2019年上海市中考数学解读之历年中考类型题解题思路归纳

合集下载

2019关于上海中考数学的试卷分析语文

2019关于上海中考数学的试卷分析语文

关于xxxx数学的试卷分析整体难度求稳定试卷的整体难度相比去年没有太大的变化,仍旧控制在8:1:1,代数、几何分值比仍接近6:4,题型、每大题分值都与去年完全一致,试卷一如既往地忠于教材,重点考查学生的数学基础知识和基本运算能力。

填空题只考查一个知识点,一个概念或一次运算,第13至23题难度基本与课本练习题难度及去年同样位置试题难度持平,第17、18、19、23题论证要求适度,计算和推理结合简洁、合理,第24题、25考察反比例函数、一次函数、动态几何等内容,从内容和题目的结构上都不存在大的变化。

体现新课程理念(1)试题注意对应用数学知识解决身边实际问题和数学问题能力的考查,第20题的上网时间调查、第21题的药费降价问题均为学生关心的话题及社会热点,用学生熟悉的生活作为试题背景,让学生在解决问题中体会“数学生活化”、“学有用的数学”的学习理念。

(2)试题的编制形式多样,第20、21题以图表的形式给出已知条件,让学生从众多的信息中分析、筛选出对解决问题有用的信息,整张试卷(包含图表在内)的图形多达12个,充分体现数形结合、从图形中获取信息的教学要求,符合现代社会对能力的最新需求,符合二期课改提出的以学生发展为本的课改理念。

考察方式有新意第11题的翻折、16题的旋转,不同于常见的三角形翻折,不同于常见的在坐标系中画旋转图形,试题考查基本概念及知识点,但考查方式的改变使知识横向有点拓宽,但决非纵向加深;第16题显然脱胎于“打碎三角形玻璃”问题,老方法解决新问题,别具一格。

重视图形的考查运动思想是新课标十分重视的数学思想,在初中新教材中占了一整章的篇幅,试题中第11、12、22题中涉及了图形的翻折、旋转、平移全部三种运动方式,压轴题中仍考察动态几何问题,从这一个方面体现了与新教材的衔接。

凸显出选拔功能压轴题在试题结构上没有大的变化,仍旧涉及了代数、几何中函数、相似、圆、等边三角形、解直角三角形等诸多知识点及能力要求,融入了动态几何的变与不变特性,方法上也是体现解决动态几何问题的常见思路,如对“点是某条直线上一动点”这一条件的基本认识与处理等等。

2019中考数学题型解题方法精品教育.doc.doc

2019中考数学题型解题方法精品教育.doc.doc

2019中考数学题型解题方法2019中考数学题型解题方法:选择题1、排除法。

排除法是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。

排除法是解选择题的间接方法,也是选择题的常用方法。

2、特殊值法。

即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

用特殊值法解题要注意所选取的值要符合条件,且易于计算。

此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。

在解决时可将问题提供的条件特殊化。

使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。

利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。

3、通过猜想、测量的方法,直接观察或得出结果。

这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

2019中考数学题型解题方法:填空题1、直接法:根据题干所给条件,直接经过计算、推理或证明,得出正确答案。

2、图解法:根据题干提供信息,绘出图形,从而得出正确的答案。

首先,应按题干的要求填空,如有时填空题对结论有一些附加条件,如用具体数字作答,精确到……等,有些考生对此不加注意,而出现失误,这是很可惜的。

其次,若题干没有附加条件,则按具体情况与常规解答。

应认真分析题目的隐含条件。

总之,填空题与选择题一样,因为它不要求写出解题过程,直接写出最后结果。

打好基础,强化训练,提高解题能力,才能既准又快解题。

另一方面,加强对填空题的分析研究,掌握其特点及解题方法,减少失误。

2019中考数学题型解题方法:压轴题学生害怕“压轴题”,恐怕与“题海战术”有关。

为了应对中考压轴题,家长可以根据实际,为学生精选一二十道,但不必强求一律,对有的学生可以只要求他做其中的第(1)题或第(2)题。

2019年上海市中考数学试题(Word版-含解析)

2019年上海市中考数学试题(Word版-含解析)

2019年上海市中考数学试卷一、选择题:(本大题共6题.每题4分,满分24【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=2 32.(4分)如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n 3.(4分)下列函数中,函数值y随自变量x的值增大而增大的是()A.y=x3B.y=−x3C.y=3x D.y=−3x4.(4分)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5.(4分)下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.(4分)已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7.(4分)计算:(2a 2)2= .8.(4分)已知f (x )=x 2﹣1,那么f (﹣1)= .9.(4分)如果一个正方形的面积是3,那么它的边长是 .10.(4分)如果关于x 的方程x 2﹣x +m =0没有实数根,那么实数m 的取值范围是 .11.(4分)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是 .12.(4分)《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.(4分)在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是y ℃,那么y 关于x 的函数解析式是 .14.(4分)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约 千克.15.(4分)如图,已知直线11∥l 2,含30°角的三角板的直角顶点C 在l 1上,30°角的顶点A 在l 2上,如果边AB 与l 1的交点D 是AB 的中点,那么∠1= 度.16.(4分)如图,在正边形ABCDEF 中,设BA →=a →,BC →=b →,那么向量BF →用向量a →、b →表示为 .17.(4分)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.18.(4分)在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.三、解答题(本大题共7题,满分78分)19.(10分)计算:|√3−1|−√2×√62−3−82320.(10分)解方程:2xx−2−8x2−2x=121.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=12x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.25.(14分)如图1,AD 、BD 分别是△ABC 的内角∠BAC 、∠ABC 的平分线,过点A 作AE ⊥AD ,交BD 的延长线于点E .(1)求证:∠E ═12∠C ; (2)如图2,如果AE =AB ,且BD :DE =2:3,求cos ∠ABC 的值;(3)如果∠ABC 是锐角,且△ABC 与△ADE 相似,求∠ABC 的度数,并直接写出S △ADES △ABC 的值.2019年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题.每题4分,满分24【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.【解答】解:(A )原式=5x ,故A 错误;(C )原式=6x 2,故C 错误;(D )原式=32,故D 错误;故选:B .2.【解答】解:∵m >n ,∴﹣2m <﹣2n ,故选:D .3.【解答】解:A 、该函数图象是直线,位于第一、三象限,y 随x 的增大而增大,故本选项正确. B 、该函数图象是直线,位于第二、四象限,y 随x 的增大而减小,故本选项错误.C 、该函数图象是双曲线,位于第一、三象限,在每一象限内,y 随x 的增大而减小,故本选项错误.D 、该函数图象是双曲线,位于第二、四象限,在每一象限内,y 随x 的增大而增大,故本选项错误. 故选:A .4.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为15×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4; 乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为15×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2, ∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A .5.【解答】解:A 、矩形的对角线相等,正确,是真命题;B 、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C 、矩形的对角线互相平分,正确,是真命题;D 、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D .6.【解答】解:如图,设⊙A ,⊙B ,⊙C 的半径为x ,y ,z .由题意:{x +y =5z −x =6z −y =7,解得{x =3y =2z =9,故选:C .二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7.【解答】解:(2a 2)2=22a 4=4a 4.8.【解答】解:当x =﹣1时,f (﹣1)=(﹣1)2﹣1=0.故答案为:0.9.【解答】解:∵正方形的面积是3,∴它的边长是√3.故答案为:√310.【解答】解:由题意知△=1﹣4m <0,∴m >14.故填空答案:m >14.11.【解答】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为26=13, 故答案为:13. 12.【解答】解:设1个大桶可以盛米x 斛,1个小桶可以盛米y 斛,则{5x +y =3x +5y =2, 故5x +x +y +5y =5,则x +y =56.答:1大桶加1小桶共盛56斛米. 故答案为:56. 13.【解答】解:由题意得y 与x 之间的函数关系式为:y =﹣6x +2.故答案为:y =﹣6x +2.14.【解答】解:估计该小区300户居民这一天投放的可回收垃圾共约30050×100×15%=90(千克),故答案为:90.15.【解答】解:∵D 是斜边AB 的中点,∴DA =DC ,∴∠DCA =∠DAC =30°,∴∠2=∠DCA +∠DAC =60°,∵11∥l 2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.16.【解答】解:连接CF .∵多边形ABCDEF 是正六边形,AB ∥CF ,CF =2BA ,∴CF →=a →,∵BF →=BC →+CF →,∴BF →=2a →+b →,故答案为2a →+b →.17.【解答】解:如图所示,由折叠可得AE =FE ,∠AEB =∠FEB =12∠AEF ,∵正方形ABCD 中,E 是AD 的中点,∴AE =DE =12AD =12AB ,∴DE =FE ,∴∠EDF =∠EFD ,又∵∠AEF 是△DEF 的外角,∴∠AEF =∠EDF +∠EFD ,∴∠EDF =12∠AEF ,∴∠AEB =∠EDF ,∴tan ∠EDF =tan ∠AEB =AB AE =2.故答案为:2.18.【解答】解:如图,∵在△ABC 和△A 1B 1C 1中,∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,∴AB =√32+42=5,设AD =x ,则BD =5﹣x ,∵△ACD ≌△C 1A 1D 1,∴C 1D 1=AD =x ,∠A 1C 1D 1=∠A ,∠A 1D 1C 1=∠CDA ,∴∠C 1D 1B 1=∠BDC ,∵∠B =90°﹣∠A ,∠B 1C 1D 1=90°﹣∠A 1C 1D 1,∴∠B 1C 1D 1=∠B ,∴△C 1B 1D ∽△BCD ,∴BDC 1D 1=BC C 1B 1,即5−x x =2,解得x =53,∴AD 的长为53, 故答案为53.三、解答题(本大题共7题,满分78分)19.【解答】解:|√3−1|−√2×√6+2−3823 =√3−1﹣2√3+2+√3−4=﹣320.【解答】解:去分母得:2x 2﹣8=x 2﹣2x ,即x 2+2x ﹣8=0,分解因式得:(x ﹣2)(x +4)=0,解得:x =2或x =﹣4,经检验x =2是增根,分式方程的解为x =﹣4.21.【解答】解:(1)设一次函数的解析式为:y =kx +b , ∵一次函数的图象平行于直线y =12x , ∴k =12,∵一次函数的图象经过点A (2,3), ∴3=12×2+b , ∴b =2, ∴一次函数的解析式为y =12x +2;(2)由y =12x +2,令y =0,得12x +2=0, ∴x =﹣4,∴一次函数的图形与x 轴的解得为B (﹣4,0),∵点C 在y 轴上,∴设点C 的坐标为(﹣4,y ), ∵AC =BC ,∴√(2−0)2+(3−y)2=√(−4−0)2+(0−y)2,∴y=−1 2,经检验:y=−12是原方程的根,∴点C的坐标是(0,−1 2).22.【解答】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45√3厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45√3+70)厘米.答:点D′到BC的距离为(45√3+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE=√AD2+DE2=30√10厘米,∴EE′=30√10厘米.答:E、E′两点的距离是30√10厘米.23.【解答】证明:(1)如图1,连接BC,OB,OD,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OD,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB 2=AO •AD ,∴AB AO =AD AB ,∵∠BAO =∠DAB ,∴△ABO ∽△ADB ,∴∠OBA =∠ADB ,∵OA =OB ,∴∠OBA =∠OAB ,∴∠OAB =∠BDA ,∴AB =BD ,∵AB =AC ,BD =CD ,∴AB =AC =BD =CD ,∴四边形ABDC 是菱形.24.【解答】解:(1)∵a =1>0,故该抛物线开口向上,顶点A 的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t ,t ),则t =t 2﹣2t ,解得:t =0或3,故“不动点”坐标为(0,0)或(3,3);②∵新抛物线顶点B 为“不动点”,则设点B (m ,m ),∴新抛物线的对称轴为:x =m ,与x 轴的交点C (m ,0),∵四边形OABC 是梯形,∴直线x =m 在y 轴左侧,∵BC 与OA 不平行,∴OC ∥AB ,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的,∴新抛物线的表达式为:y=(x+1)2﹣1.25.【解答】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=12∠BAC,同理∠ABD=12∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=12(∠ABC+∠BAC)=90°−12∠C,∴∠E=90°﹣(90°−12∠C)=12∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE ∥BC ,∴∠AFB =∠EAD =90°,BF AF =BD DE , ∵BD :DE =2:3,∴cos ∠ABC =BF AB =BF AE =23.(3)∵△ABC 与△ADE 相似,∠DAE =90°,∴∠ABC 中必有一个内角为90°∵∠ABC 是锐角,∴∠ABC ≠90°.①当∠BAC =∠DAE =90°时,∵∠E =12∠C ,∴∠ABC =∠E =12∠C ,∵∠ABC +∠C =90°,∴∠ABC =30°,此时S △ADES △ABC =2−√3.②当∠C =∠DAE =90°时,∠E =12∠C =45°,∴∠EDA =45°,∵△ABC 与△ADE 相似,∴∠ABC =45°,此时S △ADES △ABC =2−√2.综上所述,∠ABC =30°或45°,S △ADES △ABC =2−√3或2−√2.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

