大学物理第一章机械振动
五、机械振动
![五、机械振动](https://img.taocdn.com/s3/m/0dc34146b307e87101f696e3.png)
第一节、 第一节、简谐振动
一、简谐振动(simple harmonic vibration )的基本特征 简谐振动 的基本特征 以弹簧振子为例讨论, 以弹簧振子为例讨论, 弹簧振子是典型的简谐 振动 弹簧的弹力
O
x
M x
F = -kx
根据牛顿第二定律有 所以 其解
医学物理学
x = Acos(ωt +ϕ)
二、同一直线上两个频率相近的简谐振动的合成 两简谐振动分别为
x1 = A1 cos( ω 1t + ϕ 1 )
x 2 = A2 cos( ω 2 t + ϕ 2 )
y
ω1
合振动 x = x1 + x2 = A1 cos(ω1t + ϕ1 ) + A2 cos(ω 2t + ϕ 2 ) 合振动不再是简谐振动, 合振动不再是简谐振动, 而是一种复杂振动 如图] 矢量图解法 [如图 如图 由矢量图得合振动的振幅为
一、同一直线上两个同频率简谐振动的合成 设有两个同频率的简谐振动 x1 = A1 cos(ωt + ϕ1 ) x2 = A2 cos(ωt + ϕ 2 ) 合振动 x = x1 + x2 = A1 cos(ωt + ϕ1 ) + A2 cos(ωt + ϕ 2 ) 由矢量图得 而
仍为同频率谐振动) x = A cos( ω t + ϕ ) (仍为同频率谐振动)
医学物理学
v A2 v A1
v A
• 推广:多个同方向同频率简谐振动的合成 推广: 合振动仍是简谐振动。
x = Acos(ω⋅t +ϕ)
tgϕ =
∑ A sinϕ
i =1 n i i =1 i
大学物理机械振动总结
![大学物理机械振动总结](https://img.taocdn.com/s3/m/c1e4dec4ed3a87c24028915f804d2b160a4e867a.png)
大学物理机械振动总结在物理学领域中,机械振动是指物体在受到外力作用后发生的周期性或非周期性的振动运动。
它是研究物体运动规律和能量传递的重要课题之一。
机械振动存在于我们日常生活的各个方面,从钟摆的摆动到汽车的悬挂系统,无处不体现着机械振动的存在。
首先,机械振动的基本特点是周期性。
在一个振动过程中,物体会在一定的时间间隔内不断重复同样的运动。
这种周期性运动可以用正弦函数或余弦函数来表达,而周期T则是振动的一个重要参数,表示一个完整振动过程所需要的时间。
其次,机械振动的频率是指单位时间内振动次数的多少。
频率f的倒数称为周期T,即T=1/f。
振动的频率越高,单位时间内振动次数越多,相应的周期也就越短。
频率与周期之间存在着倒数的关系,是彼此相互依存的。
频率和周期都是描述振动特征的重要参数,能够直观地表达出振动的快慢和紧凑程度。
再次,机械振动的振幅是指物体在振动过程中离开平衡位置的最大距离。
振幅越大,物体的运动范围也就越大,相应的振动能量也越大。
振幅与振动的能量之间存在着正相关的关系,振幅越大,能量传输的效果越明显。
此外,机械振动还有一个重要的参数叫做相位,用来描述物体在振动过程中的运动状态。
相位可以通过相位角来度量,它的变化范围在0到2π之间。
当相位角为0或2π时,物体达到最大振幅的正向运动;当相位角为π时,物体达到最大振幅的负向运动;当相位角为π/2或3π/2时,物体经过平衡位置,速度达到最大值。
机械振动的实际应用非常广泛。
例如,在建筑领域中,为了保证建筑物的稳定性和抗震性,需要对建筑结构进行振动分析和工程设计。
而在工业生产中,机械设备的振动也是一个重要的研究方向,可以通过合理的设计和调整来降低噪音和振动对设备和操作人员的影响。
此外,机械振动还有许多其他的应用,比如声学研究、航空航天技术等等。
总之,机械振动作为物理学领域中的一个重要分支,在科学研究和工程应用中都具有重要意义。
它的基本特征包括周期性、频率、振幅和相位等,这些特征参数可以用来描述和分析振动的规律和性质。
大学物理-机械振动
![大学物理-机械振动](https://img.taocdn.com/s3/m/2efb6e28b94ae45c3b3567ec102de2bd9705de65.png)
机械振动也会影响交通工具的舒适 度,如火车、汽车等在行驶过程中 产生的振动,会让乘客感到不适。
机械振动在工程中的应用
振动输送
利用振动原理实现物料的输送,如振动筛、振动输送机等。
振动破碎
利用振动产生的冲击力破碎硬物,如破碎机、振动磨等。
振动减震
在建筑、桥梁等工程中,采用减震措施来减小机械振动对结构的影 响,提高结构的稳定性和安全性。
感谢您的观看
THANKS
机械振动理论的发展可以追溯到 古代,如中国的编钟和古代乐器 的制作。
近代发展
随着物理学和工程学的发展,人 们对机械振动的认识不断深入, 应用范围也不断扩大。
未来展望
随着科技的不断进步,机械振动 在新能源、新材料、航空航天等 领域的应用前景将更加广阔。
02
机械振动的类型与模型
简谐振动
总结词
简谐振动是最基本的振动类型,其运动规律可以用正弦函数或余弦函数描述。
机械振动在科研中的应用
振动谱分析
01
通过对物质在不同频率下的振动响应进行分析,可以研究物质
的分子结构和性质。
振动控制
02
通过控制机械振动的参数,实现对机械系统性能的优化和控制,
