微分方程解法小结
微分方程的解法
微分方程的解法微分方程是数学中的重要概念,被广泛应用于各个领域。
解微分方程是找到满足给定条件的函数表达式或数值解的过程。
在本文中,我将介绍微分方程的几种解法,并说明其具体应用。
一、一阶微分方程的解法一阶微分方程是最基础的微分方程类型,通常形式为dy/dx=f(x,y),其中f(x,y)是已知函数。
下面介绍两种常见的一阶微分方程的解法:1. 分离变量法:分离变量法适用于可以将微分方程中的变量分开的情况。
具体步骤如下:(1) 将方程变形,将含有dy和dx的项分别放在等式两边;(2) 将等式两边分别关于y和x进行积分;(3) 解得y的表达式,得到方程的通解。
2. 齐次微分方程的解法:齐次微分方程是形如dy/dx=f(y/x)的微分方程。
具体步骤如下:(1) 令v=y/x,将原微分方程化为关于v的方程;(2) 求得关于v的方程的通解;(3) 代入v=y/x,得到原微分方程的通解。
二、二阶微分方程的解法二阶微分方程是更加复杂的微分方程类型,形如d²y/dx²=f(x,y,dy/dx)。
下面介绍两种常见的二阶微分方程的解法:1. 特征方程法:特征方程法适用于二阶常系数线性齐次微分方程。
具体步骤如下:(1) 假设原方程的解为y=e^(rx),代入原方程,求得r的值;(2) 根据r的不同情况分别求得通解。
2. 变量替换法:变量替换法适用于二阶非齐次微分方程,通过适当的变量替换将原方程化简为一阶方程。
具体步骤如下:(1) 假设y=v/u,将原方程变形;(2) 求出v和u的关系式,将原方程转化为v和u的一阶方程组;(3) 解一阶方程组,得到u的表达式;(4) 代入y=v/u,得到原方程的通解。
三、应用案例微分方程作为数学工具,在物理学、生物学、工程学等领域有广泛的应用。
以下是一些实际应用案例:1. 弹簧振动方程:假设弹簧的振动满足y''+k/m*y=0,其中k是弹簧的劲度系数,m是弹簧的质量。
常微分方程小结
常微分方程小结姓名:邱俊铭学号:2010104506姓名:李林学号:2010104404姓名:曾治云学号: 2010104509初等积分法:变量分离形式一、一阶微分程:dy/dx=h(x)g(y) ,其中函数h(x)在区间(a,b)上连续,g(y)在区间(c,d)上连续且不等于0.经过分离变量得: dy/g(y)=h(x)dx 两端积分得:G(y)=H(x)+c ,其中c任意的常数且G(y)= ∧dy/g(y),H(x)= ∧h(x)®x,所以G’(y)=1/g(y)不为0,故G存在逆函数,从而得到:y= (H(x)+c).例1. dy /dx=2xy解:当y ≠0时,分离变量后得:dy/ y =2xdx ,两边积分得:ln|y|=x^2+c1 ,此外y=0也是方程的解,从而方程的解为y=Ce^(x^2),g(y)=0,则y=是方程的解,其中C为任意的常数。
初值问题的解,即y取任意一个数得到的结果,代入通解中,求出具体y 值。
例2.y(1+x^2)dy=x(1+y^2)dx,y(0)=1;解:这是变量分离的方程,分离变量后得:y/(1+y^2)dy=x/(1+x^2),两边积分得其通解为:1+y^2=C(1+x^2),其中C为任意常数,代入初值条件得:C=2.。
故所给的初值问题的解为y=.二、常数变易法一阶非线性方程:dy/dx=a(x)y+f(x).(1)当f(x)=0时,方程为齐次线性方程,解法和上述的一样,通解为y=C ,C为任意的常数。
现在求齐次线性方程的通解,常数C换成x的函数c(x),得到:y= c(x),对x 求导,然后代入(1)中化简,两端积分,得:y=C +f x e ..例3. dy/dx-2xy=x.解:dy/dx=2xy+x ,这里a(x)=2x,f(x).从而可求出原方程的通解为: Y=exp(2 ∧x ®x)(c+ ∧xexp(-2∧x ®x)®x)=-1/2+ce^(x^2),即-1/2+ce^(x^2),其中c 为任意的常数。
常微分方程的解法总结总结
常微分方程的解法总结前言常微分方程(Ordinary Differential Equation,ODE)是研究一阶或高阶导数与未知函数之间关系的数学方程。
