高中数学必修五数列知识点归纳
必修5数列知识点总结
必修5数列知识点总结1. 数列的概念数列是按一定规律排列的数字集合。
一般情况下,数列中的每个数字称为数列的项,通常用字母代表。
数列中第n个项称为第n项,一般用an表示。
2. 数列的分类2.1 等差数列等差数列是指数列中的相邻两项之差都相等的数列。
设数列为a1,a2,a3…an,公差为d,则有a2-a1=a3-a2=…=an-an-1=d。
等差数列的通项公式为:an=a1+(n-1)d。
2.2 等比数列等比数列是指数列中的相邻两项之比都相等的数列。
设数列为a1,a2,a3…an,公比为q,则有a2/a1=a3/a2=…=an/an-1=q。
等比数列的通项公式为:an=a1q^(n-1)。
2.3 斐波那契数列斐波那契数列是一种特殊的数列,规律为前两项的和等于后一项。
数列以0和1开始,后续每一项都是前两项的和。
例如:0, 1, 1, 2, 3, 5, 8, 13, …3. 数列的性质3.1 通项公式根据数列的规律,可以得出数列的通项公式,即表示数列任意一项与项数之间的关系式。
3.2 前n项和公式数列的前n项和是指数列中前n项之和。
对于等差数列,前n项和公式为:Sn = n/2(a1+an)。
对于等比数列,前n项和公式为:Sn = a1 (q^n - 1)/(q - 1)。
3.3 递推关系数列中的每一项可以通过前一项或前几项的运算得到,这种关系称为递推关系。
例如,斐波那契数列中的第n项可以通过前两项的和得到。
3.4 有限数列和无限数列有限数列指数列中项数有限,而无限数列指数列中项数无限。
4. 应用题的解题思路在解数列的应用题时,需要根据题目中的条件和要求,确定数列的类型以及通项公式。
然后根据题意使用相应的公式求解。
常见的数列应用题包括递推关系式的求解、前n项和的计算、求某一项、确定数列范围等。
5. 典型例题5.1 例题1已知等差数列的公差为2,前3项的和为9,求该数列的通项公式。
解答过程:设数列的首项为a,通项公式为an=a+(n-1)d。
高一数学必修5:数列(知识点梳理)
第二章:数列一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成a a a a n ,,,,,123,简记为数列a n {},其中第一项a 1也成为首项;a n 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集*N (或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列a n {}的第n 项a n 与项数n 之间的函数关系可以用一个式子表示成=a f n n (),那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列a n {},如果从第二项起,每一项都大于它前面的一项,即>+a a n n 1,那么这个数列叫做递增数列;高一数学必修5:数列(知识点梳理)如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是与2n a +的等差中项,且21=2n n n a a a +++;反之若数列满足21=2n n n a a a +++,则数列是等差数列.4、等差数列的性质:(1)等差数列中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题:设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠).即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a qa q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ; (2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列的首项,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列的首项,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
数学必修五数列知识点总结
§数列的概念与简单表示法最新考纲考情考向分析1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.以考查S n与a n的关系为主,简单的递推关系也是考查的热点.本节内容在高考中以选择、填空的形式进行考查,难度属于低档.<1.数列的定义按照一定顺序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项.2.数列的分类分类原则类型满足条件…按项数分类有穷数列项数有限无穷数列项数无限按项与项间的大小关系分类递增数列>a n+1 > a n其中n∈N+递减数列a n+1 < a n常数列!a n+1=a n3.数列的表示法数列有三种表示法,它们分别是列表法、图像法和解析法.4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫作这个数列的通项公式. 知识拓展·1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,n ∈N +.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1.3.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.