如振动减震、振动隔离等。
振动实验
03
利用振动实验来研究机械系统的动态特性和响应,如振动台实
验、共振实验等。
05
机械振动的实验与测量
根据实验需求设定振动频率、幅度和波形等 参数。
启动实验
启动振动台和数据采集器,开始记录数据。
数据处理
将采集到的数据导入计算机,进行滤波、去 噪和整理,以便后续分析。
绘制图表
将处理后的数据绘制成图表,如时域波形图、 频谱图等,以便观察和分析。
大学物理振动与光学
![大学物理振动与光学](https://img.taocdn.com/s3/m/38a5993467ec102de2bd89fe.png)
[例1-3] 弹簧振子总能量为 1,若其振幅增为 例 弹簧振子总能量为E 原来的两倍, 原来的两倍,重物质量增为原来的四 。 倍,则振子总能量变为 解: 弹簧振子: 弹簧振子:ω2=k/m
1 1 2 2 2 E = mω A = kA → 总 量 为4E 能 变 1 2 2
Ep = E/ 2 1 2 2 Ep = m x ω x 2 2 2 → =± →cosωt = ± 1 2 2 A 2 2 E= m A ω 2 0 ≤t ≤T / 2 →0 ≤ωt ≤π →ωt =π / 4或 π / 4 3
φ −φ0
[例1-2] 质点的振动规律用余弦函数描述,其 例 质点的振动规律用余弦函数描述, 速度-时间曲线如图, 速度-时间曲线如图,则其初位相应为 。 v(m/s) vm vm/2 t(s) O
v = dx/ dt = −ωAsin(ωt +φ0) = −vm sin(ωt +φ0)
解: x = Acos(ω +φ0) t
波动与光学 (Waves and Optics)
振动,波动,光的干涉、 振动,波动,光的干涉、衍射和偏振
振动(Oscillations) 第一章 振动
振动——物理量随时间的周期性变化 物理量随时间的周期性变化 振动 物理量 位移、电流强度、电场强度 位移、电流强度、电场强度……
e.g.
固体中原子、心脏、交流电、 固体中原子、心脏、交流电、电磁 场…
1 2 1 2 E = Ep + Ek = kx + mv 2 2 2 2 1 2 mv 1 2 v = k(x + ) = k(x + 2 ) 2 k 2 ω 1 2 = kA 2
初相(initial phase) 单位:rad ⑶ φ0——初相 初相 单位: Notes: ① φ0依赖于振动的初始条件。 依赖于振动的初始条件。
大学物理 机械振动 试题(附答案)
![大学物理 机械振动 试题(附答案)](https://img.taocdn.com/s3/m/b1be7ac008a1284ac8504374.png)
w w w .z h i n a n ch e.com《大学物理》AI 作业No No..01机械振动一、选择题1.把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相位为[C ](A)θ;(B)23;(C)0;(D)π21。
解:t =0时,摆角处于正最大处,角位移最大,速度为零,用余弦函数表示角位移,0=ϕ。
2.轻弹簧上端固定,下系一质量为1m 的物体,稳定后在1m 下边又系一质量为2m 的物体,于是弹簧又伸长了x ∆。
若将2m 移去,并令其振动,则振动周期为[B](A)gm x m T 122∆=π(B)gm x m T 212∆=π(C)gm xm T 2121∆=π(D)()gm m x m T 2122+∆=π解:设弹簧劲度系数为k ,由题意,x k g m ∆⋅=2,所以xgm k ∆=2。
弹簧振子由弹簧和1m 组成,振动周期为gm xm k m T 21122∆==ππ。
3.一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示。
则振动系统的频率为[B](A)m k π21(B)mk 621π(C)mk 321π(D)mk 321π解:每一等份弹簧的劲度系数k k 3=′,两等份再并联,等效劲度系数k k k 62=′=′′,所以振动频率mk m k 62121ππν=′′=4.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量E 变为[D ](A)1E /4(B)1E /2(C)21E (D)41E 解:原来的弹簧振子的总能量212112112121A m kA E ω==,振动增加为122A A =,质量增加+w w w .z h i n a n ch e为124m m =,k 不变,角频率变为1122214ω===m k m k ,所以总能量变为()1212112121122222242142242121E A m A m A m E =⎟⎠⎞⎜⎝⎛=×⎟⎠⎞⎜⎝⎛××==ωωω5.一质点作简谐振动,周期为T 。
机械振动教学大纲
![机械振动教学大纲](https://img.taocdn.com/s3/m/36b629cf81c758f5f61f678d.png)
《机械振动》教学大纲一、课程基本信息二、课程目的和任务《机械振动》是理论与应用力学等力学类本科专业必修的专业课程,同时也是机械、土建等工程学科本科和研究生培养的一门专业基础课程。
