过程中的 温度、电流、电压 等参数
焊接后检验:对焊 接质量进行检验, 包括外观检查、无 损检测等
热处理修复:通过热处理技术修复缺 陷
复合修复:结合多种修复方法进行修 复
预防性修复:通过预防措施避免缺陷 产生
总结与展望
本次课件内容回顾总结
焊接缺陷的定义和分类
焊接缺陷产生的原因和影 响
焊接缺陷的预防和检测方 法
焊接缺陷的修复和补救措 施
焊接缺陷的案例分析和经 验分享
焊接缺陷的未来发展趋势 和展望
无损检测法
超声波检测:利用超声波 在金属中的传播和反射特 性,检测金属内部的缺陷
射线检测:利用X射线或γ 射线穿透金属,检测金属 内部的缺陷
磁粉检测:利用磁粉在金 属表面的吸附和显示特性, 检测金属表面的缺陷
渗透检测:利用渗透剂在 金属表面的渗透和显示特 性,检测金属表面的缺陷
涡流检测:利用涡流在金 属中的传播和反射特性, 检测金属内部的缺陷

焊缝无损检测的常用方法【汇总】

焊缝无损检测的常用方法【汇总】
射线能穿透肉眼无法穿透的物质使胶片感光当x射线或r射线照射胶片时通光线一样能使胶片乳剂层中的卤化银产生潜影由于丌同密度的物质对射线的吸收系数照射到胶片各处的射线强度也就会产生差异便可根据暗室处理后的底片各处黑度差来判别缺陷
焊缝无损检测的常用方法
内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!
插入式线圈也称内部探头,放在管子或零件的孔内用来作内壁检测,可用于检查各种管道内壁的腐蚀程度等。
为了提高检测灵敏度,探头式和插入式线圈大多装有磁芯。涡流法主要用于生产线上的金属管、棒、线的快速检测以及大批量零件如轴承钢球、汽门等的探伤(这时除涡流仪器外尚须配备自动装卸和传送的机械装置)、材质分选和硬度测量,也可用来测量镀层和涂膜的厚度。
更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.
损检测方法很多,据美国国家宇航局调研分析,其认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种:
目视检测(VT)
声发射技术的应用已较广泛。可以用声发射鉴定不同范性变形的类型,研究断裂过程并区分断裂方式,检测出小于 0.01mm长的裂纹扩展,研究应力腐蚀断裂和氢脆,检测马氏体相变,评价表面化学热处理渗层的脆性,以及监视焊后裂纹产生和扩展等等。
在工业生产中,声发射技术已用于压力容器、锅炉、管道和火箭发动机壳体等大型构件的水压检,用PXWAE声发射技术可以连续监视高压容器、核反应堆容器和海底采油装置等构件的完整性。
声发射技术还应用于测量固体火箭发动机火药的燃烧速度和研究燃烧过程,检测渗漏,研究岩石的断裂,监视矿井的崩塌,并预报矿井的安全性。

