家蚕核型多角体病毒Bac-to-Bac 系统的构建
利用家蚕杆状病毒Bac-to-Bac系统表达大肠杆菌L-天冬酰胺酶Ⅱ
p a B c T 载体, Fs aH b t 大肠杆菌 D 5 ,H 0 aT H a D 1B c , M B N昆虫细胞 , m 由本实验室保存。 a H I, i 1 Bm Hn 1 d1
等限制性内切酶,4D A连接酶 , T N 质粒柱抽试剂盒 ,
费建明 1 吴 岩 ,占鹏飞 1施 国方 1 王文兵 2 , , ,
(. 1浙江省湖州市农业科学研究院 , 浙江 湖州 3 3 0 ;2 江苏大学生命科学研究院, 10 0 . 江苏 镇江 22 1 ) 10 3
摘
要 : 厂天冬酰胺酶(- saaiaeI A P 可以通过 降解 L 天冬酰胺从而抑制肿瘤细胞 中蛋白质的正常合成 , I L ap rg s , _ S ) n , _ 导
致肿瘤细胞的死亡。 通过杆状病毒的 B ct -a 方法 , a-o B c - 将大肠杆菌的 ap 因在家蚕杆状病毒 中表达 , s基 其活性较原核表 达有 明显提高 , 达到 2 0 / 。为利用家蚕生物反应器生产该蛋 白提供 了依据 。 80 mg 关键词: 家蚕 ; 多角体 ; - L 天冬酰胺酶; - 大肠杆菌
(. ei h r ReerhIsi t, zo c d m gi l rl c n e, zo 1 0 0 C ia 1 S r u ue sac tue Huh uA a e yo r ut a S i cs Huh u3 3 0 , hn ; c n t fA c u e
wih t e ba u v r ct cs se t h c l iusBa o Ba y t m
FEIJa - i g. U n, in m n W Ya 2ZH AN e g fP S o f n 1W ANG e - ig P n - e , HIGu - a g, W n bn
家蚕抗核型多角体病毒病研究进展
由家蚕核型多角体病毒(Bombyx mori nucle-opolyhedrovirus,BmNPV )引起的家蚕核型多角体病毒病是蚕业生产上最常见危害最为严重的一类蚕病,当前在全国各大蚕区均有发生且呈蔓延趋势。
据报道,我国每年因该病造成产茧量减产15%~20%,给蚕桑生产带来巨大的经济损失。
多年来,蚕业科研人员一直致力于筛选抗BmNPV 家蚕品种资源、阐明抗性分子机制和发现抗性基因,以期通过传统常规育种或现代分子育种手段选育出对BmNPV 具有较高抗性的家蚕新品种。
目前,相关研究已取得了一定进展。
1抗BmNPV 家蚕品种资源的筛选和鉴定我国家蚕品种资源丰富,从中筛选到对BmN-PV 高抗的家蚕品种,是推进家蚕抗病育种研究的重要物质基础。
张远能等[1]研究了33个家蚕品种对NPV 、CPV 、FV 和微粒子等6种蚕病的抗性差异,挖掘了一批单抗或兼抗的抗病品种。
陈克平等[2]在对我国家蚕种质资源344个品种进行抗Bm-NPV 鉴定后,发现了1个对BmNPV 高抗的地方资源品种,其LC 50高达6.39×108个/mL 。
陆瑞好、黄平等[3,4]也先后对广西地区和云南省保存的家蚕品种品系进行了BmNPV 经口感染抵抗性的比较试验,分别发现了一批抗性较高的地方品种,为实用家蚕抗性品种的选育提供了良好的育种素材。
2家蚕对BmNPV 抵抗性的遗传规律研究家蚕不同品种对BmNPV 的抗性存在很大的差异,表明这一抗逆性状主要还是由遗传因素决定的。
中外学者对其抗性遗传规律作了深入的研究,但结果却不相一致。
荒武义信[5]认为杂交F 1代对NPV 的抵抗性受母体影响,F 2代也未见偏父遗传现象。
孟智启等[6]的研究结果则表明家蚕经口感染NPV 后,其杂交后代(F 1、F 2)的抵抗性受父本影响,有偏父遗传的现象。
另外,荒武义信通过试验推断家蚕对NPV 的抵抗性受多因子影响,孟智启则认为家蚕对NPV 病毒经口感染的抵抗性遗传受一对主效显性基因和若干微效基因控制。
Bac to Bac
Bac-to-Bac杆状病毒表达系统是一种快速、高效产生重组苜蓿银纹夜蛾核型多角体病毒(AcNPV)的技术(Luckow et al., 1993),利用细菌转座子原理,在大肠杆菌内就能完成重组病毒的构建,取名为Bac-to-Bac表达系统,意即从细菌(bacterium)到杆状病毒(baculovirus),革命性地改变了重组昆虫杆状病毒的构建方法。
其基本原理为:将一个改造后的AcNPV基因组转化入大肠杆菌,使它像普通质粒一样能在细菌中复制(由于太大,只限单拷贝),将其称之为杆状病毒穿梭载体(baculovirus shuttle vector,又称病毒质粒baculovirus plasmid,将其首尾合写而成为Bacmid),通过位点特异性转座,在大肠杆菌内完成病毒基因组的重组。
杆状病毒穿梭载体Bacmid含有细菌单拷贝数mini-F复制子、卡那霉素抗性选择标记基因及编码β-半乳糖苷酶α肽的部分DNA片段。
在lacZα基因的N氨基末端插入一小段含有细菌转座子Tn7整合所需的靶位点(mini-att Tn7),但它的插入不影响lacZα基因的表达阅读框。
将杆状病毒穿梭载体(130kb)转化入大肠杆菌DH10β,获得转化子将其命名为DH10Bac。
因此,杆状病毒穿梭载体像一个大质粒一样,可以在大肠杆菌中增殖并使细菌细胞获得卡那霉素抗性,且与存在与受体菌染色体上的lacZα缺失产生互补,在IPTG诱导和X-gal或Blue-gal生色底物存在下转化体产生蓝斑(lacZ+)。
重组Bacmid通过pFASTBAC供体质粒(donor plasmid)上的mini-Tn7转座子,在另一个辅助质粒(helper plasmid,13.2kb)的功能作用下将外源目的基因插入到Bacmid中来完成。
Helper plasmid表达转座酶并含有四环素(tetracycline)抗性基因。
pFASTBAC系列供体质粒具有共同的特征:每个质粒都含有杆状病毒启动子(polh或p10启动子),在mini-Tn7左右臂间由一个完整的表达框,包括庆大霉素(gentamincin)抗性基因、杆状病毒启动子、多克隆位点及SV40 poly(A)。
一种扩繁家蚕核型多角体病毒的方法[发明专利]
专利名称:一种扩繁家蚕核型多角体病毒的方法专利类型:发明专利
发明人:蔡国祥,林水中,刘桂州,茆迎春,杨俊生申请号:CN201711500879.6
申请日:20171218
公开号:CN108220250A
公开日:
20180629
专利内容由知识产权出版社提供
摘要:本发明公开一种扩繁家蚕核型多角体病毒的方法,包括毒源病毒的制备、病毒的临时保存病毒的人工接种、病毒的采收几个步骤,接种病毒前首先对毒源病毒提纯,病毒的临时保存方法为病毒多角体配制成1.2×10个/毫升~1.4×10个/毫升浓度,按病毒液∶10%氟派酸∶10%多菌灵1∶0.8~1.2∶0.8~1.2的配比,24~26℃室温条件保存1~2小时,接种病毒的时间选择为家蚕五龄饷食后4~8小时,接种病毒后90~100小时采收病毒。
本申请提供的扩繁家蚕核型多角体病毒的方法,生产工艺简单,生产成本低,扩繁效益高,对环境的要求也低,是生产家蚕血液型脓病灭活疫苗首选的病毒扩繁方案。
申请人:蔡国祥
地址:224002 江苏省盐城市亭湖区文港北路33号1幢504室
国籍:CN
更多信息请下载全文后查看。
改造重组家蚕核型多角体病毒的基因工程载体的构建方法[发明专利]
专利名称:改造重组家蚕核型多角体病毒的基因工程载体的构建方法
专利类型:发明专利
发明人:贡成良,曹广力,薛仁宇,魏育红,朱越雄,沈卫德
申请号:CN200510037703.2
申请日:20050125
公开号:CN1673379A
公开日:
20050928
专利内容由知识产权出版社提供
摘要:本发明公开了一种改造重组家蚕核型多角体病毒的基因工程载体构建方法,其步骤包括PCR分别克隆病毒的ChiA片段和CP片段;将该二片段同时克隆进细菌质粒,构建中间质粒;将带有家蚕核型多角体病毒完整多角体蛋白基因编码区以及启动子的片段克隆进中间质粒内,获得改造的常规重组家蚕核型多角体病毒的基因工程载体。