《机械振动》是一门系统地研究自然界和工程技术领域中振动现象的产生机理、运动规律、描述和控制方法的科学。
本课程教学应立足于加强学生的振动力学基础理论素养和相关基本技能培养,并着眼于拓宽学生的相关工程背景,提高科学建模能力,为今后学生能够创造性的从事相关理论研究或工程技术实践奠定必要的基础。
三、本课程与其它课程的关系本课程学习所需的主要选修课程为微分方程、矩阵理论、概率与统计、理论力学、材料力学等一系列数学、力学基础课程。
本课程教学应紧密结合相关的实验力学教学共同完成。
通过本课程的学习,为学生完成相关毕业设计课题奠定必备的基础。
四、教学内容、重点、教学进度、学时分配第一章绪论(2学时)1、主要内容机械振动的概念、振动理论研究体系、振动系统分类、简谐振动以及振动发展历史概述(选)2、本章重点机械振动的概念,振动理论研究体系,简谐振动3、本章难点振动系统分类4、教学要求从工程实践方面介绍广泛存在的振动现象,概括其特点和共同性,由此给出机械振动的科学概念。
指出振动理论的研究体系,分类的方法及振动力学的发展历史与现状,特别是指出振动力学在工程中的应用前景和应用价值;介绍相关参考书,提示学生在今后的学习中,从全书观点逐步理解分类的系统性。
第二章单自由度系统的自由振动(10学时)1、主要内容单自由度系统的无阻尼自由振动、等效质量与等效刚度、等效黏性阻尼和有阻尼自由振动。
2、本章重点建立振动微分方程、固有频率和振型、阻尼比、幅频和相频曲线与共振。
3、本章难点建立微分方程、固有频率、振幅减缩率和阻尼比。
4、教学要求介绍单自由度振动系统的工程实际背景,给出描述这一自然现象的力学模型,通过牛顿法和拉氏法建立数学模型及其简化理由和适用条件。
给出固有频率、阻尼特性及它们在自由振动中的物理意义,着重讲解幅频特性、相频特性曲线的物理意义及其在工程设计、控制中的重要作用。
大学物理(第四版)课后习题与答案_机械振动
![大学物理(第四版)课后习题与答案_机械振动](https://img.taocdn.com/s3/m/f9414fd7856a561252d36fa0.png)
13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相ϕ=3π/4。
试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。
13-1分析 弹簧振子的振动是简谐运动。
振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A 、ϕ已知外,ω可通过关系式Tπω2=确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解 因Tπω2=,则运动方程()⎪⎭⎫⎝⎛+=+=ϕπϕωt T t A t A x 2cos cos根据题中给出的数据得]75.0)2cos[()100.2(12ππ+⨯=--t s m x振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+⋅⨯-==---t s s m dt dx vπππ75.0)2cos[()108(/112222+⋅⨯-==---t s s m dt x d ax-t 、v-t 及a-t 图如图13-l 所示13-2 若简谐运动方程为⎥⎦⎤⎢⎣⎡+=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s 时的位移、速度和加速度。
13-2分析 可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。
解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()ϕω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相πϕ25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。
(2)t= 2s 时的位移、速度、加速度分别为m m x 21007.7)25.040cos()10.0(-⨯=+=ππ )25.040sin()2(/1πππ+⋅-==-s m dt dx v )25.040cos()40(/2222πππ+⋅-==-s m dt x d a13-3 设地球是一个半径为R 的均匀球体,密度ρ5.5×103kg •m -3。
机械振动 习题解答
![机械振动 习题解答](https://img.taocdn.com/s3/m/9da71e97c8d376eeaeaa31f8.png)
©物理系_2015_09《大学物理AII 》作业 No.01 机械振动班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、 判断题:(用“T ”表示正确和“F ”表示错误)1/3/5 2 4[ F ] 1.只有受弹性力作用的物体才能做简谐振动。
解:如单摆在作小角度摆动的时候也是简谐振动,其回复力为重力的分力。
[ F ] 2.简谐振动系统的角频率由振动系统的初始条件决定。
解:P5. 根据简谐振子角频率公式mk=ω,可知角频率是一个完全由振动系统本身性质决定的常量,与初始条件无关。
我们也将角频率称为固有角频率。