题组一 思考辨析`1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( × ) (2)所有数列的第n 项都能使用公式表达.( × )(3)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (4)1,1,1,1,…,不能构成一个数列.( × )(5)任何一个数列不是递增数列,就是递减数列.( × )(6)如果数列{a n }的前n 项和为S n ,则对任意n ∈N +,都有a n +1=S n +1-S n .( √ ) 题组二 教材改编{2.在数列{a n }中,a 1=1,a n =1+-1na n -1(n ≥2),则a 5等于( )答案 D 解析 a 2=1+-12a 1=2,a 3=1+-13a 2=12,a 4=1+-14a 3=3,a 5=1+-15a 4=23.3.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n = .|答案 5n -4题组三 易错自纠4.已知a n =n 2+λn ,且对于任意的n ∈N +,数列{a n }是递增数列,则实数λ的取值范围是 . 答案 (-3,+∞)解析 因为{a n }是递增数列,所以对任意的n ∈N +,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 5.数列{a n }中,a n =-n 2+11n (n ∈N +),则此数列最大项的值是 .…答案 30解析 a n =-n 2+11n =-⎝⎛⎭⎪⎫n -1122+1214,∵n ∈N +,∴当n =5或n =6时,a n 取最大值30. 6.已知数列{a n }的前n 项和S n =n 2+1,则a n = .答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N +解析 当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N +.《题型一 由数列的前几项求数列的通项公式1.数列0,23,45,67,…的一个通项公式为( )A .a n =n -1n +2(n ∈N +)B .a n =n -12n +1(n ∈N +)C .a n =2n -12n -1(n ∈N +)D .a n =2n2n +1(n ∈N +)答案 C(解析 注意到分子0,2,4,6都是偶数,对照选项排除即可.2.数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n = .答案 (-1)n1nn +1解析 这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n1nn +1. 思维升华 由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k或(-1)k +1,k ∈N +处理. (3)如果是选择题,可采用代入验证的方法.·题型二 由a n 与S n 的关系求通项公式典例 (1)已知数列{a n }的前n 项和S n =3n 2-2n +1(n ∈N +),则其通项公式为 .答案 a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2,n ∈N +解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2,n ∈N +.'(2)(2017·南昌模拟)若数列{a n }的前n 项和S n =23a n +13(n ∈N +),则{a n }的通项公式a n= . 答案 (-2)n -1解析 由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,整理得a n =-2a n -1,又当n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.思维升华 已知S n ,求a n 的步骤 (1)当n =1时,a 1=S 1. (2)当n ≥2时,a n =S n -S n -1.(3)对n =1时的情况进行检验,若适合n ≥2的通项则可以合并;若不适合则写成分段函数形式.跟踪训练 (1)(2017·河南八校一联)在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n = .【答案 -2n -1解析 由题意得S n +1=2a n +1+1,S n =2a n +1, 两式相减得S n +1-S n =2a n +1-2a n , 即a n +1=2a n ,又S 1=2a 1+1=a 1,因此a 1=-1,所以数列{a n }是以a 1=-1为首项、2为公比的等比数列,所以a n =-2n -1.(2)已知数列{a n }的前n 项和S n =3n+1,则数列的通项公式a n = .答案 ⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2解析 当n =1时,a 1=S 1=3+1=4,;当n ≥2时,a n =S n -S n -1=3n+1-3n -1-1=2·3n -1.显然当n =1时,不满足上式.∴a n =⎩⎪⎨⎪⎧4,n =1,2·3n -1,n ≥2.题型三 由数列的递推关系求通项公式典例 根据下列条件,确定数列{a n }的通项公式.(1)a 1=2,a n +1=a n +ln ⎝⎛⎭⎪⎫1+1n ;(2)a 1=1,a n +1=2na n ; (3)a 1=1,a n +1=3a n +2.