(完整版)第三章直线与方程知识点总结与题型
(人教版)-高中数学必修2-第三章--直线与方程-直线系与对称问题(全)
(人教版)-高中数学必修2-第三章--直线与方程-直线系与对称问题(全)课题:直线系与对称问题教学目标:1.掌握过两直线交点的直线系方程;2.会求一个点关于一条直线的对称点的坐标的求法;3.会求一条直线关于一个点、一条直线的对称直线的求法. 教学重点:对称问题的基本解法(一) 主要知识及方法:1.点(),P a b 关于x 轴的对称点的坐标为(),a b -;关于y 轴的对称点的坐标为(),a b -;关于y x =的对称点的坐标为(),b a ;关于y x =-的对称点的坐标为(),b a --.2.点(),P a b 关于直线0ax by c ++=的对称点的坐标的求法:()1设所求的对称点'P 的坐标为()00,x y ,则'PP 的中点00,22a x b y ++⎛⎫⎪⎝⎭一定在直线0ax by c ++=上.()2直线'PP 与直线0ax by c ++=的斜率互为负倒数,即001y b ax a b-⎛⎫⋅-=- ⎪-⎝⎭结论:点()00,P x y 关于直线l :0Ax By C ++=对称点为()002,2x AD y BD --, 其中0022Ax By CD A B++=+;曲线C :(,)0f x y =关于直线l :0Ax By C ++=的对称曲线方程为()2,20f x AD y BD --=特别地,当22A B =,即l 的斜率为1±时,点()00,P x y 关于直线l :0Ax By C ++=对称点为00,By C Ax C A B ++⎛⎫-- ⎪⎝⎭,即()00,P x y 关于直线0x y c ±+=对称的点为:()(),y c x c -+m m ,曲线(,)0f x y =关于0x y c ±+=的对称曲线为()(),0f y c x c -+=m m 3.直线1110a x b y c ++=关于直线0ax by c ++=的对称直线方程的求法:①到角相等;②在已知直线上去两点(其中一点可以是交点,若相交)求这两点关于对称轴的对称点,再求过这两点的直线方程;③轨迹法(相关点法);④待定系数法,利用对称轴所在直线上任一点到两对称直线的距离相等,…4.点(),x y 关于定点(),a b 的对称点为()2,2a x b y --,曲线C :(),0f x y =关于定点(),a b 的对称曲线方程为()2,20f a x b y --=.5.直线系方程:()1直线y kx b =+(k 为常数,b 参数;k 为参数,b 位常数). ()2过定点()00,M x y 的直线系方程为()00y y k x x -=-及0x x =()3与直线0Ax By C ++=平行的直线系方程为10Ax By C ++=(1C C ≠) ()4与直线0Ax By C ++=垂直的直线系方程为0Bx Ay m -+=()5过直线11110l a x b y c ++=:和22220l a x b y c ++=:的交点的直线系的方程为:()()1112220a x b y c a x b y c λ+++++=(不含2l )(二)典例分析:问题1.(06湖北联考)一条光线经过点()2,3P ,射在直线l :10x y ++=上, 反射后穿过点()1,1Q .()1求入射光线的方程;()2求这条光线从点P 到点Q 的长度.问题2.求直线1l :23y x =+关于直线l :1y x =+对称的直线2l 的方程.问题3.根据下列条件,求直线的直线方程()1求通过两条直线3100-=的交点,且到原点距离为1;x y+-=和30x y()2经过点()3,2A,且与直线420+-=平行;x y()3经过点()B,且与直线2503,0+-=垂直.x y问题4.()1已知方程1=+有一正根而没有负根,求实数k的范围x kx()2若直线1l :2y kx k =++与2l :24y x =-+的交点在第一象限,求k 的取值范围.()3 已知定点()2,1P --和直线l :()()()1312250x y λλλ+++-+=()R λ∈求证:不论λ取何值,点P 到直线l(三)课后作业:1.方程()()()14232140k x k y k +--+-=表示的直线必经过点.A ()2,2 .B ()2,2- .C ()6,2- .D 3422,55⎛⎫⎪⎝⎭2.直线2360x y +-=关于点()1,1-对称的直线方程是.A 3220x y -+= .B 2370x y ++= .C 32120x y --= .D 2380x y ++=3.曲线24y x =关于直线20x y -+=对称的曲线方程是4.(){}.A x y y a x ==,(){},B x y y x a ==+,A B I仅有两个元素,则实数a 的范围是5.求经过直线3260x y ++=和2570x y +-=的交点,且在两坐标轴上的截距相等的直线方程6.已知ABC △的顶点为()1,4A --,,B C ∠∠的平分线所在直线的方程分别是1l :10y +=与2l :10x y ++=,求BC 边所在直线的方程.7.已知直线130kx y k -+-=,当k 变化时所得的直线都经过的定点为8.求证:不论m 取何实数,直线()()1215m x m y m -+-=-总通过一定点9.求点P ()1,1关于直线l :20x y ++=的对称点Q 的坐标10.已知:(),P a b 与()1,1Q b a -+,()1a b ≠-是对称的两点,求对称轴的方程11.光线沿直线1l :250x y -+=射入,遇到直线2l :3270x y -+=反射,求反射光线所在的直线3l 的方程12.已知点()3,5A -,()2,15B ,试在直线l :3440x y -+=上找一点P ,使PA PB + 最小,并求出最小值.(四)走向高考:1.(04安徽春)已知直线l :10x y --=,1l :220x y --=.若直线2l 与1l 关于l 对称,则2l 的方程为.A 210x y -+= .B 210x y --= .C 10x y +-= .D 210x y +-=2.(05上海)直线12y x =关于直线1x =对称的直线方程是3.(07上海文)圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是.A 21)2()3(22=-++y x .B 21)2()3(22=++-y x .C 2)2()3(22=-++y x .D 2)2()3(22=++-y x。
高中数学必修知识点总结:第三章直线与方程
高中数学必修知识点总结:第三章直线与方程1. 直线的一般方程直线的一般方程可以表示为:Ax + By + C = 0。
其中A、B、C是常数,A和B 不同时为0。
这个方程可以通过直线上任意两点的坐标来确定。
2. 直线的斜截式方程直线的斜截式方程可以表示为:y = kx + b。
其中k是直线的斜率,b是y轴截距。
通过斜截式方程,我们可以方便地确定直线的斜率和截距。
3. 直线的点斜式方程直线的点斜式方程可以表示为:y - y1 = k(x - x1)。
其中(x1, y1)是直线上的一个已知点,k是直线的斜率。
根据点斜式方程,我们可以通过已知点和斜率来确定直线的方程。
4. 直线的两点式方程直线的两点式方程可以表示为:(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1)。
其中(x1, y1)和(x2, y2)是直线上的两个已知点。
通过两点式方程,我们可以直接利用已知点的坐标来确定直线的方程。
5. 直线的斜率公式和截距公式直线的斜率可以通过斜率公式来计算:k = (y2 - y1)/(x2 - x1)。
直线的截距可以通过截距公式来计算:b = y1 - kx1。
通过斜率公式和截距公式,我们可以方便地计算直线的斜率和截距。
6. 直线的平行和垂直关系如果直线1的斜率等于直线2的斜率,则直线1和直线2平行。
如果直线1的斜率与直线2的斜率的乘积为-1,则直线1和直线2垂直。
7. 直线与坐标轴的交点直线与x轴的交点可以通过将y设为0得到,直线与y轴的交点可以通过将x 设为0得到。
8. 直线的倾斜角直线的倾斜角可以通过斜率来计算:θ = arctan(k),其中k是直线的斜率。
9. 直线的距离公式直线Ax + By + C = 0到点(x0, y0)的距离可以通过公式计算:d = |Ax0 + By0 +C|/√(A²+B²)。
10. 直线与线段的位置关系直线与线段的位置关系可以分为以下三种情况:•直线与线段相交•直线与线段不相交•直线与线段重合通过计算直线与线段的交点,可以确定它们的位置关系。
2021_2022年高中数学第三章直线与方程2
8.已知直线l的斜率为6.且在两坐标轴上的截距之和为10,求 此直线l的方程.
解法1:设直线方程为y=6x+b,
令x=0,得y=b,令y=0得
xb, 6
由题意 b b =10.∴b=12.
6
所以所求直线方程为6x-y+12=0.
题型二:直线的斜截式方程
9.求斜率为 3 , 且与两坐标轴围成的三角形的周长为12的直 4
2
∴直线l的方程为y=- 1 x,即x+2y=0.
2
(2)当直线在y轴上的截距不为零时,由题意可设直线l的方程
为 x y 1,
3b b
又直线l过点P(-6,3),
∴ 6 3 1
,解得b=1.
3b b
∴直线l的方程为
x +y=1.源自3即x+3y-3=0.
综上所述,所求直线l的方程为x+2y=0或x+3y-3=0.
技 能 演 练(学生用书P71)
技能演练
基础强化
1.过两点(2,5),(2,-5)的直线方程是( ) A.x=5 B.y=2 C.x=2 D.x+y=2
答案:C
2.在x,y轴上截距分别为4,-3的直线方程是( )
A. x y 1 B. x y 1
4 3
3 4
C. x y 1 D. x y 1
名师讲解
1.直线的两点式方程
如果直线l经过两点P1(x1,y1),P2(x2,y2)(x1≠x2,且y1≠y2),则直线l的 斜率为 k y2 y1 , 由直线的点斜式方程得
x2 x1
y
y1
y2 x2
y1 x1
(
x
x1
),即
必修二第三章直线与方程知识点总结及练习(答案)
∴ 3 2 (2-3 k)=24. 解得 k=- 2 . ∴所求直线方程为 y -2=- 2 ( x -3). 即 2x+3y-12=0.
k
3
3
9. 已知线段 PQ两端点的坐标分别为( -1 , 1)、( 2, 2),若直线 l :x +my+m=0 与线段 PQ有交点,求 m的取
值范围 .
解 方法一 直线 x+my+m=0 恒过 A(0,-1 )点 .
必修二 第三章 直线与方程来自(1)直线的倾斜角定义: x 轴 正向 与直线 向上方向 之间所成的角叫直线的倾斜角。特别地,当直线与
x 轴平行
或重合时 ,我们规定它的倾斜角为 0 度。因此,倾斜角的取值范围是 0°≤ α< 180°
(2)直线的斜率
①定义: 倾斜角不是 90°的直线,它的倾斜角的正切叫做这条直线的斜率。
程.
解 方法一 设直线 l 的方程为 x a
∴ A( a,0), B(0, b),
y 1 ( a> 0, b> 0), b
ab 24,
∴3 2
解得 a 6,
1.
b 4.
ab
∴所求的直线方程为
x
y =1, 即 2x +3y-12=0.