[ F ] 3.单摆的运动就是简谐振动。
解:P14-15 单摆小角度的摆动才可看做是简谐振动。
[ T ] 4.孤立简谐振动系统的动能与势能反相变化。
解:P9 孤立的谐振系统 机械能守恒,动能势能反相变化。
[ F ] 5.两个简谐振动的合成振动一定是简谐振动。
解: 同向不同频率的简谐振动的合成结果就不一定是简谐振动。
总结:1、3、5小题均为简谐振动的定义性判断.简谐运动是最基本也是最简单的一种机械振动。
当某物体进行简谐运动时,物体所受的力跟位移成正比,并且力总是指向平衡位置。
二、选择题:1. 把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相位为[ C ] (A) θ; (B) π23; (C) 0; (D) π21。
解:对于小角度摆动的单摆,可以视为简谐振动,其运动方程为:()()0cos ϕωθθ+=t t m ,根据题意,t = 0时,摆角处于正最大处,θθ=m,即:01cos cos 0000=⇒=⇒==ϕϕθϕθθ。
类似公式: ()()0cos ϕω+=t A t x2.一个简谐振动系统,如果振子质量和振幅都加倍,振动周期将是原来的 [D] (A) 4倍(B) 8倍(C) 2倍(D)2倍解: P5 公式(12.1.8) m T k m T m k T ∝⇒=⇒⎪⎭⎪⎬⎫==/2/2πωωπ,所以选D 。
振动作业答案
![振动作业答案](https://img.taocdn.com/s3/m/d98a1b5caa00b52acfc7cae4.png)
《大学物理(下)》作业 No.1 机械振动(电气、计算机、詹班)班级 学号 姓名 成绩一 选择题1. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A). (B)/2. (C) 0 . (D).[ C ][参考解答] 开始计时时,位移达到最大值。
2. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A) )3232cos(2π+π=t x .(B) )3232cos(2π-π=t x .(C) )3234cos(2π+π=t x .(D) )3234cos(2π-π=t x .(E) )4134cos(2π-π=t x .[ C ][参考解答] A=2 cm ,由旋转矢量法可得:3/20πϕ==t ,πϕ21==t ,s rad t /4314/3ππϕω==∆∆=,旋转矢量图: 3.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A )7/16 (B )9/16t (s)O-1 -212-2-1Ot=0t=1(C )11/16 (D )13/16 (E )15/16[ E ][参考解答] 4/)cos(A t A x =+=ϕω,16/15)(sin ,4/1)cos(2=+=+ϕωϕωt t 即,1615)(sin max2max k k k E t E E =+=ϕω 4.图中所画的是两个简谐振动的振动曲线,若这两个简谐振动可叠加,则合成的余弦振动的初相位为:(A )2π(B )π(C )23π(D )0[ B ][参考解答] t=0时刻的旋转矢量图:二 填空题1.一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为x 0,此振子自由振动的周期T = g x /20π.[参考解答] 受力分析如右图,以平衡位置为原点,向下为x轴正方向,有:22/22)/(dtXd m kX k mg x k mg kx dt xd m k mg x X =-=--=+-=-=令 对坐标X ,其运动为简谐运动, 其角频率满足:,mk =2ωg x T /2/20πωπ==πA/2-A A 合mg F kox2. 一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,则振动表达式为 )()2325cos(2cm t x π+=. [参考解答] s rad cm A A v m /5.2,2,=∴==ωωt =0时,质点通过平衡位置向正方向运动,初相为:230πϕ=3.一弹簧简谐振子的振动曲线如图所示,振子处在位移为零,速度为-ωA ,加速度为零和弹性力为零的状态,对应于曲线上的 b, f 点,振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应于曲线上的 a, e 点。
大学物理(第四版)课后习题及答案-机械振动
![大学物理(第四版)课后习题及答案-机械振动](https://img.taocdn.com/s3/m/e70021a58e9951e79a892743.png)
13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相=3π/4。
试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。
13-1分析 弹簧振子的振动是简谐运动。
