对数的换底公式及其推论(含答案)

合集下载

换底公式的6个推论

换底公式的6个推论

换底公式的6个推论摘要:一、换底公式简介1.换底公式定义2.常见应用场景二、换底公式的性质1.指数函数的性质2.对数函数的性质三、推论1:loga(x)与logb(x)的关系1.loga(x)与logb(x)的定义2.loga(x)与logb(x)的换底公式推导3.loga(x)与logb(x)的关系总结四、推论2:loga(x)与logc(x)的关系1.loga(x)与logc(x)的定义2.loga(x)与logc(x)的换底公式推导3.loga(x)与logc(x)的关系总结五、推论3:loga(x)与logx(a)的关系1.loga(x)与logx(a)的定义2.loga(x)与logx(a)的换底公式推导3.loga(x)与logx(a)的关系总结六、推论4:loga(x)与logx(b)的关系1.loga(x)与logx(b)的定义2.loga(x)与logx(b)的换底公式推导3.loga(x)与logx(b)的关系总结七、推论5:loga(b)与logb(a)的关系1.loga(b)与logb(a)的定义2.loga(b)与logb(a)的换底公式推导3.loga(b)与logb(a)的关系总结八、推论6:loga(b)与logc(a)的关系1.loga(b)与logc(a)的定义2.loga(b)与logc(a)的换底公式推导3.loga(b)与logc(a)的关系总结正文:换底公式是数学中一种常用的公式,主要用于解决不同底数的对数与指数运算问题。

它可以将一个复杂的问题转化为更简单的形式,使得求解更加方便。

本文将介绍换底公式的6个推论,并通过具体的例子进行说明。

一、换底公式简介换底公式,又称对数换底公式,是指在数学中,将一个数的对数由一个底数转换为另一个底数的计算方法。

换底公式广泛应用于各种数学问题,尤其是涉及到对数与指数运算的问题。

例如,在计算复利、幂指数和对数等问题时,换底公式可以简化计算过程。

(vip免费)2.(vip免费)2.1 对数的换底公式及其推论(3)

(vip免费)2.(vip免费)2.1 对数的换底公式及其推论(3)

班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
2.2.1 对数的换底公式 及应用(3)
复习 对数的运算法则 如果 a > 0,a 1,M > 0, N > 0 有:
loga (MN) logaM logaN (1)
loga
M N
logaM
loga N
(2)
logaMn nlogaM(n R) (3)
对数换底公式
log a
N
log m N log m a
3) log4 3 log9 2 log 1 4 32
2
例2.已知 log2 3 a, log3 7 b 用a, b 表示 log42 56
例3 生物机体内碳14的半衰期为 5730年,湖南长沙马王堆汉墓 女尸出土时碳14的残余量约 占原始含量的76.7%,试推算 马王堆汉墓的年代.
作业:课本P75的11,12
( a > 0 ,a 1 ,m > 0 ,m 1,N>0)
如何证明呢?
两个推论: 设 a, b > 0且均不为1,则
1) loga b logb a 1
2)
log am
bn
n m
log a

对数的运算及换底公式2012.10.27

对数的运算及换底公式2012.10.27
对数的运算及换底公式
关系: 1.关系: a b = N
指数式
b = log a N
对数式
a
指数式 a b = N 对数式 log a N = b 底数 对数的底数
N
幂 真数
b
指数 对数
2.特殊对数:1)常用对数 — 以10为底的对数;lg N 特殊对数: ) 为底的对数; 特殊对数 为底的对数 2)自然对数— 以 e 为底的对数;ln N )自然对数 为底的对数; 3.重要结论:1)log a a = 1;2)log a 1 = 0 重要结论: ) 重要结论 ; ) 4.对数恒等式:a log a N = N 对数恒等式: 对数恒等式
n N = log a N m
n
(a, c ∈ (0,1) U (1,+∞), N > 0) a, b ∈ (0,1) U (1,+∞)
1、计算: (1) log 5 35 -2log 5 、计算:
7 + log 5 7 -log 5 1. 8 3
(2) lg 2 5 + lg 2 lg 5 + lg 2
解法一: 解法一: 解法二: 解法二:
7 7 lg 14 − 2 lg + lg 7 − lg 18 lg 14 − 2 lg + lg 7 − lg 18 3 3 7 7 2 = lg 14 − lg( ) + lg 7 − lg 18 = lg(2 × 7) − 2 lg 3 3 2 + lg 7 − lg(2 × 3 ) 14 × 7 = lg 7 2 = lg 2 + lg 7 − 2(lg 7 − lg 3) ( ) × 18 3 + lg 7 − (lg 2 + 2 lg 3) = lg 1 = 0 =0

对数的换底公式推导过程

对数的换底公式推导过程

对数的换底公式推导过程对数是数学中的一种运算,它有着广泛的应用。

在实际问题中,我们常常需要计算不同底数的对数之间的关系,这就需要用到换底公式。

下面我们将从推导过程的角度,详细介绍对数的换底公式。

我们先来看一下对数的定义。

设a是一个大于0且不等于1的数,b是一个大于0的数,那么对数的定义可以表示为:logₐ b = x ⇔ a^x = b其中,logₐb表示以a为底b的对数,x表示满足等式a^x = b的一个实数。

接下来,我们要推导对数的换底公式。

假设我们要计算logₐc的值,但是我们只知道logₐ b和logₐ a的值,那么怎么办呢?我们可以利用指数的基本运算法则来推导换底公式。

首先,我们将logₐ c表示为logₐ b,再将logₐ b表示为logₐ a,然后将其代入到对数的定义中,得到以下等式:logₐ c = logₐ b = logₐ a接下来,我们将对数的定义展开,得到以下等式:a^logₐ c = a^logₐ b = a^logₐ a根据指数和对数的定义,我们知道a^logₐa = a,因此上述等式可以简化为:c = b = a接着,我们将上述等式进行对数运算,得到以下等式:logₐ c = logₐ b = logₐ a其中,logₐc表示以a为底c的对数,logₐb表示以a为底b的对数,logₐ a表示以a为底a的对数。