该载体与多角体蛋白基因被外源基因取代的重组家蚕核型多角体病毒DNA共转染家蚕细胞,可获得同时失活了几丁酶、半胱氨酸蛋白酶二基因的、可形成多角体的新重组病毒。
新重组病毒在细胞和家蚕中表达外源基因的水平有明显提高,明显减少病毒感染后期由细菌所引起的继发感染,并可通过食下高效感染家蚕。
申请人:苏州大学
地址:215006 江苏省苏州市沧浪区十梓街1号
国籍:CN
代理机构:苏州创元专利商标事务所有限公司
代理人:陶海锋
更多信息请下载全文后查看。
一种新型家蚕核多角体病毒Bac to Bac系统的构建
一种新型家蚕核多角体病毒Bac to Bac系统的构建邓小昭;朱应;刁振宇;齐义鹏;周宗安【期刊名称】《微生物学报》【年(卷),期】2000(040)002【摘要】用家蚕核型多角体病毒的全基因组DNA与Ac-BacmidDNA共转染家蚕BmN细胞,构建转座一穿梭载体Bm-Bacmid.另一供体质粒以转座方式将乙肝病毒e抗原基因HBeAg整合到Bm-Bacmid的attTn7位点上成为重组rBmHBe.结果表明Bm-Bacmid既能在大肠杆菌中以质粒的形式复制,又能在家蚕BmN细胞和草地夜蛾Sf9细胞中复制,形成感染性病毒粒子.Southernblotting证实重组病毒的构建是正确的.BmN细胞能正确识别与切割HBeAg信号肽序列,SDS-PAGE 表明HBeAg基因在家蚕细胞中高效表达,ELISA测定培养上清中HBeAg效价达1:32000,细胞内HBeAg效价为1:2000,培养液及细胞内的HBcAg含量极低(<1:160).【总页数】6页(P155-160)【作者】邓小昭;朱应;刁振宇;齐义鹏;周宗安【作者单位】南京军区军事医学研究所分子生物学实验室,南京,210002;武汉大学病毒研究所,武汉,430073;南京军区军事医学研究所分子生物学实验室,南京,210002;武汉大学病毒研究所,武汉,430073;南京军区军事医学研究所分子生物学实验室,南京,210002【正文语种】中文【中图分类】S884.5【相关文献】1.利用家蚕杆状病毒Bac-to-Bac系统表达大肠杆菌L-天冬酰胺酶Ⅱ [J], 费建明;吴岩;占鹏飞;施国方;王文兵2.甜菜夜蛾核多角体病毒BAC-TO-BAC外源基因表达系统的建立 [J], 杨凯;庞义3.利用细菌转座子构建适于家蚕的Bac-to-Bac快速基因表达系统 [J], 吴小锋;曹翠平;鲁兴萌4.Bac-to-Bac系统的研究进展及在家蚕中的应用 [J], 吴小锋;岳万福;刘剑梅;李广立;缪云根5.家蚕Polh^+ Bac-to-Bac杆状病毒表达系统的构建 [J], 曹翠平;兰丽盼;姚慧鹏;何芳青;郭爱芹;吴小锋因版权原因,仅展示原文概要,查看原文内容请购买。
甜菜夜蛾核多角体病毒BAC-TO-BAC外源基因表达系统的建立
#
#"!
结果
’()*+, 基因组中存在一个 !"# -!单酶切位
,.,
生
物
工
程
学
报
.2 卷
点 !"#$%&’ 软 件 分 析 已 测 序 的 $()"*+ 全 基 因 组 , 发现在 $()"*+ -% ./0 存在一个 !"#$%&’ JK:%$(L 软件将 $()"*+ 全基因组和 /68 34 9:-:;<;=&>?;&%%@-0;A&- 片段的核苷酸序列结 合, 得到 $()"*+ 4&>9:K ( $(D#1) 的核苷酸序列。然 后用 )&M!’&N 软件分析 $()"*+ 和 $(D#1 的不同限 制酶的酶切位点, 得到不同的酶切片段, 比较结果如 表 .:
H期
杨
凯等: 甜菜夜蛾核多角体病毒 ;<)OLTO;<) 外源基因表达系统的建立
H&=
!"# 基因组中任意插入或缺失目的基因。
!
!"!
材料和方法
材料
[(] 甜菜夜蛾核多角体病毒 $%& 株 ( %’$%&) 由美 国 )*+,-./0,* $0,1’/2,34,5,1’/2,6’ 分校的 7/ 8 9’6’/,:, [?] 由日本的 7/ 8 ; < 惠赠。甜菜夜蛾细胞系 %’=>& @*A*/*B*3* 惠赠。细胞维持于添加了 &>C 胎牛血清
中图分类号
甜菜夜蛾食性杂, 以前是次要害虫, 随着广谱杀 虫剂的大量施用和滥用, 其天敌数量逐渐减少; 甜菜 夜蛾对许多农药产生了抗性, 其种群规模逐渐扩大, 危害加重, 已成为一种重要的农业害虫 。甜菜夜 蛾核多角体病毒 ( 34(5(4/%*+ %6#1)+ ;.*@<A8EF<G C.A*60 能够在甜菜夜蛾种群中引 )E)*/?6GH)I<H.F,J6K,L() 起病毒性流行病, 是调节甜菜夜蛾种群密度的重要 因子, 现已开发成一种非常有效的生物杀虫剂, 在美
快速敲除补回家蚕核型多角体病毒ORF29
快速敲除补回家蚕核型多角体病毒ORF29王蓉【摘要】利用Red重组系统成功敲除家蚕核型多角体病毒ORF29基因(BmNPV ORF29,简称Bm29),并利用Bac-to-Bac系统构建补回型的Bm29基因.通过PCR鉴定敲除和补回均成功,为后续的Bm29基因功能研究奠定基础.【期刊名称】《浙江农业科学》【年(卷),期】2014(000)010【总页数】3页(P1624-1626)【关键词】家蚕核型多角体病毒;ORF29基因;Red重组;Bac-to-Bac【作者】王蓉【作者单位】浙江理工大学,浙江杭州310018【正文语种】中文【中图分类】S884.5杆状病毒是已知昆虫病毒中类群最大,且具有较大实用意义的昆虫病毒[1]。
目前,已有29种昆虫杆状病毒的基因组被完全测序[2]。
基因敲除技术是研究基因功能的一种常用手段。
传统的构建重组杆状病毒方法是利用转移载体与野生型病毒DNA共转染昆虫细胞,通过同源交换和空斑纯化获得重组病毒,但该方法不仅重组效率低,而且耗时耗材[3]。
近年来,Red重组系统,因其准确率高、操作简便的优点逐渐成为新型的基因敲除方法[4]。
Red重组系统属于λ噬菌体的重组系统,它的编码基因exo,bet和gam置于L-阿拉伯糖启动子控制下,在L-阿拉伯糖诱导下能够表达重组所需的酶,从而介导线性化片段与染色体的特定片段进行同源重组,进而利用外源基因替换靶基因[5]。
目前,已经有报道利用Red重组成功敲除了杆状病毒基因lef-6,l ef-8和lef-10[6-8]。
家蚕核型多角体病毒(BmNPV)基因组已经被测序完全,含有136个完整的开放阅读框[9]。
BmNPVORF29,简称Bm29,全长654 bp,位于BmNPV基因组T3株的26449~27102 bp处,表达产物预测分子量为22.0 ku。
该基因功能的研究还一直未见报道,本文首次利用Red重组系统在大肠杆菌中成功地对Bm29基因进行了定点敲除,并利用Bac-to-Bac系统补回缺失型的Bm29基因,为后续基因功能的研究奠定基础。
家蚕核型多角体病毒基因与抗病育种