振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A 、ϕ已知外,ω可通过关系式Tπω2=确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解 因Tπω2=,则运动方程()⎪⎭⎫⎝⎛+=+=ϕπϕωt T t A t A x 2cos cos根据题中给出的数据得]75.0)2cos[()100.2(12ππ+⨯=--t s m x振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+⋅⨯-==---t s s m dt dx vπππ75.0)2cos[()108(/112222+⋅⨯-==---t s s m dt x d ax-t 、v-t 及a-t 图如图13-l 所示13-2 若简谐运动方程为⎥⎦⎤⎢⎣⎡+=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s 时的位移、速度和加速度。
13-2分析 可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。
解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()ϕω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相πϕ25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。
(2)t= 2s 时的位移、速度、加速度分别为mm x 21007.7)25.040cos()10.0(-⨯=+=ππ)25.040sin()2(/1πππ+⋅-==-s m dt dx v )25.040cos()40(/2222πππ+⋅-==-s m dt x d a13-3 设地球是一个半径为R 的均匀球体,密度ρ5.5×103kg •m -3。
大学物理 机械波知识结构
![大学物理 机械波知识结构](https://img.taocdn.com/s3/m/911e8f587375a417866f8f98.png)
大学物理:机械波知识结构
一波长为λ的简谐波沿OX 轴正方向传播,在x = λ/2处质点
振动的运动学方程是 该简谐波的波函数。
yP
[
3 sin t 2
1 cos t]1(0S2 I)。求
2
利用公式 cos( ) cos cos sin sin
yP
[ 3 sin t 1 cos t]102
示的反射面,且假设反射波的振幅为A’,则反射波的波函
数为
。( x > L )
(1) y Acost
yO
cos
t
x u
x x 化简波函数 2
λ/2 O’ p
x’ x
y Acos(t 2 x )
物理系:史彭
大学物理:机械波知识结构
(2)如果在上述波的波线上 x = L [L> λ/2 ]处放一如图所
x’ x
u
3
y cos(t 2x ) 102 3
2
u
物理系:史彭
大学物理:机械波知识结构
(1)一列波长为λ的平面简谐波沿X轴正方向传播。已知在
x = λ/2 处质点振动的运动学方程为 y = Acost ,则该平面
简谐波的波函数为
。
(2)如果在上述波的波线上 x = L [L> λ/2 ]处放一如图所
2
2
cos(t 2 ) 102
[sin
u
2
3
sin
t
cos
2
3
cos t ] 102
3
x = /2
yO
cos
t
大学物理学 机械振动
![大学物理学 机械振动](https://img.taocdn.com/s3/m/c792f98e2dc58bd63186bceb19e8b8f67d1cef16.png)
大学物理学中的机械振动是指物体在受到外力作用后,产生周期性的来回振动运动的现象。
以下是关于机械振动的一些基本概念和内容:
1. 振动的基本特征
-周期性:振动是一个周期性的过程,即物体在围绕平衡位置来回振动。
-频率:振动的频率指的是单位时间内振动的周期数,通常用赫兹(Hz)表示。
-振幅:振动的振幅是物体从平衡位置最大偏离的距离。
2. 单自由度振动系统
-弹簧振子:是一种经典的单自由度振动系统,由弹簧和质点组成,受到弹簧的恢复力驱使质点振动。
-简谐振动:在没有阻尼和外力干扰的情况下,弹簧振子的振动是简谐的,即振动周期固定,频率与系统的固有频率相关。
3. 振动的参数和描述
-角频率:振动描述中常用的参数之一,表示振动的快慢程度,与频率之间有一定的关系。
-相位:描述振动状态的参数,表示振动的相对位置或状态。
-能量:振动系统具有动能和势能,能量在振动过程中不断转换,影响着振动的特性。
4. 阻尼振动和受迫振动
-阻尼振动:在振动系统中存在阻尼,会导致振动逐渐减弱,最终趋于稳定。
-受迫振动:当振动系统受到外力周期性作用时,会产生受迫振动,其频率与外力频率相同或有关。
5. 振动的应用
-工程领域:振动理论在工程领域有着广泛的应用,如建筑结构的抗震设计、机械系统的振动分析等。
-科学研究:振动理论也在物理学、工程学、生物学等领域中发挥重要作用,帮助解释和研究各种现象和问题。
以上是关于大学物理学中机械振动的一些基本内容和相关概念,希望能帮助您更好地理解这一领域的知识。
大学物理(第四版)课后习题及答案机械振动.docx
![大学物理(第四版)课后习题及答案机械振动.docx](https://img.taocdn.com/s3/m/0515dcbc844769eae109ed72.png)