在物理学、工程学和计算机科学等领域,常微分方程扮演着重要的角色。
解决常微分方程是这些领域中许多问题的关键。
本文将总结常用的常微分方程解法方法,帮助读者加深对常微分方程的理解并提供解决问题的思路。
一、可分离变量法可分离变量法是一种常见且简单的求解常微分方程的方法。
它适用于形如dy/dx = f(x)g(y)的一阶常微分方程。
解题思路:1.将方程写成dy/g(y) = f(x)dx的形式,将变量进行分离。
2.两边同时积分得到∫(1/g(y))dy = ∫f(x)dx。
3.求出积分后的表达式,并整理得到解 y 的表达式。
使用这种方法解决常微分方程的步骤相对简单,但要注意确认分母不为零以及选取合适的积分常数。
二、特殊方程类型的求解除了可分离变量法,常微分方程还存在一些特殊的方程类型,它们可以通过特定的方法进行解决。
1. 齐次方程齐次方程是指形如dy/dx = F(y/x)的方程。
其中,F(t) 是一个只有一个变量的函数。
解题思路:1.令 v = y/x,即 y = vx。
将方程转化为dy/dx = F(v)。
2.对于dv/dx = F(v)/x这个方程,可以使用分离变量法进行求解。
3.求出 v(x) 后,将其代入 y = vx 得到完整的解。
2. 齐次线性方程齐次线性方程是指形如dy/dx + P(x)y = 0的方程。
解题思路:1.使用积分因子法求解,将方程乘以一个积分因子,使得左边变成一个可积的形式。
2.求积分因子的方法是根据公式μ = e^(∫P(x)dx),其中 P(x) 是已知的函数。
3.通过乘积的方式求解完整的方程。
3. 一阶线性常微分方程一阶线性常微分方程是指形如dy/dx + P(x)y = Q(x)的方程。
解题思路:1.使用积分因子法,将方程乘以一个积分因子,使得左边变成一个可积的形式。
第04节一阶线性微分方程
dx
dx
代入并整理,得
dz 1zalnx dx x
故该一阶线性方程的通解为:
ze1xdx alnxe1xdxdxc
e1nx alnxelnxdxc
xa2lnx2 c
原方程的通解为:
1 y
xca2lnx2
例5 求 xdy3yx2 3y 的通解 dx 2
解:原方程化为
1
y3
dy
3
2
y3=x
先求: 再设:
yCePxdx
yCxePxdx
代入方程,求出C(x)即可。
方法三:解的结构法
先求
dy Pxy0
dx
的通解
Y(含C);
再求 dyPxyQx的解 y *
dx
则 dyPxyQx 的通解为 y Y y*
dx
四、例题(Ⅰ)
先介绍一阶线性方程求解之例。
例1、求方程
y 1 x
y sinx x
得 C xe P xd xQ x
积分得:
C xQ xeP xd zd x C
∴一阶非齐次线性方程的通解为:
y Q x e P (x )d xd x C e P x d x C e P x d x e P x d x Q x e P x d x d x
三、一阶线性方程的解法小结
yCePxdx
(4)
2.一阶非齐次线性方程的求解:
dyPxyQx
dx 讨论:
(5)
原方程可化为
dy y
QyxPxdx
两边积分得:
lny
Qx
dx
Pxdx
y
记
vx
Qx
dx,
y
则
lnyvx Pxdx
常微分方程解法总结
常微分方程解法总结引言在数学领域中,常微分方程是一类以函数与其导数之间关系为描述对象的方程。
它广泛应用于物理、化学、生物等自然科学的建模和解决问题中。
常微分方程的求解有许多方法,本文将对其中一些常见的解法进行总结和讨论。
一、分离变量法分离变量法是求解常微分方程中常用的一种方法。
它的基本思想是将方程中的变量分离,将含有未知函数的项移到方程的一侧,含有自变量的项移到方程的另一侧,然后对两边同时积分,从而得到最终的解析解。
例如,考虑一阶常微分方程dy/dx = f(x)g(y),可以将此方程改写为1/g(y)dy = f(x)dx,然后对两边同时积分得到∫1/g(y)dy =∫f(x)dx。
在对两边积分后,通过求解不定积分得到y的解析表达式。