家蚕核型多角体病毒基因与抗病育种孙波;周洪英;吴宏丽【期刊名称】《湖北农业科学》【年(卷),期】2011(50)16【摘要】The resistance of Bombyx mori to B. mori Nuclear polyhedrosis virus(BmNPV) was incomplete dominance,and was controlled by major gene on autosome and minor gene in sex chromosomes. The study on correlated gene of BmNPV enriched the theoretical foundation of disease prevention in production. The RNA interference technology was used extensively in research of gene function and provided a new method for breeding of BmNPV resistant variety. As the improving and application of molecular marker, some achievement in assisted selection of B. mori L was obtained and some new BmNPV resistant varieties were reported.%家蚕(Bombyx mori L.)对家蚕核型多角体病毒(B.mori Nuclear polyhedrosis virus,BmNPV)抗性为不完全显性,在常染色体上由主效基因控制,在性染色体上有微效基因的协同作用.抗BmNPV相关基因的研究,为生产上进行防治提供了理论基础.RNA干涉(RNA interference,RNAi)技术被广泛应用于基因功能研究,为BmNPV抗性品种培育提供了新的方法.随着分子标记技术的不断完善和应用.在家蚕抗性品种辅助选育方面也取得了一定的成果,并且有获得家蚕抗性新品种的报道.【总页数】4页(P3249-3252)【作者】孙波;周洪英;吴宏丽【作者单位】湖北省农业科学院经济作物研究所,武汉430064;湖北省农业科学院经济作物研究所,武汉430064;湖北省农业科学院经济作物研究所,武汉430064【正文语种】中文【中图分类】S884.5+1;Q78;S882.2【相关文献】1.家蚕核型多角体病毒orf90基因在Bac-to-Bac家蚕杆状病毒系统中快速表达[J], 王强;陈克平;郭忠建;姚勤;王海燕;陈慧卿2.喂食家蚕核型多角体病毒诱导家蚕抗菌肽基因表达 [J], 唐芬芬;杨伟克;张永红;朱峰;邵榆岚;白兴荣3.喂食家蚕核型多角体病毒诱导家蚕抗菌肽基因表达 [J], 唐芬芬;杨伟克;张永红;朱峰;邵榆岚;白兴荣;4.家蚕基因组生物学国家重点实验室蚕桑抗病育种中心挂牌暨学术研讨会在广东省农科院蚕业与农产品加工研究所召开 [J],5.家蚕核型多角体病毒对家蚕酚氧化酶活性及其基因表达的影响 [J], 唐芬芬;杨伟克;朱峰;邵榆岚;张永红;白兴荣因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V IROLOGICA S INICA, June 2007, 22 (3):0218-225Received: 2006-11-13, Accepted: 2007-01-30* Foundation items: 973 (2003CB114202); Programme Strategic Scientific Alliances between China and the Netherlands (2004CB720404); National Natural Fundation of China project (30630002)** Corresponding author. Tel/Fax: 86-27-87197180, E-mail: huzh@HUANG et al.Construction of the Bac-to-Bac System of Bombyx mori Nucleopolyhedroviru 219(BmNPV), are most widely used to express foreign proteins. More than a thousand genes have been cloned and expressed through recombinant AcMNPV and BmNPV, ranging from the components of transcription machinery to pharmaceutical products (1). However, the traditional preparation of recombi- nant baculovirus to express foreign genes is very time consuming, because multiple rounds of purification and amplification of recombinant viruses are needed. Recently, the newly developed Bac-to-Bac TM system of AcMNPV has overcome this drawback. The AcMNPV bacmid can autonomously replicate in E. coli as a large plasmid at a low copy number, and the recombinant virus can be generated by the site specific transposition in Escherichia coli (E. coli)and used to infect insect cells. Since this system eliminates multiple rounds of purification and amplification of virus, recombinant viruses can be selected and purified within 7-10 days.BmNPV, a member of the family Baculoviridae, is a natural pathogen of the mulberry silkworm Bombyx mori. Though the BmNPV genome is over 90% identical to the genome of AcMNPV (7), its host specificities is very narrow. Unlike AcMNPV which can infect more than 30 lepidopteran insects (2, 8), the BmNPV can only infect silkworm and its cell lines. Since it was first used to express α-interferon in 1985 (15), the BEVS of BmNPV has been used for the expression of many foreign proteins either in a cell culture system or in a insect larvae system (1).B. mori BEVS are particularly suitable for the large-scale manufacture of foreign proteins, as the protein expression using silkworm or pupae is 10- to 100-fold higher than from B. mori cells. Silkworms are safe to the environment, and easy to breed with low cost. There is a long history of raising silkworms in China. All these make B. mori BEVS one of the most optimal systems for mass production of recombi- nant proteins. Several B. mori BEVS have been developed in past years (5, 10,11, 26, 27), however, the applications were limited due to the