、解 (1)∵a n +1=a n +ln ⎝⎛⎭⎪⎫1+1n ,∴a n -a n -1=ln ⎝⎛⎭⎪⎫1+1n -1=ln nn -1(n ≥2), ∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =lnnn -1+ln n -1n -2+…+ln 32+ln 2+2 =2+ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·32·2=2+ln n (n ≥2).又a 1=2适合上式,故a n =2+ln n (n ∈N +). (2)∵a n +1=2na n ,∴a n a n -1=2n -1(n ≥2), !∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=(1)22n n -.又a 1=1适合上式,故a n =(1)22n n -(n ∈N +).(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,故a n =2·3n -1-1(n ∈N +).引申探究 在本例(2)中,若a n =n -1n·a n -1(n ≥2,且n ∈N +),其他条件不变,则a n = .{答案1n解析 ∵a n =n -1na n -1 (n ≥2), ∴a n -1=n -2n -1a n -2,…,a 2=12a 1. 以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n.思维升华 已知数列的递推关系求通项公式的典型方法 (1)当出现a n =a n -1+m 时,构造等差数列.<(2)当出现a n =xa n -1+y 时,构造等比数列. (3)当出现a n =a n -1+f (n )时,用累加法求解. (4)当出现a na n -1=f (n )时,用累乘法求解. 跟踪训练 (1)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N +),则数列{a n }的通项公式a n = . 答案 3×2n -1-2解析 由a n +2+2a n -3a n +1=0, 得a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=3为首项,2为公比的等比数列,∴a n +1-a n =3×2n -1,;∴当n ≥2时,a n -a n -1=3×2n -2,…,a 3-a 2=3×2,a 2-a 1=3,将以上各式累加,得a n -a 1=3×2n -2+…+3×2+3=3(2n -1-1),∴a n =3×2n -1-2(当n =1时,也满足).(2)在数列{a n }中,a 1=3,a n +1=a n +1nn +1,则通项公式a n = . 答案 4-1n解析 原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,)a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,逐项相加得a n =a 1+1-1n,故a n =4-1n.题型四 数列的性质命题点1 数列的单调性 典例 已知a n =n -1n +1,那么数列{a n }是( ) A .递减数列B .递增数列^C .常数列D .不确定答案 B 解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N +,易知{a n }是递增数列. 命题点2 数列的周期性 典例 数列{a n }满足a n +1=11-a n,a 8=2,则a 1= . 答案 12解析 ∵a n +1=11-a n,∴a n +1=11-a n =11-11-a n -1=1-a n -11-a n -1-1¥=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2,n ≥3, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值 典例 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19.答案 C解析 令f (x )=x +90x(x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立. 因为a n =1n +90n ,所以1n +90n≤1290,由于n ∈N +,不难发现当n =9或n =10时,a n =119最大. 思维升华 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. ②用作商比较法,根据a n +1a n(a n >0或a n <0)与1的大小关系进行判断. ③结合相应函数的图像直观判断.&(2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.跟踪训练 (1)数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n≤12,2a n-1,12<a n<1, a 1=35,则数列的第2 018项为 . 答案 15解析 由已知可得,a 2=2×35-1=15,a 3=2×15=25, a 4=2×25=45,(a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 018=a 504×4+2=a 2=15.