64
方法二 设直线 l 的方程为 y -2= k ( x -3),
令 y =0, 得直线 l 在 x 轴上的截距 a=3- 2 , 令 x=0, 得直线 l 在 y 轴上的截距 b=2-3 k. k
ab 的 截距 分别为 a,b 。
⑤一般式: Ax By C 0 ( A, B 不全为 0)
注意: ○1 各式的适用范围
○2 特殊的方程如:
平行于 x 轴的直线: y b ( b 为常数); 平行于 y 轴的直线: x
学生用高一数学必修2第三章直线与方程总复习及练习
高一数学必修2第三章直线与方程总复习及练习 知识点:1.倾斜角:2. 斜率:斜率k 与倾斜角 α之间的关系:3.两直线平行与垂直的判定:①两直线平行的判定:②两直线垂直的判定:4.直线的方程:(1)点斜式:(2)斜截式:(3)两点式:(4)截距式:(5)一般式:提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。
5. 点点、点线、线线的距离:(1)点),(111y x P 到点),(222y x P 的距离(2)点00(,)P x y 到直线0Ax By C ++=的距离;(3)两平行线1122:0,:0l Ax By C l Ax By C ++=++=间的距离为。
6.过定点的直线系:过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
典型例题:例1.下列命题正确的有 :①每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应;②倾斜角的范围是:0°≤α<180°,且当倾斜角增大时,斜率也增大; ③过两点A(1,2),B(m,-5)的直线可以用两点式表示;④过点(1,1),且斜率为1的直线的方程为111y x -=-; ⑤直线Ax+By+C=0(A,B 不同时为零),当A,B,C 中有一个为零时,这个方程不能化为截距式.⑥若两直线平行,则它们的斜率必相等;⑦若两直线垂直,则它们的斜率相乘必等于-1.例2.若直线062:1=++y ax l 与直线01)1(:22=-+-+a y a x l ,则12l l 与相交时,a_________;21//l l 时,a=__________; 21l l ⊥时,a=________ .例3.求满足下列条件的直线方程:(1)经过点P(2,-1)且与直线2x+3y+12=0平行;(2)经过点Q(-1,3)且与直线x+2y-1=0垂直;(3)经过点R(-2,3)且在两坐标轴上截距相等;(4) 经过点N(-1,3)且在x 轴的截距与它在y 轴上的截距的和为零.例3.已知直线l 过点(1,2),且与x ,y 轴正半轴分别交于点A 、B 求△AOB 面积为4时l 的方程;例 4.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程.例5. 已知直线过点P (-5,-4),且与两坐标轴围成三角形面积为5,求直线l 的方程。
高中数学必修二第三章直线与方程知识点总结
高一数学总复习学案 必修2第三章:直线与方程一、知识点 倾斜角与斜率1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<.2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点1122(,),(,)P x y P x y ,则有斜率公式2121y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)12//l l ⇔12k k =;(2)12l l ⊥⇔121k k ⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴;…. 直线的点斜式方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.3. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.4. 注意:00y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=.3. 两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.4. 线段12P P 中点坐标公式1212(,)22x x y y ++. 直线的一般式方程1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A Cy x B B=--,表示斜率为A B -,y 轴上截距为C B -的直线.2. 与直线:0l Ax By C ++=平行的直线,可设所求方程为10Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为10Bx Ay C -+=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠;(3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B CA B C ⇔==;1l 与2l 相交1122A B A B ⇔≠. 两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组11122200A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y,则两点间的距离为:12||PP .特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;点到直线的距离及两平行线距离1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为d =.2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d ,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020Ax By C ++=,即002Ax By C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为d =二、直线方程对应练习 一.选择题1.(安徽高考) 过点(1,0)且与直线x-2y=0平行的直线方程是( ) A.x-2y-1=0 B. x-2y+1=0 C. 2x+y-2=0 D. x+2y-1=02. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y x B.052=-+y x C. 052=-+y x D. 072=+-y x 3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A. 0 B. 8- C. 2 D. 104.(安徽高考)直线过点(-1,2),且与直线2x-3y+4=0垂直,则直线的方程是( )A . 3x+2y-1=0 B. 3x+2y+7=0 C. 2x-3y+5=0 D. 2x-3y+8=05.设直线ax+by+c=0的倾斜角为θ,切sin cos 0θθ+=则a,b 满足 ( ) A. a+b=1 B. a-b=1 C. a+b=0 D. a-b=06. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、327.点P (-1,2)到直线8x-6y+15=0的距离为( ) A 2 B 21 C 1 D 278. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)9. (上海文,15)已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 值是( )A. 1或3B.1或5C.3或5D.1或210、若图中的直线L 1、L 2、L 3的斜率分别为K 1A 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 211、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0 12. 若直线ax + by + c = 0在第一、二、三象限,则( )A. ab >0,bc >0B. ab >0,bc <0C. ab <0,bc >0D. ab <0,bc <013. 如果直线 l 经过两直线2x - 3y + 1 = 0和3x - y - 2 = 0的交点,且与直线y = x 垂直,则原点到直线 l 的距离是( )A. 2B. 1C.2D. 22 14. 原点关于x - 2y + 1 = 0的对称点的坐标为( )A. ⎪⎭⎫ ⎝⎛52 ,54- B. ⎪⎭⎫ ⎝⎛54 ,52- C. ⎪⎭⎫ ⎝⎛52 ,54 D. ⎪⎭⎫ ⎝⎛54 ,52- 二、填空题1. 点(1,1)P -到直线10x y -+=的距离是________________。
必修②第三章《直线与方程》复习一
必考部分内容 直线的斜率和倾斜角 直线方程(五种形式) A 要求 B √ √ C
直线的平行与垂直关系
两直线的交点 两点间的距离 点到直线的距离
√
√ √ √
两条平行线间的距离
√
2013年6月27日星期W
基础知识
1.直线的倾斜角:取值范围是[0,π)
2.直线的斜率及斜率公式
k=tanα
整理得(81-d2)k2-54k+ 9-d2=0 又k∈R,则△=(-54)2-4(81-d2)(9-d2)≥0
解得: d 3 10 综上d取值范围为 d 3 10 0 0
思想与方法
例题3. 两条互相平行的直线分别过A(6,2)、B(–3,–1)两点的, 并且各自绕着A、B旋转,若两条平行线间距离为d. (1) 求距离d的取值范围; (2) 求当d取最大值时两条直线的方程.
解 : 设过点(1,0)的直线l与两平行线分别交于A、B两点.
①当l的斜率存在时,设所求 直线l的方程是 y k ( x 1) y k ( x 1) k 6 5k 由 得 A点的坐标是( , ); k 1 k 1 x y6 0 y k ( x 1) k 3 4k 由 , 得 B 点的坐标是( , ); k 1 k 1 x y3 0
x y (4)截距式: 1 a b
(5)一般式:Ax+By+C=0(A2+B2≠0)
基础知识
5.直线间的位置关系与判定方法:
若l1: y=k1x+b1, l2: y=k2x+b2, 则①l1∥l2 k1=k2且b1≠b2 ; ②l1⊥l2 k1k2=-1 ; ③l1与l2相交 k1≠k2 ; ③l1与l2重合 k1=k2且b1=b2
最新人教版高中数学必修2第三章《直线与方程》本章小结
整合提升知识网络知识回顾1.直线的倾斜角与斜率(1)倾斜角:取x 轴为基准,x 轴的正方向与直线l 向上方向之间所夹角α,叫做直线l 的倾斜角,其范围为[0°,180°).(2)斜率:①直线的斜率是直线倾斜角的正切值,即k=tanα.任何一条直线都有倾斜角,但并不是任何一条直线都有斜率,当其倾斜角等于90°时,其斜率不存在,∴k=⎩⎨⎧︒≠︒=90,tan 90k ,αα不存在. ②斜率的范围与倾斜角的范围有关:当0°≤θ<90°时,k >0;当θ=90°时,k 不存在;当90°<θ<180°时,k <0.在通过斜率范围求倾斜角范围时,应特别注意,否则容易出错误.③用两点坐标求直线斜率时,必须要注意分类讨论.当两点横坐标相同时,其斜率不存在.当两点横坐标不相同时,可用两点坐标求其斜率.即k=⎪⎩⎪⎨⎧=≠--.,,21211212x ,x x x x x y y 不存在 2.直线方程的确定(1)确定直线方程时,要注意各种形式的适用范围.如点斜式和斜截式都适用于斜率存在时;两点式方程适用于直线不垂直于两条坐标轴的情况;截距式方程则适用于不过原点及不与坐标轴垂直的直线.(2)直线的斜率是求直线的关键,若不能断定直线有斜率,必须分两种情况讨论.(3)在直线的斜截式与截距式中,要注意其“截距”不等于“距离”.3.判断两直线的位置关系(1)若l 1,l 2的斜率分别为k 1,k 2,则l 1∥l 2⇔k 1=k 2.(2)若l 1,l 2的斜率分别为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1.上述判断平行与垂直的两个等价条件都是在两直线斜率都存在的前提下才成立,但实际做题过程中要考虑两条直线中一条无斜率或都无斜率的情况.4.两直线的交点两直线的交点坐标即为两直线方程组成的二元一次方程组的解.若方程组有唯一解,则两直线相交;若方程组无解,则两直线平行;若方程组有无数组解,则两直线重合.5.距离(1)两点间距离:若P 1(x 1,y 1),P 2(x 2,y 2),则|P 1P 2|=212212)()(y y x x -+-.(2)点到直线的距离:若点P(x 0,y 0),l:Ax+By+C=0,则点P 到直线l 的距离d=2200||B A C By Ax +++.要注意将直线方程化为一般式.(3)两平行直线间的距离:若l 1:Ax+By+C 1=0,l 2:Ax+By+C 2=0,则两平行直线间的距离d=2221||B A C C +-要注意将两直线方程中x,y 项对应项的系数化为相同.6.对称问题对称问题分为两类:点对称和轴对称.(1)点对称:其中包括点关于点的对称点和直线关于点的对称直线,解决这类问题主要借助中点坐标公式.(2)轴对称:其中包括点关于直线的对称点和直线关于直线的对称直线,解决这类问题的关键是抓住两点:①对称点的连线被对称轴平分;②对称点的连线和对称轴垂直.典例精讲【例1】 一光线经过点M(-3,2)反射到x 轴上点P 处,经x 轴反射后又射到y 轴上的点Q 处,再经过y 轴反射后,光线恰好经过点N(-1,6),求P,Q 两点坐标及直线MP,PQ,NQ 的方程.解:如图所示,由光学性质可知,M 点关于x 轴的对称点M′(-3,-2)必在PQ 上,同理,N 点关于y 轴的对称点N′(1,6)也必在直线PQ 上,故直线PQ 的方程可由M′、N′两点确定. ∴43)2(6)2(+=----x y ,即2x-y+4=0. 令y=0,则x=-2,∴P(-2,0).令x=0,则y=4,∴Q(0,4).由题可知,k PM =k QN =-k PQ =-2.∴直线PM 、QN 的方程分别为y=-2x-4和y=-2x+4,即2x+y+4=0和2x+y-4=0;直线PQ 的方程为y=2(x+2),即2x-y+4=0.【例2】 某供电局计划年底解决本地区最后一个村庄的用电问题,经过测量,若按部门内部设计好的坐标图(即以供电局为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,长度单位千米),得到这个村庄的坐标是(15,20),离它最近的一条线路所在直线的方程为3x-4y-10=0.问要完成任务,至少需要多长的电线?思路分析:本题实质是考查点到直线的距离问题.解:根据题意可知点(15,20)到直线3x-4y-10=0的距离即为所求.∴d=545169|10204315|=+-⨯-⨯=9(千米). ∴至少需9千米长的电线.【例3】 已知点A(-3,5),B(2,15),试在直线l:x-y=0上找一点P,使|PA|+|PB|最小,并求出最小值. 思路分析:画出草图,通过数形结合加以分析,会使问题简单化.解:如右图所示,A 点关于直线x-y=0对称的点的坐标为A′(5,-3).由图可知,|PA|+|PB|=|PA′|+|PB|≥|A′B|.当且仅当B 、P 、A′三点共线时“=”成立.所以|PA|+|PB|的最小值 d=333)153()25(22=--+-.直线A′B 的方程为6x+y-27=0,与x-y=0联立得⎩⎨⎧=-=-+.0,0276y x y x . 解之,得P (727,727). 所以|PA|+|PB|的最小值为333,此时P 点坐标为(727,727).。
高中数学必修2知识点总结:第三章_直线与方程2