time con- suming process or low infectivity of the virus to silkworm.In this report, we described the construction of a bacmid of BmNPV, BmBacJS13, using in vivo recom- bination. To study the infectivity of the bacmid, the polyhedrin gene was inserted into the bacmid generating recombinant virus BmBacJS13-ph. The infectivity of BmBacJS13-ph was demonstrated by growth curve analysis of budded viruses and bioassay in B. mori larvae. The results indicated that BmBac- JS13-ph is a functional virus with similar infectivity to that of wt BmNPV. The results also showed that infective recombinant viruses could be generated with BmBacJS13 by site specific transposition in E. coli, indicating a functional Bac-to-Bac system of BmNPV was constructed.MATERIAL AND METHODSInsect, virus and cell lineLarvae of Bombyx mori, were reared on an artificial diet at 27℃(4) and third or fifth instars larvae were used in the experiments. BmN cells were cultured in TC-100 (JRH) insect medium supplemented with 10% fetal bovine serum (GIBCO/BRL) at 28℃ using standard techniques (17).The wt BmNPV Shaanxi strain, collected in Shaanxi province, China, were propagated on silkworm larvae (3).Construction of transfer vectorAccording to the sequence of the BmNPV T3 strain (GenBank accession number L33180), a 1.5 kb segment upstream of polyhedrin gene was amplified220 V IROLOGICA S INICA V ol.22, No 3by PCR from the wt BmNPV genome DNA using primers(5’-GGGCCGCGGGCGTAGAGATTCGAC GAAAGC-3’ and 5’-GCGCTGCAGATAATTACAA ATAGGATTGAGGCC-3’) and cloned into the Sac II and Pst I sites of pBluescriptKS II+ (Stratagene). A 1.7 kb segment downstream of the polyhedrin gene was PCR amplified using forward primer (5’-GGGG AATTCCCTGAGGTAAGCGTTAGATTCTGTGCG TTTG-3’) with Eco R I and Bsu 36I sites, and reverse primer (5’-GCGGGTACCTGACGAATCGTAAATA TGAATTCTGT -3’) with Kpn I site. The product was cloned into the plasmid containing the upstream segment to generate pKS-USR-DSR. The mini-F replicon, kanamycin resistance gene and the Tn7 target sites were cut out as an 8.6 kb Bsu 36I fragment from plasmid pBAC-Bsu 36I (18) and inserted into the Bsu 36I site of pKS-USR-DSR to generate transfer vector pBmTV (Fig. 1).Recombination and identification of the bacmid in vivoNewly molted fifth instar larvae were co-trans- fected with 20 μL DNA mixture per larva (including 0.45μg linearized plasmid pBmTV DNA, 0.15 μg wt BmNPV viral DNA and 3μL lipofectin (Invitrogen)) through subcutaneous injection (25). The haemolymph of the larvae were collected at 4 days post transfection and budded viruses (BVs) were retrieved from the supernatant of haemolymph after centrifuging. TheDNA of BVs was extracted and transformed into E. coli DH10B cells (GIBCO/BRL), and colonies were selected in the presence of kanamycin and X-Gal. The colonies were further analyzed by PCR and REN digestion. One of the positive clones, BmBacJS13 which had similar REN profiles to that wt BmNPV, was chosen for further analysis. Construction of BmBacJS13-phThe Polyhedrin gene of BmNPV was amplified by forward primer (5’-GCGGGATCCTGTCGACAAGC TCTGTCCGTTT-3’) with Bam HI (underlined), and reverse primer (5’-GGGGAATTCTTAATACGCCG GACCAGTG-3’) with Eco R I (underlined). The Bam H I site of the fragment was blunted and the fragment was inserted into Bst 1107 I and Eco R I sites of pFast bac Dual (Invitrogen) to generate pFast- DUAL-ph . The pFast bac Dual-ph was then used