2019年上海市中考数学试题解析(精校版)

2019年上海市中考数学试题解析(精校版)

2019年上海市中考数学试题解析一、选择题:(本大题共6题.每题4分,满分24分。

下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题卡的相应位置上) 1.(4分)下列运算正确的是( ) A .3x +2x =5x 2B .3x ﹣2x =xC .3x •2x =6xD .3x ÷2x =23解析:(A )原式=5x ,故A 错误;(C )原式=6x 2,故C 错误;(D )原式=32,故D 错误;故选:B . 2.(4分)如果m >n ,那么下列结论错误的是( ) A .m +2>n +2B .m ﹣2>n ﹣2C .2m >2nD .﹣2m >﹣2n解析:∵m >n ,∴﹣2m <﹣2n ,故选:D .3.(4分)下列函数中,函数值y 随自变量x 的值增大而增大的是( ) A .y =x3B .y =−x 3C .y =3xD .y =−3x解析:A 、该函数图象是直线,位于第一、三象限,y 随x 的增大而增大,故本选项正确.B 、该函数图象是直线,位于第二、四象限,y 随x 的增大而减小,故本选项错误.C 、该函数图象是双曲线,位于第一、三象限,在每一象限内,y 随x 的增大而减小,故本选项错误.D 、该函数图象是双曲线,位于第二、四象限,在每一象限内,y 随x 的增大而增大,故本选项错误.故选:A .4.(4分)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是( )A .甲的成绩比乙稳定B .甲的最好成绩比乙高C .甲的成绩的平均数比乙大D .甲的成绩的中位数比乙大解析:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为15×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为15×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低, 故选:A .5.(4分)下列命题中,假命题是( ) A .矩形的对角线相等B .矩形对角线交点到四个顶点的距离相等C .矩形的对角线互相平分D .矩形对角线交点到四条边的距离相等 解析:A 、矩形的对角线相等,正确,是真命题;B 、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C 、矩形的对角线互相平分,正确,是真命题;D 、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D .6.(4分)已知⊙A 与⊙B 外切,⊙C 与⊙A 、⊙B 都内切,且AB =5,AC =6,BC =7,那么⊙C 的半径长是( ) A .11B .10C .9D .8解析:如图,设⊙A ,⊙B ,⊙C 的半径为x ,y ,z .由题意:{x +y =5z −x =6z −y =7,解得{x =3y =2z =9,故选:C .二、填空题:(本大题共12题,每题4分,满分48分。

完整2019年上海市中考数学解读之历年中考类型题解题思路归纳

完整2019年上海市中考数学解读之历年中考类型题解题思路归纳
【考点17】其它(一冷+一热) 全等、垂径定理、单项式(次数、同类项)★★、正多边形★★、科学记数法、
轴对称图形★★、有理数(倒数、相反数、有限小数)★★ 【类型与方法】
中考19-23题
【19题考点】混合运算(计算)及化简求值: ★★★★★★ ★★ 【类型】1、二次根式、指数(0、正、负、分数)、绝对值、分母有理化、三角函数值
考点分析 解题策略 应试技巧 提分方法
2019.5.20
1
一、试卷特征:
试题特点: 考点+能力
(中考数学 注重“双基”、考查能力、体现新意)
1.题量:25题
(选择题6×4=24分,填空题12×4=48分,
解答题4×10+2×12+14=78分)
2.难度:8:1:1
(市均分150×0.85=127.5分)
(难度系数:0.85以上、0.6-0.85、0.2--0.4)
3.考点:
(1)《上海市初中毕业生统一学业考试解读》102个
(新要求见上海考试院网站)代数55 几何47
(2)《上海市初中数学学科教学基本要求(试验本)》
2
二、考点分析
(1—18题)
【考点1】向量 ★★★★★★★★
【类型与方法】
【考点2】概率 ★★★★★★★★
【类型与方法】
【考点12】真假命题(≌、∽、特殊四边形) ★★★★★★
【类型与方法】
【考点13】相似(平行)判定、性质与应用 ★★★★★★
【类型与方法】
【考点14】(点、直线、圆)与圆关系
★★★★★★
【类型与方法】
【考点15】求函数定义域(函数值) ★★★★★ 【类型与方法】
【考点16】因式分解 ★★★ 解简单无理方程 ★★★ 简单应用题 ★★★★ 【类型与方法】

上海市2019年中考数学试卷(解析版)

上海市2019年中考数学试卷(解析版)
, 故选 C. 2. 下列对一元二次方程 x2+x﹣3=0 根的情况的判断,正确的是( ) A. 有两个不相等实数根 B. 有两个相等实数根 C. 有且只有一个实数根 D. 没有实数根 【答案】A 【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程 x2+x﹣3=0 有两 个不相等的实数根. 【详解】∵a=1,b=1,c=﹣3, ∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0, ∴方程 x2+x﹣3=0 有两个不相等的实数根, 故选 A. 【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有 两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 3. 下列对二次函数 y=x2﹣x 的图象的描述,正确的是( ) A. 开口向下 B. 对称轴是 y 轴 C. 经过原点 D. 在对称轴右侧部分是下降的 【答案】C 【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案. 【详解】A、∵a=1>0,∴抛物线开口向上,选项 A 不正确;
B、∵﹣ ,∴抛物线的对称轴为直线 x= ,选项 B 不正确;
1
上海市 2019 年中考数学试卷(解析版)
C、当 x=0 时,y=x2﹣x=0,∴抛物线经过原点,选项 C 正确; D、∵a>0,抛物线的对称轴为直线 x= ,
∴当 x> 时,y 随 x 值的增大而增大,选项 D 不正确, 故选 C. 【点睛】本题考查了二次函数的性质:二次函数 y=ax2+bx+c(a≠0),对称轴直线 x=- ,当 a>0 时,抛物线 y=ax2+bx+c(a≠0)的开口向上,当 a<0 时,抛物线 y=ax2+bx+c(a≠0)的开口向下, c=0 时抛物线经过原点,熟练掌握相关知识是解题的关键. 4. 据统计,某住宅楼 30 户居民五月份最后一周每天实行垃圾分类的户数依次是: 27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( ) A. 25 和 30 B. 25 和 29 C. 28 和 30 D. 28 和 29 【答案】D 【解析】【分析】根据中位数和众数的定义进行求解即可得答案. 【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30, 处于最中间是数是 28, ∴这组数据的中位数是 28, 在这组数据中,29 出现的次数最多, ∴这组数据的众数是 29, 故选 D. 【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据 中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数 (或中间两数的平均数)是这组数据的中位数. 5. 已知平行四边形 ABCD,下列条件中,不能判定这个平行四边形为矩形的是( ) A. ∠A=∠B B. ∠A=∠C C. AC=BD D. AB⊥BC 【答案】B 【解析】【分析】由矩形的判定方法即可得出答案. 【详解】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形, 正确; B、∠A=∠C 不能判定这个平行四边形为矩形,错误;

上海中考数学试卷评析也来了,解题思路在这里!

上海中考数学试卷评析也来了,解题思路在这里!