高中数学必修2知识点总结:第三章_直线与方程2直线与方程3.1直线的倾斜角和斜率3.1 倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示, k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. .....4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式: k = y2-y1/x2-x1 3.1.2 两条直线的平行与垂直1、两条直线的平行① 若两条直线的斜率都存在,则:k1 = k2 = L1∥L2或者..L1与L2重合② 两条不重合直线平行的判定条件:⑴ 两条直线的斜率都不存在;⑵ 两条直线的斜率存在,且k1 = k2...(若已知两条直线的斜率存在且平行,则应k1 = k2 且纵截距不相等;若已知两条直线的斜率不存在且平行,则应横截距不相等)2、两条直线垂直①若两条直线的斜率都存在,则:k1 k2 = - 1 = L1 ⊥ L2 .....②两条直线垂直的判定条件:⑴ 两条直线:一条斜率不存在,另外一条k =0 ;⑵ 两条直线的斜率存在:k1 k2 = - 1 3、利用系数来判断平行与垂直★ 已知L1: A1x+B1y+C1=0 , L2 : A2x+B2y+C2=0 那么:① A1B2-A2B1=0两条直线平行或重合....两条直线相交③ A1A2 + B1B2 = 0..② A1B2-A2B1 ≠0两条直线垂直..★ 如果已知两条直线的一般式方程,则可以通过系数关系求解相应的参数的值。
高中数学必修2第三章知识点+习题+答案
高中数学必修2第三章知识点+习题+答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章直线与方程直线的倾斜角和斜率倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围: 0°≤α<180°.当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(bb kx y +=直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ ),(1212112121y y x x x x x x y y y y ≠≠--=--2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。
史上最全直线与直线方程题型归纳
精心整理直线与直线方程一、知识梳理1.直线的倾斜角与斜率:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°.倾斜角的取值范围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示.倾斜角是90°的直线没有斜率.2.斜率公式:经过两点),(),,(222111y x P y x P 的直线的斜率公式:)(211212x x x x y y k ≠--=3.直线方程的五种形式直线形式 直线方程局限性选择条件 点斜式不能表示与x 轴垂直的直线①已知斜率 ②已知一点 斜截式不能表示与x 轴垂直的直线①已知斜率②已知在y 轴上的截距两点式不能表示与x 轴、y 轴垂直的直线①已知两个定点 ②已知两个截距 截距式(b a 、分别为直线在x 轴和y 轴上的截距)不能表示与x 轴垂直、与y 轴垂直、过原点的直线 已知两个截距(截距可以为负)一般式表示所有的直线求直线方程的结果均可化为一般式方程 7.斜率存在时两直线的平行:21//l l ⇔1k =2k 且21b b ≠. 8.斜率存在时两直线的垂直:⇔⊥21l l 121-=k k .9.特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直. 二、典例精析题型一:倾斜角与斜率【例1】下列说法正确的个数是() ①任何一条直线都有唯一的倾斜角;②倾斜角为030的直线有且仅有一条; ③若直线的斜率为θtan ,则倾斜角为θ; ④如果两直线平行,则它们的斜率相等 A.0个B.1个C.2个D.3个【练习】如果0<AC 且0<BC ,那么直线0=++C By Ax 不通过() A.第一象限B.第二象限C.第三象限D.第四象限【例2】如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则( ) A .k sin α>0 B .k cos α>0C .k sin α≤0 D .k cos α≤0【练习】图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则().A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2【例3】经过点()2,1P 作直线l ,若直线l 与连接()10—,A ,()1,4B 的线段总有公共点,求直线l 的倾斜角α与斜率k 的取值范围。
必修②第三章直线与方程
§3.1直线的倾斜角与斜率1.理解直线的倾斜角的定义、范围和斜率;2.掌握过两点的直线斜率的计算公式;3.能用公式和概念解决问题.一、课前准备(预习教材P 90~ P 91,找出疑惑之处)复习1:在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?复习2:在日常生活中,我们常说这个山坡很陡峭,有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢?二、新课导学※ 学习探究新知1:当直线与轴相交时,取轴作为基准,轴正向与直线向上方向之间所成的角l x x x l 叫做直线的倾斜角.αl 关键:①直线向上方向;②轴的正方向;③小于平角的正角.x 注意:当直线与轴平行或重合时,我们规定它的倾斜角为0度..x 试试:请描出下列各直线的倾斜角.反思:直线倾斜角的范围?探究任务二:在日常生活中,我们经常用“升高量与前进量的比”表示“坡度”,则坡度的公式是怎样的?新知2:一条直线的倾斜角的正切值叫做这条直线的斜率.记为.()2παα≠tan k α=试试:已知各直线倾斜角,则其斜率的值为⑴当时,则 ;0o α=k ⑵当时,则 ;090o o α<<k ⑶当时,则 ;90oα=k ⑷当时,则 .090180o α<<k 新知3:已知直线上两点的直线的斜率公式:.111222(,),(,)P x y P x y 12()x x ≠2121y y k x x -=-探究任务三:1.已知直线上两点运用上述公式计算直线的斜率时,与两点坐标的顺序1212(,),(,),A a a B b b ,A B 有关吗?2.当直线平行于轴时,或与轴重合时,上述公式还需要适用吗?为什么?y y ※ 典型例题例1 已知直线的倾斜角,求直线的斜率:⑴;30οα=⑵;135οα=⑶;60οα=⑷90οα=变式:已知直线的斜率,求其倾斜角.⑴;0k =⑵;1k =⑶;k =⑷不存在.k 例2 求经过两点的直线的斜率和倾斜角,并判断这条直线的倾斜角是锐角还是钝(2,3),(4,7)A B 角.2...[0,180)︒的坐标来111222(,),(,)P x y P x y 时,直线的斜率是不存在的※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列叙述中不正确的是( ).A .若直线的斜率存在,则必有倾斜角与之对应B .每一条直线都惟一对应一个倾斜角C .与坐标轴垂直的直线的倾斜角为或0o 90οD .若直线的倾斜角为,则直线的斜率为αtan α2. 经过两点的直线的倾斜角( ).(2,0),(5,3)A B --A . B . C . D .45ο135ο90ο60ο3. 过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为( ).A.1 B.4 C.1或3 D.1或44. 直线经过二、三、四象限,的倾斜角为,斜率为,则为 角;的取值范围 .l αk αk 5. 已知直线l 1的倾斜角为1,则l 1关于x 轴对称的直线l 2的倾斜角为________.α2α1.已知点,若直线l 过点(2,3),(3,2)A B --(1,1)P 且与线段相交,求直线l 的斜率的取值范围.AB k 2. 已知直线过两点,求此直线的斜率和倾斜角.l 2211(2,()),(2,())A t B t t t-+-=12//l l ⇔1k 2k .如果,那么它们的倾斜角与斜率是怎么的关系,反过来成立吗?12l l ⊥.121k k =-⇔121k k =-,试判断直线与的位置关系, 并证明你的结论.(4,0),(3,1),(1,2)B P Q ---BA PQ 三点,求点D 的坐标,使直线,且.1),(2,2),(3,0)B C CD AB ⊥//CB AD4变式:已知,试判断三角形的形状.(5,1),(1,1),(2,3)A B C -ABC ※ 动手试试练1. 试确定的值,使过点的直线与过点的直线m (,1),(1,)A m B m -(1,2),(5,0)P Q -⑴平行; ⑵垂直练2. 已知点,在坐标轴上有一点,若,求点的坐标.(3,4)A B 2AB k =B 三、总结提升:※ 学习小结:1.或的斜率都不存在且不重合.1212//l l k k ⇔=12,l l 2.或且的斜率不存在,或且的斜率不存在.12121l l k k ⊥⇔=-A 10k =2l 20k =1l※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法正确的是( ).A .若,则12l l ⊥121k k =-A B .若直线,则两直线的斜率相等12//l l C .若直线、的斜率均不存在,则1l 2l 12l l ⊥D .若两直线的斜率不相等,则两直线不平行2. 过点和点的直线与直线的位置关系是( ).(1,2)A (3,2)B -1y =A .相交 B.平行 C.重合 D.以上都不对3. 经过与的直线与斜率为的直线互助垂直,则值为().(,3)m (2,)m l 4-m A . B . C . D .75-75145-1454. 已知三点在同一直线上,则的值为.(,2),(5,1),(4,2)A a B C a -a 5. 顺次连结,所组成的图形是.(4,3),(2,5),(6,3),(3,0)A B C D --1.若已知直线上的点满足,直线上的点满足,1l 260ax y ++=2l 2(1)10(1)x a y a a +-+-=≠试求为何值时,⑴;⑵.a 12//l l 12l l ⊥2. 已知定点,以为直径的端点,作圆与轴有交点,求交点的坐标.(1,3),(4,2)A B -,A B x C C§ 3.2.1直线的点斜式方程1.理解直线方程的点斜式、斜截式的形式特点和适用范围;2.能正确利用直线的点斜式、斜截式公式求直线方程;3.体会直线的斜截式方程与一次函数的关系.一、课前准备:(预习教材P 101~ P 104,找出疑惑之处)复习1.已知直线都有斜率,如果,则12,l l 12//l l;如果,则.12l l ⊥2.若三点在同一直线上,则的值为.(3,1),(2,),(8,11)A B k C -k 3.已知长方形的三个顶点的坐标分别为,则第四个顶点的坐标 ABCD (0,1),(1,0),(3,2)A B C D .4.直线的倾斜角与斜率有何关系?什么样的直线没有斜率?二、新课导学:※ 学习探究问题1:在直线坐标系内确定一条直线,应知道哪些条件?新知1:已知直线经过点,且斜率为,则方程为直线的点斜式方l 00(,)P x y k 00()y y k x x -=-程.问题2:直线的点斜式方程能否表示坐标平面上的所有直线呢?问题3:⑴轴所在直线的方程是,轴所在直线的方程是.x y ⑵经过点且平行于轴(即垂直于轴)的直线方程是.000(,)P x y x y ⑶经过点且平行于轴(即垂直于轴)的直线方程是.000(,)P x y y x 问题4:已知直线的斜率为,且与轴的交点为,求直线的方程.l k y (0,)b l新知2:直线与轴交点的纵坐标叫做直线在轴上的截距(intercept ).直线l y (0,)b b l y 叫做直线的斜截式方程.y kx b =+注意:截距就是函数图象与轴交点的纵坐标.b y 问题5:能否用斜截式表示平面内的所有直线? 斜截式与我们学过的一次函数表达式比较你会得出什么结论.※ 典型例题例1 直线过点,且倾斜角为,求直线的点斜式和斜截式方程,并画出直线.(1,2)-135οl l 变式:⑴直线过点,且平行于轴的直线方程 (1,2)-x ;⑵直线过点,且平行于轴的直线方程;(1,2)-x ⑶直线过点,且过原点的直线方程.(1,2)-例2 写出下列直线的斜截式方程,并画出图形:⑴,在轴上的距截是-2;y ⑵ 斜角是,在轴上的距截是0135y变式:已知直线的方程,求直线的斜率及纵截距.3260x y+-=※动手试试练1. 求经过点,且与直线平行的直线方程.(1,2)23y x=-练2. 求直线与坐标轴所围成的三角形的面积.48y x=+三、总结提升:※学习小结1.直线的方程:⑴点斜式;⑵斜截式;这两个公式都只能在斜率存00()y y k x x-=-y kx b=+.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 过点,倾斜角为的直线方程是().(4,2)-135οA B20y++-=360y+++=C.D.40x--=40x+-=2. 已知直线的方程是,则().21y x+=--A.直线经过点,斜率为(2,1)-1-B.直线经过点,斜率为(2,1)--1C.直线经过点,斜率为(1,2)--1-D.直线经过点,斜率为(1,2)-1-3. 直线,当变化时,所有直线恒过定点().130kx y k-+-=kA.B.(3,1)C.D.(0,0)(1,3)(1,3)--4. 直线的倾斜角比直线的倾斜角大,且直线的纵截距为3,则直线的方程.l12y=+45οl5. 已知点,则线段的垂直平分线的方程.(1,2),(3,1)AB AB1. 已知三角形的三个顶点,求这个三角形的三边所在的直线方程.(2,2),(3,2),(3,0)A B C-2. 直线过点且与轴、轴分别交于两点,若恰为线段的中点,求直线l(2,3)P-x y,A B P AB的方程.l6§ 3.2.2直线的两点式方程1.掌握直线方程的两点的形式特点及适用范围;2.了解直线方程截距式的形式特点及适用范围.一、课前准备:(预习教材P105~ P106,找出疑惑之处)复习1:直线过点,斜率是1,则直线方程为;直线的倾斜角(2,3)-为,纵截距为,则直线方程为.60ο3-2.与直线垂直且过点的直线方程为21y x=+(1,2).3.方程表示过点,斜率是,倾斜角是,在y轴上的截()331--=+xy__________________距是的直线.______4.已知直线经过两点,求直线的方程.l12(1,2),(3,5)P P l二、新课导学:※学习探究新知1:已知直线上两点且,则通过这两点的直线方程为112222(,),(,)P x x P x y1212(,)x x y y≠≠,由于这个直线方程由两点确定,所以我们把它叫直线的两点1112122121(,)y y x xx x y yy y x x--=≠≠--式方程,简称两点式(two-point form).问题1:哪些直线不能用两点式表示?例已知直线过,求直线的方程并画出图象.(1,0),(0,2)A B-新知2:已知直线与轴的交点为,与轴的交点为,其中,则直l x(,0)A a y(0,)B b0,0a b≠≠线的方程叫做直线的截距式方程.l1=+byax注意:直线与轴交点(,0)的横坐标叫做直线在轴上的截距;直线与y轴交点(0,)x a a x b的纵坐标叫做直线在轴上的截距.b y问题3:,表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?a b问题4:到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?※典型例题例1求过下列两点的直线的两点式方程,再化为截距式方程.⑴;(2,1),(0,3)A B-⑵.(4,5),(0,0)A B--例2 已知三角形的三个顶点,(5,0),(3,3)A B--,求边所在直线的方程,以及该边上中线所在直线的方程.(0,2)C BC,则.(,)M x y 2121,22x x y y x y ++==的值为( ).b 需满足条件( ),,A B C 的直线方程 .取到最小值时,求直线的方||||PA PB ⋅l .§ 3.2.3直线的一般式方程1.明确直线方程一般式的形式特征;2.会把直线方程的一般式化为斜截式,进而求斜率和截距;3.会把直线方程的点斜式、两点式化为一般式.一、课前准备:(预习教材P 107~ P 109,找出疑惑之处)复习1:⑴已知直线经过原点和点,则直线的方程 .(0,4)⑵在轴上截距为,在轴上的截距为3的直线方程 .x 1-y ⑶已知点,则线段的垂直平分线方程是.(1,2),(3,1)A B AB 复习2:平面直角坐标系中的每一条直线都可以用一个关于的二元一次方程表示吗?,x y 二、新课导学:※ 学习探究新知:关于的二元一次方程(A ,B 不同时为0)叫做直线的一般式方程,,x y 0Ax By C ++=简称一般式(general form ).