我们通过对数的定义和指数的基本运算法则,推导出了对数的换底公式:logₐ c = logₐ b / logₐ a换底公式告诉我们,如果我们只知道以同一个底数a为底的两个对数,而想要计算以a为底的另一个数的对数,可以通过这个公式进行计算。

其中,底数a可以是任意正数,只要不等于1即可。

需要注意的是,当底数a为10时,换底公式可以进一步简化为常用对数和自然对数之间的关系:log c = log b / log a该公式是计算以10为底的对数的常用形式。

总结一下,对数的换底公式是通过对数的定义和指数的基本运算法则推导得出的。

高一数学对数的换底公式及其推论

高一数学对数的换底公式及其推论
2.2.1 对数的换底公式 及应用(3)
复习
对数的运算法则
如果 a > 0,a 1,M > 0, N > 0 有:
loga (MN) loga M loga N (1) M loga loga M loga N (2) N n loga M nloga M(n R) (3)
对数换底公式
logm N loga N logm a
( a > 0 ,a 1 ,m > 0 ,m 1,N>0) 如何证明呢?
两个推论:
设 a, b > 0且均不为1,则
1) loga b logb a 1
n 2) log am b log a b m
n
你能证明吗?
例题与练习
例1、计算:
1)
log8 9 log27 32
1log0.2 3
4
2) 5
3)
log4 3 log9 2 log1 32
2
例2.已知
log2 3 a, log3 7 b
用a, b 表示 log42 56
例3 生物机体内碳14的半衰期为
5730年,湖南长沙马王堆汉墓
女尸出土时碳14的残余量约 占原始含量的76.7%,试推算
wod19xqy
子的口气,应该是与20年前楚归国的一桩宫廷秘闻有关,我本想继续问下去,但萧公子没说什么,只是让我告诉你,必须保护 好公子。”“初月,我实话告诉你吧,我从萧煜痕那偷到一粒灵芝草配置的解毒丸,让玉瑶带回去了,只怕这会哥哥已经服下 了。”“这灵芝丸虽能解毒不假,但是60你这么做太冒险了。你知道萧煜痕为什么明明知道公子中了壮阳丸的毒,却迟迟不给 我们解药吗?”“难道不是他居心叵测,意图染指我们雪城吗?”“并非,初月之前就说过是有人故意为之栽赃给萧公子的, 您想想,萧公子平日呆在天香楼里,连我们素日都不知道雪城有这么一号人物,为什么在公子中毒后处处有关联。第二,公子 在进天香楼前已经是迷迷糊糊的状态,又是什么人能从天香楼给一个不省人事的人喂进这壮阳丸的呢?其次,我在萧煜痕处翻 了不少古籍资料,这壮阳丸之毒不是一两日就能积累成如此,想必自然是有府里的人在给公子服这种药,以达到不可告人的目 的。”“初月,你是不是已经知道是谁下的毒了?”“60,初月不敢妄加预言,60七窍玲珑心自然想得到是谁,只是若是处置 不当,势必会让雪城处在一个内忧外患的境地。”“初月,没想到我纪雪芙聪明一世,关键时候竟然还不如你想的透彻,我知 道是谁了,待我回雪城府,一定想个法子好好治治他。”第022章 还恩君莫急 “60,这灵芝丸的解药一旦给公子服下,就得 三个月药不能停,这是以毒攻毒的法子,只是60不知其药理仓促给公子服下,那下一丸药60又要如何取?”“什么?萧煜痕竟 如此卑鄙?”“60,这些日子在萧公子身边懂了很多,我们雪城之所以能任人鱼肉完全是因为我们太封闭的活在自己的世界里, 所以奴婢恳求60,让初月去萧公子的暗卫营里历练,强大自己再来保护60。”“初月,你这又是何苦?你我自幼一起长大,你 当我不知你对哥哥的心意吗?如今哥哥正在病中,你舍得就这么放下吗?”“60,初月自小就知道与公子60的身份差距,老太 爷公子和60都对初月极好,今生都无以为报,怎么还能肖想和公子在一起呢?初月的心意已决,还望60成全。”“唉,你当真 想好了?那萧煜痕又可愿意收你?”“60,且不论初月一心为雪城的赤胆忠心,连初月都能看出来萧公子对60的上心程度,若 是60肯去说,萧公子自然是不会拒绝的,只是60,萧公子真的不是您想的那种人,不论他对别人如何,对60怎样60自然是比奴 才清楚,能因为60你还能爱惜60您身边的丫鬟初月我,这种爱屋及乌的深情,60还是要早些明白才是。”“初月你不必再说了, 你知道我的命运的,我不论嫁给谁都是带有家族利益的,我是没有权利选择自己嫁给谁而不嫁给谁的,所以此话日后

对数的换底公式及其推论(含参考答案)

对数的换底公式及其推论(含参考答案)
对数的换底公式及其推论
一、复习引入: 对数的运算法则 如果 a>0,a 1,M>0, N>0有:
二、新授内容: 1. 对数换底公式 : log a N log m N (a>0,a 1, m>0,m 1,N>0) log m a
证明 :设 log a N=x,则 a x =N
两边取以 m为底的对数: log m a x log m N
2
3=a,则
1 a
log3 2 , 又∵ log 3 7=b,
∴ log 42 56 log 356 log 3 7 3 log 3 2
ab 3
log 3 42 log 3 7 log 3 2 1 ab b 1
5 例 2 计算:① 1 log 0.2 3 ② log 4 3 log 9 2 log 1 4 32
1.证明: log a x 1 log a b log ab x
证法 1:设 log a x p , log ab x q , log a b r
则: x a p x (ab) q a qb q b a r
∴ a p ( ab) q a q(1 r ) 从而 p q(1 r )
∵ q 0 ∴ p 1 r 即: log a x 1 log a b (获证)
x log m a log m N
从而得: x log m N ∴ log a N log m N
log m a
log m a
2. 两个常用的推论 :
① log a b log b a 1, log a b log b c log c a 1
② log am b n
n m
log
a
b
(a,b>0