无损检测技术中的焊接缺陷检测方法

无损检测技术中的焊接缺陷检测方法

无损检测技术中的焊接缺陷检测方法在工业领域中,焊接是一项常见且关键的技术。

然而,焊接过程中可能会产生各种焊接缺陷,这对产品质量和安全性造成了潜在威胁。

因此,针对焊接缺陷的快速、准确的检测方法至关重要。

无损检测技术作为一种非破坏性的检测方法,在焊接缺陷检测中起着重要的作用。

本文将介绍几种常用的无损检测技术中的焊接缺陷检测方法。

首先,常用的一种方法是超声波检测。

超声波检测通过将高频声波传播到焊接接头内部,利用声波的传播和反射特性来检测缺陷。

超声波检测可以检测出焊接中的孔洞、夹杂物、裂纹等缺陷。

它具有技术可行性高、检测效果好和操作相对简单等优点。

然而,超声波检测对设备和人员的要求较高,且对材料的传导性能有一定要求。

其次,涡流检测也是一种常用的无损检测方法。

涡流检测是通过在焊接接头上施加交变电磁场,利用焊接缺陷产生的涡流信号进行检测。

涡流检测主要用于检测表面缺陷,如焊缝错边、裂纹、包气孔等。

该方法对于高导电性材料的检测效果较好,但对于低导电性材料的检测能力较弱。

另外,磁粉检测也是焊接缺陷检测的一种常用方法。

磁粉检测通过在焊接接头上施加磁场,使得磁性颗粒集聚在缺陷处,从而通过观察颗粒呈现的形态和位置来判断缺陷的存在与否。

磁粉检测适用于铁磁材料的检测,对于裂纹和夹杂物等缺陷具有较高的敏感性。

然而,该方法在应用过程中需要密封环境,并且对于焊接接头的表面清洁度要求较高。

此外,X射线检测也是一种常用的无损检测技术。

X射线检测可以通过透射X射线或散射X射线来检测焊接接头的缺陷。

透射X射线检测可以检测较大的缺陷,如包气孔、夹杂物等,而散射X射线检测可以检测出较小的缺陷,如微裂纹。

X射线检测仪器的成本较高,且需要密封防护措施,对操作人员的辐射安全要求也较高。

最后,热红外检测是一种新兴的无损检测技术,也可用于焊接缺陷的检测。

热红外检测通过红外热像仪来检测焊接接头表面的温度分布,从而判断是否存在缺陷。

热红外检测具有操作简单、实时性好和对材料无特殊要求等优点。

焊接无损检测标准(一)

焊接无损检测标准(一)

焊接无损检测标准(一)焊接无损检测标准简介•焊接无损检测是确保焊接质量的重要手段。

•焊接无损检测标准起着指导作用,确保检测可靠性和一致性。

常用的焊接无损检测方法1.X射线检测–X射线检测可以检测焊接连接和材料内部缺陷。

–在施工过程中常用于管道、容器等焊接结构的检测。

–要求操作人员具备专业技术人员资格。

2.超声波检测–超声波检测可以发现焊接结构中的内部缺陷。

–可以用于测量焊缝的深度和长度,并检测焊缝中的气孔、夹杂物等缺陷。

–操作人员需要受过专业培训和考试合格。

3.磁粉检测–磁粉检测适用于检测表面裂纹和疲劳裂纹。

–可以用于发现焊缝和基材中的缺陷,并评估其尺寸和严重程度。

–操作简便,但只能用于表面缺陷的检测。

4.渗透检测–渗透检测适用于发现表面缺陷,如裂纹和孔隙。

–主要用于检测非磁性材料,如不锈钢和铝合金。

–操作简单,但对杂质和镜面反射有一定限制。

焊接无损检测标准•国际标准:ISO 17635 – Non-destructive testing of welds – General rules for metallic materials。

•国家标准:GB/T 9444 –焊接无损检测焊缝简图和标记。

焊接无损检测标准的重要性•保证焊接质量和安全性。

•提高产品的可靠性和使用寿命。

•减少因焊接缺陷引起的事故和损失。

结论•焊接无损检测标准是确保焊接质量的重要工具。

•选用合适的无损检测方法和依据标准进行检测是保证焊接质量和安全性的关键。

•在进行焊接无损检测时,严格遵守相应的标准是必不可少的。

无损检测常见的焊接缺陷

无损检测常见的焊接缺陷

无损检测常见的焊接缺陷A外部缺陷一、焊缝成型差1、现象焊缝波纹粗劣,焊缝不均匀、不整齐,焊缝与母材不圆滑过渡,焊接接头差,焊缝高低不平。

2、原因分析焊缝成型差的原因有:焊件坡口角度不当或装配间隙不均匀;焊口清理不干净;焊接电流过大或过小;焊接中运条(枪)速度过快或过慢;焊条(枪)摆动幅度过大或过小;焊条(枪)施焊角度选择不当等。

3、防治措施⑴焊件的坡口角度和装配间隙必须符合图纸设计或所执行标准的要求。

⑵焊件坡口打磨清理干净,无锈、无垢、无脂等污物杂质,露出金属光泽。

⑶加强焊接联系,提高焊接操作水平,熟悉焊接施工环境。

⑷根据不同的焊接位置、焊接方法、不同的对口间隙等,按照焊接工艺卡和操作技能要求,选择合理的焊接电流参数、施焊速度和焊条(枪)的角度。

4、治理措施⑴加强焊后自检和专检,发现问题及时处理;⑵对于焊缝成型差的焊缝,进行打磨、补焊;⑶达不到验收标准要求,成型太差的焊缝实行割口或换件重焊;⑷加强焊接验收标准的学习,严格按照标准施工。