上海中考数学试卷评析也来了,解题思路在这里!上海市初中毕业统一学业考试数学科目顺利进行。

考试结束后,市教育考试院邀请了学科专家对本次数学试卷进行了评析。

与会专家们表示:2019年上海市初中毕业统一学业考试数学试卷以《上海市中小学数学课程标准》和《2019年上海市初中数学课程终结性评价指南》为依据,试卷结构合理,区分度恰当,凸显对学生数学核心素养的考查,体现数学学科的育人价值。

立足基础突出应用体现育人价值一、素养导向,体现育人价值试卷关注数学学科素养,突出学科特点,着重考查考生的理性思维能力,落实立德树人的根本任务。

试卷注重学生的理性思考。

如第23、25题均考查了学生的逻辑推理能力,反映了思维的条理性和严谨性,注重数学思维品质的培养;第12题取材于中国古代数学著作《九章算术》,体现了注重算法和实用的中国古代数学特色,渗透了中华优秀传统文化,增强文化自信。

让学生在答题的同时,感受中国古代数学的文化成就,用严谨的态度、灵活的方式观察、思考问题,体现了学科的育人价值。

二、真实情境,凸显应用能力试卷以真实情境为载体,贴近学生生活,聚焦社会热点,考查学生在实际生活中分析问题、解决问题的能力,凸显综合性、应用性。

试题取材内容丰富,关注学生的真实体验。

如第4题以学生引体向上的体育测试为背景;第13题引入海拔升高温度降低的科学情境;第14题涉及小区居民各类生活垃圾分类投放的社会热点;第22题取材于小汽车后备箱开盖的生活情境。

这些试题,让学生在答题时产生亲切感,减少了在运用数学方法时的思维障碍,使得统计、函数、方程、锐角三角比等数学知识在实际生活中的应用,都得到了有效的考查。

三、突出重点,关注数学本质试卷注重对数学本质的理解,突出了初中数学的重点内容,以及观察、比较、数形结合、分类讨论等重要的数学思想方法,考查了阅读理解、空间观念、逻辑推理等能力。

如第4、14题需要考生观察、分析统计图获取信息;第17题通过对三角形的翻折,需要考生从图形的基本运动和变化中找出不变关系;第24题设计了一个新的概念,需要考生通过阅读提取信息,准确理解新概念内涵,并结合所学的数学知识进行分析;第25题涉及数形结合、分类讨论等多种数学思想。

2019上海数学中考备考指南及数学中考知识点汇总

2019上海数学中考备考指南及数学中考知识点汇总

原标题:2019上海数学中考备考指南及数学中考知识点汇总2019年的中考即将来临,下面【上海初中数学辅导】的老师为大家整理了关于中考政策及中考重点内容,还有中考备考指南,希望能够为各位家长提供有效的参考。

2019年中考重点知识汇总如下:建议考生备考分两个阶段进行练习。

第一阶段以章节复习为主,主要进行查漏补缺和巩固提高。

重点放在课本知识的重现、重建上,要注重基本知识点的落实、基本方法的再认识和基本技能的掌握,使之形成比较完整的知识结构体系。

第二阶段以分步、分层进行各项能力训练为主、加强综合练习。

建议分成四块进行:1.将一元二次方程、分式的化简的求值、图形中的推理、数据的收集与整理、图形的变换等作为重点落实。

2.将函数即一次函数及其应用,二次函数综合运用作为重点突破。

3.操作、实验、探究问题,结合4月调考,加大力度训练力求有所收获。

4.代数与几何的综合题,结合4月调考,在知识点及技能、方法掌握和形成到一定程度适当投入时间加大训练强度,提高得分率。

中考重点知识(一)代数中,重点知识有三个方面:1.数与式。

2.方程与不等式。

3.函数。

注重函数特征及图象性质的灵活运用,尤其是对称性,增强数形结合意识,积累解题思维方法。

(二)几何中,重点是图形的认识、变换,图形与坐标以及图形与证明等知识。

(三)综合题(压轴题),在坐标系中,考查平面内直线与圆、圆与圆位置关系。

备考三大注意事项1.一定要明确方向,减少盲目性。

根据201年《考试说明》制订复习计划,每个单元进行阶段落实验收工作。

2.不要一味追求难题、偏题、怪题的训练。

《考试说明》中明确了考试试题的中、低档题比重很大,约90%。

难题也是由很基本的知识点组合而成的,只要掌握了基本知识与技能,掌握了中、低档题的解法,难题并不是“牢不可破”的。

3.不要单纯进行题海战役,但不等于放弃做必要的题。

要想在短时间内提高效率,就得花时间去思考、分析、归纳解题方法。

调整身心状态,切忌急功近利中考是知识、能力、身心素质的综合竞争,有时身心素质起决定作用,复习阶段一定要让学生身心健康,状态好,这才能有好的学习效率。

上海市2019年中考数学真题与模拟题分类 专题18 图形的变化之解答题(2)(39道题)(解析版)(1)

上海市2019年中考数学真题与模拟题分类 专题18 图形的变化之解答题(2)(39道题)(解析版)(1)