to produce a recombinant BmBacJS13-ph via trans- position in E. coli according to the Bac-to-Bac TM system manual. The bacmid DNAs of the recombinant were extracted and were used to transfect the BmN cells. Transfection of BmN cellsBacmid DNA of BmBacJS13-ph was isolated by methods developed for large plasmids (instruction manual of Bac-to-Bac TM system/Life Technologies). The DNA was used to transfect BmN cells with lipofectin, and genomic DNA of wt BmNPV was usedas a control. The supernatant was collected from theFig. 1. Schematic of transfer vector pBmTV . The 1.5kb upstream sequence and 1.7kb downstream sequence are homologous arms,through recombination the polh was replaced with kanamycin cassette, lacZ: attTN7: lacZ and mini-F replicon.HUANG et al.Construction of the Bac-to-Bac System of Bombyx mori Nucleopolyhedroviru 221transfected BmN cells at 96 hrs post transfection (h.p.i.) and was used to infect BmN cells. The supernatants of the infected cells were collected at 96 h.p.i and TCID50 was determined using end-point dilution method.Electron microscopeBmN cells (1×106 ) were infected with wt BmNPV or BmBacJS13-ph with a multiplicity of infection (MOI) of 5. The infected cells were harvested at 72 h.p.i. The samples were processed for electron microscopy examination as described by Van Lent et al. (22).Comparison of the growth curves between wt BmNPV and BmBacJS 13-phBmN cells were infected with BV of Bm- BacJS13-ph or wt BmNPV at an MOI of 5. At the appropriate time points post infection, the supernatants were collected and the titers were detected using the end-point dilution method, Each virus infection was repeated five times and the data were statistically analyzed with one-way ANOV A (SPSS); polyhedral inclusion body (PIB) was used as the marker during the assay.BioassayThe third instars of B. mori larvae were used in oral infection assays to determine the infectivity of Bm- BacJS13-ph and wt BmNPV. The larvae (n=50 per viral dose) were fed with artificial diet which contain- ned different concentrations of viruses (3×107 PIB/ mL, 107 PIB/mL, 3×106 PIB/mL, 106 PIB/mL, 3×105 PIB/mL and 105 PIB/mL, respectively) for twenty- four hrs. Then the larvae were transferred to fresh diet in plates and reared at 27℃to investigate the mortality. The infectivity of BmBacJS13-ph and wt BmNPV was determined by probit analysis with SPSS10.0 and LC50 values of the viruses were further compared with a two side’s z-test (21).RESULTSIdentification of the bacmid BmBacJS13After the construction of transfer vector pBmTV (Fig. 1), the pBmTV DNA was co-transfected with BmNPV DNA into newly molted fifth instar larvae. The hemolymphs of the larvae were collected 4 days post transfection, and BV DNAs were retrieved to transform E. coli DH10B cells. Colonies were chosen randomly and bacmid DNAs were digested with Hin d III. By comparison with the wt BmNPV profiles, several variations were found in different colonies (data not shown). One of the colonies, BmBacJS13, which had similar REN profiles to that of wt BmNPV, was analyzed with additional restriction enzymes. As s h o wn i n F i g.2,c o m p a r i s o n w i t h t h e wt BmNPVindicates that the Xba I profile of BmBacJS13 lacked B (19.3 kb),D (15.8 kb),G (7.6 kb) and H (6.3 kb) bands, and contained five additional bands, D+H (22.2 kb), B’ (19.0kb), G’ (9.1 kb), 4.9 kb and 1.6 kb. Due to the deletion of the polyhedron