注意:直线一般式能表示平面内的任何一条直线问题1:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?问题4:在方程中,为何值时,方程表示的直线⑴平行于轴;⑵平行0Ax By C ++=,,A B C x 于轴;⑶与轴重合;⑷与重合.y x y ※ 典型例题例1 已知直线经过点,斜率为,求直线的点斜式和一般式方程.(6,4)A -12例2 把直线的一般式方程化成斜截式,求出直线的斜率以及它在轴与轴上l 260x y -+=l x y 的截距,并画出图形.变式:求下列直线的斜率和在轴上的截距,并画出图形⑴;⑵;⑶y 350x y +-=145x y-=;⑷;⑸.20x y +=7640x y -+=270y -=10※ 动手试试练1.根据下列各条件写出直线的方程,并且化成一般式:⑴ 斜率是,经过点;12-(8,2)A -⑵ 经过点,平行于轴;(4,2)B x ⑶ 在轴和轴上的截距分别是;x y 3,32-⑷ 经过两点.12(3,2),(5,4)P P --练2.设A 、B 是轴上的两点,点P 的横坐标为2,x 且|PA |=|PB |,若直线PA 的方程为,求直线PB 的方10x y -+=程三、总结提升:※ 学习小结1.通过对直线方程的四种特殊形式的复习和变形,概括出直线方程的一般形式:(A 、B 不全为0);0Ax By C ++=2.点在直线上00(,)x y 0Ax By C ++=⇔00Ax By +※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1 斜率为,在轴上截距为2的直线的一般式方程是( ).3-x A . B .360x y ++=320x y -+=C .D .360x y +-=320x y --=2. 若方程表示一条直线,则( ).0Ax By C ++= A . B .1A ≠0B ≠C . D .0AB ≠220A B +≠3. 已知直线和的夹角的平分线为,如果的方程是,那么的1l 2l y x =1l 0(0)ax by c ab ++=>2l 方程为( ).A .B .0bx ay c ++=0ax by c -+=C .D .0bx ay c +-=0bx ay c -+=4. 直线在轴上的截距为,在轴上的截距为,则.270x y ++=x a y b a b +=5. 直线与直线1:2(1)40l x m y +++=2:3l mx y+平行,则. 20-=m =1. 菱形的两条对角线长分别等于8和6,并且分别位于轴和轴上,求菱形各边所在的直线x y 的方程.2.光线由点射出,在直线上进行反射,已知反射光线过点,(1,4)A -:2360l x y +-=62(3,13B 求反射光线所在直线的方程.§ 3.1两条直线的交点坐标1.掌握判断两直线相交的方法;会求两直线交点坐标; 2.体会判断两直线相交中的数形结合思想.一、课前准备:(预习教材P 112~ P 114,找出疑惑之处)1.经过点,且与直线垂直的直线.(1,2)A -210x y +-+2.点斜式、斜截式、两点式和截距式能否表示垂直于坐标轴的直线?3.平面直角系中两条直线的位置关系有几种?二、新课导学:※ 学习探究问题1:已知两直线方程,,如何判断这两条直线的1111:0l A x B y C ++=222:l A x B y +20C +=位置关系?问题2:如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?※ 典型例题例1 求下列两直线,1:3420l x y +-=2:22l x y ++的交点坐标.0=变式:判断下列各对直线的位置关系.如果相交,求出交点坐标.⑴,;1:0l x y -=2:33100l x y +-=⑵,;1:30l x y -=2:630l x y -=⑶,.1:3450l x y +-=2:68100l x y +-=例2 求经过两直线和的交点且与直线平行的直线方程.2330x y --=20x y ++=310x y +-=变式:求经过两直线和的交点且与直线垂直的直线方程.2330x y --=20x y ++=310x y +-=例3 已知两点,求经过两直线和的交点和线段(2,1),(4,3)A B -2310x y -+=3210x y +-=中点的直线的方程.AB l ※ 动手试试练1. 求直线关于直线对称的直线方程.20x y --=330x y -+=练2. 已知直线的方程为,直线1l 30Ax y C ++=2l 的方程为,若的交点在轴上,求的值.2340x y -+=12,l l y C 三、总结提升:※ 学习小结1.两直线的交点问题.一般地,将两条直线的方程联立,得方程组,若方程1112220A x B y C A x B y C ++=⎧⎨++=⎩组有唯一解,则两直线相交;若方程组有无数组解,则两直线重合;若方程组无解,则两直线平行..※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 两直线的交点坐标为( ).12:210,:220l x y l x y ++=-++=A . B . C . D .13(,)2413(,)24-13(,24--13(,)24-2. 两条直线和的位置关系是( ).320x y n ++=2310x y -+=A .平行 B .相交且垂直 C .相交但不垂直 D .与的值有关n 3. 与直线关于点对称的直线方程是( ).2360x y +-=(1,1)-A .B .3220x y -+=2370x y ++=C .D .32120x y --=2380x y ++=4. 光线从射到轴上的一点后被轴反射,则反射光线所在的直线方程.(2,3)M -x (1,0)P x 5. 已知点,则点关于点的对称点的坐标.(5,8),(4,1)AB A BC 1. 直线与直线的交点在第四象限,求的取值范围.54210x y m +--=230x y m +-=m 2. 已知为实数,两直线:,:相交于一点,求证交点不可能在a 1l 10ax y ++=2l 0x y a +-=第一象限及轴上.x§ 3.3.2两点间的距离1.掌握直角坐标系两点间距离,用坐标法证明简单的几何问题.2.通过两点间距离公式的推导,能更充分体会数形结合的优越性. 3.体会事物之间的内在联系,,能用代数方法解决几何问题.一、课前准备:(预习教材P 115~ P 116,找出疑惑之处)1.直线,无论取任意实数,它都过点.0mx y m +-=m 2.若直线与直线的交点为,则.111:1l a x b y +=222:1l a x b y +=(2,1)-112a b -=3.当为何值时,直线过直线k 3y kx =+2x y-与的交点?10+=5y x =+二、新课导学:※ 学习探究问题1:已知数轴上两点,怎么求的距离?,A B ,A B 问题2:怎么求坐标平面上两点的距离?及的中点坐标?,A B ,A B 新知:已知平面上两点,则.111222(,),(,)P x y P xy 12PP 特殊地:与原点的距离为.(,)P xy OP =※ 典型例题例1 已知点求线段的长及中点坐标.(8,10),(4,4)A B -AB 变式:已知点,在轴上求一点,使,并求的值.(1,2),A B -x PA PB =PA 2 证明平行四边行四条边的平方和等于两条对角线的平方和.变式:证明直角三角形斜边上的中点到三个顶点的距离相等.).D. 较差10分)计分:).D .3 )三角形.=10和2-=10相交于一点,则的值( ).y x y a .1-,使,则.P PA PB =PA =P (1,0)后被轴反射,则反射光线所在的直线的方程 x 3的交点,且垂直于第一条直线.0,:相交于一点,求证交点不可01=++y 2l 0=-+a y x.的坐标为,直线方程P 00(,)x y 中,如果,或,怎样用点的坐标和直线的方程直接求点P 到直0A =0B =.到直线的距离.(1,0)B -34-1x y -0=:,:1l 2380x y +-=2l 23x y +,1l 10Ax By C ++=2:l平行且到的距离为2的直线方程.1260y -+=l ). C. 一般 D. 较差5分钟 满分:10分)计分:的距离( )12530x y +-=C . D .14132813).B.240x y +-=D.350x y +-= ).B .0x y +=D .0x y -=2-1=0和3x -2+1=0的距离y y 距离为1,且与点距离为2的直线共有条.(1,2)A (3,1)B ,一边所在直线的方程为,求其他三边所在的直(1,0)G -350x y +-=的,求菱形各边和两条对角线所在直线的倾斜角和斜率.ABCD 60O BAD ∠=中,,ABC ∆(1,1),(5,1)A B .求45O .和的交点,且在两坐标轴上的截距相等的直线方3260x y ++=2570x y +-=,1:40l ax by -+=2:(1)l a x y-+的值.,a b ,并且直线与直线垂直;⑵直线与直线平行,并且坐标原点到3,1)-1l 2l 1l 2l .例5 过点作直线分别交轴、轴正半轴于两点,当面积最小时,求直线(4,2)P l x y ,A B AOB ∆的方程.l ※ 动手试试练1. 设直线的方程为,根据下列条件分别求的值.l (2)3m x y m ++=m ⑴在轴上的截距为;l x 2-⑵斜率为.1-练2.已知直线经过点且与两坐标轴围成单位面积的三角形,求该直线的方程.l (2,2)-三、总结提升:※ 学习小结1.理解直线的倾斜角和斜率的要领,掌握过两点的斜率公式;掌握由一点和斜率写出直线方程的方法,掌握直线方程的点斜式、两点式、一般 式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行和垂直的条件,点到直线的距离公式;能够根据直线方程判断两直线的※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差5分钟 满分:10分)计分:1. 点关于直线对称的点的坐标是().(3,9)3100x y +-=A .B.(1,3)--(17,9)-C .D .(1,3)-(17,9)-2.方程所表示的直线( ).(1)210()a x y a a R --++=∈A .恒过定点 B .恒过定点(2,3)-(2,3)C .恒过点和D .都是平行直线 (2,3)-(2,3)3.已知点到直线的距离等于1,则( ).(3,)m 40x +-=m= A B .C .D4.已知在过和的直线上,则.(3,)P a (2,1)M -(3,4)N -a =5. 将直线绕点按顺时针方向旋转,所得的直线方程是.2)y x =-(2,0)30o 1.已知直线12:220,:1l x ay a l ax y +--=+-a -.0=⑴若,试求的值;12//l l a ⑵若,试求的值12l l ⊥a 2.两平行直线分别过点和,12,l l 1(1,0)P (0,5)P ⑴若与的距离为5,求两直线的方程;1l 2l ⑵设与之间的距离是,求的取值范围.1l 2l d d。
高中数学必修2第三章直线与方程总结
第三章 直线与方程 知识点 总结代县中学高二数学组一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向;②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°);②垂直:斜率k 不存在;③范围: 斜率 k ∈ R 。
当 α=0°时,k=0当0<α<90°时,k.>0当α=90°时,k 不存在当90°<α<180°,k<03、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合);②斜率k 值于两点先后顺序无关;③注意下标的位置对应。
4、直线与直线的位置关系:判断方法一:222111:,:b x k y l b x k y l +=+=①平行:<1> 斜率都存在时:2121,b b k k ≠=;<2> 斜率都不存在时:两直线都与x 轴垂直②垂直:<1> 0211=⊥k k x l 不存在,则轴,即;<2> 斜率都存在时:121-=•k k 。
③重合: 斜率都存在时:2121,b b k k ==;④相交:斜率21k k ≠(前提是斜率都存在)判断方法二:11112222:0,:0l A x B y C l A x B y C ++=++=,①1l ∥2l ⇔ 122112211221A B A B B C B C =≠≠且或A C A C ,当(A ,B ,C 不为0时)212121C C B B A A ≠= ②1l ⊥2l ⇔12120A A B B +=③重合:A 1B 2=A 2B 1且B 1C 2=B 2C 1或A 1C 2=A 2C 1,212121C C B B A A == ④相交:A 1B 2≠A 2B 1 ,2121B B A A ≠ 二、方程与公式:1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可; ④截距式:1=+by a x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0在距离公式当中会经常用到直线的“一般式方程”。
必修2初中数学第三章直线与方程知识点
直线与方程知识点一、基础知识回顾1.倾斜角与斜率 知识点1:当直线l 与x 轴相交时, x 轴正方向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.注意: 当直线与x 轴平行或重合时,我们规定它的倾斜角为0度.知识点2:直线的倾斜角(90)αα≠︒的正切值叫做这条直线的斜率.记为tan k α=. 注意: 当直线的倾斜角90οα=时,直线的斜率是不存在的知识点3:已知直线上两点111222(,),(,)P x y P x y 12()x x ≠的直线的斜率公式:2121y y k x x -=-. 知识点4:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即12//l l ⇔1k =2k .知识点5:两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直.即12l l ⊥⇔121k k =-⇔121k k =-注意:1.1212//l l k k ⇔=或12,l l 的斜率都不存在且不重合.2.12121l l k k ⊥⇔=-或10k =且2l 的斜率不存在,或20k =且1l 的斜率不存在. 2.直 线 的 方 程知识点6:已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程. 注意:⑴x 轴所在直线的方程是 ,y 轴所在直线的方程是 . ⑵经过点000(,)P x y 且平行于x 轴(即垂直于y 轴)的直线方程是 . ⑶经过点000(,)P x y 且平行于y 轴(即垂直于x 轴)的直线方程是 . 知识点7:直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距.直线y kx b =+叫做直线的斜截式方程.注意:截距b 就是函数图象与y 轴交点的纵坐标.知识点8:已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为1112122121(,)y y x x x x y y y y x x --=≠≠--,由于这个直线方程由两点确定,叫做直线的两点式方程. 知识点9:已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程为1=+bya x ,叫做直线的截距式方程. 注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.知识点10:关于,x y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)叫做直线的一般式方程. 注意:(1)直线一般式能表示平面内的任何一条直线(2)点00(,)x y 在直线0Ax By C ++=上⇔00Ax By +0C += 3、直线的交点坐标与距离知识点11: 两直线的交点问题.一般地,将两条直线的方程联立,得方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩,若方程组有唯一解,则两直线相交;若方程组有无数组解,则两直线重合;若方程组无解,则两直线平行.