高一数学对数的换底公式及其推论

高一数学对数的换底公式及其推论

马王堆汉墓的年代.
作业:课本P75的11,12
补充:1.求值:
(log2 5 log4 0.2)(log5 2 log25 0.5)
2.若 log3 4 log4 8 log8 m log4 2 ,求m
3.若log
8
3=p,
log
3
5=q ,
用p,q表示 5
猜测到,肯定壹时半会儿凑不齐。于是她赶快差彩蝶去问问月影,她现在到底有好些银子。没壹会儿彩蝶就回来咯,果然不出她の所料,只有壹千两左右! 假设想要尽快还债,她必须四处筹集余下の那四千两银子。壹文钱难道英雄汉,更何况水清现在需要の是四千两の巨款!以前在年府当二仆役の时候,水清 从来没有为银子发过愁,因为每壹次の开销,她从来都不用问需要花好些银子,她只需要跟王总管说想要啥啊东西就可以,不多时,她想要の东西就能按时 出现在她の房间。因此她对银子壹点儿概念都没有,不但对银子没有概念,而且还从来都没有积攒银两の意识。出嫁前,年夫人非要往她の身上塞银票,水 清还笑话她の娘亲:难道王府还能少咯这各侧福晋の吃喝不成?直到此时,她才真正体会到咯那句古语:穷家富路。出门壹定要带上足够の银子,否则她可 真就是叫天天不应,叫地地不灵!现在,水清急需四千两の银子,而每各月她只能领到二百两の月银,就是她壹丁点儿都不使用,也需要将近两年の时间才 能攒齐还清!更何况,精明如王爷这样の人,怎么可能不会收她の高利贷?假设将来要连本钱带利息壹并偿还の话,那这四千两,将来需要偿还の时候,可 就要变成咯八千两甚至壹万两!傍晚,苏培盛在向王爷禀报当天事项の时候,随口提咯壹句:“回爷,今天年侧福晋差人来跟奴才问咯还贺礼银子の事 情。”“噢,那件贺礼要好些银子,你到市面上打听过咯吗?”“奴才已经打听过咯,至少也要五千两。”“五千两?”“是の,奴才严格按照爷の吩咐, 绝对没有徇私枉法,绝对是公事公办,壹丁点儿折扣都没敢给侧福晋打。”“上次好像连几百两の银子她都拿不出来?”“是,是,上次她让奴才不要发她 例钱咯,用两各月の例钱补上の。”“噢,那这壹次……”“爷,您の意思是说,要不,侧福晋可以少交点儿?”“噢,不用咯,爷这也是禀公办事,否则 她得咯例外,别の人也要拿她做比照,府里の规矩还怎么遵守?”第壹卷 第418章 支援五千两の数目也将王爷极大地震惊咯!他先是与水清如出壹辙地万 分欣慰,竟然是价值五千两の头面首饰!婉然能够有这么壹份体体面面の嫁妆,他真是安心、放心咯,虽然不能说是咯无遗撼,但最少不会内疚惭愧继而他 又惊叹不已,因为他实在是想不到,戴铎竟然会送上来这么壹份厚礼!至于水清,算咯吧,虽然这各数目有些惊人,但是他已经说出去の话,是断断不可能 收回の,不管她用啥啊办法筹钱,都必须照章办事,秉公执法,不能因为她是侧福晋就能够坏咯府里の规矩。反正她们年家有の是银子,这各数目对她们而 言,只是九牛壹毛,小事壹桩。况且年家作为婉然真正の娘家,出这么壹份重礼,也是理所当然。王爷没有网开壹面,走投无路の水清没有办法,只能求助 于娘家。她不想拖欠王府の这四千两银子,当初跟他答应好好の,万不能反悔。虽然她不敢自比君子,但是她从来都是壹各言而有信之人。年夫人收到年峰 交来の水清の信件,喜极而泣:凝儿,终于养好病咯,终于不用她再担惊受怕咯。高兴不已の年夫人听完年老爷给她念の信,这才晓得宝贝女儿百年不遇地 开壹次口竟然是管娘家要银子,当场惊得目瞪口呆。凝儿可是给她银子都不要の人,怎么这回突然要起银子来咯,而且壹开口就是四千两!虽然这各数目对 年夫人而言并不为难,但上次在王府见到水清昏沉不醒の样子,她の心都碎咯。她の心肝宝贝女儿,先是被婉然抢咯夫君,精神受咯极大の刺激,遭咯那么 大の罪,现在连银子都要娘家支援,年夫人现在终于看明白咯女儿在王府过の是啥啊日子。以前,水清永远都是报喜不报忧,总是跟她讲在王府の生活有多 么の好。可是,这就是女儿口中の幸福の王府侧福晋生活?年夫人没有片刻の耽误,立即差倚红去找年峰筹银票,虽然为咯女儿,她不遗余力,在所不惜, 只是令她百思不解の是,凝儿这是遇到咯多大の难事?竟然要四千两银子?水清在信中并没有说明她要银子の原由,她不敢说这是为咯给婉然姐姐送贺礼而 欠下の借债。她即使没有见到年夫人,但她早早就能够猜出来,娘亲壹定会恨死婉然姐姐咯,恨姐姐抢咯凝儿の夫君。可是,这件事情也不是壹时半会儿就 能够跟娘亲解释清楚,她这各侧福晋都不恨姐姐の“夺夫之恨”呢,娘亲还有啥啊可恨の呢?既然解释不清,就先暂且不提咯,将来假设娘亲问起来の话, 她再想借口,反正是绝对不能告诉实情。不过,即使没有告诉娘亲她需要银子の理由,但她仍然有十足の把握,娘亲壹定会第壹时间给她解决燃眉之急,不, 这不仅仅是燃眉之急,这是真正の雪中送炭!果不其然,当天傍晚,水清就收到咯年府の银票,但是她收到の不是四千两,而是整整壹万两!看着手中の银 票,水清の泪水夺眶而出!第壹卷 第419章 还债知女莫如母。年夫人晓得她の凝儿,不到走投无路の时候,绝不会开口向娘家求救。水清是啥啊人,年夫 人最清楚咯,她の宝贝女儿是壹各对银两毫不在意、甚至根本就没有概念の人。而且她在王府里过得这么不如意,指不定下次还会遇到啥啊难事呢,这壹次 能让她舍下脸来求娘家,已经很让她那极要脸面の女儿极为难堪。万壹下壹次再遇到事情,水清因为不愿意壹而再、再而三地求娘家而走投无路怎么办?因 此年夫人特意多准备出咯六千两,希望她の女儿,即使不得王爷の宠,也不要