(2)(2017·安徽名校联考)已知数列{a n }的首项为2,且数列{a n }满足a n +1=a n -1a n +1,数列{a n }的前n 项的和为S n ,则S 2 016等于( ) A .504 B .588 C .-588 D .-504 答案 C解析 ∵a 1=2,a n +1=a n -1a n +1,∴a 2=13,a 3=-12,a 4=-3,a 5=2,…,∴数列{a n }的周期为4,且a 1+a 2+a 3+a 4=-76,∵2 016÷4=504,∴S 2 016=504×⎝ ⎛⎭⎪⎫-76=-588,故选C.]解决数列问题的函数思想典例 (1)数列{a n }的通项公式是a n =(n +1)·⎝ ⎛⎭⎪⎫1011n,则此数列的最大项是第 项.(2)若a n =n 2+kn +4且对于n ∈N +,都有a n +1>a n 成立,则实数k 的取值范围是 . 思想方法指导 (1)可以将数列看成定义域为正整数集上的函数;(2)数列的最值可以根据单调性进行分析.解析 (1)∵a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n=⎝ ⎛⎭⎪⎫1011n ×9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ;;当n >9时,a n +1-a n <0,即a n +1<a n ,∴该数列中有最大项,且最大项为第9,10项. (2)由a n +1>a n 知该数列是一个递增数列, 又∵通项公式a n =n 2+kn +4, ∴(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N +,∴k >-3. 答案 (1)9或10 (2)(-3,+∞)、1.(2017·湖南长沙一模)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A .a n =(-1)n -1+1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =2sinn π2D .a n =cos(n -1)π+1 答案 C解析 对n =1,2,3,4进行验证,知a n =2sinn π2不合题意,故选C.》2.(2018·葫芦岛质检)数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223答案 C解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021. 3.(2017·黄冈质检)已知在正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .4C .2 2D .45 答案 B)解析 由题意得a 2n +1-a 2n =a 2n -a 2n -1=…=a 22-a 21=3,故{a 2n }是以3为公差的等差数列,即a 2n =3n -2.所以a 26=3×6-2=16.又a n >0,所以a 6=4.故选B. 4.若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N +),则a 2 018等于( ) A .3 B .2答案 A解析 由已知a 3=a 2a 1=32,a 4=a 3a 2=12,a 5=a 4a 3=13,a 6=a 5a 4=23,a 7=a 6a 5=2,a 8=a 7a 6=3,[∴数列{a n }具有周期性,且T =6, ∴a 2 018=a 336×6+2=a 2=3.5.(2018·长春模拟)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) C .4 D .0 答案 D解析 ∵a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大为0.6.(2017·江西六校联考)已知数列{a n }满足a n =⎩⎪⎨⎪⎧5-a n -11,n ≤5,a n -4,n >5,且{a n }是递增数列,则实数a 的取值范围是( ) A .(1,5)》D .(2,5)答案 D 解析 ∵a n =⎩⎪⎨⎪⎧5-a n -11,n ≤5,an -4,n >5,且{a n }是递增数列,∴⎩⎪⎨⎪⎧5-a >0,a >1,55-a -11<a 2,解得2<a <5,故选D.7.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5= .答案 85解析 借助递推关系,由a 8递推依次得到a 7=2113,a 6=138,a 5=85.8.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N +),则a n = .;答案 ⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2解析 当n ≥2时,a n =S n -S n -1=2n +1, 当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.9.(2018·大庆模拟)已知数列{a n }的通项公式a n =(n +2)·⎝ ⎛⎭⎪⎫67n,则数列{a n }的项取最大值时,n = . 