gene, the B band in wt BmNPV became a shorter band B’ in BmBacJS13. The 4.9 kb and the 1.6 kb bands were from the inserted 8.6 kb Bsu36I fragment which contains three Xba I sites. The remaining Bsu36I fragment (2.1kb) was linked with the remainder of G the fragment (7.0 kb) to generate G’(9.1 kb). The D+H band in BmBacJS13, however, was a sub-molecular band of the D and H bands in the wt BmNPV. These were the expected changes for the bacmid. Therefore BmBacJS13 was constructed correctly and was used for further investigation Biological activity of BmBacJS13-ph222 V IROLOGICA S INICA V ol.22, No 3To test the oral infectivity of BmBacJS13, the poly-hedrin gene was repaired into the bacmid, generatingBmBacJS13-ph. The BmBacJS13-ph was identified tobe correct by PCR and REN analysis (data not shown),and transfected into BmN cells to generate BVs.BmN cells were infected with BmBacJS13-ph at anMOI of 5, occlusion bodies were observed in thenucleus of cells by optical microscopy from 48 hrs p.i,and the detachment of the cells were observed at thesame time. These cytopathic effect (CPE) were similarto that of wt BmNPV infected cells. Electronmicroscopy analysis showed that the occlusion bodieswere formed in the nuclei. The polyhedra and ODVsof BmBacJS13-ph had a similar shape and size asFig. 2. Xba I digestion profiles and linearized physical maps of BmBacJS13 and wt BmNPV. A. Xba I digestion profile of BmBacJS13 and wt BmNPV. 1, λ DNA digested by Bam H I, Eco R I and Hin d III; 2, BmBacJS13; 3, wt BmNPV. B. Linearized Xba I physical maps of BmBacJS13 and wt BmNPV. The restriction sites are indicated in kb from the zero point. The genome size in kb is shown on a scale at the top. The location of polh and 8.6kb Bsu36I fragment are shown.Fig. 3. EM pictures of BmN cells infected with wt BmNPV (A, B) and BmBacJS13-ph (C, D).HUANG et al.Construction of the Bac-to-Bac System of Bombyx mori Nucleopolyhedroviru 225those of wild type BmNPV (Fig. 3).One-step growth curve analysis indicated that BmBacJS13-ph BV had similar replication dynamics to that of wt BmNPV (Fig. 4). The titers of the two viruses were very similar during the early infection, but the titers of BmBacJS13-ph were slightly lower than that of wt BmNPV during 24 to 96 h.p.i. Statistical analysis indicated that the differences were not significant except those for 72 h.p.i..The bioassay result showed that LC50 of BmBac- JS13-ph against 3th larvae was 3.9x106 PIB/ml, which was not significantly different from of that of wt Bm- NPV (3.7x106 PIB/ml) (z=0.3276, P>0.05) (Table 1).DISCUSSIONA functional Bac-to-Bac system should possess the following characteristics: first, the bacmid should be able to autonomously replicate in the bacteria; second, a foreign gene can be inserted into the bacmid via transposition, and lastly, the backbone virus must have similar biological properties as the wt virus, in both cells and insects. Our study showed that BmBacJS13 could autonomously replicate in the bacteria, and a foreign gene (ph) was introduced into the Tn7 site ofFig. 