二、常系数线性齐次微分方程常系数线性齐次微分方程是另一类常见的常微分方程。
它具有形如dy/dx + ay = 0的标准形式,其中a为常数。
这类方程的解法基于线性代数中的特征值和特征向量理论。
对于形如dy/dx + ay = 0的一阶常微分方程,可以假设其解具有形式y = e^(rx),其中r为待定常数。
带入方程,解得a的值为r,于是解的通解即为y = Ce^(rx),其中C为任意常数。
通过特定的初值条件,可以确定常数C的值,得到方程的特解。
三、变量分离法变量分离法是一种适用于某些特殊形式常微分方程的解法。
其基本思想是将方程中的变量进行适当的变换,从而将方程化为分离变量的形式。
例如,考虑一阶非齐次线性微分方程dy/dx = f(x)/g(y),其中f(x)和g(y)为已知函数。
通常情况下,变量分离法需要对方程变形,将含有未知函数和自变量的项进行合并处理。
假设存在一个新的变量z(x) = g(y),则dy/dx = (dy/dz)*(dz/dx) = (1/g'(y))*(dz/dx)。
将dy/dx和f(x)分别代入原方程,进而可以求得dz/dx。
对dz/dx进行积分后,可以得到z(x)的解析表达式。
一阶微分方程的初等解法总结
二、积分因子法
若存在连续可微函数 ( x, y) 0 , 使 为全微分方程, 则称 ( x, y )为原方程的积分因子. 在简单情况下, 可凭观察和经验根据微分倒推式得到 积分因子.
1) d x d y d ( x y )
2 2 ( x y )) 3) xd x yd y d ( 1 2
u e
即
P( x) d x
P( x) u e
P( x) d x
P( x) u e
P( x) d x
Q( x)
两端积分得
P( x) d x u Q( x) e dx C
P( x) d x
P( x) d x Q ( x ) e d x C 故原方程的通解 y e P( x) d x P( x) d x P( x) d x e dx y Ce 即 Q( x) e
积分后再用
代替 u, 便得原方程的通解.
y 解法: 令 u , x
dy P( x) y Q( x) 一阶线性微分方程标准形式: dx 若 Q(x) 0, 称为齐次方程 ;
若 Q(x) 0, 称为非齐次方程 .
3 一阶线性微分方程
1. 解齐次方程
分离变量
dy P( x) y 0 dx
dy f ( x)dx, 这样变量就“分离”开了. y) f ( x)dx C
即得方程的通解.
2 齐次方程
形如 的方程叫做齐次方程 .
du (u ) 代入原方程得 u x dx du dx 分离变量: (u ) u x du dx 两边积分, 得 (u ) u x
5 全微分方程
各类微分方程的解法
各类微分方程的解法一、常微分方程的解法。
1. 分离变量法。
分离变量法是解常微分方程的一种常见方法,适用于一阶微分方程。
其基本思想是将微分方程中的变量分离开来,然后对两边分别积分得到解。
例如,对于形如dy/dx = f(x)g(y)的微分方程,可以将其化为dy/g(y) = f(x)dx,然后对两边积分得到解。
2. 积分因子法。
积分因子法适用于一阶线性微分方程,通过求解积分因子来将微分方程化为恰当微分方程,进而求解。
其基本思想是通过乘以一个适当的函数来使得微分方程的系数函数具有某种特殊的性质,使得微分方程变为恰当微分方程。
3. 特征方程法。
特征方程法适用于二阶线性常系数齐次微分方程,通过求解特征方程来得到微分方程的通解。
其基本思想是将二阶微分方程化为特征方程,然后求解特征方程得到微分方程的通解。
4. 变量替换法。
变量替换法是一种常见的解微分方程的方法,通过引入新的变量替换原微分方程中的变量,从而将原微分方程化为更简单的形式,然后求解。
例如,对于形如dy/dx = f(ax+by+c)的微分方程,可以通过引入新的变量u=ax+by+c来简化微分方程的形式,然后求解得到解。
二、偏微分方程的解法。
1. 分离变量法。
分离变量法同样适用于偏微分方程,其基本思想是将偏微分方程中的变量分离开来,然后对各个变量分别积分得到解。