二、焊缝余高不合格1、现象管道焊口和板对接焊缝余高大于3㎜;局部出现负余高;余高差过大;角焊缝高度不够或焊角尺寸过大,余高差过大。

2、原因分析焊接电流选择不当;运条(枪)速度不均匀,过快或过慢;焊条(枪)摆动幅度不均匀;焊条(枪)施焊角度选择不当等。

3、防治措施⑴根据不同焊接位置、焊接方法,选择合理的焊接电流参数;⑵增强焊工责任心,焊接速度适合所选的焊接电流,运条(枪)速度均匀,避免忽快忽慢;⑶焊条(枪)摆动幅度不一致,摆动速度合理、均匀;⑷注意保持正确的焊条(枪)角度。

4、治理措施⑴加强焊工操作技能培训,提高焊缝盖面水平;⑵对焊缝进行必要的打磨和补焊;⑶加强焊后检查,发现问题及时处理;⑷技术员的交底中,对焊角角度要求做详细说明。

三、焊缝宽窄差不合格1、现象焊缝边缘不匀直,焊缝宽窄差大于3㎜。

2、原因分析焊条(枪)摆动幅度不一致,部分地方幅度过大,部分地方摆动过小;焊条(枪)角度不合适;焊接位置困难,妨碍焊接人员视线。

浅谈射线在无损检测中的常见问题

浅谈射线在无损检测中的常见问题

浅谈射线在无损检测中的常见问题无损检测技术在管道建设和以后的使用中,对保证其质量和安全运行起着极其重要的作用。

然而管道接头多为现场焊接,在焊接中由于受现场环境、材料、焊工的操作技术、焊接工艺参数的选用等因素影响,往往存在不符合标准或设计要求的焊接缺陷,如咬边、气孔、夹渣、未熔合、未焊透、裂纹等。

缺陷的存在既降低了焊缝的强度,又影响使用寿命及安全性,只有最大化排除焊接过程中的产生的内部和外部缺陷,才能保证管道安全运行。

因此无损检测是一个不可缺少的关键环节。

+随着无损检测技术的发展,越来越多的新型无损检测技术应用到管道的检验检测中,在一定程度上提高了管道检测安全的时效性和可靠性。

无损检测技术的核心就是不会损坏或者改变被检测物体的化学状态或者物理状态。

与此同时,利用该技术,其可以有效地检测被测物体的具体性质,结构以及状态等。

为各行各业的发展提供一定的数据支持,可以有效的提升各行各业的工作效率以及工作质量。

X射线无损检测技术在无损检测技术当中属于比较核心以及关键的部分。

使用X射线无损检测技术,主要是为了检查被测物体是否存在一定的缺陷。

通过X射线无损检测的使用,可以直接的获得被测物体的直观图像,进而对物体是否存在缺陷进行判断,并且所获得的内容具备较高的准确性。

因此,X射线无损检测技术的应用非常流行,一经推出便得到了广泛的使用。

1.射线检测的优点和缺点射线检测直接以底片的形式记录结果,可以长时间保存,因此与其他无损检测方法相比,此方法具有检测结果最真实可靠、结果呈现方式最直观、最全面以及后续可追踪性强等优点。

射线检测对试件所存在的夹渣类和气泡类缺陷检出率极高,可以检出直径为1%以上试件厚度的体积型缺陷。

然而该检测方法所使用的高能量射线探伤装置,如420KV移动式X射线机等设备的透照厚度均小于100毫米,因此仅适用于相对较薄的工件,对于较厚试件的检测难度较大[2]。

射线检测的应用也存在许多局限性和不足,部分现场条件和有些试件结构不适合射线检测,例如内部存在未排空的液态或固态介质的容器、具有较厚保温层的容器和容器中存在内件时均无法使用射线检测;射线检测还很难确定缺陷在试件中厚度方向上的存在位置和缺陷的尺寸大小。