知识点12:已知平面上两点111222(,),(,)P x y P x y ,则12PP =特殊地:(,)P x y 与原点的距离为OP 知识点13:已知点00(,)P x y 和直线:0l Ax By C ++=,则点P 到直线l 的距离为:d =.知识点14:已知两条平行线直线1l 10Ax By C ++=,2:l 20Ax By C ++=,则1l 与2l 的距离为d =知识点15:巧妙假设直线方程:(1)与10Ax By C ++=平行的直线可以假设成:20Ax By C ++=(C 1和C 2不相等) (2)与0Ax By C ++=垂直的直线可以假设成:Bx -Ay+m=0 (3)过1l :A 1x+B 1y+C 1=0和2:l A 2x+B 2y+C 2=0交点的直线可以假设成A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2)=0(该方程不包括直线2:l )知识点16:1l :A 1x+B 1y+C 1=0和2:l A 2x+B 2y+C 2=0垂直等价于:A 1A 2+B 1B 2=0(A 1和B 1不全为零;A 2和B 2不全为零;)知识点17:中点坐标公式:1122(,),(,)A x y B x y ,则AB 的中点(,)M x y ,则2121,22x x y y x y ++==. 例题解析例1. 在第一象限的ABC ∆中,(1,1),(5,1)A B ,60,45O O A B ∠=∠=.求 ⑴AB 边的方程;⑵AC 和BC 所在直线的方程.例2.点(3,9)关于直线3100x y +-=对称的点的坐标是( ). A .(1,3)-- B.(17,9)- C .(1,3)- D .(17,9)-思考:(1)点关于点的对称点如何求? (2)线关于点的对称线如何求? (3)线关于线的对称线如何求?例3. 求经过直线3260x y ++=和2570x y +-=的交点,且在两坐标轴上的截距相等的直线方程.例4.方程(1)210()a x y a a R --++=∈所表示的直线( ). A .恒过定点(2,3)- B .恒过定点(2,3) C .恒过点(2,3)-和(2,3) D .都是平行直线 例5.已知直线12:220,:1l x ay a l ax y +--=+-a -0=. ⑴若12//l l ,试求a 的值;⑵若12l l ⊥,试求a 的值例6 .已知两直线1:40l ax by -+=,2:(1)l a x y -+0b +=,求分别满足下列条件的,a b 的值. ⑴直线1l 过点(3,1)--,并且直线1l 与直线2l 垂直;⑵直线1l 与直线2l 平行,并且坐标原点到12,l l 的距离相等.例7. 过点(4,2)P 作直线l 分别交x 轴、y 轴正半轴于,A B 两点,当AOB ∆面积最小时,求直线l 的方程.例8点P(x,y)在x+y-4=0上,则x 2+y 2最小值为多少?巩固练习:1.已知点(3,)m 到直线40x -=的距离等于1,则m =( ).A B . C . D 2.已知(3,)P a 在过(2,1)M -和(3,4)N -的直线上,则a = .3.将直线2)y x =-绕点(2,0)按顺时针方向旋转30o ,所得的直线方程是 .4.两平行直线12,l l 分别过点1(1,0)P 和(0,5)P , ⑴若1l 与2l 的距离为5,求两直线的方程; ⑵设1l 与2l 之间的距离是d ,求d 的取值范围。
高中数学必修第三章《直线与方程》知识点总结与练习
第八章平面解析几何第一节直线的倾斜角与斜率、直线的方程[知识能否忆起]一、直线的倾斜角与斜率1.直线的倾斜角(1)定义:x轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角.当直线与x轴平行或重合时,规定它的倾斜角为0°.(2)倾斜角的范围为[0,π)_.2.直线的斜率(1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即k=tan_α,倾斜角是90°的直线没有斜率.(2)过两点的直线的斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k==.二、直线方程的形式及适用条件1.(教材习题改编)直线x+y+m=0(m∈k)的倾斜角为()A.30°B.60°C.150°D.120°解析:选C由k=tanα=-,α∈[0,π)得α=150°.2.(教材习题改编)已知直线l过点P(-2,5),且斜率为-,则直线l的方程为() A.3x+4y-14=0 B.3x-4y+14=0C.4x+3y-14=0 D.4x-3y+14=0解析:选A由y-5=-(x+2),得3x+4y-14=0.3.过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或4解析:选A由1=,得m+2=4-m,m=1.4.(2012·长春模拟)若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为________.解析:k AC==1,k AB==a-3.由于A,B,C三点共线,所以a-3=1,即a=4.答案:45.若直线l过点(-1,2)且与直线2x-3y+4=0垂直,则直线l的方程为________.解析:由已知得直线l的斜率为k=-.所以l的方程为y-2=-(x+1),即3x+2y-1=0.答案:3x+2y-1=01.求直线方程时要注意判断直线斜率是否存在,每条直线都有倾斜角,但不一定每条直线都存在斜率.2.由斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.用截距式写方程时,应先判断截距是否为0,若不确定,则需要分类讨论.典题导入[例1](1)(2012·岳阳模拟)经过两点A(4,2y+1),B(2,-3)的直线的倾斜角为,则y=()A.-1B.-3C.0 D.2(2)(2012·苏州模拟)直线x cosθ+y+2=0的倾斜角的范围是________.[自主解答](1)tan===y+2,因此y+2=-=-3.(2)由题知k=-cosθ,故k∈,结合正切函数的图象,当k∈时,直线倾斜角α∈,当k ∈时,直线倾斜角α∈,故直线的倾斜角的范围是∪.[答案](1)B(2)∪由题悟法1.求倾斜角的取值范围的一般步骤:(1)求出斜率k=tanα的取值范围;(2)利用三角函数的单调性,借助图象或单位圆数形结合,确定倾斜角α的取值范围.2.求倾斜角时要注意斜率是否存在.以题试法1.(2012·哈尔滨模拟)函数y=a sin x-b cos x的一条对称轴为x=,则直线l:ax-by+c =0的倾斜角为()A.45°B.60°C.120°D.135°解析:选D由函数y=f(x)=a sin x-b cos x的一条对称轴为x=知,f(0)=f,即-b=a,则直线l的斜率为-1,故倾斜角为135°.2.(2012·金华模拟)已知点A(1,3),B(-2,-1).若直线l:y=k(x-2)+1与线段AB相交,则k的取值范围是()B.(-∞,-2]C.(-∞,-2]∪解析:选D由题意知直线l恒过定点P(2,1),如右图.若l 与线段AB相交,则k PA≤k≤k PB.∵k PA=-2,k PB=,∴-2≤k≤.直线方程典题导入[例2](1)过点(1,0)且与直线x-2y-2=0平行的直线方程是________________.(2)(2012·东城模拟)若点P(1,1)为圆(x-3)2+y2=9的弦MN的中点,则弦MN所在直线的方程为______________.[自主解答](1)设所求直线方程为x-2y+m=0,由直线经过点(1,0),得1+m=0,m =-1.则所求直线方程为x-2y-1=0.(2)由题意得,×k MN=-1,所以k MN=2,故弦MN所在直线的方程为y-1=2(x-1),即2x-y-1=0.[答案](1)x-2y-1=0(2)2x-y-1=0由题悟法求直线方程的方法主要有以下两种:(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程;(2)待定系数法:先设出直线方程,再根据已知条件求出待定系数,最后代入求出直线方程.以题试法3.(2012·龙岩调研)已知△ABC中,A(1,-4),B(6,6),C(-2,0).求:(1)△ABC中平行于BC边的中位线所在直线的一般式方程和截距式方程;(2)BC边的中线所在直线的一般式方程,并化为截距式方程.解:(1)平行于BC边的中位线就是AB,AC中点的连线.因为线段AB,AC中点坐标分别为,,所以这条直线的方程为=,整理一般式方程为得6x-8y-13=0,截距式方程为-=1.(2)因为BC边上的中点为(2,3),所以BC边上的中线所在直线的方程为=,即一般式方程为7x-y-11=0,截距式方程为-=1.典题导入[例3](2012·开封模拟)过点P(3,0)作一直线,使它夹在两直线l1:2x-y-2=0与l2:x +y+3=0之间的线段AB恰被点P平分,求此直线的方程.[自主解答]法一:设点A(x,y)在l1上,点B(x B,y B)在l2上.由题意知则点B(6-x,-y),解方程组得则k==8.故所求的直线方程为y=8(x-3),即8x-y-24=0.法二:设所求的直线方程为y=k(x-3),点A,B的坐标分别为(x A,y A),(x B,y B),由解得由解得∵P(3,0)是线段AB的中点,∴y A+y B=0,即+=0,∴k2-8k=0,解得k=0或k=8.若k=0,则x A=1,x B=-3,此时=≠3,∴k=0舍去,故所求的直线方程为y=8(x-3),即8x-y-24=0.由题悟法解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.以题试法4.(2012·东北三校联考)已知直线l过点M(2,1),且分别与x轴,y轴的正半轴交于A,B两点,O为原点.(1)当△AOB面积最小时,求直线l的方程;(2)当|MA|·|MB|取得最小值时,求直线l的方程.解:(1)设直线l的方程为y-1=k(x-2)(k<0),A,B(0,1-2k),△AOB的面积S=(1-2k)=≥(4+4)=4.当且仅当-4k=-,即k=-时,等号成立.故直线l的方程为y-1=-(x-2),即x+2y-4=0.(2)∵|MA|=,|MB|=,∴|MA|·|MB|=·=2≥2×2=4,当且仅当k2=,即k=-1时取等号,故直线方程为x+y-3=0.[典例](2012·西安模拟)设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.[尝试解题](1)当直线过原点时,该直线在x轴和y轴上的截距为零,此时截距相等.故a=2,方程即为3x+y=0.当直线不过原点时,由截距存在且均不为0,得=a-2,即a+1=1,故a=0,方程即为x+y+2=0.综上,l的方程为3x+y=0或x+y+2=0.(2)将l的方程化为y=-(a+1)x+a-2,则或∴a≤-1.综上可知,a的取值范围是(-∞,-1].——————[易错提醒]———————————————————————————1.与截距有关的直线方程求解时易忽视截距为零的情形.如本例中的截距相等,当直线在x轴与y轴上的截距为零时也满足.2.常见的与截距问题有关的易误点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形.注意分类讨论思想的运用.——————————————————————————————————————针对训练过点M(3,-4)且在两坐标轴上的截距互为相反数的直线方程为________________.解析:①当过原点时,直线方程为y=-x;②当不过原点时,设直线方程为+=1,即x-y=a.代入点(3,-4),得a=7.即直线方程为x-y-7=0.答案:y=-x或x-y-7=01.若k,-1,b三个数成等差数列,则直线y=kx+b必经过定点()A.(1,-2)B.(1,2)C.(-1,2) D.(-1,-2)解析:选A因为k,-1,b三个数成等差数列,所以k+b=-2,即b=-2-k,于是直线方程化为y=kx-k-2,即y+2=k(x-1),故直线必过定点(1,-2).2.直线2x+11y+16=0关于点P(0,1)对称的直线方程是()A.2x+11y+38=0 B.2x+11y-38=0C.2x-11y-38=0 D.2x-11y+16=0解析:选B因为中心对称的两直线互相平行,并且对称中心到两直线的距离相等,故可设所求直线的方程为2x+11y+C=0,由点到直线的距离公式可得=,解得C=16(舍去)或C=-38.3.(2012·衡水模拟)直线l1的斜率为2,l1∥l2,直线l2过点(-1,1)且与y轴交于点P,则P点坐标为()A.(3,0) B.(-3,0)C.(0,-3) D.(0,3)解析:选D∵l1∥l2,且l1斜率为2,∴l2的斜率为2.又l2过(-1,1),∴l2的方程为y-1=2(x+1),整理即得y=2x+3.令x=0,得P(0,3).4.(2013·佛山模拟)直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c 应满足()A.ab>0,bc<0 B.ab>0,bc>0C.ab<0,bc>0 D.ab<0,bc<0解析:选A由于直线ax+by+c=0经过第一、二、四象限,所以直线存在斜率,将方程变形为y=-x-,易知-<0且->0,故ab>0,bc<0.5.将直线y=3x绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为() A.y=-x+B.y=-x+1C.y=3x-3 D.y=x+1解析:选A将直线y=3x绕原点逆时针旋转90°得到直线y=-x,再向右平移1个单位,所得直线的方程为y=-(x-1),即y=-x+.6.已知点A(1,-2),B(m,2),且线段AB的垂直平分线的方程是x+2y-2=0,则实数m的值是()A.-2 B.-7C.3 D.1解析:选C线段AB的中点代入直线x+2y-2=0中,得m=3.7.(2013·贵阳模拟)直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.解析:设直线l的斜率为k,则方程为y-2=k(x-1),在x轴上的截距为1-,令-3<1-<3,解得k<-1或k>.答案:(-∞,-1)∪8.(2012·常州模拟)过点P(-2,3)且在两坐标轴上的截距相等的直线l的方程为________.解析:直线l过原点时,l的斜率为-,直线方程为y=-x;l不过原点时,设方程为+=1,将点(-2,3)代入,得a=1,直线方程为x+y=1.综上,l的方程为x+y-1=0或2y+3x=0.答案:x+y-1=0或3x+2y=09.(2012·天津四校联考)不论m取何值,直线(m-1)x-y+2m+1=0恒过定点________.解析:把直线方程(m-1)x-y+2m+1=0整理得(x+2)m-(x+y-1)=0,则得答案:(-2,3)10.求经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l的方程.解:设所求直线方程为+=1,由已知可得解得或故直线l的方程为2x+y+2=0或x+2y-2=0.11.(2012·莆田月考)已知两点A(-1,2),B(m,3).(1)求直线AB的方程;(2)已知实数m∈,求直线AB的倾斜角α的取值范围.解:(1)当m=-1时,直线AB的方程为x=-1;当m≠-1时,直线AB的方程为y-2=(x+1).(2)①当m=-1时,α=;②当m≠-1时,m+1∈∪(0,],∴k=∈(-∞,-]∪,∴α∈∪.综合①②知,直线AB的倾斜角α∈.12.如图,射线OA、OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA、OB于A、B两点,当AB的中点C恰好落在直线y=x上时,求直线AB的方程.解:由题意可得k OA=tan45°=1,k OB=tan(180°-30°)=-,所以直线l OA:y=x,l OB:y=-x.设A(m,m),B(-n,n),所以AB的中点C,由点C在y=x上,且A、P、B三点共线得解得m=,所以A(,).又P(1,0),所以k AB=k AP==,所以l AB:y=(x-1),即直线AB的方程为(3+)x-2y-3-=0.1.若直线l:y=kx-与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是()解析:选B由解得∵两直线交点在第一象限,∴解得k>.∴直线l的倾斜角的范围是.2.(2012·洛阳模拟)当过点P(1,2)的直线l被圆C:(x-2)2+(y-1)2=5截得的弦最短时,直线l的方程为________________.