13机械振动解答13-1 有一弹簧振子,振幅A=2.0 X 10-2m,周期T=1.Os ,初相=3 π /4。
试写岀它的运动方程,并做岀x--t图、v--t图和a--t图。
13-1分析弹簧振子的振动是简谐运动。
振幅A、初相「、角频率•■是简谐运动方程X=ACoSlQt亠。
的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A、「已知外,2 Tr-■ ■可通过关系式•=—确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解因.=Z ,则运动方程TX=ACOS讥=ACOS i2 t t : !■ I1W尸I T丿根据题中给出的数据得X =(2.0 10 ^m)cos[( 2":S A)t 0.75二]振子的速度和加速度分别为V =dχ∕dt - 10^m s1)sin[(2∏s')t 亠0.75二]a =d2χ∕dt2二2 10 2m S 丄)cos[(2二S 丄)t 0.75二x-t、v-t及a-t图如图13-1所示13-2 若简谐运动方程为X =(0.01m)cos(20:s」)t ',求:(1)振幅、频率、角频率、周期和- 4初相;(2) t=2s时的位移、速度和加速度。
13-2分析可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式X=ACOS ∙∙t ■作比较,即可求得各特征量。
运用与上题相同的处理方法,写岀位移、速度、加速度的表达式,代入t值后,即可求得结果。
解 (l )将X =(0.10m)cos[(20 7s ^)t • 0.25 二]与X=ACOS lU t w]比较后可得:振幅A= 0.10m 角频率• =20二S1,初相=0.25二,则周期T =2TJ=0∙1s ,频率=1∕T =10Hz。
(2) t= 2s时的位移、速度、加速度分别为X =(0.10m)cos(40 二0.25 二)=7.07 10i mV =dx∕dt - -(2~'m S^)Sin(40,亠0.25二)a =d2x∕dt2 = J40 二2m s?)cos(40 ;亠0.25二)13-3设地球是一个半径为R的均匀球体,密度P 5.5 X 103kg? m3。
大学物理-机械振动习题思考题及答案15页word文档
![大学物理-机械振动习题思考题及答案15页word文档](https://img.taocdn.com/s3/m/03ab749f14791711cd791747.png)
习题7-1. 原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式。
(g 取9.8)解:振动方程:cos()x A t ωϕ=+,在本题中,kx mg =,所以9.8k =;ω=== 振幅是物体离开平衡位置的最大距离,当弹簧升长为0.1m 时为物体的平衡位置,以向下为正方向。
所以如果使弹簧的初状态为原长,那么:A=0.1,当t=0时,x=-A ,那么就可以知道物体的初相位为π。
所以:0.1cos x π=+) 即)x =-7-2. 有一单摆,摆长m 0.1=l ,小球质量g 10=m .0=t 时,小球正好经过rad 06.0-=θ处,并以角速度rad/s 2.0=•θ向平衡位置运动。
设小球的运动可看作简谐振动,试求:(g 取9.8)(1)角频率、频率、周期;(2)用余弦函数形式写出小球的振动式。
解:振动方程:cos()x A t ωϕ=+ 我们只要按照题意找到对应的各项就行了。
(1)角频率: 3.13/rad s ω===,频率:0.5Hz ν=== ,周期:22T s π=== (2)根据初始条件:A θϕ=0cos可解得:32.2088.0-==ϕ,A所以得到振动方程:0.088cos 3.13 2.32t θ=-()7-3. 一竖直悬挂的弹簧下端挂一物体,最初用手将物体在弹簧原长处托住,然后放手,此系统便上下振动起来,已知物体最低位置是初始位置下方cm 0.10处,求:(1)振动频率;(2)物体在初始位置下方cm 0.8处的速度大小。
解:(1)由题知 2A=10cm ,所以A=5cm ;1961058.92=⨯=∆=-x g m K 又ω=14196==m k ,即 (2)物体在初始位置下方cm 0.8处,对应着是x=3cm 的位置,所以:03cos 5x A ϕ== 那么此时的04sin 5v A ϕω=-=± 那么速度的大小为40.565v A ω== 7-4. 一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。
大学物理 振动和波动
![大学物理 振动和波动](https://img.taocdn.com/s3/m/2382453f804d2b160a4ec00e.png)
ox 0
x
为半径作圆周(参考圆)
c
3、过 x 0 点作o x 轴的垂线,与圆交点为 b 、c
4、从o到 b、c 分别作矢量
5、
v0
v0
0
0
,下方矢量为旋转矢量
,上方矢量为旋转矢量
(
t
t
)
0
20
o 画旋转矢量图:取坐标、画圆周、通过 x 0 作垂线
到交点画矢量,若 v0 0 ,在下 方; 反之在上方.