常见焊接缺陷及质量检验PPT课件

常见焊接缺陷及质量检验PPT课件

• 铁的熔点略低于其氧化物的熔点,但氧化 反应热大,尤其熔渣粘度低,流动性好, 易于为切割氧排除,故其气割性良好,铜 及其合金反应热很少,而导热率又很高, 故不可气割;铝虽然氧化反应热很高,但 其氧化物Al2O3的熔点高出其熔点两倍以上, 且燃点接近熔点,也不可气割。
• 一般钢材主要成分是铁,故其气割性良好, 但是随着碳和其他合金元素的增加,其气 割性将变差。
晶间腐蚀试验、铁素体含量测定
金相与断口的分 宏观组织分析;微观组织分析;断口检验

与分析
检验过程中不破坏被检 外观检验 对象的结构和材料
非破坏性检验
强度试验 致密性试验
无损检测试验
母材、焊材、坡口、焊缝等表面质量检验, 成品或半成品的外观几何形状和尺寸的检 验
水压强度试验、气压强度试验
气密性试验、吹气试验、载水试验、水冲 试验、沉水试验、煤油试验、渗透试验氮 检漏试验
工艺因素
电弧功率不变,焊接速度增大时增加产生气孔的可 能性; 电弧电压过高(即电弧过长); 焊条、焊剂在使用前未进行烘干; 气保焊时气体流量不合适
电流大小不合适,熔池搅动不足; 焊条药皮成块脱落; 多层焊时层间清渣不够; 操作不当
焊接电流小或焊接速度过快; 坡口或焊道有氧化皮、熔渣及氧化物等高熔点物质; 操作不当
焊条和焊剂的脱氧、脱硫效果不好; 渣的流动性差; 在原材料的夹杂中含硫量较高及硫的 偏析程度大
————
未焊 焊条偏心 透
咬边 ————
焊瘤 ————
烧穿 ————
结构因素 仰焊、横焊易产生气 孔
立焊、仰焊易产生夹 渣
————
破口角度太小,钝边 太厚,间隙太小
立焊、仰焊时易产生 咬边
坡口太小

焊接质量检验方法

焊接质量检验方法

焊接质量检验方法焊接是一种常见的金属连接工艺,在工业生产中起着重要作用。

焊接质量的好坏直接关系到产品的安全性和可靠性。

因此,对焊接质量进行检验是很重要的。

本文将介绍几种常用的焊接质量检验方法。

1. 目测检验法目测是最简单和最常用的一种焊接质量检验方法。

通过对焊接表面进行肉眼观察,可以初步判断焊缝的形状、大小和表面质量等。

在目测检验时需要注意焊缝是否均匀,焊缝与母材的结合是否紧密,是否有裂纹、气孔、夹渣等焊接缺陷。

2. 渗透检验法渗透检验法是一种常用的焊接缺陷检测方法,主要用于检测焊缝中的裂纹和气孔等隐蔽缺陷。

该方法根据渗透液的性质不同可分为可见光渗透检验法和荧光渗透检验法。

可见光渗透检验法适用于一般焊接缺陷的检测,而荧光渗透检验法则适用于检测较小或不易观察到的缺陷。

3. X射线检测法X射线检测法是一种常用的无损检测方法,可以用于检测焊接接头中的焊缝缺陷,如裂纹、夹渣等。

该方法的原理是利用X射线的穿透性,通过对射线投射到被检测物体上进行成像,从而判断焊接缺陷的存在与否以及缺陷的性质和大小。

该方法对不同材料的成像效果有一定差异,需要根据具体情况选择合适的射线源和检测仪器。

4. 超声波检测法超声波检测法是一种常用的焊接质量检测方法,主要用于检测焊接接头中的焊缝缺陷和母材的质量。

该方法利用超声波在材料中的传播速度和反射特性,通过检测反射信号的强度和时间来分析焊接缺陷的存在与否,并对缺陷进行定性和定量分析。

超声波检测法具有非破坏性、高灵敏度和高精度等优点,并且适用于不同材料和焊接方式的检测。

综上所述,焊接质量的检验是确保产品质量和安全性的重要环节。

目测检验法、渗透检验法、X射线检测法和超声波检测法是常用的焊接质量检验方法。

选择合适的检验方法依赖于具体的焊接材料、接头形式和焊接要求等因素。

在进行焊接质量检验时,需要仔细观察焊接表面、使用合适的仪器和设备,以确保检验的准确性和可靠性。

只有通过科学有效的焊接质量检验方法,才能确保焊接接头的质量符合要求,从而提高产品的质量和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言船舶制造业自20世纪初开始研究焊接应用技术,并于1920年以英国船厂首次采用焊接技术建造远洋船为标志,焊接技术逐渐在船厂得到推广应用,并迅速取代铆接技术。