高一数学对数的换底公式及其推论

高一数学对数的换底公式及其推论

例1、算:
1)
log8 9 log27 32
1log0.2 3
4
2) 5
3)
log4 3 log9 2 log1 32
2
例2.已知
log2 3 a, log3 7 b
用a, b 表示 log42 56
例3 生物机体内碳14的半衰期为
5730年,湖南长沙马王堆汉墓
女尸出土时碳14的残余量约 占原始含量的76.7%,试推算
vcg49wfv
是有这么一个孙女就好喽。”耿英和老妇人一起进屋做饭去了。耿正说:“俺去挑担水哇!”耿老爹说:“俺去挑哇,你拉一段好听的 二胡曲儿给爷爷听,让爷爷乐呵乐呵!”老爷子一听这话,立刻就高兴得眉开眼笑,说:“哎呀,这娃儿还会拉二胡哇,快拉给爷爷听 听!唉,爷爷奶奶老嘞,走不了远路,俺们有好几年没有去镇上赶庙会了呢。常年儿呆在家里,自然就没有机会听这些个热闹了哇。每 日里能够听到的,除了鸡鸣狗叫什么的,再就是狂风暴雨后那怪吓人的波涛声儿了。今儿个正好用好听的曲儿给爷爷洗洗耳朵!”耿正 笑了,说:“爷爷,俺拉得没有多好,但总归还是可以给您换个声儿听的!您请坐,俺这就拉给您听!”说着话,耿正去车上取来二胡, 又看看周围,先请老爷子坐在屋门旁檐台上那个松松软软的厚草垫子上。然后,自己搬把高脚凳子坐在老爷子的对面亲切地问:“爷爷, 您爱听哪一段儿?”老爷子想也没有想就说:“你就将最顺手的拉哇,爷爷什么曲儿都爱听!”自来熟耿直也很想表现表现,于是就高 兴地跳到老爷子的背后,声音甜甜地说:“那俺给爷爷捶捶背哇。俺爹说啦,经常锤捶背身子骨儿好!”在优美的二胡曲儿声中,耿直 不轻不重地为老人家捶着背。老爷子眯缝着眼睛幸福惬意地享受着在屋里做饭的老妇人听着美妙的二胡曲儿,高兴地对耿英说:“哎哟 哟,这莫不是老天爷给俺们俩老东西送来了仙人儿嘛!”热汤热菜的舒舒服服吃完晚饭之后,耿正又为两位老人家拉了好一会儿。次日 早饭后,耿老爹将毛驴重新拴在滩枣树上,给它喂上草料,饮上水。然后对老夫妇说,想带娃娃们到黄河边上玩玩儿去。两位老人家相 视而笑了。老爷子摇着头说:“唉,没有见过黄河的人,都觉得这条大河新奇呢。其实哇,这黄河可不见得是一个好东西!你让娃娃们 离远点儿瞧瞧就是了。你们打北面过来的人,肯定不会水的,千万别失足落进去哇!”老妇人也说:“是啊,这黄河自古以来就经常祸 害人呢。说不定什么时候不高兴了,就冲破堤坝,好像脱缰的野马一样。你们可一定小心啊,离远点儿瞧!对啦,不要走太远了,中午 还回来吃饭,俺给咱们做打卤刀削面。”耿老爹感激地说:“好的,俺们一定小心,也不会走太远了。中午还回来吃饭,您做简单点 儿!”当耿家父子四人辞别两位老人家再次上了堤岸来到黄河边儿上的时候,他们对眼前的这条仍然还是波浪滔滔的大河,已经远没有 昨天下午第一次看到时那样感兴趣了。毫无疑问,两位善良老人家对这条大河的那一番不乍欣赏的评价,已经深深地感染了他们。沿岸 走了一会儿后,耿直甚至说:“听这声音,这黄河真得很像脱缰的野马呢!”耿正说:“不,这黄河水现在还只是被圈在堤坝里边的野 马,还没

log的换底公式的推导

log的换底公式的推导

log的换底公式的推导好的,以下是为您生成的关于“log 的换底公式的推导”的文章:在咱们数学的奇妙世界里,log(对数)可是个让人又爱又恨的家伙。

今天咱们就来好好唠唠 log 的换底公式,这玩意儿看似复杂,其实只要咱一步步拆解,那也是小菜一碟!咱们先来说说为啥要整出个换底公式。

就拿咱平时做题来说吧,有时候题目给的底数和咱想要的底数不一样,这可咋整?这时候换底公式就派上用场啦,能让咱们把不同底数的对数换成相同底数的,方便计算和比较。

比如说,咱有个对数logₐb,想把底数换成 c,那换底公式就是logₐb = logₐc / logₐc。

那这公式咋来的呢?咱们来推导推导。

假设logₐb = x,那根据对数的定义,就有 a^x = b。

接下来,咱两边同时取以 c 为底的对数,就得到logₐc(a^x) = logₐc b。

因为logₐc(a^x) = x logₐc a,所以x logₐc a = logₐc b。

最后把 x 解出来,x = logₐc b / logₐc a,这不就是咱们要的换底公式嘛!我记得之前有一次给学生们讲这个知识点的时候,有个学生就特别迷糊,一直问我为啥要这么换来换去的。

我就给他举了个例子,说假如你有一堆苹果,你想知道这堆苹果能分给几个人,但是一开始给你的计算方式不太顺手,咱们就得换个更方便的计算方式,这个换底公式就相当于那个更方便的计算方式。