3
一、简谐振动(Simple Harmonic Vibration)
1. 特征
k FN
★ 动力学特征
m
x
o x
F合外力(矩)kx
p 运动物体相 对平衡位置 的位移或角
位移
合外力(矩)
坐标原点必须在平 衡位置的运动物体
(广义弹性力) 的广义坐标
(准弹性力)
平动:(线)坐标
转动:角坐标 4
★ 微分方程特征
结论:夹角 t0
② 写运动方程
xA co s(t )
A
x02
v0
2
夹角 t0
21
例2 两个物体作同方向、
同频率、同振幅的 谐振动,在振动过 程中,每当第一个 物体经过位移为 A / 2 的位置向平衡位 置运动时,第二个物体也经过此位置, 但向远离平衡位置的方向运动,试利用 旋转矢量法求它们的相位差。
旋转角速度 固有圆频率
t
A t 0
A
t
o
x
满足上述四个条件的矢量称为旋转矢量
17
结论:
◆ 相位 t
NO1机械振动答案
![NO1机械振动答案](https://img.taocdn.com/s3/m/d4a9f2faed630b1c58eeb51f.png)
N O1机械振动答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March《大学物理AII 》作业 机械振动一、选择题:1.假设一电梯室正在自由下落,电梯室天花板下悬一单摆(摆球质量为m ,摆长为l ) 。
若使单摆摆球带正电荷,电梯室地板上均匀分布负电荷,那么摆球受到方向向下的恒定电场力F 。
则此单摆在该电梯室内作小角度摆动的周期为:[ C ] (A) Fm l π2 (B) Flmπ2(C) Fmlπ2 (D) mlF π2 解: 2.图(a)、(b)、(c)为三个不同的简谐振动系统。
组成各系统的各弹簧的原长、各弹簧的劲度系数及重物质量均相同。
(a)、(b)、(c)三个振动系统的2(为固有角频率)值之比为[ B ] (A) 2∶1∶21(B)1∶2∶4(C) 2∶2∶1 (D) 1∶1∶2解:由弹簧的串、并联特征有三个简谐振动系统的等效弹性系数分别为:2k,k ,k 2 则由m k=2ω可得三个振动系统的2(为固有角频率)值之比为:m k 2 :m k :m k2,即1∶2∶4 故选B 3.两个同周期简谐振动曲线如图所示。
则x 1的相位比x 2的相位 [ A ] (A) 超前/2 (B) 落后 (C) 落后 解:由振动曲线画出旋转矢量图可知x 1的相位比x 2的相位超前k m m mk k k k (b) (c) t x O x 1 x 2x 2A1A ω4.一物体作简谐振动,振动方程为)21cos(π+=t A x ω。
则该物体在t = T /8(T 为振动周期)时刻的动能与t = 0时刻的动能之比为: [ B ] (A) 1:4 (B) 1:2 (C) 1:1 (D) 2:1 (E) 4:1解:由简谐振动系统的动能公式:)21(sin 2122πω+=t kA E k有t = 0时刻的动能为:22221)2102(sin 21kA T kA =+⋅ππt = T /8时刻的动能为:22241)2182(sin 21kA T T kA =+⋅ππ,则在t = T /8时刻的动能与t = 0时刻的动能之比为:1:2二、填空题:1.用40N 的力拉一轻弹簧,可使其伸长10cm 。
大学物理第一章习题参考答案
![大学物理第一章习题参考答案](https://img.taocdn.com/s3/m/69bcb29be53a580216fcfeb9.png)
θ
+
v = vmax / 2
(B) (D)
v = 3v max / 2
v0 r A
O
v = 2v max / 2 v = v max / 2
o
t=0
解:如图画出已知所对应矢量 A,可知 A 与 x 轴正向的夹角 为 θ = 60 ,则根据简谐运动与旋转矢量的对应关系可得
7.5 x(cm)
v = ωA sin θ = 3v max / 2
4. 一弹簧振子作简谐振动,总能量为 E1 ,如果简谐振动振幅增加为原来的两倍,重物的 质量增加为原来的四倍,则它的总能量 E 变为 [ D ] (A) E1 /4 (B) E1 /2 解:原来的弹簧振子的总能量 E1 = (C) 2 E1 (D) 4 E1
1 1 2 2 2 kA1 = m1ω1 A1 ,振动增加为 A2 = 2 A1 ,质量增 2 2
1 π 3
。
解: 由矢量图可知,x1 和 x2 反相,合成振动的振幅
A = A1 − A2 = 0.05 − 0.03 = 0.02(m) ,初相 ϕ = ϕ1 =
四、计算题: 1.一定滑轮的半径为 R,转动惯量为 J,其上挂一轻绳,绳的一端 系一质量为 m 的物体,另一端与一固定的轻弹簧相连,如图所示。 设弹簧的倔强系数为 k, 绳与滑轮间无滑动,且忽略摩擦力及空气的 阻力。现将物体 m 从平衡位置拉下一微小距离后放手,证明物体作 简谐振动,并求出其角频率。 解:取如图 x 坐标,平衡位置为坐标原点,向下为正方向。 m 在平衡位置,弹簧伸长 x0, 则有 mg = kx0 ……………………(1) 现将 m 从平衡位置向下拉一微小距离 x, m 和滑轮 M 受力如图所示。 由牛顿定律和转动定律列方程, mg − T1 = ma ………………… (2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四部分 振动、波动和波动光学
第1章 机械振动
一.基本要求
1.掌握简谐振动的定义和特征,以及描述简谐振动的三个特征量:振幅、圆频率和初相位,学会简谐振动的判断方法。
2.掌握简谐振动的三种描述方法——解析法、曲线法以及旋转矢量法,并能从这些描述中确定简谐振动的特征量,能用旋转矢量法分析有关问题。
3.了解简谐振动的能量特点。
4.掌握两个同方向、同频率简谐振动的合成,能计算合成振动的振幅和初相位。
5.理解两个同方向、不同频率简谐振动的合成,了解“拍”的定义。
6.了解受迫振动和共振。
7.了解非线性振动的基本概念。
二.容提要和学习指导
(一)简谐振动的定义(简谐振动的判据)
1.简谐振动的运动学定义:物体离开平衡位置的位移满足
0cos()x A t ωϕ=+
2.简谐振动的动力学定义:物体受到的合外力满足 kx F -= (k 常数)
3.用运动微分方程定义:0222=+x dt
x
d ω
由这一定义可以推广简谐振动的概念:一个物理量x (可以是力学量、电学量、磁学量等)如果满足上述微分方程,就可称物理量x 作简谐振动.