解析:易知圆心C的坐标为(2,1),由圆的几何性质可知,当圆心C与点P的连线与直线l垂直时,直线l被圆C截得的弦最短.由C(2,1),P(1,2)可知直线PC的斜率为=-1,设直线l的斜率为k,则k×(-1)=-1,得k=1,又直线l过点P,所以直线l的方程为x -y+1=0.答案:x-y+1=03.已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.解:(1)证明:法一:直线l的方程可化为y=k(x+2)+1,故无论k取何值,直线l总过定点(-2,1).法二:设直线过定点(x0,y0),则kx0-y0+1+2k=0对任意k∈R恒成立,即(x0+2)k-y0+1=0恒成立,∴x0+2=0,-y0+1=0,解得x0=-2,y0=1,故直线l总过定点(-2,1).(2)直线l的方程为y=kx+2k+1,则直线l在y轴上的截距为2k+1,要使直线l不经过第四象限,则解得k的取值范围是[0,+∞).(3)依题意,直线l在x轴上的截距为-,在y轴上的截距为1+2k,∴A,B(0,1+2k).又-<0且1+2k>0,∴k>0.故S=|OA||OB|=×(1+2k)=≥(4+4)=4,当且仅当4k=,即k=时,取等号.故S的最小值为4,此时直线l的方程为x-2y+4=0.1.(2012·郑州模拟)已知直线l1的方向向量为a=(1,3),直线l2的方向向量为b=(-1,k).若直线l2经过点(0,5)且l1⊥l2,则直线l2的方程为()A.x+3y-5=0 B.x+3y-15=0C.x-3y+5=0 D.x-3y+15=0解析:选B∵kl1=3,kl2=-k,l1⊥l2,∴k=,l2的方程为y=-x+5,即x+3y-15=0.2.(2012·吴忠调研)若过点P(1-a,1+a)与Q(3,2a)的直线的倾斜角为钝角,则实数a的取值范围是________.解析:k=tanα==.∵α为钝角,∴<0,即(a-1)(a+2)<0,故-2<a<1.答案:(-2,1)3.已知直线l过点P(3,2),且与x轴,y轴的正半轴分别交于A,B 两点如图,求△ABO的面积的最小值及此时直线l的方程.解:设A(a,0),B(0,b),(a>0,b>0),则直线l的方程为+=1,∵l过点P(3,2),∴+=1.∴1=+≥2,即ab≥24.∴S△ABO=ab≥12.当且仅当=,即a=6,b=4时,△ABO的面积最小,最小值为12.此时直线l的方程为+=1.即2x+3y-12=0.第二节两直线的位置关系[知识能否忆起]一、两条直线的位置关系设两条直线的方程是l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则两条直线相交,此解就是交点坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.三、几种距离1.两点间的距离平面上的两点A(x1,y1),B(x2,y2)间的距离公式:d(A,B)=|AB|=.2.点到直线的距离点P(x1,y1)到直线l:Ax+By+C=0的距离d=.3.两条平行线间的距离两条平行线Ax+By+C1=0与Ax+By+C2=0间的距离d=.[小题能否全取]1.(教材习题改编)已知l1的倾斜角为45°,l2经过点P(-2,-1),Q(3,m).若l1⊥l2,则实数m为()A.6B.-6C.5 D.-5解析:选B由已知得k1=1,k2=.∵l1⊥l2,∴k1k2=-1,∴1×=-1,即m=-6.2.(教材习题改编)点(0,-1)到直线x+2y=3的距离为()C.5解析:选B d==.3.点(a,b)关于直线x+y+1=0的对称点是()A.(-a-1,-b-1) B.(-b-1,-a-1)C.(-a,-b) D.(-b,-a)解析:选B设对称点为(x′,y′),则解得x′=-b-1,y′=-a-1.4.l1:x-y=0与l2:2x-3y+1=0的交点在直线mx+3y+5=0上,则m的值为() A.3 B.5C.-5 D.-8解析:选D由得l1与l2的交点坐标为(1,1).所以m+3+5=0,m=-8.5.与直线4x+3y-5=0平行,并且到它的距离等于3的直线方程是______________________.解析:设所求直线方程为4x+3y+m=0,由3=,得m=10或-20.答案:4x+3y+10=0或4x+3y-20=01.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在,两条直线都有斜率时,可根据斜率的关系作出判断,无斜率时,要单独考虑.2.在使用点到直线的距离公式或两平行线间的距离公式时,直线方程必须先化为Ax+By+C=0的形式,否则会出错.典题导入[例1](2012·浙江高考)设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x +(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[自主解答]由a=1,可得l1∥l2;反之,由l1∥l2,可得a=1或a=-2.[答案] A在本例中若l1⊥l2,试求a.解:∵l1⊥l2,∴a×1+2×(a+1)=0,∴a=-.由题悟法1.充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l1和l2,l1∥l2?k1=k2,l1⊥l2?k1·k2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.2.(1)若直线l1和l2有斜截式方程l1:y=k1x+b1,l2:y=k2x+b2,则直线l1⊥l2的充要条件是k1·k2=-1.(2)设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0.则l1⊥l2?A1A2+B1B2=0.以题试法1.(2012·大同模拟)设a,b,c分别是△ABC中角A,B,C所对的边,则直线x sin A+ay+c=0与bx-y sin B+sin C=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直解析:选C由已知得a≠0,sin B≠0,所以两直线的斜率分别为k1=-,k2=,由正弦定理得k1·k2=-·=-1,所以两条直线垂直.典题导入[例2](2012·浙江高考)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离.已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=________.[自主解答]因曲线C2:x2+(y+4)2=2到直线l:y=x的距离为-=2-=,所以曲线C1与直线l不能相交,故x2+a>x,即x2+a-x>0.设C1:y=x2+a上一点为(x0,y0),则点(x0,y0)到直线l的距离d===≥=,所以a =.[答案]由题悟法1.点到直线的距离问题可直接代入距离公式去求.注意直线方程为一般式.2.点到与坐标轴垂直的直线的距离,可用距离公式求解.也可用如下方法去求解:(1)点P(x0,y0)到与y轴垂直的直线y=a的距离d=|y0-a|.(2)点P(x0,y0)到与x轴垂直的直线x=b的距离d=|x0-b|.以题试法2.(2012·通化模拟)若两平行直线3x-2y-1=0,6x+ay+c=0之间的距离为,则c的值是________.解析:由题意得=≠,得a=-4,c≠-2,则6x+ay+c=0可化为3x-2y+=0,则=,解得c=2或-6.答案:2或-6典题导入[例3](2012·成都模拟)在直角坐标系中,A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后,再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.2B.6C.3 D.2[自主解答]如图,设点P关于直线AB,y轴的对称点分别为D,C,易求得D(4,2),C(-2,0),由对称性知,D,M,N,C共线,则△PMN的周长=|PM|+|MN|+|PN|=|DM|+|MN|+|NC|=|CD|==2即为光线所经过的路程.[答案] A由题悟法对称问题主要包括中心对称和轴对称(1)中心对称①点P(x,y)关于O(a,b)的对称点P′(x′,y′)满足②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A(a,b)关于直线Ax+By+C=0(B≠0)的对称点A′(m,n),则有②直线关于直线的对称可转化为点关于直线的对称问题来解决.以题试法3.(2012·南京调研)与直线3x-4y+5=0关于x轴对称的直线方程为()A.3x+4y+5=0B.3x+4y-5=0C.-3x+4y-5=0D.-3x+4y+5=0解析:选A与直线3x-4y+5=0关于x轴对称的直线方程是3x-4(-y)+5=0,即3x+4y+5=0.[典例](2012·银川一中月考)求经过直线l1:3x+2y-1=0和l2:5x+2y+1=0的交点,且垂直于直线l3:3x-5y+6=0的直线l的方程.[常规解法]解方程组得l1,l2的交点坐标为(-1,2).由l3的斜率得l的斜率为-.则由点斜式方程可得l的方程为y-2=-(x+1)即5x+3y-1=0.——————[高手支招]———————————————————————————运用直线系方程,有时会给解题带来方便,常见的直线系方程有:(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C);(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+m=0(m∈R);(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y +C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.——————————————————————————————————————[巧思妙解]由于l过l1,l2的交点,故可设l的方程为3x+2y-1+λ(5x+2y+1)=0将其整理,得(3+5λ)x+(2+2λ)y+(-1+λ)=0,其斜率-=-,得λ=.代入直线系方程得l方程5x+3y-1=0.针对训练求与直线2x+6y-11=0平行,且与坐标轴围成的三角形面积为6的直线方程.解:由题意,设所求直线方程为2x+6y+b=0.令x=0,得y=-;令y=0,得x=-,则直线2x+6y+b=0与坐标轴的交点坐标分别为,.又所围成的三角形面积S=··=·=6,所以b2=144,所以b=±12.故所求直线方程为2x+6y+12=0或2x+6y-12=0.即为x+3y+6=0或x+3y-6=0.1.(2012·海淀区期末)已知直线l1:k1x+y+1=0与直线l2:k2x+y-1=0,那么“k1=k2”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C由k1=k2,1≠-1,得l1∥l2;由l1∥l2知k1×1-k2×1=0,所以k1=k2.故“k1=k2”是“l1∥l2”的充要条件.2.当0<k<时,直线l1:kx-y=k-1与直线l2:ky-x=2k的交点在()A.第一象限B.第二象限C.第三象限D.第四象限解析:选B解方程组得两直线的交点坐标为,因为0<k<,所以<0,>0,故交点在第二象限.3.(2012·长沙检测)已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为()C.4 D.8解析:选B∵直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,即为3x+4y+=0,∴直线l1与直线l2的距离为=.4.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过定点()A.(0,4) B.(0,2)C.(-2,4) D.(4,-2)解析:选B由于直线l1:y=k(x-4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2).又由于直线l1:y=k(x-4)与直线l2关于点(2,1)对称,故直线l2恒过定点(0,2).5.已知直线l1:y=2x+3,若直线l2与l1关于直线x+y=0对称,又直线l3⊥l2,则l3的斜率为()A.-2 B.-D.2解析:选A依题意得,直线l2的方程是-x=2(-y)+3,即y=x+,其斜率是,由l3⊥l2,得l3的斜率等于-2.6.(2012·岳阳模拟)直线l经过两直线7x+5y-24=0和x-y=0的交点,且过点(5,1).则l的方程是()A.3x+y+4=0 B.3x-y+4=0C.x+3y-8=0 D.x-3y-4=0解析:选C设l的方程为7x+5y-24+λ(x-y)=0,即(7+λ)x+(5-λ)y-24=0,则(7+λ)×5+5-λ-24=0.解得λ=-的方程为x+3y-8=0.7.(2012·郑州模拟)若直线l1:ax+2y=0和直线l2:2x+(a+1)y+1=0垂直,则实数a 的值为________.解析:由2a+2(a+1)=0得a=-.答案:-8.已知平面上三条直线x+2y-1=0,x+1=0,x+ky=0,如果这三条直线将平面划分为六部分,则实数k的所有取值为________.解析:若三条直线有两条平行,另外一条与这两条直线相交,则符合要求,此时k=0或2;若三条直线交于一点,也符合要求,此时k=1,故实数k的所有取值为0,1,2.答案:0,1,29.(2013·临沂模拟)已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是________.解析:由题意得,点到直线的距离为=.又≤3,即|15-3a|≤15,解得,0≤a≤10,所以a∈[0,10].答案:[0,10]10.(2013·舟山模拟)已知+=1(a>0,b>0),求点(0,b)到直线x-2y-a=0的距离的最小值.解:点(0,b)到直线x-2y-a=0的距离为d==(a+2b)=≥(3+2)=,当且仅当a2=2b2,a+b=ab,即a=1+,b=时取等号.所以点(0,b)到直线x-2y-a=0的距离的最小值为.11.(2012·荆州二检)过点P(1,2)的直线l被两平行线l1:4x+3y+1=0与l2:4x+3y+6=0截得的线段长|AB|=,求直线l的方程.解:设直线l的方程为y-2=k(x-1),由解得A;由解得B.∵|AB|=,∴=,整理,得7k2-48k-7=0,解得k1=7或k2=-.因此,所求直线l的方程为x+7y-15=0或7x-y-5=0.12.已知直线l:3x-y+3=0,求:(1)点P(4,5)关于l的对称点;(2)直线x-y-2=0关于直线l对称的直线方程.解:设P(x,y)关于直线l:3x-y+3=0的对称点为P′(x′,y′).∵k PP′·k l=-1,即×3=-1.①又PP′的中点在直线3x-y+3=0上,∴3×-+3=0.②由①②得(1)把x=4,y=5代入③④得x′=-2,y′=7,∴P(4,5)关于直线l的对称点P′的坐标为(-2,7).(2)用③④分别代换x-y-2=0中的x,y,得关于l的对称直线方程为--2=0,化简得7x+y+22=0.1.点P到点A(1,0)和直线x=-1的距离相等,且点P到直线y=x的距离为,这样的点P的个数是()A.1 B.2C.3 D.4解析:选C∵点P到点A和定直线距离相等,∴P点轨迹为抛物线,方程为y2=4x.设P(t2,2t),则=,解得t1=1,t2=1+,t3=1-,故P点有三个.2.(2012·福建模拟)若点(m,n)在直线4x+3y-10=0上,则m2+n2的最小值是() A.2 B.2C.4 D.2解析:选C设原点到点(m,n)的距离为d,所以d2=m2+n2,又因为(m,n)在直线4x +3y-10=0上,所以原点到直线4x+3y-10=0的距离为d的最小值,此时d==2,所以m2+n2的最小值为4.3.在直线l:3x-y-1=0上求一点P,使得P到A(4,1)和B(0,4)的距离之差最大.解:如图所示,设点B关于l的对称点为B′,连接AB′并延长交l 于P,此时的P满足|PA|-|PB|的值最大.设B′的坐标为(a,b),则k BB′·k l=-1,即3·=-1.则a+3b-12=0.①又由于线段BB′的中点坐标为,且在直线l上,则3×--1=0,即3a-b-6=0.②解①②,得a=3,b=3,即B′(3,3).于是AB′的方程为=,即2x+y-9=0.解得即l与AB′的交点坐标为P(2,5).1.点(1,cosθ)(其中0≤θ≤π)到直线x sinθ+y cosθ-1=0的距离是,那么θ等于()或或解析:选B由已知得=,即|sinθ-sin2θ|=,∴4sin2θ-4sinθ-1=0或4sin2θ-4sinθ+1=0,∴sinθ=或sinθ=.∵0≤θ≤π,∴0≤sinθ≤1,∴sinθ=,即θ=或.2.已知直线l:x-y-1=0,l1:2x-y-2=0.若直线l2与l1关于l对称,则l2的方程是()A.x-2y+1=0 B.x-2y-1=0C.x+y-1=0 D.x+2y-1=0解析:选B l1与l2关于l对称,则l1上任一点关于l的对称点都在l2上,故l与l1的交点(1,0)在l2上.又易知(0,-2)为l1上一点,设其关于l的对称点(x,y),则得即(1,0),(-1,-1)为l2上两点,可得l2方程为x-2y-1=0.3.光线沿直线l1:x-2y+5=0射入,遇直线l:3x-2y+7=0后反射,求反射光线所在的直线方程.解:法一:由得即反射点M的坐标为(-1,2).又取直线x-2y+5=0上一点P(-5,0),设P关于直线l的对称点P′(x0,y0),由PP′⊥l可知,k PP′=-=.而PP′的中点Q的坐标为,Q点在l上,即3·-2·+7=0.由得根据直线的两点式方程可得所求反射光线所在直线的方程为29x-2y+33=0.法二:设直线x-2y+5=0上任意一点P(x0,y0)关于直线l的对称点为P′(x,y),则=-,又PP′的中点Q在l上,即3×-2×+7=0,由可得P点的坐标为x0=,y0=,代入方程x-2y+5=0中,化简得29x-2y+33=0,故所求反射光线所在的直线方程为29x-2y+33=0.。