咱们再深入瞅瞅这个公式的应用。

比如说,要计算 log₂5,直接算不太好弄,那咱们就可以换成以 10 为底,也就是 log₂5 = log₁₀5 / log₁₀2。

然后通过查对数表或者用计算器,就能算出结果啦。

在实际解题中,换底公式还能帮助咱们证明一些等式或者不等式。

比如说,要证明logₐb × logₐc = logₐ(bc),咱们就可以利用换底公式把左边都换成以同一个底数的对数,然后通过化简就能证明出来啦。

总之,log 的换底公式就像是一把万能钥匙,能帮咱们打开很多数学难题的大门。

高一数学对数的换底公式及其推论

高一数学对数的换底公式及其推论
2.2.1 对数的换底公式 及应用(3)
复习
对数的运算法则
如果 a > 0,a 1,M > 0, N > 0 有:
loga (MN) loga M loga N (1) M loga loga M loga N (2) N n loga M nloga M(n R) (3)
对数换底公式
logm N loga N logm a
( a > 0 ,a 1 ,m > 0 ,m 1,N>0) 如何证明呢?
两个推论:
设 a, b > 0且均不为1,则
1) loga b logb a 1
n 2) log am b log a b m
n
你能证明吗?
例题与练习
马王堆汉墓的年代.
作业:课本P75的11,12
补充:1.求值:
(log2 5 log4 0.2)(log5 2 log25 0.5)
2.若 log3 4 log4 8 log8 m log4 2 ,求m
3.若log
8
3=p,
log
3
5=q ,
用p,q表示 lg 5
; https:///brands/4003.html 新加坡妈妈烤包 新加坡妈妈烤包加盟;
例1、计算:
1)
log8 9 log27 32
1log0.2 34 Nhomakorabea2) 5
3)
log4 3 log9 2 log1 32
2
例2.已知
log2 3 a, log3 7 b
用a, b 表示 log42 56
例3 生物机体内碳14的半衰期为
5730年,湖南长沙马王堆汉墓

对数换底公式总结

对数换底公式总结

对数换底公式总结对数换底公式,也称为换底公式,是对数的一种恒等变形,用于将一个对数转换为以不同底数表示的形式。

这个公式在数学、物理学和工程学等多个领域有着广泛的应用。

换底公式的基本形式是 log(a)(b) = log(c)(b) / log(c)(a),其中 a、b、c 都是正数,且a ≠ 1,b ≠ 1,c ≠ 1。

这个公式可以用来将任何底数 a 的对数转换为以底数 c 为底的对数,只要满足上述条件。

在换底公式中,log(a)(b) 表示以 a 为底 b 的对数,log(c)(b) 表示以 c 为底b 的对数,log(c)(a) 表示以 c 为底 a 的对数。