4. Growth curves for BmBacJS13-ph and wt BmNPV. BmN cells were infected with BmBacJS13-ph or wt BmNPV at an MOI of 5. The supernatants were harvested at different times post infection and the BV titers were analyzed by EPDA. The average titer from five independent TCID50 assays were shown with the bars indicating standard errors. Table 1. LC50 of wt BmNPV and BmBacJS13-ph in early third instar B. mori larvae95% confidence limits VirusLC50(PIB/mL)Lower Upper wt BmNPV 3669441a 654072 28459424 BmBacJS13-ph3876462a 1400386 25047426aNo significant difference.BmBacJS13 with the aid of the helper plasmid. The recombinant virus BmBacJS13-ph had similar replication dynamics to that of wt BmNPV and bioassay results showed that its in vivo infectivity was similar to that of wt BmNPV. Therefore a functional Bac-to-Bac system of BmNPV has been constructed, and BmBacJS13 can be used to construct BmNPV recombinants for expressing foreign proteins. During our experiments, a similar Bac-to-Bac system of BmNPV was reported by Motohashia et al(16). In their system, a bacmid of the BmNPV T3 strain was constructed, and it could express enhanced green fluorescence gene (egfp) in larvae and pupae. As we have used a local strain from China (Shaanxi strain), it would be interesting to compare the properties between BmBacJS13 and the T3 bacmid.The Bac-to-Bac system can also be used for functional genomics studies of BmNPV. Bacmids have been widely used to delete genes by site-specific recombination in E. coli in AcMNPV and Helicoverpa armigera NPV (6, 9, 13, 12, 14, 19, 24, 23).. The target genes were deleted and subsequently repaired by transposition to determine the function of the genesin viral life cycle. Currently we are studying the functions of several BmNPV genes using BmBacJS13 and the results will be reported in the future. AcknowledgmentsWe thank Prof. Just M. Vlak of Wageningen University for kindly providing pBAC-Bsu36I and223222 V IROLOGICA S INICA V ol.22, No 3Prof. Chuanxi Zhang of Zhejiang University for BmN cell line. We thank Prof. Hanzhong Wang of Wuhan Institute of Virology for technical assistance. We thank the Animal Center of Wuhan Institute of Virology for providing B. mori larvae. We also thank the grants of 973 (2003CB114202), Programme Strategic Scientific Alliances between China and the Netherlands (2004CB720404), National Natural Fundation of China project (30630002) for financial support.References1.Acharya A, Sriram S, Saehrawat S. 2002. Bombyx morinucleopolyhedrovirus: molecular biology and biotech- nological applications for large-scale synthesis of recombi- nant proteins. Curr. Sci,83: 455-465.2.Adams J R, McClintock J T.1991. Baculoviridae.Nuclearpolyhedrosis Viruses. Boca Raton, FL: CRC Press, p87-204.3.Arakawa T.2002. Promotion of nucleopolyhedrovirusinfection in larvae of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) by flufenoxuron. Appl En- tomol Zool, 37: 7-11.4.Choudary P V, Kamita S G, Maeda S. 1995. Baculovirusexpression protocols. Totowa: Humana press, NJ. p243- 264.5.Deng X Z, Zhu Y D, Zhen Y, et al. 2000. Construction ofa novel BmNPV Bac to Bac system. Acta MicrobiologicaSinica, 40:155-160.(in Chinese)6.Dong C S, Li D, Long G,et al. 2005. Identification offunctional domains required for HearNPV P10 filament formation. Virology, 338: 112-120.7.Gomi S, Majima K, Maeda S.1999. Sequence analysisof the genome of Bombyx mori nucleopolyhedrovirus. J Gen Virol, 80: 1323-1337.8.Granados R R, Williams, K A. 1986. In vivo infectionand replication of baculoviruses. Boca Raton, FL: CRC Press. I: p89-108.9.Hou S W, Chen X W, Wang H Z,et al. 2002. Efficientmethod to generate homologous recombinant baculovirus genomes in E. coli. Biotechniques, 32: 783-789.10.Je Y H, Chang J H, Kim M H, et