例如,对于形如∂u/∂t = k∂^2u/∂x^2的一维热传导方程,可以将其化为∂u/∂t = k∂^2u/∂x^2,然后对各个变量分别积分得到解。
2. 特征线法。
特征线法适用于一些特殊的偏微分方程,通过引入特征线变量来化简偏微分方程的形式,然后求解。
例如,对于一维波动方程∂^2u/∂t^2 = c^2∂^2u/∂x^2,可以通过引入特征线变量ξ=x-ct和η=x+ct来化简方程的形式,然后求解得到解。
3. 分析法。
分析法是一种常见的解偏微分方程的方法,通过分析偏微分方程的性质和特征来求解。
微分方程解法小结
1、首先通过几个具体的问题来给出微分方程的基本概念。
(1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。
解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足x dxdy 2= (1) 同时还满足以下条件:1=x 时,2=y (2)把(1)式两端积分,得⎰=xdx y 2 即 C x y +=2 (3)其中C 是任意常数。
把条件(2)代入(3)式,得1=C ,由此解出C 并代入(3)式,得到所求曲线方程:12+=x y (4)(2)列车在平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程?解 设列车开始制动后t 秒时行驶了s 米。
根据题意,反映制动阶段列车运动规律的函数)(t s s =满足:4.022-=dts d (5) 此外,还满足条件:0=t 时,20,0===dtds v s (6) (5)式两端积分一次得: 14.0C t dtds v +-==(7) 再积分一次得 2122.0C t C t s ++-= (8)其中21,C C 都是任意常数。
把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得0 ,2021==C C把21,C C 的值代入(7)及(8)式得,204.0+-=t v (9)t t s 202.02+-= (10)在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间:)(504.020s t ==。
再把5=t 代入(10)式,得到列车在制动阶段行驶的路程).(5005020502.02m s =⨯+⨯-=上述两个例子中的关系式(1)和(5)都含有未知函数的导数,它们都是微分方程。
2、 定义 一般地,凡表示未知函数、未知函数的导数与自变量之间的关系到的方程,叫做微分方程。
微分方程数值解法实验报告
微分方程数值解法实验报告2篇微分方程数值解法实验报告(一)在实际科学与工程问题中,我们经常会遇到微分方程的求解。
然而,许多微分方程往往没有解析解,这就需要我们利用数值方法来获得近似解。
本篇实验报告将介绍两种常见的微分方程数值解法:欧拉方法和改进的欧拉方法。
一、欧拉方法欧拉方法是最简单的微分方程数值解法之一。
其基本原理为离散化微分方程,将微分方程中的导数用差商代替。
设要求解的微分方程为dy/dx = f(x, y),步长为h,则可用以下公式进行递推计算:y_{n+1} = y_n +hf(x_n, y_n)二、算法实现为了对欧拉方法进行数值实验,我们以一阶线性常微分方程为例:dy/dx = x - y, y(0) = 1步骤如下:(1)选择合适的步长h和求解区间[a, b],这里我们取h=0.1,[a, b] = [0, 1];(2)初始化y_0 = 1;(3)利用欧拉方法递推计算y_{n+1} = y_n + 0.1(x_n - y_n);(4)重复步骤(3),直到x_n = 1。
三、实验结果与讨论我们通过上述步骤得到了在[0, 1]上的近似解y(x)。
下图展示了欧拉方法求解的结果。
从图中可以看出,欧拉方法得到的近似解与精确解有一定的偏差。
这是因为欧拉方法只是通过递推计算得到的近似解,并没有考虑到更高阶的误差。
所以在需要高精度解时,欧拉方法并不理想。