(二)简谐振动的三个特征量
1.振幅A :物体离开平衡位置的最大位移的绝对值,其值由振动的初始条件
(即0t =时物体的位移0x 和速度0v )决定 2
020⎪⎭
⎫
⎝⎛+=ωv x A ;
2.频率ν(圆频率ω、周期T ):表征物体振动的快慢,由振动系统的固有性质决
定,三者之间的关系为 2,2T π
ωνω
π
=
=
3.相位0t ϕωϕ=+(初相位0ϕ)
①相位完备地描述质点的振动状态.振动状态和相位之间一一对应,也就是说知道了任一时刻质点振动的相位,就知道了这一时刻质点的位置、速度和加速度.关于这一点可从位移、速度和加速度的表达式中看出:
0cos()x A t ωϕ=+,0sin()v A t ωωϕ=-+,
20cos()a A t ωωϕ=-+;
其中初相0ϕ由初始条件决定 0
00
arctan(
)v x ϕω-=。
②相位可用来比较两个同频率简谐振动的步调。
设有两个简谐振动
111cos()x A t ωϕ=+, 222cos()x A t ωϕ=+, 则两者间的相位差与步调的关系为
(三)简谐振动的描述方法
当采用某种方法描述简谐振动时,此方法必须能很好地体现简谐振动的三个特征量.
1.解析法:0cos()x A t ωϕ=+ 2.曲线法(x t -曲线)
如图1.1所示,x -t 曲线的峰值表示振
图1.1
ω
幅;运动状态完全相同的最邻近两点之间的时间间隔表示周期;t =0时,0x 以及0v 的正负可以确定初相位。
3.旋转矢量法
表示方法如图1.2所示.在旋转矢量法中很直观地体现了简谐振动的三个特征量:旋转矢量A 的模表示振幅A ;任意t 时刻,旋转矢量A 与x 轴的夹角0t ωϕ+表示t 时刻的相位;旋转角速度ω表示圆频率.
注意:用旋转矢量法能够很方便地判断振动的相位,关于这一点将在习题解答与分析中加以说明,请务必掌握.
(四)简谐振动的能量特征 1.振子的动能 2222011
sin ()22k E mv m A t ωωϕ=
=+ 2.振子的势能 222011cos ()2
2
p E kx kA t ωϕ==+ 3.振子的总能 22
1kA E E E p k =+=
结论:①振动系统的动能和势能是时间的周期函数,其周期为位移周期的一半。
②在振动过程中,系统的动能和势能相互转换:动能最大时,势能最小;动能最小时,势能最大.在整个过程中系统的机械能守恒.
(五)简谐振动的合成
1.同方向、同频率简谐振动的合成:1110cos()x A t ωϕ=+,
2220cos()x A t ωϕ=+;
合振动:0cos()x A t ωϕ=+(仍为简谐振动,且与分振动的频率相同)
其中
A =,
1
110220
0110220
sin sin tan cos cos A A A A ϕϕϕϕϕ-+=+;
2.同方向、不同频率简谐振动的合成
1110cos()x A t ωϕ=+ , 2220cos()x A t ωϕ=+, 合振动: 2010
2010
21
21
2cos(
)cos(
)2
2
2
2
x A t t ϕϕϕϕωωωω-+-+=+
+
① 合振动不是简谐振动;
② 若21ωω≈,即1212ωωωω->>+,合振幅
2010
21()2cos(
)22
A t A t ϕϕωω--=+;。