由于焊接过程中各种参数的影响,焊缝中有时候不可避免地会出现裂纹、气孔、央渣、未熔合和未焊透等缺陷。

为了保证焊接构件的产品质量,必须对其中的焊缝进行有效的检测和评价,尤其是在船舶压力管道、分段大接缝、外板及水密与强力接点等部位进行质量检测是十分必要的。

众所周知,船舶结构件发生焊接裂纹对结构强度和航行安全危害极大,特别是一些隐性裂纹不易发现,一旦船舶出厂,这些隐性裂纹后患无穷。

因此,船舶在建造焊接过程中产生的裂纹一经发现,就必须立即查明原因并采取果断的措施彻底根除。

焊接质量的检验方法,一般分无损检验和破坏检验两大类,采用何种方法,主要根据产品的技术要求和有关规范的规定。

无损探伤分渗透检验、磁粉探伤、超声波探伤和射线照相探伤。

破坏检验方法是用机械方法在焊接接头(或焊缝)上截取一部分金属,加工成规定的形状和尺寸,然后在专门的设备和仪器上进行破坏试验。

依据试验结果,可以了解焊接接头性能及内部缺陷情况,判断焊接工艺正确与否。

经检验,船体结构焊缝超过质量允许限值时,应首先查明产生缺陷的原因,确定缺陷在工件上的部位。

在确认允许修补时,再按规定对焊缝进行修补。

一、船舶焊接缺陷及无损探伤技术简介1、船舶焊接中的常见缺陷分析船舶焊接是保证船舶密性和强度的关键,是保证船舶质量的关键,是保证船舶安全航行和作业的重要条件。

如果焊接存在着缺陷,就有可能造成结构断裂、渗漏,甚至引起船舶沉没。

因此,在船舶建造中焊接质量是重点验收工作之一,规范也明确规定,焊缝必须进行外观检查,外板对接焊缝必须进行内部检查。

船体焊缝内部检查,可采用射线探伤与超声探伤等办法。

射线探伤能直接判断船体焊缝中存在的缺陷的种类、大小、部位及分布情况,直观可靠,重复性好,容易保存,当前船厂普遍采用X射线探伤来进行船体焊缝的内部质量检查。

船舶焊接缺陷种类很多,按其位置不同,可分为外部缺陷和内部缺陷。

常见缺陷有气孔、央渣、焊接裂纹、未焊透、未熔合、焊缝外形尺寸和形状不符合要求、咬边、焊瘤、弧坑等.2、焊接缺陷分类(1)气孔气孔是指在焊接时,熔池中的气泡在凝固时未能逸出而形成的空穴。