四、改进的欧拉方法针对欧拉方法的不足,我们可以考虑使用改进的欧拉方法(也称为改进的欧拉-柯西方法)。
它是通过利用前后两个步长欧拉方法得到的结果作为差商的中间项,从而提高了求解精度。
一阶线性常微分方程的改进欧拉方法可以表示为:y_{n+1} = y_n + h(f(x_n, y_n) + f(x_{n+1}, y_n + hf(x_n,y_n)))/2五、算法实现与结果展示将改进的欧拉方法应用于前述的一阶线性常微分方程,我们同样选择h=0.1,[a, b] = [0, 1]。
一阶常微分方程解法总结
章一阶微分方程的解法的小结⑴、可分离变量的方程: ①、形如d^ = f (x)g(y) dx当g(y) =o 时,得到 型f(x)dx ,两边积分即可得到结果;g(y)当g( °) = °时,则y(x)二o 也是方程的解。
例 1.1、巴=xydxdy解:当y = 0时,有xdx ,两边积分得到 yy =0显然是原方程的解;综上所述,原方程的解为y 二Ge^ (G 为常数)②、形如 M (x)N(y)dx P(x)Q(y)dy =0当 P(x)N(y)= 0 dy ,两边积分可得结果;P(x) N(y)当N(y °) = 0时,y 二y °为原方程的解,当 P(x °) = 0时,x = x °为原方程的解。
2 2例「2、x(y -1)dx y(x -1)dy=0解:当 (x 2 -1)(y 2-1) =0时,有Jdy =¥ dx 两边积分得到 1 - y x -1o222Inx —1+1 ny —1=1 nC (C^O),所以有(x -1)(y -1) =C (C^0);当(x - 1)(y -0 =0时,也是原方程的解;综上所述,原方程的解为(x 2-1)( y 2-1) =C (C 为常数)。
⑵可化为变量可分离方程的方程: ①、形如dy = g (―)dx x(C 为常数)所以y ^C j e 2(C i 为非零常数且G = _e C)解法:令u=‘ ,则dy=xduudx,代入得到为变量可分离方程,得到x dx解:令u = x - y -2,贝U dy = dx -du ,代入得到1一 史二口,有 udu=-7dx dx u所以齐—7x ・C (C 为常数),把 u代入得到2"x 一 y -2) Tx=C (C 为常例 2.2、dydx 2x - y 1 x _2y 1解:由丿 2x—y+"0得到、x_2y +1 =01 x =3 1 y =- -3,令 u = x +1 3,有」1v = y 一一dy = dv y ,代入得到 dx =du dv 2u-vdu u-2v 1 _2 v u dt dv 二t d u u d t ,代入得到 t u一 du口,化简得到,1 -2tduu 2 - 2t 2t2d(1 -t t )22(1 -t t )2有 lnu= — I +t)+c (C 为常数),所 以有f(u,x,C) =0 (C 为常数)再把u 代入得到fd,x,C)=0 (C 为常数)。
一阶线性微分方程及其解法
二、一阶线性微分方程的应用
应用微分方程解决实际问题的步骤: 应用微分方程解决实际问题的步骤 1. 分析问题 设出所求未知函数,确定初始条件。 分析问题,设出所求未知函数 确定初始条件 设出所求未知函数 确定初始条件。 2. 建立微分方程。 建立微分方程。 3. 确定方程类型 求其通解. 确定方程类型,求其通解 求其通解 4. 代入初始条件求特解. 代入初始条件求特解
Q( x ) = 3 x
= e x 3 ∫ xe x dx + C
= ex
x
( ( 3∫ xde
∫ dx dx + C ∫ 3x e
) + C)
= e x 3( xe x ∫ e x dx ) + C
= ex =e
x x x
( ( 3( xe ( 3( xe
+ ex ) + C +e
例5 求过原点平且在点 x,y) 处的切线斜率等于 (
3x + y 的曲线方程。 的曲线方程。
解 设所求曲线方程为 y = f ( x ) , 则依题有 y =0, x =0 从而 即 y′ y = 3 x 则通解为 y = e