通过这个公式,我们可以将任何底数的对数转换为以任意大于零且不等于 1 的数为底的对数。

换底公式的推导过程可以通过对数的定义和性质进行证明。

首先,根据对数的定义,我们有 log(a)(b) = ln(b) / ln(a),其中 ln 表示自然对数。

然后,我们可以通过换元法,令 t = ln(b),得到 log(a)(b) = e^t / ln(a),其中 e 是自然对数的底数。

接着,我们可以将 e^t 替换为以 c 为底 b 的对数,得到 log(a)(b) = log(c)(b) / log(c)(a)。

通过对数换底公式,我们可以解决一些与对数相关的问题,例如求解对数方程、计算对数的运算性质等。

同时,换底公式还可以用于简化对数的计算过程,例如将一个复杂的对数表达式转换为更简单的形式。

需要注意的是,在对数的换底公式中,换底的底数不能为 1 或 0,因为这两个值不符合对数的定义。

此外,在对数换底公式中,等号成立的条件是 a、b、c 都是正数且a≠1,b≠1,c≠1。

如果这些条件不满足,换底公式可能不成立。

总之,对数换底公式是数学中一个重要的恒等式,它可以将一个对数转换为以任意大于零且不等于 1 的数为底的对数。

这个公式在解决与对数相关的问题时非常有用,可以简化计算过程并得到更简单的结果。

对数的运算

对数的运算

对数的运算学习目标 1.掌握积、商、幂的对数运算性质,理解其推导过程和成立条件.2.掌握换底公式及其推论.3.能熟练运用对数的运算性质进行化简求值.知识点一 对数运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R ). 知识点二 换底公式1.log a b =log c blog c a (a >0,且a ≠1;c >0,且c ≠1;b >0).2.对数换底公式的重要推论:(1)log a N =1log N a (N >0,且N ≠1;a >0,且a ≠1);(2)log n ma b =m nlog a b (a >0,且a ≠1,b >0);(3)log a b ·log b c ·log c d =log a d (a >0,b >0,c >0,d >0,且a ≠1,b ≠1,c ≠1). 预习小测 自我检验1.计算log 84+log 82=________. 答案 12.计算log 510-log 52________. 答案 13.(1)lg 10=________;(2)已知ln a =0.2,则ln ea =________.答案 (1)12 (2)0.84.log 29log 23=________. 答案 2一、对数运算性质的应用 例1 计算下列各式: (1)log 53625;(2)log 2(32×42); (3)log 535-2log 573+log 57-log 595.解 (1)原式=13log 5625=13log 554=43.(2)原式=log 232+log 242=5+4=9.(3)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2log 55=2. 反思感悟 对数式化简与求值的基本原则和方法 (1)基本原则对数式的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行. (2)两种常用的方法①“收”,将同底的两对数的和(差)收成积(商)的对数; ②“拆”,将积(商)的对数拆成同底的两对数的和(差). 跟踪训练1 计算下列各式的值: (1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9-35lg 27lg 81-lg 27.解 (1)原式=(lg 5+lg 2)(lg 5-lg 2)+2lg 2 =lg 10(lg 5-lg 2)+2lg 2 =lg 5-lg 2+2lg 2 =lg 5+lg 2=1.(2)原式=lg 3+45lg 3-910lg 34lg 3-3lg 3=⎝⎛⎭⎫1+45-910lg 3(4-3)lg 3=910. 二、对数换底公式的应用例2 (1)计算:(log 43+log 83)log 32=________. 答案 56解析 原式=⎝⎛⎭⎫1log 34+1log 38log 32 =⎝⎛⎭⎫12log 32+13log 32log 32 =12+13=56. (2)已知log 189=a ,18b =5,求log 3645.(用a ,b 表示) 解 因为18b =5,所以b =log 185. 所以log 3645=log 1845log 1836=log 18(5×9)log 18(2×18)=log 185+log 189log 182+log 1818=a +b 1+log 182=a +b 1+log 18189=a +b 2-log 189=a +b 2-a .延伸探究若本例(2)条件不变,求log 915.(用a ,b 表示) 解 因为18b =5,所以log 185=b . 所以log 915=log 1815log 189=log 18(3×5)log 189=log 183+log 185a =log 189+ba=1218log 9b a+=12log 189+b a=12a +b a =a +2b 2a.反思感悟 利用换底公式化简与求值的思路跟踪训练2 (1)log 89log 23的值是( )A.23B.32 C .1 D .2 答案 A解析 方法一 将分子、分母利用换底公式转化为常用对数, 即log 89log 23=lg 9lg 8lg 3lg 2=2lg 33lg 2·lg 2lg 3=23. 方法二 将分子利用换底公式转化为以2为底的对数, 即log 89log 23=log 29log 28log 23=2log 233log 23=23. (2)计算:log 52·log 79log 513·log 734.解 原式=log 52log513·log 79log 734212211233log 9log 23log 3==⋅=-12·log 32·3log 23=-32.三、对数的综合应用例32018年我国国民生产总值为a 亿元,如果平均每年增长8%,估计约经过多少年后国民生产总值是2018年的2倍?(lg 2≈0.301 0,lg 1.08≈0.033 4,精确到1年)解 设经过x 年后国民生产总值为2018年的2倍. 经过1年,国民生产总值为a (1+8%), 经过2年,国民生产总值为a (1+8%)2, …,经过x 年,国民生产总值为a (1+8%)x =2a , 所以1.08x =2,所以x =log 1.082=lg 2lg 1.08=0.301 00.033 4≈9,故约经过9年后国民生产总值是2018年的2倍. 反思感悟 解决对数应用题的一般步骤跟踪训练3 在不考虑空气阻力的情况下,火箭的最大速度v (单位:m/s)和燃料的质量M (单位:kg),火箭(除燃料外)的质量m (单位:kg)满足e v =⎝⎛⎭⎫1+Mm 2 000(e 为自然对数的底数,ln 3≈1.099).当燃料质量M 为火箭(除燃料外)质量m 的两倍时,求火箭的最大速度(单位:m/s). 解 因为v =ln ⎝⎛⎭⎫1+Mm 2 000 =2 000·ln ⎝⎛⎭⎫1+M m , 所以v =2 000·ln 3≈2 000×1.099=2 198(m/s).故当燃料质量M 为火箭质量m 的两倍时,火箭的最大速度为2 198 m/s.1.计算:log 123+log 124等于( ) A .1 B .2 C .3 D .4 答案 A2.若lg 2=m ,则lg 5等于( ) A .m B.1m C .1-m D.10m答案 C 解析 lg 5=lg102=lg 10-lg 2=1-m . 3.化简12log 612-2log 62的结果为( )A .6 2B .12 2C .log 6 3 D.12答案 C解析 原式=log 612-log 62=log 6122=log 6 3. 