专题18 图形的变化之解答题(2)参考答案与试题解析一.解答题(共39小题)1.(2019•宝山区一模)已知:如图,在△ABC中,AB=AC,点E、F在边BC上,∠EAF=∠B.求证:BF•CE=AB2.【答案】证明:∵∠AEC=∠B+∠BAE=∠EAF+∠BAE=∠BAF,又∵AB=AC,∴∠B=∠C,∴△ABF∽△ECA,∴AB:CE=BF:AC,∴BF•EC=AB•AC=AB2.【点睛】此题考查了相似三角形的判定与性质.注意证得△ABF∽△ECA是解此题的关键.2.(2019•青浦区二模)如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边BC、AB于点D、E,联结AD.(1)如果∠CAD:∠DAB=1:2,求∠CAD的度数;(2)如果AC=1,tan∠B,求∠CAD的正弦值.【答案】解:(1)∵∠CAD:∠DAB=1:2∴∠DAB=2∠CAD在Rt△ABC中,∠CAD+∠DAB+∠DBA=90°∵DE垂直平分AB交边BC、AB于点D、E∴∠DAB=∠DBA∴∠CAD+∠DAB+∠DBA=∠CAD+2∠CAD+2∠CAD=90°解得,∠CAD=18°(2)在Rt△ABC中,AC=1,tan∠B,∴BC=2由勾股定理得,AB∵DE垂直平分AB交边BC、AB于点D、E∴BE=AE∵∠DAE=∠DBE∴在Rt△ADE中tan∠B=tan∠DAE∴DE∴由勾股定理得AD∴cos∠CAD∴sin∠CAD则∠CAD的正弦值为【点睛】本题主要是应用三角函数定义来解直角三角形,关键要运用锐角三角函数的概念及比正弦和余弦的基本关系进行解题.3.(2019•青浦区二模)如图,一座古塔AH的高为33米,AH⊥直线l,某校九年级数学兴趣小组为了测得该古塔塔刹AB的高,在直线l上选取了点D,在D处测得点A的仰角为26.6°,测得点B的仰角为22.8°,求该古塔塔刹AB的高.(精确到0.1米)【参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.5,sin22.8°=0.39,cos22.8°=092,tan22.8°=0.42】【答案】解:∵AH⊥直线l,∴∠AHD=90°,在Rt△ADH中,tan∠ADH,∴DH,在Rt△BDH中,tan∠BDH,∴DH,∴,解得:AB≈5.3m,答:该古塔塔刹AB的高为5.3m.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,正确的解直角三角形是解题的关键.4.(2019•浦东新区二模)如图1,一辆吊车工作时的吊臂AB最长为20米,吊臂与水平线的夹角∠ABC最大为70°,旋转中心点B离地面的距离BD为2米.(1)如图2,求这辆吊车工作时点A离地面的最大距离AH(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75);(2)一天,王师傅接到紧急通知,要求将这辆吊车立即开到40千米远的某工地,因此王师傅以每小时比平时快20千米的速度匀速行驶,结果提前20分钟到达,求这次王师傅所开的吊车速度.【答案】解:(1)根据题意,得AB=20,∠ABC=70°,CH=BD=2,在Rt△ACB中,∵∠ACB=90°,∴AC=AB•sin70°=20×0.94=18.8,∴AH=20.8.答:这辆吊车工作时点A离地面的最大距离AH为20.8米;(2)设这次王师傅所开的吊车的速度为每小时x千米,由题意,得,解得,x1=60,x2=﹣40,经检验:x1=60,x2=﹣40都是原方程的解,但x2=﹣40符合题意,舍去,答:这次王师傅所开的吊车的速度为每小时60千米.【点睛】本题是解直角三角形与分式方程应用的综合题,主要考查了解直角三角形,列分式方程解应用题,(1)题的关键是解直角三角形求出AC,(2)小题的关键是找出等量关系列出分式方程.5.(2019•长宁区二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是边AC的中点,CF ⊥BD,垂足为点F,延长CF与边AB交于点E.求:(1)∠ACE的正切值;(2)线段AE的长.【答案】解:(1)∵∠ACB=90°,∴∠ACE+∠BCE=90°,又∵CF⊥BD,∴∠CFB=90°,∴∠BCE+∠CBD=90°,∴∠ACE=∠CBD,∵AC=4且D是AC的中点,∴CD=2,又∵BC=3,在Rt△BCD中,∠BCD=90°.∴tan∠BCD,∴tan∠ACE=tan∠CBD;(2)过点E作EH⊥AC,垂足为点H,在Rt△EHA中,∠EHA=90°,∴tan A,∵BC=3,AC=4,在Rt△ABC中,∠ACB=90°,∴tan A,∴,设EH=3k,AH=4k,∵AE2=EH2+AH2,∴AE=5k,在Rt△CEH中,∠CHE=90°,∴tan∠ECA,∴CH k,∴AC=AH+CH k=4,解得:k,∴AE.【点睛】此题考查了解直角三角形,涉及的知识有:勾股定理,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.6.(2019•闵行区二模)如图,在△ABC中,AB=AC,BC=10,cos∠,点D是边BC的中点,点E在边AC上,且,AD与BE相交于点F.求:(1)边AB的长;(2)的值.【答案】解:(1)∵AB=AC,点D是边BC的中点,∴AD⊥BC,BD=DC BC=5,在Rt△ABD中,cos∠ABC,∴AB=13;(2)过点E作EH∥BC,交AD与点H,∵EH∥BC,,∴,∵BD=CD,∴,∵EH∥BC,∴.【点睛】本题考查的是等腰三角形的性质、解直角三角形、平行线分线段成比例定理,掌握等腰三角形的三线合一、余弦的定义是解题的关键.7.(2019•金山区二模)已知:如图,在Rt△ABC中,∠ACB=90°,D是边AB的中点,CE=CB,CD=5,sin∠.求:(1)BC的长.(2)tan E的值.【答案】解:(1)∵在Rt△ABC中,∠ACB=90,D是边AB的中点;∴CD AB,∵CD=5,∴AB=10,∵sin∠ABC,∴AC=6∴;(2)作EH⊥BC,垂足为H,∴∠EHC=∠EHB=90°∵D是边AB的中点,∴BD=CD AB,∠DCB=∠ABC,∵∠ACB=90°,∴∠EHC=∠ACB,∴△EHC∽△ACB,∴由BC=8,CE=CB得CE=8,∠CBE=∠CEB,∴解得EH,CH,BH=8∴tan∠CBE3,即tan E=3.【点睛】本题考查了解直角三角形,熟练运用直角三角函以及三角形相似是解题的关键.8.(2019•徐汇区二模)如图,已知⊙O的弦AB长为8,延长AB至C,且BC AB,tan C.求:(1)⊙O的半径;(2)点C到直线AO的距离.【答案】解:(1)过O作OD⊥AB于D,则∠ODC=90°,∵OD过O,∴AD=BD,∵AB=8,∴AD=BD=4,∵BC AB,∴BC=4,∴DC=4+4=8,∵tan C,∴OD=4,在Rt△ODA中,由勾股定理得:OA4,即⊙O的半径是4;(2)过C作CE⊥AO于E,则S△AOC,即,解得:CE=6,即点C到直线AO的距离是6.【点睛】本题考查了垂径定理,三角形的面积公式,勾股定理,解直角三角形等知识点,能求出AD、OD的长度是解此题的关键.9.(2019•包头模拟)如图,已知:Rt△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.【答案】解:(1)∵∠ACB=90°,∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠CAF=90°,∴∠B=∠CAF,∴△ABC∽△F AC,∴,即,解得CF;(2)如图,过点C作CH⊥AB于点H,∵AC=3,BC=4,∴AB=5,则CH,∴AH,EH=AE﹣AH,∴tan D=tan∠ECH.【点睛】本题主要考查解直角三角形与相似三角形的判定和性质,解题的关键是添加辅助线构造与∠D 相等的角,并熟练掌握相似三角形的判定与性质、勾股定理等知识点.10.(2019•黄浦区一模)如图,P点是某海域内的一座灯塔的位置,船A停泊在灯塔P的南偏东53°方向(本题参考数据sin53°≈0.80,cos53°的50海里处,船B位于船A的正西方向且与灯塔P相距海里.≈0.60,tan53°≈1.33.)(1)试问船B在灯塔P的什么方向?(2)求两船相距多少海里?(结果保留根号)【答案】解:(1)过P作PC⊥AB交AB于C,在Rt△APC中,∠C=90°,∠APC=53°,AP=50海里,∴PC=AP•cos53°=50×0.60=30海里,在Rt△PBC中,∵PB=20,PC=30,∴cos∠BPC,∴∠BPC=30°,∴船B在灯塔P的南偏东30°的方向上;(2)∵AC=AP•sin53°=50×0.8=40海里,BC PB=10,∴AB=AC﹣BC=(40﹣10)海里,答:两船相距(40﹣10)海里.【点睛】本题考查了解直角三角形的应用,解答本题的关键是理解方位角的定义,能利用三角函数值计算有关线段,难度一般.11.(2019•东阳市模拟)安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF 所在直线相交于水箱横截面⊙O的圆心O,⊙O的半径为0.2米,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB,垂足为B,OD⊥AD,垂足为D,AB=2米.(1)求支架BF的长;(2)求屋面AB的坡度.(参考数据:tan18°,tan32°,tan40°)【答案】解::(1)∵∠OAC=32°,OB⊥AD,∴tan∠OAB tan32°,∵AB=2m,∴,∴OB=1.24m,∵⊙O的半径为0.2m,∴BF=1.04m;(2)∵∠AOD=40°,OD⊥AD,∴∠OAD=50°,∵∠OAC=32°∴∠CAD=18°,∴AB的坡度为tan18°,【点睛】本题主要考查了解直角三角形的应用,解答本题的关键是求出角的度数,利用三角函数的知识即可求解,难度一般.12.(2019•松江区一模)如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.【答案】解:(1)∵P为AC的中点,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=2,∵D是边AB的中点,P为AC的中点,∴点E是△ABC的重心,∴BE BP;(2)如图1,过点B作BF∥CA交CD的延长线于点F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,则CD=5,∴EF=8,∴,∴,∴,设CP=k,则P A=3k,∵PD⊥AB,D是边AB的中点,∴P A=PB=3k∴BC=2k,∴AB=2k,∵AC=4k,∴cos A;(3)∵∠ACB=90°,D是边AB的中点,∴CD=BD AB,∵PB2=2CD2,∴BP2=2CD•CD=BD•AB,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,∴△DPE∽△DCP,∴PD2=DE•DC,∵DE=3,DC=5,∴PD.【点睛】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的作出辅助线是解题的关键.13.(2019•松江区一模)如图,已知△ABC中,AB=AC=5,cos A.求底边BC的长.【答案】解:过点B作BD⊥AC,垂足为点D,在Rt△ABD中,cos A,∵cos A,AB=5,∴AD=AB•cos A=53,∴BD4,∵AC=AB=5,∴DC=2,∴BC2.【点睛】本题考查了解直角三角形,勾股定理,等腰三角形的性质,正确的作出辅助线是解题的关键.14.(2019•靖江市一模)2018年首届“进博会”期间,上海对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°.(1)求道路AB段的长;(精确到1米)(2)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin35°≈0.57358,cos35°≈0.8195,tan35°≈0.7)【答案】解:(1)∵AC⊥BC,∴∠C=90°,∵tan∠ADC2,∵CD=400,∴AC=800,在Rt△ABC中,∵∠ABC=35°,AC=800,∴AB1395 米;(2)∵AB=1395,∴该车的速度55.8km/h<60千米/时,故没有超速.【点睛】此题主要考查了解直角三角形的应用,关键是掌握三角函数定义.15.(2019•松江区一模)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)【答案】解:在Rt△APN中,∠NAP=45°,∴P A=PN,在Rt△APM中,tan∠MAP,设P A=PN=x,∵∠MAP=58°,∴MP=AP•tan∠MAP=1.6x,在Rt△BPM中,tan∠MBP,∵∠MBP=31°,AB=5,∴0.6,∴x=3,∴MN=MP﹣NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.【点睛】此题主要考查了解直角三角形的应用﹣仰角俯角问题,根据已知直角三角形得出AP的长是解题关键.16.(2019•濉溪县二模)如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.【点睛】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.17.(2019•随县模拟)如图是某品牌自行车的最新车型实物图和简化图,它在轻量化设计、刹车、车篮和座位上都做了升级.A为后胎中心,经测量车轮半径AD为30cm,中轴轴心C到地面的距离CF为30cm,座位高度最低刻度为155cm,此时车架中立管BC长为54cm,且∠BCA=71°.(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.88)(1)求车座B到地面的高度(结果精确到1cm);(2)根据经验,当车座B'到地面的距离B'E'为90cm时,身高175cm的人骑车比较舒适,此时车架中立管BC拉长的长度BB'应是多少?(结果精确到1cm)【答案】解:(1)设AC于BE交于H,∵AD⊥l,CF⊥l,HE⊥l,∴AD∥CF∥HE,∵AD=30cm,CF=30cm,∴AD=CF,∴四边形ADFC是平行四边形,∵∠ADF=90°,∴四边形ADFC是矩形,∴HE=AD=30cm,∵BC长为54cm,且∠BCA=71°,∴BH=BC•sin71°=51.3cm,∴BE=BH+EH=BH+AD=51.3+30≈81cm;答:车座B到地面的高度是81cm;(2)如图所示,B'E'=96.8cm,设B'E'与AC交于点H',则有B'H'∥BH,∴△B'H'C∽△BHC,得.即,∴B'C=63cm.故BB'=B'C﹣BC=63﹣54=9(cm).∴车架中立管BC拉长的长度BB'应是9cm.【点睛】本题考查了相似三角形的应用、切线的性质解解直角三角形的应用,解题的难点在于从实际问题中抽象出数学问题,难度较大.18.(2019•徐汇区校级一模)如图,某小区A栋楼在B栋楼的南侧,两楼高度均为90m,楼间距为MN.