y′ = 3 x + y
其中 P ( x ) = 1 ,
∫ dx
y = Ce
∫ P( x)dx
例2 解
2 . 求 y′ y = 0 的通解 x
2 P( x) = 则通解 x
y = Ce
=
∫ P( x)dx
2 ∫ dx Ce x
= Ce = Cx
2 ln x 2
(2)一阶线性非齐次微分方程 ) dy + P ( x ) y = Q( x ) 1)一般式 ) dx 2)解法 常数变易法 ) 3)通解公式 )
微分方程解法小结
微分方程解法小结PB08207038 司竹最近学习了微分方程,现对各种方法总结如下:一、 一阶微分方程: F (x,y,y ')=0⒈可变量分离方程形如φ(x )dx-ψ(y)dy,或可化为该形式的方程称为可变量分离方程。
解法:两边积分得:∫φ〔x 〕dx=∫ψ〔y 〕dy 。
⒉齐次方程dx dy =φ)(x y 解法:换元。
令y=μx ,则原方程可化为可分离变量方程。
3.一阶线性微分方程dxdy +P (x )y=Q (x )y n 解法:两边同时乘以一个积分因子e ⎰dx )x (P ,可得其通解公式:y=e ⎰-dx x )(P ⎥⎦⎤⎢⎣⎡+⎰⎰c dx e )x (dx x )(P Q 。
4.Bernouli 方程:dxdy +P (x )y=Q (x )y n 解法:两边除以y n 得:+dx dy y 1n P (x )y n 1-=Q (x ),再做代换μ= y n 1-,就化成 dxdy +(1-n )P (x )μ=Q (x )的线性方程。
二、二阶微分方程F (x ,y ,y ',y '')=0⒈可降阶的二阶微分方程① f ( x , y ',y '')=0型:令p= y ',则y ''=p ',将方程降阶为f (x ,p ,p ')=0的一阶方程。
② f (y ,y ',y '')=0型:令p= y ',则y ''=pdy dp ,将方程降阶为f (y ,p ,p dy dp )=0. 2.二阶线性微分方程①齐次方程y ''+ P (x )y '+q (x )y=0由已知条件或观察法或其他方法可得出齐次方程的一个特解y 1,用y=z y 1带入方程,整理后得出另一特解y 2= y 1dx ey 1dx x 21⎰-⎰)(P 。
(或可通过Liouville 公式,亦可得出另一特解。
)再由叠加原理得:齐次方程的通解为y=c 1 y 1+c 2 y 2。
③非齐次方程y ''+ P (x )y '+q (x )y=f (x )解法:先解出对应的齐次方程的通解yp = c1y1+c2y2。
微分方程解法总结
微分方程类型
方程通次方程
且 中每一个单项式的 指数与相等(如 )
令 代入方程后再将 代回 求解
一阶线性微分方程
解为
伯努利方程
令 则伯努利方程左右同乘 后将z代入得到 按一阶线性微分方程解法求得z后反代得y
全微分方程
解为 (可能解为隐函数),其中 为单连通域上适当点(一般取 )
可降阶的高阶微分方程
直接对 反复积分直至求得y
令 ,则有 可用一阶方式求解得 再代回 继续运算
令 ,则 解得 后代入 分离变量继续求解
线性微分方程
微分方程类型
方程通式及解法
常系数齐次线性微分方程(以二阶为例)
特征方程:
多于二阶依二阶方式,将特征根对应通解叠加,对k重根将C所在位置变为
常系数非齐次线性微分方程(以二阶为例)
解为 ,其中 为 的通解, 为 的特解
常微分方程
第七章常微分方程小结一、本章基本要求1 通过本章学习,要求学生掌握微分方程的基本概念,能够熟练地、准确地判定一个微分方程的类型,掌握方程的阶和解、通解、特解等概念。
2 掌握一阶微分方程的基本解法,能够熟练地对可分离变量微分方程、齐次方程以及一阶线性微分方程和贝努里方程求解。
3 掌握几类可降阶的方程及求解途径,学会对y(n)= f(x)、y//=f(y,y/)和y//=f(x,y/)等型高阶微分方程的求解。
4 学会二阶常系数齐次微分方程和常系数非齐次微分方程的求解方法,培养学生分析问题的能力和解题能力。
二、内容提要1 什么叫微分方程?凡含有自变量、未知函数和未知函数导数的方程,称为微分方程。