产生气孔的。

主要原因有:坡口边缘不清洁,有水份、油污和锈迹;焊条或焊剂未按规定进行焙烘,焊芯锈蚀或药皮变质、剥落等。

由于气孔的存在,使焊缝的有效截面减小,过大的气孔会降低焊缝的强度,破坏焊缝金属的致密性。

预防产生气孔的办法是:选择合适的焊接电流和焊接速度,认真清理坡口边缘水份、油污和锈迹。

严格按规定保管、清理和焙烘焊接材料。

(2)夹渣夹渣就是残留在焊缝中的熔渣。

夹渣也会降低焊缝的强度和致密性。

产生夹渣的原因主要是:焊缝边缘有氧割或碳弧气刨残留的熔渣;坡口角度或焊接电流太小,或焊接速度过快。

在使用酸性焊条时,由于电流太小或运条不当形成“糊渣”;使用碱性焊条时,由于电弧过长或极性不正确也会造成夹渣。

防止产生夹渣的措施是:正确选取坡口尺寸,认真清理坡口边缘,选用合适的焊接电流和焊接速度,运条摆动要适当。

(3)咬边焊缝边缘留下的凹陷,称为咬边。

产生咬边的原因:是由于焊接电流过大、运条速度快、电弧拉得太长或焊条角度不当等。

埋弧焊的焊接速度过快或焊机轨道不平等原因,都会造成焊件被熔化去一定深度,而填充金属又未能及时填满而造成咬边。

防止产生咬边的办法是:选择合适的焊接电流和运条手法,随时注意控制焊条角度和电弧长度;埋弧焊工艺参数要合适,特别要注意焊接速度不宜过高,焊机轨道要平整。

(4)未焊透、未熔合焊接时,接头根部未完全熔透的现象,称为未焊透;在焊件与焊缝金属或焊缝层间有局部未熔透现象,称为未熔合。

未焊透或未熔合是一种比较严重的缺陷,由于未焊透或未熔合,焊缝会出现间断或突变,焊缝强度大大降低,甚至引起裂纹。

因此,在船体的重要结构部分均不允许存在未焊透、未熔合的情况。

未焊透和未熔合的产生原因是焊件装配间隙或坡口角度太小、钝边太厚、焊条直径太大、电流过小、速度太快及电弧过长等。

焊件坡口表面氧化膜、油污等没有清除干净,或在焊接时该处流入熔渣妨碍了金属之间的熔合或运条手法不当,电弧偏在坡口一边等原因,都会造成边缘不熔合。

防止未焊透或未熔合的方法是正确选取坡口尺寸,合理选用焊接电流和速度,坡口表面氧化皮和油污要清除干净;封底焊清根要彻底,运条摆动要适当,密切注意坡口两侧的熔合情况。

(5)焊接裂纹焊接裂纹是一种非常严重的缺陷。

结构的破坏多从裂纹处开始,在焊接过程中要采取一切必要的措施防止出现裂纹,在焊接后要采用各种方法检查有无裂纹。

一经发现裂纹,应彻底清除,然后给予修补。

焊接裂纹有热裂纹、冷裂纹。

焊缝金属由液态到固态的结晶过程中产生的裂纹称为热裂纹,其特征是焊后立即可见,且多发生在焊缝中心,沿焊缝长度方向分布。

热裂纹的裂口多数贯穿表面,呈现氧化色彩,裂纹末端略呈圆形。

产生热裂纹的原因是焊接熔池中存有低熔点杂质(如FeS等)。

防止产生热裂纹的措施是:一要严格控制焊接工艺参数,减慢冷却速度,适当提高焊缝形状系数,尽可能采用小电流多层多道焊,以避免焊缝中心产生裂纹;二是认真执行工艺规程,选取合理的焊接程序,以减小焊接应力。

焊缝金属在冷却过程或冷却以后,在母材或母材与焊缝交界的熔合线上产生的裂纹称为冷裂纹。

这类裂纹有可能在焊后立即出现,也有可能在焊后几小时、几天甚至更长时间才出现。

冷裂纹产生的主要原因为:1)在焊接热循环的作用下,热影响区生成了淬硬组织;2)焊缝中存在有过量的扩散氢,且具有浓集的条件;3)接头承受有较大的拘束应力。

防止产生冷裂纹的措施有:1)选用低氢型焊条,减少焊缝中扩散氢的含量:2)严格遵守焊接材料(焊条、焊剂)的保管、烘焙、使用制度,谨防受潮;3)仔细清理坡口边缘的油污、水份和锈迹,减少氢的来源;4)根据材料等级、碳当量、构件厚度、施焊环境等,选择合理的焊接工艺参数和线能量,如焊前预热、焊后缓冷,采取多层多道焊接,控制一定的层问温度等;3、缺陷修正有些缺陷的存在对船舶安全航行是非常危险的,因此一旦发现缺陷要及时进行修正。

对于气孔的修正,特别是对于内部气孔,确认部位后,应用风铲或碳弧气刨清除全部气孔缺陷,并使其形成相应坡口,然后再进行焊补;对于夹渣、未焊透、未熔合的缺陷,也是要先用同样的方法清除缺陷,然后按规定进行焊补。

对于裂纹,应先仔细检查船舶焊接缺陷及无损探伤研究裂纹的始、末端和裂纹的深度,然后再清除缺陷。

用风铲消除裂纹缺陷时,应先在裂纹两端钻止裂孔,防止裂纹延长。

钻孔时采用8~12ram钻头,深度应大于裂纹深度2~3mm。

用碳弧气刨消除裂纹时,应先从裂纹两端进行刨削,直至裂纹消除,然后进行整段裂纹的刨除。

无论采用何种方法消除裂纹缺陷,都应使其形成相应坡口,按规定进行焊补。

3.1、对焊缝缺陷进行修正时应注意(1)缺陷补焊时,宣采用小电流、不摆动、多层多道焊,禁止用过大的电流补(2)对刚性大的结构进行补焊时,除第一层和最后一层焊道外,均可在焊后热状态下进行锤击。