春分日正午,太阳光线与水平面所成的角为55.7°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为30°,A栋楼在B栋楼墙面上的影高为CM.已知CD=44.5m.(1)求楼间距MN;(2)若B号楼共30层,每层高均为3m,则点C位于第几层?(参考数据:tan30°≈0.58,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)【答案】解:(1)过点P作PE∥MN,交B栋楼与点E,则四边形PEMN为矩形.∴EP=MN由题意知:∠EPD=55.7°∠EPC=30°.在Rt△ECP中,EC=tan∠EPC×EP=tan30°×EP EP≈0.58EP,在Rt△EDP中,ED=tan∠EPD×EP=tan55.7°×EP≈1.47EP,∵CD=ED﹣EC,∴1.47EP﹣0.58EP=44.5∴EP=MN=50(m)答:楼间距MN为50m.(2)∵EC=0.58EP=0.58×50=29(m)∴CM=90﹣29=61(m)∵61÷3≈20.3≈21(层)答:点C位于第21层.【点睛】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.19.(2019•浦东新区一模)“雪龙”号考察船在某海域进行科考活动,在点A处测得小岛C在它的东北方向上,它沿南偏东37°方向航行2海里到达点B处,又测得小岛C在它的北偏东23°方向上(如图所示),求“雪龙”号考察船在点B处与小岛C之间的距离.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40, 1.4, 1.7)【答案】解:过点A作AM⊥BC,垂足为M.由题意知:AB=2海里,∠NAC=∠CAE=45°,∠SAB=37°,∠DBC=23°,∵∠SAB=37°,DB∥AS,∴∠DBA=37°,∠EAB=90°﹣∠SAB=53°.∴∠ABC=∠ABD+∠DBC=37°+23°=60°,∠CAB=∠EAB+∠CAE=53°+45°=98°.∴∠C=180°﹣∠CAB﹣∠ABC=180°﹣98°﹣60°=22°.在Rt△AMB中,∵AB=2海里,∠ABC=60°,∴BM=1海里,AM海里.在Rt△AMC中,tan C,∴CM 4.25(海里)∴CB=CM+BM=4.25+1=5.25(海里)答:“雪龙”号考察船在点B处与小岛C之间的距离为5.25海里.【点睛】本题主要考查了解直角三角形的应用﹣方向角问题.解决本题的关键是作垂线构造直角三角形,利用直角三角形的边角间关系求解.20.(2019•宝山区一模)地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.【答案】解:作BC⊥P A交P A的延长线于点C,作QD∥PC交BC于点D,由题意可得,BC=9.9﹣2.4=7.5米,QP=DC=1.5米,∠BQD=14°,则BD=BC﹣DC=7.5﹣1.5=6米,∵tan∠BQD,∴tan14°,即0.25,解得,ED=18,∴AC=ED=18,∵BC=7.5,∴tan∠BAC,即电梯AB的坡度是5:12,∵BC=7.5,AC=18,∠BCA=90°,∴AB.19.5,即电梯AB的坡度是5:12,长度是19.5米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.21.(2019•青浦区一模)如图,在港口A的南偏东37°方向的海面上,有一巡逻艇B,A、B相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C处?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°,cos67°,tan67°)【答案】解:过点A作AH⊥BC,垂足为点H.由题意,得∠ACH=67°,∠B=37°,AB=20.在Rt△ABH中,∵sin B,∴AH=AB•sin∠B=20×sin37°≈12,∵cos B,∴BH=AB•cos∠B=20×cos37°≈16,在Rt△ACH中,∵tan∠ACH∠,∴CH5,∵BC=BH+CH,∴BC≈16+5=21.∵21÷25<1,所以,巡逻艇能在1小时内到达渔船C处.【点睛】本题考查了解直角三角形的应用,解答本题的关键是将一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(2019•寿光市模拟)某学生为测量一棵大树AH及其树叶部分AB的高度,将测角仪放在F处测得大树顶端A的仰角为30°,放在G处测得大树顶端A的仰角为60°,树叶部分下端B的仰角为45°,已知点F、G与大树底部H共线,点F、G相距15米,测角仪高度为1.5米.求该树的高度AH和树叶部分的高度AB.【答案】解:由题意可得,∠AEC=30°,∠ADC=60°,∠BDC=45°,CH=DG=EF=1.5米,FG=ED=15米,∵∠ADC=∠AED+∠EAD,∴∠EAD=30°,∴∠EAD=∠AED,∴ED=AD,∴AD=15米,∵∠ADC=60°,∠ACD=90°,∴∠DAC=30°,∴DC米,AC米,∴AH=AC+CH米,∵∠BDC=45°,∠BCD=90°,∴∠DBC=45°,∴∠BDC=∠DBC,∴BC=CD米,∴AB=AC﹣BC米,即AH米,AB米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用特殊角的三角函数和数形结合的思想解答.23.(2019•静安区一模)计算:【答案】解:原式=3﹣2.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.(2019•射阳县一模)“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据: 1.41, 1.73,2.45, 2.65)【答案】解:(1)过C作CG⊥AB于G,过D作DH⊥AB于H,∵AC=20,∠CAB=60°,∴AG AC=10,CG AG=10,∵BC=BD﹣CD=30,∵CG⊥AB,DH⊥AB,∴CG∥DH,∴△BCG∽△BDH,∴,∴,∴DH23(厘米);∴支点D到滑轨MN的距离为23厘米;(2)过C′作C′S⊥MN于S,∵A′C′=AC=20,∠C′A′S=45°,∴A′S=C′S=10,∴BS10,∴A′B=1010,∵BG10,∴AB=10+10,∴AA′=A′B﹣AB≈6(厘米),∴滑块A向左侧移动的距离是6厘米.【点睛】本题考查解直角三角形,勾股定理、相似三角形的判定和性质,解题的关键是理解题意,灵活运用所学知识解决问题.25.(2019•闵行区一模)如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249, 1.4142.【答案】解:过点D作DH⊥AB,垂足为点H,由题意,得HB=CD=3,EC=15,HD=BC,∠ABC=∠AHD=90°,∠ADH=32°,设AB=x,则AH=x﹣3,在Rt△ABE中,由∠AEB=45°,得tan∠AEB=tan45°.∴EB=AB=x.∴HD=BC=BE+EC=x+15,在Rt△AHD中,由∠AHD=90°,得tan∠ADH,即得tan32°,解得:x32.99∴塔高AB约为32.99米.【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.26.(2019•嘉定区一模)计算:2|1﹣sin60°|.【答案】解:2|1﹣sin60°|=2(1)=2=2=2.【点睛】本题考查了特殊角三角函数值、实数的混合运算;熟记特殊角三角函数值是解题关键.27.(2019•无锡一模)某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC=13°(此时点B、C、D在同一直线上).(1)求这个车库的高度AB;(2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).(参考数据:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)【答案】解:(1)由题意,得:∠ABC=90°,i=1:2.4,在Rt△ABC中,i,设AB=5x,则BC=12x,∴AB2+BC2=AC2,∴AC=13x,∵AC=13,∴x=1,∴AB=5,答:这个车库的高度AB为5米;(2)由(1)得:BC=12,在Rt△ABD中,cot∠ADC,∵∠ADC=13°,AB=5,∴DB=5cot13°≈21.655(m),∴DC=DB﹣BC=21.655﹣12=9.655≈9.7(米),答:斜坡改进后的起点D与原起点C的距离为9.7米.【点睛】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.28.(2019•虹口区一模)计算:【答案】解:原式=3+2.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.29.(2019•金山区一模)计算:cos245°tan260°﹣cot45°•sin30°.【答案】解:原式=()2()2﹣11+3=2.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.30.(2019•长宁区一模)计算:60°.【答案】解:原式()2().【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.31.(2019•崇明区一模)计算:cos245°cot30°•sin60°.【答案】解:原式=()2.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.32.(2019•普陀区一模)如图,小山的一个横断面是梯形BCDE,EB∥DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45°,在与山坡的坡底D相距5米的F处测得铁塔顶端A的仰角为31°(点F、D、C在一直线上),求铁塔AB的高度.(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)【答案】解:延长AB交DC于G,过E作EH⊥CD于H,则四边形EHGB是矩形,∵斜坡DE的坡长为13米,坡度i=1:2.4,∴设EH=5x,DH=12x,∵EH2+DH2=DE2,∴(5x)2+(12x)2=132,∴x=1,∴EH=5,DH=12,∵EB∥DC,∴∠ABE=∠AGH=90°,∵∠AEB=45°,∴AB=BE,∴HG=AB,∴FG=5+12+AB,AG=AB+5,∵∠F=31°,∴tan F=tan31°0.6,∴AB=13米,答:铁塔AB的高度是13米.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,解直角三角形的应用﹣坡度坡角问题,矩形的性质,掌握的作出辅助线是解题的关键.33.(2019•长宁区一模)如图,小明站在江边某瞭望台DE的顶端D处,测得江面上的渔船A的俯角为40°.若瞭望台DE垂直于江面,它的高度为3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)(1)求瞭望台DE的顶端D到江面AB的距离;(2)求渔船A到迎水坡BC的底端B的距离.(结果保留一位小数)【答案】解:(1)延长DE交AB于点F,过点C作CG⊥AB,垂足为点G,由题意可知CE=GF=2,CG=EF在Rt△BCG中,∠BGC=90°,∴i,设CG=4k,BG=3k,则BC5k=10,∴k=2,∴BG=6,∴CG=EF=8,∵DE=3,∴DF=DE+EF=3+8=11(米),答:瞭望台DE的顶端D到江面AB的距离为11米;(2)由题意得∠A=40°,在Rt△ADF中,∠DF A=90°,∴cot A,∴ 1.19,∴AF≈11×1.19=13.09(m),∴AB=AF﹣BG﹣GF=5.09≈5.1(米),答:渔船A到迎水坡BC的底端B的距离为5.1米.【点睛】此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.34.(2019•黄浦区一模)计算:2cos245°tan45°.【答案】解:原式=2×()21=21=11=46.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.35.(2019•宝山区一模)计算:sin30°tan30°+cos60°cot30°.【答案】解:原式.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.36.(2019•金山区一模)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高24米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:2.求(1)背水坡AB的长度.(2)坝底BC的长度.【答案】解:(1)分别过点A、D作AM⊥BC,DN⊥BC,垂足分别为点M、N,根据题意,可知AM=DN=24(米),MN=AD=6(米),在Rt△ABM中,∵,∴BM=72(米),∵AB2=AM2+BM2,∴AB24(米),答:背水坡AB的长度为24米;(2)在Rt△DNC中,,∴CN=48(米),∴BC=72+6+48=126(米),答:坝底BC的长度为126米.【点睛】此题考查了坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.37.(2019•普陀区一模)计算:4sin45°+cos230°.【答案】解:原式=4()2=22().【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.38.(2019•杨浦区一模)如图,AD是△ABC的中线,tan B,cos C,AC.求:(1)BC的长;(2)∠ADC的正弦值.【答案】解:(1)如图,作AH⊥BC于H.在Rt△ACH中,∵cos C,AC,∴CH=1,AH1,在Rt△ABH中,∵tan B,∴BH=5,∴BC=BH+CH=6.(2)∵BD=CD,∴CD=3,DH=2,AD在Rt△ADH中,sin∠ADH.∴∠ADC的正弦值为.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考中考常考题型.39.(2019•杨浦区三模)如图,已知某船向正东方向航行,在点A处测得某岛C在其北偏东60°方向上,前进8海里处到达点B处,测得岛C在其北偏东30°方向上.已知岛C周围6海里内有一暗礁,问:如果该船继续向东航行,有无触礁危险?请说明你的理由.【答案】解:作CD⊥AB于点D,由题意可知,∠CAB=30°,∠CBD=60°,∴∠ACB=30°,在Rt△BCD中,∵∠BDC=90°,∠CBD=60°,∴∠BCD=30°,∴∠ACB=∠BCD.∴△CDB∽△ADC.∴∵AB=CB=8∴BD=4,AD=12.。