2 微分方程的阶微分方程的阶是微分方程中出现的末知函数最高阶导数的阶数.在一个微分方程中,未知函数的导数可能有—阶、二阶、一直到n阶,那么该微分方程的阶就是n。
3 关于线性和非线性微分方程如果微分方程F(x,y,y/,y//,y(n))=0的左端为y及y/,y//,y(n)的一次有理整式,则称该方程称线性微分方程,否则称非线性微分方程。
因此,n阶线性微分方程的一般形式为:y(n)+a1(x)y(n-1)+…a n-1(x)y/+a n(x)y= f(x)其中a1(x),a n-1(x),……a n(x),f(x)是x的已知函数。
4 关于微分方程的解、通解和持解如果把一个函数代入一个微分方程,使该方程成为一个恒等式,那么、这个函数称为该微分方程的—个解。
与代数方程不同,微分方程的解,一股而言,不是常数而是函数;解的个数有无限个之多.例如,根据积分学的基本定理,我们知道,方程其中F(x)是f(x)的任一确定的原函数,c是任意常数,由于c的任意性,所以(2)代表方程(1)的无数个解.又因方程(1)的任一确定的解必具(2)队形式(但其中的c取特定的值),故(2)称为方程(1)的通解。
而当c取确定数值时所得到的解则称为方程(1)的一个特解。
常微分方程解法总结
常微分方程解法总结常微分方程是描述自变量和其导数之间关系的方程,是数学中重要的研究对象之一。
在工程、物理、生物等领域中,常微分方程都有着广泛的应用。
解常微分方程是数学分析的重要内容之一,下面我们将总结常微分方程的解法。
一、分离变量法。
分离变量法是解常微分方程的一种常用方法。
对于形如dy/dx=f(x)g(y)的方程,我们可以将变量分离,然后分别对两边积分,最后得到方程的解。
这种方法适用于很多形式的常微分方程,是常微分方程解法中的一种基本方法。
二、齐次方程法。
对于形如dy/dx=f(y/x)的齐次方程,我们可以通过变量代换y=vx来将其转化为可分离变量的形式,然后再用分离变量法解方程。
这种方法适用于一些特殊形式的常微分方程,是解常微分方程的重要方法之一。
三、一阶线性微分方程法。
一阶线性微分方程是形如dy/dx+p(x)y=q(x)的方程,我们可以通过乘以一个合适的积分因子来将其转化为恰当微分方程,然后再用恰当微分方程的解法来求解。
这种方法适用于一阶线性微分方程,是解常微分方程的重要方法之一。
四、常数变易法。
对于形如dy/dx+p(x)y=q(x)e^(∫p(x)dx)的方程,我们可以通过常数变易法来求解。
这种方法适用于一些特殊形式的常微分方程,是解常微分方程的重要方法之一。
五、特解叠加法。
对于形如dy/dx+p(x)y=q(x)的线性非齐次微分方程,我们可以先求其对应的齐次方程的通解,然后再求出非齐次方程的一个特解,最后将齐次方程的通解和非齐次方程的特解相加,得到原方程的通解。
这种方法适用于线性非齐次微分方程,是解常微分方程的重要方法之一。
总结。
通过以上几种常微分方程的解法,我们可以解决很多常微分方程的问题。
当然,常微分方程的解法还有很多其他方法,如变量分离、恰当微分方程、一阶齐次线性微分方程等。
在实际问题中,我们需要根据具体的方程形式和条件来选择合适的解法,以求得方程的解。
希望本文的总结能够对大家在解常微分方程时有所帮助。
微分方程解法总结
微分方程解法总结微分方程是数学中重要的一个分支,它描述了自然界中很多变化的规律和现象。
微分方程的解法有很多种,包括分离变量法、齐次方程法、一阶线性微分方程法等等。
本文将对这些常见的微分方程解法进行总结,以帮助读者更好地理解和应用微分方程。
一、分离变量法分离变量法是求解一阶微分方程中最常见的一种方法。
当方程可以化为dy/dx=f(x)g(y)的形式时,我们可以通过将其变形为g(y)dy=f(x)dx的形式,再对方程两边同时进行积分,从而求出y的表达式。
例如,对于dy/dx=2x,我们可以将其变形为dy=2xdx,并对两边同时进行积分得到y=x^2+C,其中C为常数。
二、齐次方程法齐次方程是指形如dy/dx=f(y/x)的微分方程。