4.下列各等式正确的为( ) A .log 23·log 25=log 2(3×5) B .lg 3+lg 4=lg(3+4) C .log 2xy=log 2x -log 2yD .lg nm =1n lg m (m >0,n >1,n ∈N *)答案 D解析 A ,B 显然错误,C 中,当x ,y 均为负数时,等式右边无意义. 5.计算:log 513·log 36·log 6125=________.答案 2解析 原式=lg 13lg 5·lg 6lg 3·lg 125lg 6=-lg 3lg 5·lg 6lg 3·-2lg 5lg 6=2.1.知识清单: (1)对数的运算性质. (2)换底公式. (3)对数的实际应用. 2.方法归纳:(1)利用对数的运算性质,可以把乘、除、乘方运算转化为加、减、乘的运算,加快计算速度.(2)利用结论log a b ·log b a =1,log n ma b =m n log a b 化简求值更方便.3.常见误区:要注意对数的运算性质(1)(2)的结构形式,易混淆.1.lg 8+3lg 5的值为( ) A .-3 B .-1 C .1 D .3 答案 D解析 lg 8+3lg 5=3lg 2+3lg 5=3(lg 2+lg 5)=3. 2.如果lg x =lg a +3lg b -5lg c ,那么( ) A .x =ab 3c 5B .x =3ab5cC .x =a +3b -5cD .x =a +b 3-c 3答案 A 解析lg a +3lg b -5lg c =lg a +lg b 3-lg c 5=lgab 3c 5, 由lg x =lg ab 3c 5,可得x =ab 3c5.3.设a =log 32,则log 38-2log 36用a 表示的形式是( ) A .a -2 B .3a -(1+a )2 C .5a -2 D .-a 2+3a -1答案 A解析 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1)=3a -2(a +1)=a -2. 4.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5 D .6 答案 D解析 原式=lg 25lg 2·lg 22lg 3·lg 9lg 5=2lg 5lg 2·32lg 2lg 3·2lg 3lg 5=6. 5.若lg x -lg y =t ,则lg ⎝⎛⎭⎫x 23-lg ⎝⎛⎭⎫y23等于( )A .3t B.32t C .t D.t2答案 A解析 lg ⎝⎛⎭⎫x 23-lg ⎝⎛⎭⎫y 23=3lg x 2-3lg y 2 =3lg xy=3(lg x -lg y )=3t .6.lg 5+lg 20的值是________. 答案 1解析 lg 5+lg 20=lg 100=lg 10=1. 7.(lg 5)2+lg 2·lg 50=________. 利用lg 2+lg 5=1化简求解对数值 答案 1解析 (lg 5)2+lg 2·lg 50=(lg 5)2+lg 2(lg 5+lg 10) =(lg 5)2+lg 2·lg 5+lg 2 =lg 5(lg 5+lg 2)+lg 2 =lg 5+lg 2=1.8.若lg x +lg y =2lg(x -2y ),则xy =________.答案 4解析 因为lg x +lg y =2lg(x -2y ), 所以⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,xy =(x -2y )2.由xy =(x -2y )2,知x 2-5xy +4y 2=0, 所以x =y 或x =4y . 又x >0,y >0且x -2y >0, 所以舍去x =y ,故x =4y ,则x y =4.9.用lg x ,lg y ,lg z 表示下列各式: (1)lg(xyz );(2)lg xy 2z;(3)lg xy 3z;(4)lg x y 2z .解 (1)lg(xyz )=lg x +lg y +lg z .(2)lg xy 2z =lg(xy 2)-lg z =lg x +2lg y -lg z .(3)lg xy 3z =lg(xy 3)-lg z =lg x +3lg y -12lg z .(4)lgxy 2z =lgx -lg(y 2z )=12lg x -2lg y -lg z .10.计算下列各式的值:(1)log 535+212log log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64; (3)(log 43+log 83)(log 32+log 92).解 (1)原式=log 535+log 550-log 514+21212log 2=log 535×5014+12log 2=log 553-1=2.(2)原式=[(log 66-log 63)2+log 62·log 6(2×32)]÷log 64=⎣⎡⎦⎤⎝⎛⎭⎫log 6632+log 62·(log 62+log 632)÷log 622 =[(log 62)2+(log 62)2+2log 62·log 63]÷2log 62 =log 62+log 63=log 6(2×3)=1. (3)(log 43+log 83)(log 32+log 92) =⎝⎛⎭⎫lg 3lg 4+lg 3lg 8⎝⎛⎭⎫lg 2lg 3+lg 2lg 9 =⎝⎛⎭⎫lg 32lg 2+lg 33lg 2⎝⎛⎭⎫lg 2lg 3+lg 22lg 3 =5lg 36lg 2×3lg 22lg 3=54.11.方程log 3(x 2-10)=1+log 3x 的解是( ) A .-2 B .-2或5 C .5 D .3答案 C解析 原方程可化为log 3(x 2-10)=log 3(3x ), 所以x 2-10=3x ,解得x =-2,或x =5.经检验知x =5.12.若lg x -lg y =a ,则lg ⎝⎛⎭⎫x 23-lg ⎝⎛⎭⎫y 23等于( ) A .3a B.32a C .a D.a2答案 A解析 由对数的运算性质知,原式=3(lg x -lg 2)-3(lg y -lg 2)=3(lg x -lg y )=3a . 13.若3x =4y =36,则2x +1y =________.答案 1解析 3x =4y =36,两边取以6为底的对数,得 x log 63=y log 64=2,∴2x =log 63,2y =log 64,即1y =log 62, 故2x +1y=log 63+log 62=1. 14.若x log 32=1,则4x +4-x =________. 答案829解析 因为x =1log 32=log 23, 所以4x+4-x =22x +2-2x =22log 32+22log 32-=22log 32+22log 32-=9+19=829.15.若ab >0,给出下列四个等式: ①lg(ab )=lg a +lg b ; ②lg ab =lg a -lg b ;③12lg ⎝⎛⎭⎫a b 2=lg a b ; ④lg(ab )=1log ab 10.其中一定成立的等式的序号是( )A .①②③④B .①②C .③④D .③答案 D 解析 ∵ab >0,∴a >0,b >0或a <0,b <0, ∴①②中的等式不一定成立;∵ab >0,∴a b >0,12lg ⎝⎛⎭⎫a b 2=12×2lg a b =lg a b, ∴③中等式成立;当ab =1时,lg(ab )=0,但log ab 10无意义, ∴④中等式不成立.故选D.16.已知log 23=a ,log 37=b ,用a ,b 表示log 4256.解 ∵log 23=a ,则1a=log 32,又∵log 37=b , ∴log 4256=log 356log 342=log 37+3log 32log 37+log 32+1=ab +3ab +a +1.。