2019年上海市中考数学试题及参考答案(word解析版)

2019年上海市中考数学试题及参考答案(word解析版)

2019年上海市初中毕业统一学业考试数学试卷(试卷满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.8.已知f(x)=x2﹣1,那么f(﹣1)=.9.如果一个正方形的面积是3,那么它的边长是.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣820.(10分)解方程:﹣=121.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.参考答案与解析一、选择题:(本大题共6题,每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的】1.下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=【知识考点】整式的混合运算.【思路分析】根据整式的运算法则即可求出答案.【解题过程】解:(A)原式=5x,故A错误;(C)原式=6x2,故C错误;(D)原式=,故D错误;故选:B.【总结归纳】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n【知识考点】不等式的性质.【思路分析】根据不等式的性质即可求出答案.【解题过程】解:∵m>n,∴﹣2m<﹣2n,故选:D.【总结归纳】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.3.下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣【知识考点】正比例函数的性质;反比例函数的性质.【思路分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大.【解题过程】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选:A.【总结归纳】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.4.甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大【知识考点】算术平均数;中位数;方差.【思路分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解题过程】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A.【总结归纳】本题考查了方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.5.下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等【知识考点】命题与定理.【思路分析】利用矩形的性质分别判断后即可确定正确的选项.【解题过程】解:A、矩形的对角线相等,正确,是真命题;B、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C、矩形的对角线互相平分,正确,是真命题;D、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D.【总结归纳】本题考查了命题与定理的知识,解题的关键是了解矩形的性质,难度不大.6.已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11 B.10 C.9 D.8【知识考点】圆与圆的位置关系.【思路分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.【解题过程】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.由题意:,解得,故选:C.【总结归纳】本题考查两圆的位置关系,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:(2a2)2=.【知识考点】幂的乘方与积的乘方.【思路分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解题过程】解:(2a2)2=22a4=4a4.【总结归纳】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键.8.已知f(x)=x2﹣1,那么f(﹣1)=.【知识考点】函数值.【思路分析】根据自变量与函数值的对应关系,可得答案.【解题过程】解:当x=﹣1时,f(﹣1)=(﹣1)2﹣1=0.故答案为:0.【总结归纳】本题考查了函数值,把自变量的值代入函数解析式是解题关键.9.如果一个正方形的面积是3,那么它的边长是.【知识考点】算术平方根.【思路分析】根据算术平方根的定义解答.【解题过程】解:∵正方形的面积是3,∴它的边长是.故答案为:【总结归纳】本题考查了二次根式的应用,主要利用了正方形的性质和算术平方根的定义.10.如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.【知识考点】根的判别式.【思路分析】由于方程没有实数根,则其判别式△<0,由此可以建立关于m的不等式,解不等式即可求出m的取值范围.【解题过程】解:由题意知△=1﹣4m<0,∴m>.故填空答案:m>.【总结归纳】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根(3)△<0⇔方程没有实数根.11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.【知识考点】列表法与树状图法.【思路分析】先求出点数大于4的数,再根据概率公式求解即可.【解题过程】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为=,故答案为:.【总结归纳】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.12.《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)【知识考点】二元一次方程组的应用.【思路分析】直接利用5个大桶加上1个小桶可以盛米3斛,1个大桶加上5个小桶可以盛米2斛,分别得出等式组成方程组求出答案.【解题过程】解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故5x+x+y+5y=5,则x+y=.答:1大桶加1小桶共盛斛米.故答案为:.【总结归纳】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.13.在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.【知识考点】函数关系式.【思路分析】根据登山队大本营所在地的气温为2℃,海拔每升高1km气温下降6℃,可求出y 与x的关系式.【解题过程】解:由题意得y与x之间的函数关系式为:y=﹣6x+2.故答案为:y=﹣6x+2.【总结归纳】本题考查根据实际问题列一次函数式,关键知道气温随着高度变化,某处的气温=地面的气温﹣降低的气温.14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.【知识考点】用样本估计总体;扇形统计图.【思路分析】求出样本中100千克垃圾中可回收垃圾的质量,再乘以可得答案.【解题过程】解:估计该小区300户居民这一天投放的可回收垃圾共约×100×15%=90(千克),故答案为:90.【总结归纳】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.也考查了用样本估计总体.15.如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.【知识考点】平行线的性质;直角三角形斜边上的中线.【思路分析】根据直角三角形斜边上的中线性质得到DA=DC,则∠DCA=∠DAC=30°,再利用三角形外角性质得到∠2=60°,然后根据平行线的性质求∠1的度数.【解题过程】解:∵D是斜边AB的中点,∴DA=DC,∴∠DCA=∠DAC=30°,∴∠2=∠DCA+∠DAC=60°,∵11∥l2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.【总结归纳】本题考查了直接三角形斜边上的中线:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).也考查了平行线的性质.16.如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.【知识考点】*平面向量.【思路分析】连接CF.利用三角形法则:=+,求出即可.【解题过程】解:连接CF.∵多边形ABCDEF是正六边形,AB∥CF,CF=2BA,∴=2,∵=+,∴=2+,故答案为2+.【总结归纳】本题考查平面向量,正六边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.17.如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【知识考点】正方形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB==2.【解题过程】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=AD=AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB==2.故答案为:2.【总结归纳】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.【知识考点】全等三角形的性质.【思路分析】根据勾股定理求得AB=5,设AD=x,则BD=5﹣x,根据全等三角形的性质得出C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,即可求得∠C1D1B1=∠BDC,根据等角的余角相等求得∠B1C1D1=∠B,即可证得△C1B1D∽△BCD,根据其性质得出=2,解得求出AD的长.【解题过程】解:如图,∵在△ABC和△A1B1C1中,∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,∴AB==5,设AD=x,则BD=5﹣x,∵△ACD≌△C1A1D1,∴C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,∴∠C1D1B1=∠BDC,∵∠B=90°﹣∠A,∠B1C1D1=90°﹣∠A1C1D1,∴∠B1C1D1=∠B,∴△C1B1D∽△BCD,∴=,即=2,解得x=,∴AD的长为,故答案为.【总结归纳】本题考查了全等三角形的性质,勾股定理的应用,三角形相似的判定和性质,证得△C1B1D∽△BCD是解题的关键.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣8【知识考点】实数的运算;分数指数幂.【思路分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解题过程】解:|﹣1|﹣×+﹣8=﹣1﹣2+2+﹣4=﹣3【总结归纳】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(10分)解方程:﹣=1【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:2x2﹣8=x2﹣2x,即x2+2x﹣8=0,分解因式得:(x﹣2)(x+4)=0,解得:x=2或x=﹣4,经检验x=2是增根,分式方程的解为x=﹣4.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.【知识考点】待定系数法求一次函数解析式;两条直线相交或平行问题.【思路分析】(1)设一次函数的解析式为y=kx+b,解方程即可得到结论;(2)求得一次函数的图形与x轴的解得为B(﹣4,0),根据两点间的距离公式即可得到结论.【解题过程】解:(1)设一次函数的解析式为:y=kx+b,∵一次函数的图象平行于直线y=x,∴k=,∵一次函数的图象经过点A(2,3),∴3=+b,∴b=2,∴一次函数的解析式为y=x+2;(2)由y=x+2,令y=0,得x+2=0,∴x=﹣4,∴一次函数的图形与x轴的解得为B(﹣4,0),∵点C在y轴上,∴设点C的坐标为(﹣4,y),∵AC=BC,∴=,∴y=﹣,经检验:y=﹣是原方程的根,∴点C的坐标是(0,﹣).【总结归纳】本题考查了两直线相交与平行问题,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.【知识考点】矩形的性质;解直角三角形的应用.【思路分析】(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,∠DAD′=60°,利用矩形的性质可得出∠AFD′=∠BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,∠EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE可得出E、E′两点的距离.【解题过程】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45+70)厘米.答:点D′到BC的距离为(45+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE==30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.【总结归纳】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.【知识考点】菱形的判定;圆心角、弧、弦的关系;圆周角定理;相似三角形的判定与性质.【思路分析】(1)连接BC,根据AB=AC,OB=OA=OC,即可得出AD垂直平分BC,根据线段垂直平分线性质求出即可;(2)根据相似三角形的性质和判定求出∠ABO=∠ADB=∠BAO,求出BD=AB,再根据菱形的判定推出即可.【解题过程】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴=,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.【总结归纳】本题考查了相似三角形的性质和判定,圆心角、弧、弦之间的关系,线段垂直平分线的性质,菱形的判定,垂径定理等知识点,能综合运用知识点进行推理是解此题的关键.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.【知识考点】二次函数综合题.【思路分析】(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,即可求解;②新抛物线顶点B为“不动点”,则设点B(m,m),则新抛物线的对称轴为:x=m,与x轴的交点C(m,0),四边形OABC是梯形,则直线x=m在y轴左侧,而点A(1,﹣1),点B(m,m),则m=﹣1,即可求解.【解题过程】解:(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,解得:t=0或3,故“不动点”坐标为(0,0)或(3,3);②∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的,∴新抛物线的表达式为:y=(x+1)2﹣1.【总结归纳】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.【知识考点】相似形综合题.【思路分析】(1)由题意:∠E=90°﹣∠ADE,证明∠ADE=90°﹣∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,=,由BD:DE=2:3,可得cos∠ABC===.(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC 是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【解题过程】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=(∠ABC+∠BAC)=90°﹣∠C,∴∠E=90°﹣(90°﹣∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,=,∵BD:DE=2:3,∴cos∠ABC===.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时=2﹣.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时=2﹣.综上所述,∠ABC=30°或45°,=2﹣或2﹣.【总结归纳】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.21。