答案 4或5解析 假设第n 项为最大项,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,即⎩⎪⎨⎪⎧n +2·⎝ ⎛⎭⎪⎫67n ≥n +1·⎝ ⎛⎭⎪⎫67n -1,n +2·⎝ ⎛⎭⎪⎫67n ≥n +3·⎝ ⎛⎭⎪⎫67n +1,—解得⎩⎪⎨⎪⎧n ≤5,n ≥4,即4≤n ≤5,又n ∈N +,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574.10.(2017·太原模拟)已知数列{a n }满足a 1=1,a n -a n +1=na n a n +1(n ∈N +),则a n = . 答案2n 2-n +2解析 由a n -a n +1=na n a n +1,得1a n +1-1a n=n ,则由累加法得1a n -1a 1=1+2+…+(n -1)=n 2-n2,又因为a 1=1,所以1a n=n 2-n2+1=n 2-n +22,所以a n =2n 2-n +2(n ∈N +).(11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N +).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式. 解 (1)由S n =12a 2n +12a n (n ∈N +)可得a 1=12a 21+12a 1,解得a 1=1, S 2=a 1+a 2=12a 22+12a 2,解得a 2=2,同理,a 3=3,a 4=4.(2)S n =a n 2+12a 2n ,①/当n ≥2时,S n -1=a n -12+12a 2n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列, 故a n =n .12.已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3T n =S 2n +2S n ,n ∈N +. (1)求a 1的值;《(2)求数列{a n }的通项公式. 解 (1)由3T 1=S 21+2S 1, 得3a 21=a 21+2a 1,即a 21-a 1=0. 因为a 1>0,所以a 1=1. (2)因为3T n =S 2n +2S n ,① 所以3T n +1=S 2n +1+2S n +1,② ②-①,得3a 2n +1=S 2n +1-S 2n +2a n +1. 因为a n +1>0,所以3a n +1=S n +1+S n +2,③;所以3a n +2=S n +2+S n +1+2,④④-③,得3a n +2-3a n +1=a n +2+a n +1, 即a n +2=2a n +1, 所以当n ≥2时,a n +1a n=2. 又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2), 即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2,@所以对n ∈N +,都有a n +1a n=2成立, 所以数列{a n }的通项公式为a n =2n -1,n ∈N +.13.(2017·江西师大附中、鹰潭一中联考)定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n=d (n ∈N +,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2 015a 2 013等于( ) A .4×2 0152-1 B .4×2 0142-1 C .4×2 0132-1 D .4×2 0132答案 C解析 由题知⎩⎨⎧⎭⎬⎫a n +1a n 是首项为1,公差为2的等差数列,则a n +1a n =2n -1,所以a n =a n a n -1×a n -1a n -2×…×a 2a 1×a 1=(2n -3)×(2n -5)× (1)、所以a 2 015a 2 013=2×2 015-32×2 015-5×…×12×2 013-32×2 013-5×…×1=4 027×4 025=(4 026+1)(4 026-1) =4 0262-1=4×2 0132-1. 14.若数列⎩⎨⎧⎭⎬⎫nn +4⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k = .答案 4解析 设数列为{a n },则a n +1-a n =(n +1)(n +5)·⎝ ⎛⎭⎪⎫23n +1-n (n +4)·⎝ ⎛⎭⎪⎫23n=⎝ ⎛⎭⎪⎫23n ⎣⎢⎡⎦⎥⎤23n 2+6n +5-n 2-4n =2n3n +1(10-n 2). 所以当n ≤3时,a n +1>a n ; 当n ≥4时,a n +1<a n .因此,a 1<a 2<a 3<a 4,a 4>a 5>a 6>…, 故a 4最大,所以k =4.15.在数列{a n }中,a 1=1,a 2=2,若a n +2=2a n +1-a n +2,则a n 等于( )n 2-25n +65B .n 3-5n 2+9n -4 C .n 2-2n +2 D .2n 2-5n +4答案 C解析 由题意得(a n +2-a n +1)-(a n +1-a n )=2,因此数列{a n +1-a n }是以1为首项,2为公差的等差数列,a n +1-a n =1+2(n -1)=2n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+3+…+(2n -3)=1+1+2n -3n -12=(n -1)2+1=n 2-2n +2,又a 1=1=12-2×1+2,因此a n =n 2-2n+2(n ∈N +),故选C.16.(2017·太原五中模拟)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n = .