al.2001. The use ofdefective Bombyx mori nucleopolyhedrovirus genomes maintained in Escherichia coli for the rapid generation ofocclusion-positive and occlusion-negative expression vectors.Biotechnol Lett,23:1809-1817.11.Kondo A, Maeda S. 1991. Host range expansion byrecombination of the baculoviruses Bombyx mori nuclear polyhedrosis virus and Autographa californica Nuclear Polyhedrosis Virus. J Virol,65: 3625-3632.12.Lin G, Blissard G W. 2002. Analysis of an Autographacalifornica nucleopolyhedrovirus lef-11 knockout: LEF-11 is essential for viral DNA replication.J Virol, 76: 2770- 2779. 13.Lin G, Blissard G W. 2002. Analysis of an Autographacalifornica multicapsid nucleopolyhedrovirus lef-6-null virus: LEF-6 is not essential for viral replication but appears to accelerate late gene transcription. J Virol, 76: 5503-5514.14.Lung O, Westenberg M, Vlak J M, et al. 2002.Pseudotyping Autographa californica multicapsid nucleo- polyhedrovirus (AcMNPV): F proteins from group II NPVs are functionally analogous to AcMNPV GP64. J Virol, 76: 5729-5736.15.Maeda S, Kawai M, Obinata H, et al. 1985. Productionof human alpha-interferon in silkworm using a baculovirus.Nature, 315:592-594.16.Motohashia T, Shimojimab T, Fukagawac T, et al. 2005.Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mor i nuclear polyhedrosisvirus bacmid system. Biochem Biophys Res Commun, 326: 564-56917.O'Reilly D R, Miller L K, Luckov V A. 1992.Baculovirus Expression Vectors. A Laboratory Manual.New York: Oxford University Press, NY. p216-229.18.Pijlman G P, Dortmans J F M, Vermeesch A M G,et al.2002. Pivotal roal of the non-hr prigin of DNA replication in the genesis of defective interfering baculovirus. J Virol, 76: 5605-5611.19.Smith G E, Fraser M J, Summers M D. 1983. Molecularengineering of the Autographa californica nuclear polyhed- rosis virus genome: deletion mutations within the polyhe- drin gene. J Virol, 46: 584-593.20.Smith G E, Summers M D, Fraser M J. 1983.Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol, 3: 2156-2165.21.Snedecor G W, Cochran, W G. 1989. Statistical methods.8th Edition, Iowa: Iowa State University Press, p503.22.van Lent J W M, Groenen J T M, Klingge-Roode E C,et al. 1990. Localization of the 34 kDa polyhedron224HUANG et al.Construction of the Bac-to-Bac System of Bombyx mori Nucleopolyhedroviru 225envelope protein in Spodoptera frugiperda cells infected with Autographa californica nuclear polyhedrosis virus.Arch Virol, 111: 103-114.23.Wang H Z, Deng F, Pijlman G P, et al.2003. Cloning ofbiologically active genomes from a Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus isolate by usinga bacterial artificial chromosome. Virus Research, 97: 57-63.24.Wu D, Deng F, Sun X L, et al. 2005. Functional analysisof FP25K of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. J Gen Virol, 86: 2439-2444.25.Wu X F, Cao C P, Kumar V S, et al. 2004. An innovativetechnique for inoculating recombinant baculovirus into the silkworm Bombyx mori using lipofectin. Research in Microbiology, 155: 462-466.26.Wu X F, Cao C P, Xu Y X, et al. 2004. Construction of ahost range-expanded hybrid baculovirus of BmNPV and AcMNPV, and knockout of cysteinase gene for more efficient expression. Science in China Ser. C Life Science, 47: 406-415.27.Wu X F, Yang G Z, Hu J X. 1998. A recombinantrescue linearizable BmNPV baculovirus BmBacPAK [Patent]. China Patent: application No. 98110963.2.。