2019中考数学考试典型10大解题思路及方法精品教育.doc

2019中考数学考试典型10大解题思路及方法精品教育.doc

中考数学考试典型10大解题思路及方法数学学习中经常出现一些经典而实用的解题方法和思路。

这里总结10大解题方法的汇总。

1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

2019年上海市中考数学试卷以及解析答案

2019年上海市中考数学试卷以及解析答案

2019年上海市中考数学试卷一、选择题:(本大题共6题.每题4分,满分24【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=2.(4分)如果m>n,那么下列结论错误的是()A.m+2>n+2B.m﹣2>n﹣2C.2m>2n D.﹣2m>﹣2n 3.(4分)下列函数中,函数值y随自变量x的值增大而增大的是()A.y=B.y=﹣C.y=D.y=﹣4.(4分)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大5.(4分)下列命题中,假命题是()A.矩形的对角线相等B.矩形对角线交点到四个顶点的距离相等C.矩形的对角线互相平分D.矩形对角线交点到四条边的距离相等6.(4分)已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11B.10C.9D.8二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7.(4分)计算:(2a2)2=.8.(4分)已知f(x)=x2﹣1,那么f(﹣1)=.9.(4分)如果一个正方形的面积是3,那么它的边长是.10.(4分)如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.11.(4分)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.12.(4分)《九章算术》中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米.(注:斛是古代一种容量单位)13.(4分)在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y℃,那么y关于x的函数解析式是.14.(4分)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.15.(4分)如图,已知直线11∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么∠1=度.16.(4分)如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为.17.(4分)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A 落在点F处,联结DF,那么∠EDF的正切值是.18.(4分)在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.三、解答题(本大题共7题,满分78分)19.(10分)计算:|﹣1|﹣×+﹣820.(10分)解方程:﹣=121.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.25.(14分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.2019年上海市中考数学试卷答案与解析一、选择题:(本大题共6题.每题4分,满分24【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5x,故A错误;(C)原式=6x2,故C错误;(D)原式=,故D错误;故选:B.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.【分析】根据不等式的性质即可求出答案.【解答】解:∵m>n,∴﹣2m<﹣2n,故选:D.【点评】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.3.【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大.【解答】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选:A.【点评】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.4.【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A.【点评】本题考查了方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.5.【分析】利用矩形的性质分别判断后即可确定正确的选项.【解答】解:A、矩形的对角线相等,正确,是真命题;B、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C、矩形的对角线互相平分,正确,是真命题;D、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是了解矩形的性质,难度不大.6.【分析】如图,设⊙A,⊙B,⊙C的半径为x,y,z.构建方程组即可解决问题.【解答】解:如图,设⊙A,⊙B,⊙C的半径为x,y,z.由题意:,解得,故选:C.【点评】本题考查两圆的位置关系,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.【解答】解:(2a2)2=22a4=4a4.【点评】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键.8.【分析】根据自变量与函数值的对应关系,可得答案.【解答】解:当x=﹣1时,f(﹣1)=(﹣1)2﹣1=0.故答案为:0.【点评】本题考查了函数值,把自变量的值代入函数解析式是解题关键.9.【分析】根据算术平方根的定义解答.【解答】解:∵正方形的面积是3,∴它的边长是.故答案为:【点评】本题考查了二次根式的应用,主要利用了正方形的性质和算术平方根的定义.10.【分析】由于方程没有实数根,则其判别式△<0,由此可以建立关于m的不等式,解不等式即可求出m的取值范围.【解答】解:由题意知△=1﹣4m<0,∴m>.故填空答案:m>.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根(3)△<0⇔方程没有实数根.11.【分析】先求出点数大于4的数,再根据概率公式求解即可.【解答】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为=,故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.12.【分析】直接利用5个大桶加上1个小桶可以盛米3斛,1个大桶加上5个小桶可以盛米2斛,分别得出等式组成方程组求出答案.【解答】解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故5x+x+y+5y=5,则x+y=.答:1大桶加1小桶共盛斛米.故答案为:.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.13.【分析】根据登山队大本营所在地的气温为2℃,海拔每升高1km气温下降6℃,可求出y与x的关系式.【解答】解:由题意得y与x之间的函数关系式为:y=﹣6x+2.故答案为:y=﹣6x+2.【点评】本题考查根据实际问题列一次函数式,关键知道气温随着高度变化,某处的气温=地面的气温﹣降低的气温.14.【分析】求出样本中100千克垃圾中可回收垃圾的质量,再乘以可得答案.【解答】解:估计该小区300户居民这一天投放的可回收垃圾共约×100×15%=90(千克),故答案为:90.【点评】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.也考查了用样本估计总体.15.【分析】根据直角三角形斜边上的中线性质得到DA=DC,则∠DCA=∠DAC=30°,再利用三角形外角性质得到∠2=60°,然后根据平行线的性质求∠1的度数.【解答】解:∵D是斜边AB的中点,∴DA=DC,∴∠DCA=∠DAC=30°,∴∠2=∠DCA+∠DAC=60°,∵11∥l2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.【点评】本题考查了直接三角形斜边上的中线:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).也考查了平行线的性质.16.【分析】连接CF.利用三角形法则:=+,求出即可.【解答】解:连接CF.∵多边形ABCDEF是正六边形,AB∥CF,CF=2BA,∴=2,∵=+,∴=2+,故答案为2+.【点评】本题考查平面向量,正六边形的性质等知识,解题的关键是熟练掌握三角形法则,属于中考常考题型.17.【分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB==2.【解答】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=AD=AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB==2.故答案为:2.【点评】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.【分析】根据勾股定理求得AB=5,设AD=x,则BD=5﹣x,根据全等三角形的性质得出C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,即可求得∠C1D1B1=∠BDC,根据等角的余角相等求得∠B1C1D1=∠B,即可证得△C1B1D∽△BCD,根据其性质得出=2,解得求出AD的长.【解答】解:如图,∵在△ABC和△A1B1C1中,∠C=∠C1=90°,AC=A1C1=3,BC =4,B1C1=2,∴AB==5,设AD=x,则BD=5﹣x,∵△ACD≌△C1A1D1,∴C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,∴∠C1D1B1=∠BDC,∵∠B=90°﹣∠A,∠B1C1D1=90°﹣∠A1C1D1,∴∠B1C1D1=∠B,∴△C1B1D∽△BCD,∴=,即=2,解得x=,∴AD的长为,故答案为.【点评】本题考查了全等三角形的性质,勾股定理的应用,三角形相似的判定和性质,证得△C1B1D∽△BCD是解题的关键.三、解答题(本大题共7题,满分78分)19.【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣1|﹣×+﹣8=﹣1﹣2+2+﹣4=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x2﹣8=x2﹣2x,即x2+2x﹣8=0,分解因式得:(x﹣2)(x+4)=0,解得:x=2或x=﹣4,经检验x=2是增根,分式方程的解为x=﹣4.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.【分析】(1)设一次函数的解析式为y=kx+b,解方程即可得到结论;(2)求得一次函数的图形与x轴的解得为B(﹣4,0),根据两点间的距离公式即可得到结论.【解答】解:(1)设一次函数的解析式为:y=kx+b,∵一次函数的图象平行于直线y=x,∴k=,∵一次函数的图象经过点A(2,3),∴3=+b,∴b=2,∴一次函数的解析式为y=x+2;(2)由y=x+2,令y=0,得x+2=0,∴x=﹣4,∴一次函数的图形与x轴的解得为B(﹣4,0),∵点C在y轴上,∴设点C的坐标为(﹣4,y),∵AC=BC,∴=,∴y=﹣,经检验:y=﹣是原方程的根,∴点C的坐标是(0,﹣).【点评】本题考查了两直线相交与平行问题,待定系数法求函数的解析式,正确的理解题意是解题的关键.22.【分析】(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,∠DAD′=60°,利用矩形的性质可得出∠AFD′=∠BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE 及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,∠EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE 中,利用勾股定理可求出AE的长度,结合EE′=AE可得出E、E′两点的距离.【解答】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45+70)厘米.答:点D′到BC的距离为(45+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE==30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.【点评】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.23.【分析】(1)连接BC,根据AB=AC,OB=OA=OC,即可得出AD垂直平分BC,根据线段垂直平分线性质求出即可;(2)根据相似三角形的性质和判定求出∠ABO=∠ADB=∠BAO,求出BD=AB,再根据菱形的判定推出即可.【解答】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴=,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.【点评】本题考查了相似三角形的性质和判定,圆心角、弧、弦之间的关系,线段垂直平分线的性质,菱形的判定,垂径定理等知识点,能综合运用知识点进行推理是解此题的关键.24.【分析】(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,即可求解;②新抛物线顶点B 为“不动点”,则设点B(m,m),则新抛物线的对称轴为:x=m,与x轴的交点C(m,0),四边形OABC是梯形,则直线x=m在y轴左侧,而点A(1,﹣1),点B(m,m),则m=﹣1,即可求解.【解答】解:(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,解得:t=0或3,故“不动点”坐标为(0,0)或(3,3);②∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的,∴新抛物线的表达式为:y=(x+1)2﹣1.【点评】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.25.【分析】(1)由题意:∠E=90°﹣∠ADE,证明∠ADE=90°﹣∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,=,由BD:DE=2:3,可得cos∠ABC===.(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【解答】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=(∠ABC+∠BAC)=90°﹣∠C,∴∠E=90°﹣(90°﹣∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,=,∵BD:DE=2:3,∴cos∠ABC===.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时=2﹣.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时=2﹣.综上所述,∠ABC=30°或45°,=2﹣或2﹣.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

2019中考数学题做题思路

2019中考数学题做题思路

2019中考数学题做题思路各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢中考数学题做题思想,一般要经历三个步骤:1.从理解题意中提取有用的信息,如数式特点,图形结构特征等;2.从记忆储存中提取相关的信息,如有关公式,定理,基本模式等;3.将上述两组信息进行有效重组,使之成为一个合乎逻辑的和谐结构。

数学的表达,有3种方式:1.文字语言,即用汉字表达的内容;2.图形语言,如几何的图形,函数的图象;3.符号语言,即用数学符号表达的内容,比如AB∥CD。

在初中学段中,不仅要学好数学知识,同时也要注意数学思想方法的学习,掌握好思想和方法,对数学的学习将会起到事半功倍的良好效果。

其中整体与分类、类比与联想、转化与化归和数形结合等不仅仅是学好数学的重要思想,同时对您今后的生活也必将起重要的作用。

先来看转化思想:我们知道任何事物都在不断的运动,也就是转化和变化。

在生活中,为了解决一个具体问题,不论它有多复杂,我们都会把它简单化,熟悉化以后再去解决。

体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。

如方程的学习中,一元一次方程是学习方程的基础,那么在学习二元一次方程组时,可以通过加减消元和代入消元这样的手段把二元一次方程组转化为一元一次方程来解决,转化是手段,消元是目的;在学习一元二次方程时,可以通过因式分解把一元二次方程转化为两个一元一次方程,在这里,转化是手段,降次是目的。

把未知转化为已知,把复杂转化为简单。

同样,三元一次方程组可以通过加减和代入转化为二元一次方程组,再转化为一元一次方程。

在几何学习中,三角形是基础,可能通过连对角线等作辅助线的方法把多边形转化为多个三角形进行问题的解决。

所以,在数学学习和生活中都要注意转化思想的运用,解决问题,转化是关键。

各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。

2019年上海市中考数学真题试卷-解析版

2019年上海市中考数学真题试卷-解析版

A. y x 3
B. y x 3
C. y 3 x
D. y 3 x
【解答】解: A 、该函数图象是直线,位于第一、三象限, y 随 x 的增大而增大,故本选项
正确. B 、该函数图象是直线,位于第二、四象限, y 随 x 的增大而减小,故本选项错误. C 、该函数图象是双曲线,位于第一、三象限,在每一象限内, y 随 x 的增大而减小,故本
2019 年上海市中考数学试卷
参考答案与试题解析
一、选择题:(本大题共 6 题.每题 4 分,满分 24【下列各题的四个选项中,有且只有一个
选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】
1.(4 分)(2019•上海)下列运算正确的是 ( )
A. 3x 2x 5x2
B. 3x 2x x
3 【解答】解:在这 6 种情况中,掷的点数大于 4 的有 2 种结果, 掷的点数大于 4 的概率为 2 1 ,
63 故答案为: 1 .
3 【点评】本题考查的是概率公式,熟记随机事件 A 的概率 P (A) 事件 A 可能出现的结果 数所有可能出现的结果数的商是解答此题的关键.
12.(4 分)(2019•上海)《九章算术》中有一道题的条件是:“今有大器五一容三斛, 大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5 大桶加 1 小桶共盛 3 斛米, 1 大桶加 5 小桶共盛 2 斛米,依据该条件,1 大桶加 1 小桶共盛 5
-3-
【点评】本题考查了函数值,把自变量的值代入函数解析式是解题关键.
9.(4 分)(2019•上海)如果一个正方形的面积是 3,那么它的边长是 【解答】解:正方形的面积是 3,
3.
它的边长是 3 .