数学三单元知识点归纳总结
数学三单元知识点归纳总结一、直线方程与图象1. 直线的方程(1) 点斜式:直线过点(x_1, y_1), 且斜率为k,方程为y-y_1 = k(x-x_1)(2) 斜截式:直线与y轴交点为b,斜率为k,方程为y=kx+b(3) 一般式:Ax+By+C=0,其中A、B、C是常数且A与B不同时为零。
2. 直线图象的性质(1) 直线上两点的斜率相等(2) 两条垂直直线的斜率乘积为-1(3) 直线的斜率为0表示水平直线,斜率不存在表示垂直直线。
3. 直线的距离公式点P(x_0, y_0)到Ax+By+C=0的距离为|Ax_0+By_0+C|/√(A^2+B^2)4. 直线的倾角公式直线的倾角tanθ为-m,其中m为直线的斜率。
5. 直线的平行与垂直关系直线的斜率相等且不相等表示两条直线平行;直线的斜率之积为-1时表示两条直线垂直。
二、二次函数与图象1. 二次函数的标准式f(x) = ax^2+bx+c,其中a≠0。
2. 二次函数的图象(1) 抛物线开口方向与a的关系:a>0时,抛物线开口向上;a<0时,抛物线开口向下。
(2) 抛物线的顶点坐标为(-b/2a, f(-b/2a))。
(3) 抛物线与x轴的交点为实数解的零点。
3. 二次函数的性质(1) 判别式Δ=b^2-4ac,当Δ>0时有两个不相等实数根;当Δ=0时有两个相等实数根;当Δ<0时没有实数根。
(2) 函数图象在顶点处对称轴上。
4. 二次函数的平移(1) 横向平移:f(x)移动到f(x-h)表示向右平移h个单位;f(x)移动到f(x+h)表示向左平移h 个单位。
(2) 纵向平移:f(x)移动到f(x)+k表示向上平移k个单位;f(x)移动到f(x)-k表示向下平移k个单位。
5. 二次函数的应用(1) 求最值:当a>0时,函数有最小值;当a<0时,函数有最大值。
(2) 求零点:利用二次方程求解,即ax^2+bx+c=0。
必修2-第三章-直线与方程-小结与复习教案.docx
《直线与方程》小结与复习一、【教学目标】重点:掌握直线方程的五种形式,两条直线的位置关系.难点:点关于直线的对称、直线关于点的对称、直线关于直线的对称这类问题的解决.能力点:培养学生通过对直线位置关系的分析研究进一步提高数形结合以及分析问题、解决问题的能力.教育点:培养学生转化思想、数形结合思想和分类讨论思想的运用.自主探究点: 1.由直线方程的各种形式去判断两直线的位置关系;2.能根据直线之间的位置关系准确的求出直线方程;3.能够深入研究对称问题的实质,利用对称性解决相关问题.考试点 :两直线的位置关系判断在高考中经常出现,直线与圆锥曲线结合是高考的常见题目.易错点:判断两条直线的平行与垂直忽略斜率问题导致出错.易混点:用一般式判断两直线的位置关系时平行与垂直的条件.拓展点 :中点问题、对称问题、距离问题中涵盖的直线位置关系的分析研究.学法与教具1.学法:讲练结合,自主探究2.教具:多媒体课件,三角板二、【知识梳理】定义直线的倾斜角范围直线的倾斜角与斜率定义直直线的斜率线公式的点斜式方程斜截式直线方程的五种形式两点式截距式一般式平行的判定方法平行与垂直的判定垂直的判定方法两直线相交求交点坐标点与点的距离两条直线的位置关系三种距离计算点与线的距离平行线的距离点关于直线对称直线对称问题直线关于直线对称直线关于点对称二、【知识梳理】1.直线的倾斜角与斜率( 1)直线的倾斜角①定义:当直线 l 与x轴相交时,取x轴作为基准,x 轴________与直线l________方向之间所成的角叫做直线 l 的倾斜角.当直线l 与x轴平行或重合时,规定它的倾斜角为________.②倾斜角的范围为 ______________.( 2)直线的斜率①定义:一条直线的倾斜角的 ________叫做这条直线的斜率,斜率常用小写字母k 表示,即k________,倾斜角是90的直线斜率不存在.②过两点的直线的斜率公式:经过两点P1( x1 , y1) ,P2 ( x2 , y2 ) ( x1x2 ) 的直线的斜率公式为k______________________ .当x1x2时,直线的斜率 __________ .( 3)直线的倾斜角与斜率k的关系当为锐角时,越大k 越____;当为钝角时,越大k越 ____.2.直线方程的五种基本形式名称几何条件方程局限性点斜式过点x0 , y0,斜率为k不含 __________的直线斜率为 k ,纵截距为b不含 __________的直线斜截式过两点x1 , y1和 x2 , y2两点式不含 __________的直线( x1x2 , y1y2)横截距为 a ,纵截距为截距式0不含 ________和 _______的直线b ab一般式A, B, C A2B20平面直角坐标系内的直线都适用答案: 1.(1)①正向,向上,0;②0180;( 2)①正切值,tan;②y2y1,不存在.(3)大,大.x2x12.y y0k(x x0),y kx b,yy1xx1 ,xy1 , Ax By C 0( A2B20) .y2 y1x2x1 a b垂直于 x 轴;垂直于x轴;垂直于坐标轴;垂直于坐标轴、过原点..3 两条直线平行与垂直的判定( 1)两条直线平行对于两条不重合的直线 l1、 l 2,其斜率分别为k1、 k2,则有 l1 // l 2____________.特别地,当直线的斜率 l1、 l2都不存在时, l1与 l 2________.( 2)两条直线垂直如果两条直线斜率l1、 l2存在,设为 k1、 k2,则 l1l 2____________,当一条直线斜率为零,另一条直线斜率不存在时,两直线________.4.两直线相交交点:直线 l1:A1 x B1 y C1 0 和 l 2:A2 x B2 y C2A1 x B1 y C10 0 的公共点的坐标与方程组B2 y C20A2 x的解一一对应.相交方程组有 __________,交点坐标就是方程组的解;平行方程组 ________;重合方程组有 ______________.5.三种距离公式( 1)点A x1, y1、 B x2 , y2间的距离:AB.( 2)点P x0, y0到直线 l :Ax By C 0 的距离:d.( 3)两平行直线l1:A1x B1 y C10 与 l 2: A2 x B2 y C20 ( C1 C2)间的距离为d______________.6.直线中的对称问题有哪些?(学生讨论)如何求一个点关于直线的对称点?如何求直线关于点的对称直线以及直线关于点的对称直线呢?三、【范例导航】1、两直线间的平行与垂直问题例 1 (1)已知两直线 l 1 : xm 2 y 60 , l 2 : m 2 x 3my 2m 0 ,若 l 1 // l 2 ,求实数 m 的值;( 2)已知两直线 l 1 : ax 2 y 6 0 和 l 2 : xa 1 ya 2 10 .若 l 1 l 2 ,求实数 a 的值.【分析】 (1)充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线 l 1 和 l 2 , l 1 // l 2k 1 k 2 , l 1l 2k 1 k 21 .若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.( 2) ①若直线 l 1 和 l 2 有斜截式方程 l 1 : yk 1 x b 1 , l 2 : y k 2 x b 2 ,则 l 1 l 2k 1 k 21.②设 l 1 : A 1x B 1 y C 1 0, l 2 : A 2 x B 2 y C 2 0 .则: l 1 l 2A 1 A 2B 1B 20 .【解答】 (1)方法一:①当 m0 时, l 1 : x 6 0, l 2 : x 0 , l 1 // l 2 ;②当 m 0 时, l 1 : y1 x6l 2 : y2 m22 m 2,x3 ,m3m由1 2 m 6 2m 2且m 2,m3m3∴1.故所求实数 m 的值为 0 或 1 .方法二 : 直线 l 1 : A 1xB 1 yC 1 0 , l 2 : A 2 x B 2 y C 20 平行的等价条件是:A 1B 2 A 2 B 10且 B 1C 2 B 2C 1 0 或 A 1C 2 A 2C 1 0 ,由所给直线方程可得: 1 3m m 2 m 2 0 且 1 2m 6 m 20 m m 22m 3 0 且 m 3m或1m 的值为 0或 1 .,故所求实数( 2)方法一:由直线 l 1 的方程知其斜率为a,2当 a 1时,直线 l 2 的斜率不存在, l 1 与 l 2 不垂直; 当 a1 时,直线 l2 的斜率为1 ,a 1由 aa1 1a2 .213故所求实数 a 的值为 2.3方法二 :直线 l 1 : A 1 x B 1 y C 10 , l 2 : A 2 x B 2 y C 2 0 垂直的等价条件是 A 1 A 2 B 1B 20 .由所给直线方程可得:a 12 a 1 0a 2 ,故所求实数 a 的值为 2 .3 3【设计意图】掌握两直线平行或垂直的充要条件是关键,平行与垂直的问题转化为方程的系数之间的关系的问题,把几何问题转化为代数的问题,注意斜率存在与否,方法二避免了分类讨论.变式训练 : 已知两直线 l 1 : mx 8y n0 和 l 2 : 2x my 1 0 .试确定 m 、 n 的值,使( 1) l 1 与 l 2 相交于点 P m, 1 ;( 2) l 1 // l 2 ;( 3) l 1 l 2 ,且 l 1 在 y 轴上的截距为 1.答案: ( 1)由题意得:m 2 8 n,解得 m 1,n 7 .2m m 1 0( 2)当 m0时,显然 l 1 不平行于 l 2 ;当 m0 时,由m8 n 得m 2 82 0 ,2 m 1 8 1mn 0m 4 m 4∴2,或.nn 2即 m 4, n2 时或 m4, n 2 时, l 1 // l 2 .( 3)当且仅当 m 28 m 0 ,即 m0 时, l 1n 1,∴ n 8 .l 2 ,又8即 m0 , n 8 时, l 1 l 2 且 l 1 在 y 轴上的截距为 1.2、点到直线距离问题例 2 已知平行四边形的两条边所在直线的方程分别是x y 1 0,3 x y 4 0, 且它的对角线的交点是M (3,3), 求这个平行四边形其他两边所在直线方程.yD【分析】因为斜率相等 ,所以其他两条直线可以设为x y c 10,3 xy c 2 0, 然后利用点到直线的距离公式.【解答】 Q 四边形 ABCD 是平行四边形AB // CDMA设直线 CD 的方程为 x y c 1O由点 M 到直线 AB , CD 的距离相等,得:|3 31| |3 3 c 1 | B12121212解得 c 1 11或 c 1(1舍去)c 111同理,由点 M 到直线 AD , BC 的距离相等,得:|3 3 3 4 | |3 3 3 c 2 |16或 c 2 4(舍去)322322c 211c 2 16 因此,其他两边所在直线的方程是x y 11 0,3 x y 160 .【设计意图 】本题考查了点到直线的距离公式的灵活运用,并且利用平行的直线斜率相等,方程的设法简化运算.变式训练 :已知正方形的中心为点M ( 1,0) ,一条边所在yA的直线的方程是 x 3y 50, 求正方形其他三边所在直线的方程.x 3 y c 1 0, D【分析】本题先设与已知直线平行的直线为M3x y c 20,O另两条都与已知直线垂直,设为BCxxC然后利用点到直线的距离公式.【解答】 Q 四边形 ABCD 是正方形AD // BC由点 M 到直线 AD , BC 的距离相等,得:|( 1) 3 0 5 | | ( 1) 3 0 c 1 |c 1 7或 c 1 5(舍去)12321232c 17AD AB 直线 AB 的方程可设为 3xyc 20,由点 M 到直线 AD , AB 的距离相等|( 1) 3 0 5 | | 3 ( 1) 0 c 2 |c 29或 c 2312323212综合以上得,其余三边所在直线的方程分别是 3x y9 0, x 3 y 10,3 x y 3 0 .3、三角形问题例 3. 已知 ABC 的顶点A(5,1), AB 边上的中线 CM 所在直线方程为 2xy 5 0, AC 边上的高 BH 所在直线方程为 x 2y 5 0 .求:y( 1)顶点 C 的坐标;C( 2)直线 BC 的方程 .【分析】第一问主要是考查设、求直线AC ,熟练解答过程,先设直线AC 为: 2xy c然后代入点 A(5,1) ;第二问考查用先设、求点 B ,然后与点 C 求出直线 BC ,或者设直线 BC 的点斜式方程,再结合中点坐标公式求出斜率 k .O【解答】 (1) 由题意,得直线AC 的方程为 2xy 110 .2 x y 5 0得点 C 的坐标为( 4,3) .解方程组y 11,2 xBB( x 0 , y 0 ), 则 M ( x 05 , y 01) .于是有( 2)解法一:设y 0 12 25 0,即 2x 0y 0 1 0 . 与 x 0 2 y 0 5 0 联立,解得点 x 0 52AHxMB 的坐标为 (-1,-3) .于是直线 BC 的方程为 6x 5y 9 0 .解法二:设直线 BC 的方程为 y 3 k ( x 4) ,即 x 2 y 5 0 , 得 x8k 11 , y 解方程组kx y (4 k 3) 02k 1 因为点 M 是线段 AB 的中点,所以点M 的坐标是 把点 M 的坐标代入直线 CM 的方程,得 18k 162k 1 所以直线 BC 的方程为 6x 5y 9 0 .解法三:设 M (x, y) ,则 B(2 x 5,2 y 1) .kx y 3 4k0 .k 3 . 2k 1 (9k 8 , k 4 ) . 2k 1 2(2 k 1)k 40 . 解得 k6 2(2k 5 .1) 5因为点 B 在直线 BH 上,所以有 2x 5 2(2 y 1) 5 0, 即 x 2 y 4 0 .解方程组x 2 y 4 0 , 得点 M 的坐标为 (2, 1) ,点 B 的坐标为 ( 1, 3) .2x y 5 0所以直线 BC 的方程为 6x 5y 9 0 .【设计意图 】本题借助三角形这个平台,考查了直线方程的求法,设出一个点,利用两点求直线的方程,另外一个方法是设出点斜式方程,求出斜率,但这种方法要考虑斜率存在与否,设出点B ,就避免了考虑 斜率存在的问题,摆出事实,让学生体会各种解法的利弊,解法三也为今后学习相关点代入法打下基础 .变式训练 :在 ABC 中, BC 边上的高所在的直线方程为 x 2 y 1 0 ,角 A 的平分线所在的直线方程为 y 0 ,若点 B 的坐标为 (1,2) ,求 AC 边上的垂直平分线 .【分析】直线问题与三角形问题的结合,全面考查学生的熟练应用,直线关于坐标轴对称时,斜率之间的关系,或者利用点关于坐标轴对称,求出点B 关于 y 0 对称的点 (1, 2) ,也易求直线 AC .【解答】 A 点在直线 BC 的高线上,又在角 A 的平分线上y由x2 y 1 0 ,得 A ( 1,0)y 0B所以 k AB 1,而直线 y0 是角 A 的平分线,所以kAC1,所以 AC 边所在的直线方程为 y (x 1)x又 k BC2, 所以 BC 边所在直线方程为 y 2 2( x 1)AO由 AC 与 BC 的直线方程联立可得 C (5,6)所以 AC 边上的垂直平分线所在的直线方程为x y 50 .4、 最值问题C例 4.