答案 1n(n ∈N +)解析 因为数列{a n }是首项为1的正项数列, 所以a n ·a n +1≠0, 所以n +1a n +1a n -na na n +1+1=0.令a n +1a n=t (t >0),则(n +1)t 2+t -n =0, 分解因式,得[(n +1)t -n ](t +1)=0, 所以t =n n +1或t =-1(舍去),即a n +1a n =nn +1. 方法一 (累乘法) 因为a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a na n -1=12·23·34·45·…·n -1n , 所以a n =1n(n ∈N +).方法二 (迭代法) 因为a n +1=nn +1a n , 所以a n =n -1n a n -1=n -1n ·n -2n -1·a n -2 =n -1n ·n -2n -1·n -3n -2·a n -3 =…=n -1n .n -2n -1.n -3n -2 (1)2a 1, 所以a n =1n(n ∈N +). 方法三 (特殊数列法) 因为a n +1a n =n n +1,所以n +1a n +1na n=1. 所以数列{na n }是以a 1为首项,1为公比的等比数列. 所以na n =1×1n -1=1.所以a n =1n(n ∈N +).。
(完整版)数学必修五数列知识总结
数列知识总结一.知识网络:二. 1.数列的定义:按一定次序排列的一列数. 数列是定义在正整数集或其有限子集{1,2,3,…,n }上的函数当自变量由小到大依次取值时对应的一列函数值.2.数列的通项公式和前n 项和:对于任意数列,其通项是a n 和它的前n 项{}n a 和之间的关系是:,.n S ⎩⎨⎧-=-11n nn S S S a *),2()1(N n n n ∈≥= 3.求数列通项公式的方法:①观察法:找项与项数的关系,然后猜想检验,即得通项公式a n ,注意利用前几项得出的通项公式不一定唯一.②利用通项a n 和它的前n 项和之间的关系是:,n S ③公式法:利用等差数列,等比数列的通项公式求解.④其它方法:迭加,迭乘,待定系数等.4.证明一个数列是等差数列或等比数列,常用的两种基本方法:一是利用定义;二是利用等差中项(或等比中项)来进行证明.(注意:通项的特点与前n 项和的特点只用于判断)5.等差数列的性质:(1)数列为等差数列,则a m = a n +(m -n )d ,或{}n a m n a a d mn--=(2)数列为等差数列的充要条件是:其通项公式可以写成a n = an +b (a,b {}n a 为实常数).(3)数列为等差数列的充要条件,推广{}n a 112+-+=n n n a a a(n>k.>0)k n k n n a a a +-+=2(4)数列为等差数列:若,则.{}n a q p n m +=+q p n m a a a a +=+(5)数列为等差数列,去掉前m 项,剩下的项构成等差数列.{}n a 推广:数列为等差数列,则每隔k 项取m 项的和仍构成等差数列. {}n a (6)数列是公差为d 的等差数列,则奇(偶)数项构成公差为2d 的等差数列.{}n a 推广①:数列为公差为d 等差数列:则在数列中每隔项取一项构成的数{}n a k 列是公差为的等差数列.项数成等差数列的项成等差数列.d k )1(+ 推广②:数列是公差为d 的等差数列,则项下标成等差数列的项也成等差{}n a 数列.(7)数列,项数相同的等差数列:则,,为常{}n a {}n b {}n ka {}n n qb pa +{}q p q pa n ,(+数)仍为等差数列.(8)数列为等差数列,其前n 项和可以写成为常数).{}n a n S b a bn an S n ,(,2+=(9)数列为等差数列:则数列中依次每连续项之和构成的数列也是等差数{}n a k 列.(10)数列为等差数列:表示奇数项的和,表示偶数项的和,{}n a 奇S 偶S 若项数为项时, 则有-= nd , /= a n / a n+1;n 2奇S 偶S 奇S 偶S 若项数为-1项时,则有-= a n ,/= n / (n -1),n 2奇S 偶S 奇S 偶S .n n a n S )12(12-=- 6.等比数列的性质:(1)数列为等比数列:.{}n a m n m n n n m n m n n a a a q a a q a a +---⋅===211,,(2)数列为等比数列: ,推广(n>m >0){}n a 112+-⋅=n n n a a a m n m n n a a a +-⋅=2(3)数列为等比数列:,则.{}n a k p n m +=+k p n m a a a a ⋅=⋅(4)数列为等比数列,取掉前若干项,剩余的项也构成等比数列.{}n a 推广:数列为等比数列,则每隔k 项取m 项的和(积)仍构成等比数列.{}n a (5)数列为等比数列,则奇(偶)数项构成等比数列.{}n a 推广①:数列为公比为 q 等比数列:则在数列中每隔项取一项构成的{}n a k 数列是公比为的等比数列.1+k q 推广②:数列为等比数列,则项数成等差数列的项成等比数列.{}n a (6)数列,为项数相同的等比数列:则,,,,{}n a {}n b }1{n a }{nn b a {}n ka {}n n b a ⋅为常数)等仍为等比数列.{}k a k n((7)数列为公比为q (q ≠±1)的等比数列:则数列中连续项之和(积)构成{}n a k 的数列是等比数列.