2019年中考数学解题技巧及方法指导(全)

2019年中考数学解题技巧及方法指导(全)

2019年中考数学解题技巧及方法指导(全) 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一5、判别式法与韦达定理一元二次方程ax2+bx+c=0根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程,解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

名师解析:上海中考试题分析数学卷

名师解析:上海中考试题分析数学卷

名师解析:上海2019年中考试题分析数学卷1.指导思想2009年上海市初中毕业统一学业考试数学卷命题以《上海市中小学数学课程标准》和《考试手册》为依据,指导思想是:有利于推进中小学实施素质教育;有利于推进中小学课程改革;有利于促进初中教育教学改革;有利于切实减轻中学生过重的学业负担;有利于培养学生的创新精神和实践能力;有利于促进学生全面和谐、富有个性的发展;有利于学生在高中教育阶段的可持续发展。

2.卷面构成试卷分三大题共25题,客观性题型占48%。

主观性题型占52% 。

代数与几何的比例控制在60%与40% 。

本次命题中知识点考查的百分比大致与各知识点的教学课时比较接近,而且知识覆盖面较大。

家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

3.命题思路其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。

不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

试卷设计的思路是“注重双基、体现新意、适度区分”。

死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x x
1 1

2 x2 1

1 x 1
17
典型例题(几何计算题)
【例1】21.如图,在Rt△ABC中,∠ACB=90°,
D是边AB的中点,BE⊥CD,垂足为点E.
已知AC=15,cosA=3/5.
(1)求线段CD的长;
(2012上海)
(2)求sin∠DBE的值.
【例2】22.如图,已知Rt△ABC中,∠ACB=90°, CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与 CD、CB相交于点H、E,AH=2CH. (2014上海) (1)求sinB的值; (2)如果CD=,求BE的值.
A
沿直线l翻折后,点B落在AC的中点处,直线l与边BC交于
点D,那么BD的长为

(2013上海)
B
C
【例4】18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,
图5
将矩形沿着过点E的直线翻折后,点C、D分别落在边BC
下方的点C′、D′处,且点C′、D′、B在同一条直线上,
折痕与边AD交于点F,D′F与BE交于点G.设AB=t,
3. 树立信心:
4. 养成良好的习惯:(书写、思考、解题等)
5. 加强数学阅读:
(1)阅读解题,
(2)阅读一题多解,拓宽思路。
6. 勿学“孙悟空”(形)、学“如来佛祖”(质):
法宝:(明确)考点+(掌握)通法
以“不变”应“万变”,一切都在(手心)掌握之中。
【教师方面】 真正发挥学生主体作用
1、课堂解题(整体) 3、课后找题: 5、相互练题:
m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的
边上,那么m=_____
(2011上海)
CD
B
【例2】18.如图,在Rt△ABC中,∠C=90°,BC=1,点D在
AC上,将△ADB沿直线BD翻折后,将点A落在点E处,如果
AD⊥ED,那么线段DE的长为________. (2012上海)
【例3】18.如图5,在△ABC中,AB=AC,BC=8,,如果将△ABC
【类型与方法】
【考点12】真假命题(≌、∽、特殊四边形) ★★★★★★
【类型与方法】
【考点13】相似(平行)判定、性质与应用 ★★★★★★
【类型与方法】
【考点14】(点、直线、圆)与圆关系
★★★★★★
【类型与方法】
【考点15】求函数定义域(函数值) ★★★★★ 【类型与方法】
【考点16】因式分解 ★★★ 解简单无理方程 ★★★ 简单应用题 ★★★★ 【类型与方法】
2、课余讲题:(学困生) 4、合作编题:
【教师的训练目标】 1、总体目标:数学思想形成,数学方法的掌握, 解题规律的掌握。 2、习题要求:基于中考、高于中考。 3、注重解题小结:
(1)解题结构理解清楚:哪些知识、基本技能、出错步骤、原因,如何防止. (2)解题方法评价:我最优解法、思想方法、如何想出来的,有无规律。 (3)步骤分析:解题关键、解题难点、如何突破的,是否另有方法解。
3)“思而不动”---(执行力)(手脑眼协调能力)。
10
(四)提分策略与方法
【学生方面】
1. 建立错题本:不犯第二次同样的错误学生
(1)解题后的反思,寻找规律、整理思路、补救解题失误。
(2)常看看、翻一翻:
(3)防止“粗心”:
(4)学生自己做错的题[错一改一找一编一],根本上解决问题。
2. 讨论、争辩:
要重“小”轻“大”:“小”——每题4分的填空题、选择题分值比解答题
小,但“比重”大,含“金”量高。以时间为标准衡量,是高效益的题目。后
面压轴题的1分与前面题目的1分是同分不同值。
5、简单题总是“错”的三个习惯:
1)“视而不见”---(注意力)(信息扫描);
2)“见而不思”---(分析力)(信息处理能力);
件中,能判断这个平行四边形为矩形的是( )【2017年】
A.∠BAC=∠DCA
6 B.∠BAC=∠DAC
C.∠BAC=∠ABD
D.∠BAC=∠ADB
5.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形
为矩形的是( )
【2018年】
A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC
【例3】 21. 如图,在 Rt ABC 中, ACB 90 , AC BC 3 ,点 D 在边 AC 上,且 AD 2CD ,
DE AB ,垂足为点 E ,联结 CE ,求: 【2016 年】 (1)线段 BE 的长;(2) ECB 根式(最简二次根式、无理数、二次根式计算、有理化因式等)
【类型与方法】
★★★★★★★★
【考点9】学习型---新概念 ★★★★★★
【类型与方法】
【考点10】图形的三大运动 ★★★★★★★★
【类型与方法】 图形三大运动突出“巧”
【考点11】正比例、反比例、一次函数、二次函数性质 ★★★★★★★★
(2011上海)

x
2

2xy
3y2

0.
【例2】20.(本题满分10分)解方程: (2012上海)
x
x 3

6 x2 9

1 x3
【例3】20.(本题满分10分)解方程组:
(2013上海)

x x2
y
2, xy 2 y 2

0.
【例4】20.(本题满分10分)解方程: (2014上海)
【类型与方法】
【考点3】统计 ★★★★★★★★(选择题)
★★★★★★★★(填空题)
【类型与方法】
【考点4】一元二次方程根的情况 ★★★★★★★★
【类型与方法】
【考点5】解不等式(组) ★★★★★★★★
【类型与方法】
【考点6】一次(或二次)函数的平移 ★★★★★★★★
【类型与方法】
【考点7】整式(幂)的运算 ★★★★★★★★
(难度系数:0.85以上、0.6-0.85、0.2--0.4)
3.考点:
(1)《上海市初中毕业生统一学业考试解读》102个
(新要求见上海考试院网站)代数55 几何47
(2)《上海市初中数学学科教学基本要求(试验本)》
2
二、考点分析
(1—18题)
【考点1】向量 ★★★★★★★★
【类型与方法】
【考点2】概率 ★★★★★★★★
2、(分式)化简求值 【方法指导】
【20题考点】:解方程(组) 【类型】分式方程★★★★ 二元二次方程组★★★★ 【方法指导】
【21-22题考点】 (三选二) 【类型】几何计算★★★★★、 一次函数及应用★★★★★★★★、
解直角三角形应用★★★★★ 【方法指导】
【23题考点】几何证明(5大主线考点】 【方法指导】(典型题:2012年、2014年)
(1)≌(出发点) (2)平行四边形 (3)特殊四边形(矩形、菱形、正方形、梯形) (4)∽或//(A、X型) (5)比例
中考24题
【24题考点】函数几何综合题 二次函数(或一次函数)背景+几何
【方法指导】(典型题:2012年)

1.点在抛物线上

点的位置2.点在对称轴上(或已知直线上)
压 轴 题 分 类
关系 边与边之间的函数关系 周长与边之间的函数关系 面积与边之间的函数关系 面积比与边之间的函数关系 直角三角形
相似三角形 特殊三角形(一角45°) 等腰三角形 圆(面积)
考试时间(年份) 2011年/2013年/2016年
2010年 2012年/2015年
2009年 2009年/2010* /2015年
(2014上海)
【例4】18.我们规定:一个正n边形(n为整数,n≥4)的最短对角线与
最长对角线长度的比值叫做这个正n边形的“特征值”,记为λ n,那
么λ 6=_______.
【2017年上海】
典型例题(18题)
【例1】18.Rt△ABC中,已知∠C=90°,∠B=50°,点D在
A
边BC上,BD=2CD(图4).把△ABC绕着点D逆时针旋转
考点分析 解题策略 应试技巧 提分方法
2019.5.20
1
一、试卷特征:
试题特点: 考点+能力
(中考数学 注重“双基”、考查能力、体现新意)
1.题量:25题
(选择题6×4=24分,填空题12×4=48分,
解答题4×10+2×12+14=78分)
2.难度:8:1:1
(市均分150×0.85=127.5分)
方法归纳指导
2011年/2017年 2012年﹡
2013年/2014年/2016年 2018年
题号
1---23题
三、考试策略
(一)考试时间分配
时间安排
基本要求
40----45分钟
稳、准、快
说明
稳中有快、准中 有快、快中不乱。
24题 25题
检查:
15---20分钟 30分钟
2---5分钟
稳步推进
复杂问题 简单化
的“特征角”为100°,那么这个“特征三角形”的最小内角的度数


(2013上海)
【例3】17.一组数:2, 1, 3, x, 7, y, 23,…,满足“从第三
个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这
组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示
的数为_____.
典型例题(17题)
【例1】17.我们把两个三角形的重心之间的距离叫做重心距 ,在同一 平面内有两个边长相等的等边三角形,如果当它们的一边重合时重心 距为2,那么当它们的一对角成对顶角时重心距为________.
相关文档
最新文档