已知点 M (3,5) , N (2,15) .在直线 l : 3x 4y 4 0上找一点 P ,使| PM | | PN |最小,并求出最小值 .【分析】本题前提条件是两点位于直线的同侧,主要考查利用三角形中两边之和大于第三边与点的对称问题的结合,由平面几何知,先作出与点M 关于 l 对称的点 M ' ,连结 NM ' ,直线 NM ' 与直线 l 的交点 P即为所求.事实上 , 若点 P '是 l 上异于 P 的点,则|P'M | |P'N | |P'M '| |P'N| |NM '| |PM | |PN |.【解答】设与 M ( 3,5) 关于 l 对称的点是 M ' .3 k MM ' 4yNQ k l , ,43MM ' 的方程为 y54 (x 3) ,即 4x 3y 3 0 .3MP'解方程组3x 4 y4 0 , 得x0 ,Px4x 3y3 0y 1lO线段 MM '交直线 l 于 Q (0,1) .Q 是 MM '的中点,连结 NM '的直线方程为M ' 的坐标为 (3, 3) .18xy 51 0 M'.8解方程组18x y 513x 4 y 40 , 得x3 , 0y 3.点 P 坐标为 (8,3).此时, | PM | |PN | | PM '| |PN | |NM '|(3 2)2 (15 3)2 5 13. 3【设计意图 】本题有个前提两点在直线的同侧,把求最值的问题转化为三角形中两边之和大于第三边的问题,如果学生接受能力强, 可以再拓展一下, 当两点位于直线两侧时, 可在直线上找一点, 使 || PM | | PN ||最大 .变式训练:函数 y x21x24x 8 的最小值为_______________.【分析】本题主要考查了把两点间的距离公式的灵活运用,把最值问题转化成求动点与两点的距离和的问题,把函数的最值转化为解析几何的问题,前面题目大多是把几何问题转化为代数的问题,此题正好相反,体现了数形结合的重要的数学思想.yB【解答】把 y x21x2 4 x8 变形为Axy(x1)2(01)2( x2) 2(02) 2O P( x1)2(01)2( x2)2(02) 2表示动点 P A'(x,0) 到两定点A (1,1)、B (2, 2) 的距离之和.作点 A (1,1)关于x轴的称点 A' (1, 1)Q| PA | | PB | | PA '| | PB | | BA '|y(2 1)2(2 1)210函数y有最小值为10 .四、【解法小结】1.求直线方程.直线方程的五种形式是从不同侧面对直线几何特征的描述,具体使用时要根据题意选择最简单、适当的形式;同时结合参数的几何意义,注意方程形式的局限性.(1)直接法:当两个条件显性时,直接选择适当的直线方程的形式,写出所求直线的方程.(2)待定系数法:当两个条件至少一个隐性时,可根据已知条件,选择适当的直线方程的形式,设出所求的直线方程,建立方程(组),待定出其中的系数,从而求得直线方程.2 .两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l1、 l2,l1 // l 2k1 k2, l1l2k1k2 1 .若有一条直线的斜率不存在,那么另一条直线的斜率是什么一定要特别注意.3d C1C2时,一定要注意将两方程中的x ,y项系数化为分别相.在运用两平行直线间的距离公式A2B2等的系数.4 .两直线平行时,直线可设为ax by c1 0, ax by c20 ,两直线垂直时,直线可设为ax by c1 0, bx ay c20,可以简化运算.五、【布置作业】必做题:1.已知直线l1:k 3 x4k y 1 0 与l2: 2 k 3 x2y 3 0 平行,则 k 的值是.2.若直线l1:y k x 4与直线 l 2关于点2,1 对称,则直线l2恒过定点是.3. 已知 2x y 50 ,则 x 2 y 2 的最小值是.4.设直线 l 经过点 1,1 ,则当点 2, 1 与直线 l 的距离最大时,直线l 的方程为.答案: 1 . 3或 5; 2. 0,2 ; 3. 5 ; 4. 3x 2 y 5 0选做题:1.已知直线 l : kx y 1 2k 0 kR .( 1)证明直线 l 过定点;( 2)若直线 l 不经过第四象限,求k 的取值范围;( 3)若直线 l 交 x 轴负半轴于 A ,交 y 轴正半轴于 B ,求使 V AOB 面积最小时直线l 的方程.2.已知直线 l : 2x 3y 1 0,点 A1, 2 .求:(1)点 A 关于直线 l 的对称点 A 的坐标;( 2)直线 m : 3x2 y 6 0 关于直线 l 的对称直线 m 的方程;( 3)直线 l 关于点 A 1, 2对称的直线 l 的方程.答案:1. ( 1)定点2,1 ;( 2) 0,;( 3) x2 y 4 0 .y 2 2 1x332. 【解答】 (1)设 Ax, yx1 313 ,,由已知,解得:2 x 13 y 2 1y 42 2 13∴ A33, 413 13( 2)在直线 m 上取一点,如M 2,0 ,则 M 2,0 关于直线 l 的对称点 M 必在直线 m 上.设对称点2a 2 3b1226 30M a,b ,则,得 M,b 0 213 ,113a 2 3设直线 m 与直线 l 的交点为 N ,则由2x 3y 1 0.3x2y 6得N 4,3又∵ m 经过点 N 4,3 ,,∴由两点式得直线 m 的方程为 9x46 y102 0.( 3)方法一在 l : 2x 3 y 1 0 上任取两点,如M 1,1 , N 4,3 ,则 M,N 关于点 A1, 2的对称点 M , N 均在直线 l 上,易得 M3, 5 , N6, 7 ,再由两点式可得 l 的方程为2x 3y9 0 .方法二 ∵ l // l ,∴设 l 的方程为 2x 3y C 0 C 1 ,∵点 A 1, 2 到两直线 l , l 的距离相等,∴由点到直线的距离公式得:2 6C 2 6 1 223222,解得 C 9 ,∴ l 的方程为 2x3 y 90 .32方法三设 Px, y 为 l 上任意一点,则 P x, y 关于点 A 1, 2 的对称点为 P 2 x,4 y ,∵点 P 在直线 l 上,∴ 22 x34 y1 0 ,即 2x 3y 9 0 .【设计意图】复习课由于内容较多,难以把涉及全面,把对称这一重要问题当作习题作为补充,教师可以灵活把握,有时间可以讲解,对称有两方面,主要学习以下两点:(1)点关于线对称,转化为“垂直”及“线的中点在轴上”的问题.(2)线关于线对称,转化为点关于线的对称问题;线关于点的对称,转化为点关于点的对称问题.六、【教后反思】1.本教案的亮点是:在原教案的基础上,对本章知识点采用了分类复习的方法,用更加具有代表性的例题进行了替换.教学内容设计,把全章内容重点把握,分类讲解,一题多解,训练学生从不同角度思考问题,并且体会各种方法的差别.渗透相关点代入法,以及数形结合等思想方法.2.本教案的不足是:因为课堂时间的问题没有能在例题中凸显点关于线对称与线关于点对称问题,课堂实际中学生展现的做法很多,没能一一给出详解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章:直线与方程的知识点倾斜角与斜率1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<.2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点1122(,),(,)P x y P x y ,则有斜率公式2121y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)12//l l ⇔12k k =;(2)12l l ⊥⇔121k k ⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴;….直线的点斜式方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.3. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.4. 注意:y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x y a b+=.3. 两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.4. 线段12P P 中点坐标公式1212(,)22x x y y ++.直线的一般式方程1. 一般式:Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C y x B B=--,表示斜率为A B-,y 轴上截距为CB-的直线.2. 与直线:0l Ax By C ++=平行的直线,可设所求方程为10Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为10Bx Ay C -+=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别: (1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠; (3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210AB A B ⇔-≠. 如果2220A BC ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B C A B C ⇔==;1l 与2l 相交1122A B A B ⇔≠.两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点. 两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y,则两点间的距离为:12||PP 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;点到直线的距离及两平行线距离 1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为d .2. 利用点到直线的距离公式,可以推导出两条平行直线11:l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d =,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020Ax By C ++=,即002Ax By C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为d ==对应练习 一.选择题1.(安徽高考) 过点(1,0)且与直线x-2y=0平行的直线方程是( ) A.x-2y-1=0 B. x-2y+1=0 C. 2x+y-2=0 D. x+2y-1=02. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A. 012=-+y x B. 052=-+y x C. 052=-+y x D. 072=+-y x3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A. 0 B. 8- C. 2 D. 104.(安徽高考)直线过点(-1,2),且与直线2x-3y+4=0垂直,则直线的方程是( )A . 3x+2y-1=0 B. 3x+2y+7=0 C. 2x-3y+5=0 D. 2x-3y+8=0 5.设直线ax+by+c=0的倾斜角为θ,且sin cos 0θθ+=则a,b 满足 ( ) A. a+b=1 B. a-b=1 C. a+b=0 D. a-b=06. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、327.点P (-1,2)到直线8x-6y+15=0的距离为( ) A 2 B 21 C 1 D 278. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)9. (上海文,15)已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( )A. 1或3B.1或5C.3或5D.1或210、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( ) A 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 211.(05北京卷)“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )(A )充分必要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件 12、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0 13. 若直线ax + by + c = 0在第一、二、三象限,则( )A. ab >0,bc >0B. ab >0,bc <0C. ab <0,bc >0D. ab <0,bc <014.(2005北京文)“m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的 ( )A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件 15. 如果直线 l 经过两直线2x - 3y + 1 = 0和3x - y - 2 = 0的交点,且与直线y = x 垂直,则原点到直线 l 的距离是( )A. 2B. 12C. 222L 316. 原点关于x - 2y + 1 = 0的对称点的坐标为( )A. ⎪⎭⎫ ⎝⎛52 ,54- B. ⎪⎭⎫ ⎝⎛54 ,52- C. ⎪⎭⎫ ⎝⎛52 ,54 D. ⎪⎭⎫ ⎝⎛54 ,52- 二、填空题1. 点(1,1)P -到直线10x y -+=的距离是________________.2.已知A(-4,-6),B(-3,-1),C(5,a)三点共线,则a 的值为( )3.经过两直线11x+3y -7=0和12x+y -19=0的交点,且与A (3,-2), B (-1,6)等距离的直线的方程是 。
4.(全国Ⅰ文16)若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的倾斜角可以是 ①15o ②30o ③45o ④60o ⑤75o 其中正确答案的序号是 .(写出所有正确答案的序号)三.解答题1.已知两条直线)(12:12,:2416l x m y m l mx y ++=-+=-. m 为何值时, 12:l l 与 (1)相交 (2)平行 (3)垂直2. 求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程.3.求平行于直线20,x y --=且与它的距离为4.已知直线l1 : mx + 8y + n = 0与l2 : 2x + my - 1 = 0互相平行,求l1,l2之间的距离为5时的直线l1的方程.5.已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC 边上的中点。
(1)求AB边所在的直线方程;(2)求中线AM的长(3)求AB边的高所在直线方程。
6.求与两坐标轴正向围成面积为2平方单位的三角形,并且两截距之差为3的直线的方程。
一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=, 则,a b 满足( ) A .1=+b a B .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( ) A .045,1 B .0135,1-C .090,不存在D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠mC .1≠mD .1≠m ,23-≠m ,0≠m二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________;3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。