当方程满足一定的条件时,可以通过变量代换和分离变量的相结合的方法,将齐次方程转化为分离变量的形式,进而求出解。
例如,对于xy'-(x^2+y^2)=0,我们可以将y=ux进行变量代换,得到x(ux)'-(x^2+u^2x^2)=0。
进一步化简得到xu'+u=0,然后可以使用分离变量法求解得到u=(c-x^2)/x,再将y=ux代入,得到y=(c-x^2)/x^2。
三、一阶线性微分方程法一阶线性微分方程是指形如dy/dx+p(x)y=q(x)的微分方程。
通过使用积分因子的方法,我们可以将一阶线性微分方程化为更容易求解的形式。
例如,对于dy/dx+2xy=4x,我们可以将其乘以e^(∫2xdx)作为积分因子,得到e^(x^2)y'+(2xe^(x^2))y=4xe^(x^2)。
然后我们可以写成(d(e^(x^2)y))/dx=4xe^(x^2),再对其两边同时积分,得到e^(x^2)y=x^2+2C,进一步化简得到y=(x^2+2C)e^(-x^2)。
四、二阶线性齐次微分方程法二阶线性齐次微分方程是指形如d^2y/dx^2+p(x)dy/dx+q(x)y=0的微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微分方程解法小结
PB08207038 司竹
最近学习了微分方程,现对各种方法总结如下:
一、 一阶微分方程: F (x,y,y ')=0
⒈可变量分离方程
形如φ(x )dx-ψ(y)dy,或可化为该形式的方程称为可变量分离方程。
解法:两边积分得:∫φ〔x 〕dx=∫ψ〔y 〕dy 。
⒉齐次方程
dx dy =φ)(x y 解法:换元。
令y=μx ,则原方程可化为可分离变量方程。
3.一阶线性微分方程dx
dy +P (x )y=Q (x )y n 解法:两边同时乘以一个积分因子e ⎰dx )x (P ,可得其通解公式:
y=e ⎰-dx x )(P ⎥⎦
⎤⎢⎣⎡+⎰⎰c dx e )x (dx x )(P Q 。
4.Bernouli 方程:dx
dy +P (x )y=Q (x )y n 解法:两边除以y n 得:
+dx dy y 1n P (x )y n 1-=Q (x ),再做代换μ= y n 1-,就化成 dx
dy +(1-n )P (x )μ=Q (x )的线性方程。
二、二阶微分方程F (x ,y ,y ',y '')=0
⒈可降阶的二阶微分方程
① f ( x , y ',y '')=0型:令p= y ',则y ''=p ',将方程降阶为f (x ,p ,p ')=0的一阶方程。
② f (y ,y ',y '')=0型:令p= y ',则y ''=p
dy dp ,将方程降阶为f (y ,p ,p dy dp )=0. 2.二阶线性微分方程
①齐次方程y ''+ P (x )y '+q (x )y=0
由已知条件或观察法或其他方法可得出齐次方程的一个特解y 1,用y=z y 1带入方程,整理后得出另一特解y 2= y 1dx e
y 1dx x 21⎰-⎰)(P 。
(或可通过Liouville 公式,亦可得出另一特解。
)再由叠加原理得:齐次方程的通解为y=c 1 y 1+c 2 y 2。
③非齐次方程y ''+ P (x )y '+q (x )y=f (x )
解法:先解出对应的齐次方程的通解y
p = c
1
y
1
+c
2
y
2。
再用“常量变易法”得出另一特解y
f = c
1
(x)y
1
+ c
2
(x)y
2。
其中c
1(x)=--dt
t
w
t
f
t
y
2
⎰
)
(
)
(
)
(
,c
2
(x)=dt
t
w
t
f
t
y
1
⎰
)
(
)
(
)
(。
再由叠加原理得:非齐次方程的通解为y= y
p + y
f。
3.二阶常系数线性微分方程:y''+p y'+q y=f(x)
①齐次方程y''+p y'+q y=0.
②非齐次方程y''+p y'+q y=f(x)
对于各种类型的二阶常系数非齐次方程,先解出其齐次方程的通解,特解大多可用“待定系数法”求得。
以上为我在学习过程中对微分方程解法的总结,有不对之出望老师指正。