(8)数列为等比数列: (表示奇数项的和,表示偶数项的和){}n a 奇S 偶S 若项数为项时,则有/=q ;若项数为-1项时,则有(-)/n 2偶S 奇S n 2奇S 1a = q.偶S (9)递推公式为的递推数列,都可以转化为)1(1≠+=+p q pa a n n }{n a 从而构造等比数列.111n n qq a p a p p +⎛⎫+=+ ⎪--⎝⎭7.等差数列与等比数列比较:8.等差数列与等比数列的关系:(1)各项为正的等比数列,其对数数列为等差数列.{}n a )1,0}({log ≠>a a a n a (2)数列为等差数列,则数列为正常数)为等比数列.{}n a C C n a }({9.数列求和的一般方法(结合于具体的示例讲解): ①倒序求和法:(等差数列的求和);②错位相减法:(等比数列和差比数列);例1:求和:.*)(432432N n na a a a a n ∈+++++ ③裂项相消法:(数列中的各项可以拆成几项,然后进行消项);例2:求和:.)12()12(1751531311+⋅-++⨯+⨯+⨯n n 例3:求数列的前n 项和.}11{++n n ④通项化归法:(化出通项,由通项确定求和方法);例4:求数列:的前n 项和. ,3211,,3211,211,1n+++++++n S ⑤分组求和法:(将一个数列分成几组,每组都可以用求和公式来求解);例5:求数列的前n 项之和.,21,,814,413,212,21-+n n ⑥公式法:(应用等差或等比数列的求和公式直接来求解).⑦.累差迭加法例6:已知数列6,9,14,21,30,…,其中相邻两项之差成等差数列,求它的通项.名称等差数列等比数列定义a n+1―a n =d 为等差数⇔{}n a 列为等比数列⇔≠=+)0(1q q a a nn {}n a 通项公式a n = a 1+(n -1)d =a m +(n -m )da n = a 1q n -1= a m q n -m前n 项和公式()21n n a a n S +=()d n n na 211-+=()()()⎪⎩⎪⎨⎧≠--=--==.1111,1111q q qa a q q a q na S n n n 中项a ,A ,b 成等差数列,或2 ⇔2ba A +=A =a +b .a ,G ,b ,成等比数列,或 G 2=ab⇔ab G ±=⑨∑求和记法用= 。
高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐
数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。
前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。
3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。
高中数学必修五数列知识点总结归纳
高中数学必修五数列知识点总结归纳数列是以正整数集为定义域的函数,是一列有序的数。
数列中的每一个数都叫做这个数列的项。
下面肖博老师给大家分享高中数学必修五数列知识点总结。
一、数列的概念和简单表示法1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.二、等差数列1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.三、等比数列1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.四.数列的定义、分类与通项公式(1)数列的定义①数列:按照一定顺序排列的一列数.②数列的项:数列中的每一个数.(2)数列的分类(3)数列的通项公式如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.五.数列的递推公式如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式.1.辨明两个易误点(1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.(2)易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在正整数集N*或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.。
数学必修五数列知识点归纳
数学必修五数列知识点归纳数学必修五数列知识点归纳数列的函数理解:①数列是一种特殊的函数。
其特殊性主要表现在其定义域和值域上。
数列可以看作一个定义域为正整数集N_或其有限子集{1,2,3,。
,n}的函数,其中的{1,2,3,。
,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。
图像法;c.解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
2.通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。
数列通项公式的特点:(1)有些数列的通项公式可以有不同形式,即不。
(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。
3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列递推公式特点:(1)有些数列的递推公式可以有不同形式,即不。
(2)有些数列没有递推公式。
有递推公式不一定有通项公式。
注:数列中的项必须是数,它可以是实数,也可以是复数。