每层焊道的起弧和收弧应尽量错开;(3)对要求预热的材质,对工作环境气温低于0℃时,应采取相应的预热措施:(4)对要求进行热处理的焊件,应在热处理前进行缺陷修正;(5)对D级、E级钢和高强度结构钢焊缝缺陷,用手工电弧焊焊补时,应采用控制线能量施焊法。

每一缺陷应一次焊补完成,不允许中途停顿。

预热温度和层间温度,均应保持在60℃以上。

(6)焊缝缺陷的消除的焊补,不允许在带压和背水情况下进行;(7)修正过的焊缝,应按原焊缝的探伤要求重新检查,若再次发现超过允许限值的缺陷,应重新修正,直至合格。

焊补次数不得超过规定的返修次数。

4、无损检测4.1、无损检测的定义现代无损检测的定义是:在不损坏试件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对试件的内部及表面的结构、性质、状态进行检查和测试的方法。

无损检测是在现代科学技术发展的基础上产生的。

例如,用于探测工业产品缺陷的X射线是在德国物理科学家伦琴发现X射线基础上发生的,超声波检测是在二次世界大战中迅速发展的声纳技术和雷达技术的基础上开发出来的,磁粉检测建立在电磁学理论的基础上,而渗透检测得益于物理化学的进展,等等。

长期以来,无损检测技术主要应用于工业材料和制品的质量监测,在接下来的章节中,我将对船舶焊缝中无损探伤的展开研究。

4.2、无损检测的背景及发展随着工业生产的发展,无损检测的发展大致经历了三个阶段,即无损探伤NDI(Non —destruetiveInspeetion),无损检验NDT(Non—destruetiveTesting)及无损评价NDE(Non--destruetiveEvaluation),目前一般统称为无损检测NDT。

其中,NDI是在不损坏产品的前提下,发现人眼无法直接观察到的缺陷;NDT是不但检验最终产品,而且要测量过程的工艺参数:NDE是不仅要探出缺陷的有无及位置,而且还要测出缺陷的类型、尺寸、形状、取向以及对力学行为的影响等,以便用断裂力学的方法对被测产品作出检修周期和使用安全性的结论。

因此,NDE包括NDI及NDT的内容,更具有综合性。

材料和工件的无损检测和评价,对于控制和改进生产过程和产品的质量,保证材料、零部件、产品的可靠性和生产过程的安全性,以及提高劳动生产率等都起着关键性的作用.无损检测作为一项工业技术,被应用于产品的整个制造、服役过程中,是现代工业发展必不可少的有效工具。

因此世界各国对无损检测技术的研究都非常重视,大力开展了无损检测技术的研究工作。

可以说,无损检测与评价技术的发展标志着一个国家的现代化工业水平,其复杂系统集成技术己经广泛应用于交通、制造、石油、核发电站以及国防等工业领域,渗透到各:I二业结构与产品的全寿命质量控制和质量管理中,并利用最低的成本来获取最大的效益。

其中在船舶焊缝探伤中,也有了很好的应用4.3、无损检测的分类无损检测具有悠久的历史,长期以来人们在实践中形成了许多实用的无损检测方法,而且随着各种新技术的出现还在逐步增加,典型的方法如下:(1)目视检测(visualTesting)1)原理:由人眼或光敏设备对被检测物体的反射光或发射光成像2)应用范围:许多工业领域和场合都可以用,从原材料到成品到使用检查3)优点:廉价、简单、培训很少、范围广、优点多4)缺点:只能评价表面状态,需要光源,必须能接近,如图2.1。

注:目视检测无法看到下面裂纹(2)射线检钡I(Radi ograPhicTesting)射线探伤法是利用射线透过物体时,会发生吸收和散射这一特性,通过测量材料中因缺陷存在而影响射线的吸收来探测缺陷的,以胶片作为记录信息器材的无损检测方法。

相关文档
最新文档