对数换底公式的推导

对数换底公式的推导

对数换底公式的推导对数换底公式是初中数学中的重要内容之一。

它是解决对数运算中底数不同的问题的一种有效方法。

下面我将为大家详细介绍对数换底公式的推导过程。

我们先来回顾一下对数的定义。

假设a和b是正实数,且a≠1。

我们可以将对数表达为loga b,读作“以a为底b的对数”。

这里,a称为底数,b称为真数,loga b称为对数。

对数的特点是可以将指数运算转化为乘法运算,这对于解决复杂的指数运算问题非常有用。

接下来,我们来推导对数换底公式。

假设x是一个正实数,a、b和c是正实数,且a≠1,b≠1,c≠1。

我们可以得到以下等式:1. x = a^loga x;这是根据对数的定义,将指数运算转化为底数为a的对数。

2. x = b^logb x;同样地,将指数运算转化为底数为b的对数。

现在,我们希望将等式1和等式2联系起来。

我们需要找到一个方法,将底数为a的对数转化为底数为b的对数。

假设y=loga x,我们可以得到以下等式:3. x = a^loga x = a^y;这是根据等式1。

4. x = b^logb x = b^logb a^y;这是根据等式2。

接下来,我们将等式3和等式4进行比较。

我们可以发现,等式3中的x可以用等式4中的x表示。

于是,我们可以得到以下等式:5. a^y = b^logb a^y;这是将等式3中的x用等式4中的x表示。

接下来,我们希望将等式5进一步简化。

我们可以使用对数的定义将指数运算转化为对数运算。

假设z=logb a,我们可以得到以下等式:6. a^y = b^logb a^y = (b^z)^y;这是根据等式5。

现在,我们可以发现,等式6中的a^y可以用等式6中的(b^z)^y 表示。

于是,我们可以得到以下等式:7. a^y = (b^z)^y = b^(zy);这是将等式6中的a^y用等式6中的(b^z)^y表示。

从等式7中,我们可以得到以下结论:8. y = zy;这是根据等式7。

高一数学复习知识讲解课件41 对数的运算(第2课时) 换底公式及应用问题

高一数学复习知识讲解课件41 对数的运算(第2课时)  换底公式及应用问题

4.3.2对数的运高一数学复习知换底公式及应数的运算(第2课时)
复习知识讲解课件
式及应用问题
课时学案
探究
1
(1)
换底公式的本质是化异底为数或自然对数,解决一般对数的求值问题(2)
利用换底公式化简、求值的一般思路 异底为同底,也可以将一般对数化为常用对问题.
般思路:
探究2 利用对数式与指数式互化求值(1)在对数式、指数式的互化运算中,则,尤其要注意条件和结论之间的关系,(2)对于连等式可令其等于k (k >0,且由换底公式可将指数的倒数化为同底的对数
化求值的方法:
,要注意灵活运用定义、性质和运算法,进行正确地转化.
且k ≠1),然后将指数式用对数式表示,再的对数,从而使问题得解.
探究3 关于对数运算在实际问题中的
(1)在与对数相关的实际问题中,先将题代入,最后利用对数运算性质、换底公式进(2)在与指数相关的实际问题中,可将指数运算,从而简化复杂的指数运算.
题中的应用: 先将题目中数量关系理清,再将相关数据公式进行计算.
可将指数式利用取对数的方法,转化为对
课 后 巩 固。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数的换底公式及其推论
一、复习引入:对数的运算法则
如果 a > 0,a 丰 1,M > 0, N > 0 有:
log a (MN) Jog a M gN ⑴ 蛰lo (2)
log.M n 二 nlog a M(n R) (3)
、新授内容: 1•对数换底公式:
证明:设 log a N = x ,贝U a x
= N -
两边取以m 为底的对数:log m a x
= log m N = x log m a = log m N
2•两个常用的推论
① log a b log b a =1 , logblogcloga" * ②
log a m
b " = ^log a b ( a, b > 0 且均不为 1)・
m
证:① log a b log b a == 1 亠 lga lg b
三、讲解范例:
lOg a N
log m N log m a
(a > 0 ,a 丰 1 , m > 0 ,m 丰 1,N>0) *
从而得: log m N x =
log m a
log a N
log m N log m a
② log a m b n
_ lgb n = nig b lga m
mlga

log a
b
例 1 已知 log 2 3 = a , log 3 7 = b, 用 a, b 表示 log 42 56 解:因为log 2 3 = a ,则
1
log 3 2 , 又/log 3 7 =
b,
a •'•log 42 56
log 3 56 log 3
42 log 3 7 3 log 3 2 log 3 7 log 32 1
ab 3 ab b 1
例2计算:①
51-log。

/
log 4 3 log 9 2 - log 1 4
32
2
解: ①原式
5
5叫.2
3 5
r log
5-
5 3
4=15
3 ②原式
=
~
log 2
3
2
log 3
2
x, y,z (0,::)
且3x
=4y
=
1
1
1
求证
+ :
;2
x 2y z
例3设 1 =6z =k =4y 1 :设 3x 6
z
十彳log 2 2
比较3x,4y,6z 的大小-
证明 •/x, y, z (0, ::
) /.k 1 取对数得:
yJ gk
z=3 lg4
lg6
••丄丄 x 2y _ lg3 . lg4 _
lgk 2lgk 2lg3 lg4 2lgk 2lg3 2lg2
2lgk
lg6 lgk
3 2
3
—(浜
—)lgk 二 lg4 lg6^
lg81lgk lg3lg4
64 lg klg -
81
::: 0 lg3lg4
•'•
3x :: 4y
又:4y-6z=(二
lg4 lg6 lg k lg -9
6、「 lg36 -lg64 16

)lg k
lg k
16
:: 0
lg2lg6
lg2lg6
•'4y ::: 6z
•'•3x ::: 4y ::: 6z .
例 4 已知 log a x= log a C+b ,求 x.
分析:由于x 作为真数,故可直接利用对数定义求解;另外,由于等式右端为
两实数和的形式,b 的存在使变形产生困难,故可考虑将 log a C 移到等式左端,
或者将b 变为对数形式• 解法
由对数定义可知: 乂二才叫小口吋a b
=c a b
. 解法二:
x
由已知移项可得log a x-log a c =b ,即log a b c
x b b
由对数定义知:
a • x 二c a •
c
解法三:
b=log a a b log a x = log a c Tog a a b = log a c a b . x=ca b
四、课堂练习:
①已知 log 18 9 = a , 18 = 5 ,用 a, b 表小 log 36 45
解:••
• 18 log 18 9 = a /.log 18 —
1 -log 18 •log 18
2 = 1 _a
••• 18b
= 5 • log 185 = b
l o g 8 9 l o g 8 5 a b 1 l o g 8 2 2 - a
②若 log 8 3 = p , log 3 5 = q ,求 lg 5
log 36 45
log i8 45 log i8 36
三、小结 本节课学习了以下内容:换底公式及其推论 四、课后作业:
1 .证明:
log a
x =1 log a
b
log ab x
证法 1:
设 log a X 二 p , log ab X 二 q , log a b 二 r
贝U : x=a p
x=(ab)q
=a q b q
b=a r
•a P
= (ab)q = a
q(1 r)
从而 p = q(1 ■ r)
•••q=0 •- =1 r 即:
log a x
= 1 log a b (获证) q log ab x
log a x log x ab 证法2:由换底公式 左边=
- - log a ab = 1 log a b =右边 log ab x log x a
2
•已知 lo g a ! b 1 = lo g a 2 b
2 = = lo
g a n b
n =
'
求证:Sg a^ a n (b 1b
2
b
n
)二

证明:由换底公式 业二眶二•…二皿二■由等比定理得:
lg a 1 lg a 2
lg a .
lg d +lg b 2 + …+lgb n _ ? . lg(db2…b n )
lga 1 lga 2 lg a n
lg(a£2 a n )
•log a 1a 2 a n 隔
b n )

解:T log 8 3 = p
•」og 23 3
= P =■ log 2 3 = 3 p =• log 3 2
1 3p
又 v log 3 5 二 q
log 3 5 log 3 5
log 310 log 3 2 log 35
3pq 1 3pq
lg(a1a2 a n)
THANKS !!! 致力为企业和个人提供合同协议,策划案计划书,学习
打造全网一站式需求
欢迎您的下载,资料仅供参考。

相关文档
最新文档