等差数列通项公式an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。
这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1等差数列性质一、任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。
必修5第一章数列知识点总结
数列知识点总结1、数列是不是等差数列有以下三种方法: ①②211-++=n n n a a a (2≥n ) ; ③b kn a n +=(k n ,为常数).2.数列是不是等比数列有以下四种方法: ① ② ( , );;③ ( 为非零常数).④正数列{n a }成等比的充要条件是数列{n x a log }(1 x )成等比数列.三、求数列通项公式的方法1.给出数列的前几项, 求数列的一个通项公式——观察法。
例1.分别写出下面数列{ }的一个通项公式, 使它的前4项分别是下列各数。
(1)1, 3, 5, 7, …, (2)1,2,1,2,…, (3)2,22,222,2222,…, 2.通项公式法3.涉及前n项和Sn 求通项公式, 利用an 与Sn 的基本关系式来求。
即例2、在数列{an }中,Sn 表示其前n项和,且Sn=n2,求通项an..例3、在数列{an }中, Sn 表示其前n项和, 且Sn =2-3an,求通项an. 4、已知递推公式(初始条件与递推关系), 求通项公式。
(1)待定系数法。
若题目特征符合递推关系式a1=A, an+1=Ban +C(A,B,C均为常数, B≠1,C≠0)时, 可用待定系数法构造等比数列求其通项公式。
例4、已知数列{a n }满足a 1=4, a n =3a n-1-2,求通项a n . (2)逐差相加法。
若题目特征符合递推关系式a1=A(A为常数), an+1=an+f(n)时, 可用逐差相加法求数列的通项公式。
例5、在数列{an}中, a1=3,an+1=an+2n,求通项an. (3)逐比连乘法。
若题目特征符合递推关系式a1=A (A 为常数),an+1=f(n)·an 时, 可用逐比连乘法求数列的通项公式。
例6.在数列{an}中, a1=3,an+1=an ·2n,求通项an.(4)倒数法。
若题目特征符合递推关系式a1=A,Ban+Can+1+Dan ·an+1=0(A,B,C,D 均为常数)时, 可用倒数法求数列的通项公式。
高中数学必修五数列知识点(可编辑修改word版)
n n n 一、知识纲要(1)数列的概念,通项公式,数列的分类,从函数的观点看数列. (2)等差、等比数列的定义. (3)等差、等比数列的通项公式. (4)等差中项、等比中项.(5)等差、等比数列的前 n 项和公式及其推导方法. 二、方法总结1. 数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.2. 等差、等比数列中, a 1 、 a n 、 n 、 d (q ) 、 S n“知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法. 3. 求等比数列的前 n 项和时要考虑公比是否等于 1,公比是字母时要进行讨论,体现了分类讨论的思想. 4. 数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等.三、知识内容: 1. 数列⎧a 1 = S 1(n = 1)数列的通项公式: a n = ⎨ ⎩n - Sn -1 (n ≥ 2) 数列的前 n 项和: S n = a 1 + a 2 + a 3 + + a n1、数列:按照一定顺序排列着的一列数.2、数列的项:数列中的每一个数.3、有穷数列:项数有限的数列.4、无穷数列:项数无限的数列.5、递增数列:从第 2 项起,每一项都不小于它的前一项的数列.6、递减数列:从第 2 项起,每一项都不大于它的前一项的数列.7、常数列:各项相等的数列.8、摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列{a n } 的第 n 项与序号 n 之间的关系的公式.10、数列的递推公式:表示任一项 a n 与它的前一项 a n -1 (或前几项)间的关系的公式.例 1.已知数列{a }的前 n 项和为 S = 2n 2 - n ,求数列{a }的通项公式.当 n = 1时, a 1 = S 1 = 1,当 n ≥ 2 时, a n = 2n 2 - n - 2(n - 1)2 + (n - 1) = 4n - 3 ,经检验 n = 1时 a 1 = 1 也适合 a n = 4n - 3 ,∴ a n = 4n - 3 (n ∈ N + )2. 等差数列等差数列的定义:如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示。
必修五第二章数列归纳总结
必修五第二章数列归纳总结一、数列1. 数列的定义数列是按一定次序排成的一列数, 从函数观点看, 数列是定义域为正整数集(或它的有限子集)的函数f(n), 当自变量n 从1开始依次取正整数时所对应的一列函数值f(1), f(2), …, f(n), ….通常用an 代替f(n).于是数列的一般形式为a1, a2, …, an, …, 简记为{an}.一、数列1. 数列的定义数列是按一定次序排成的一列数, 从函数观点看, 数列是定义域为正整数集(或它的有限子集)的函数f(n), 当自变量n 从1开始依次取正整数时所对应的一列函数值f(1), f(2), …, f(n), ….通常用an 代替f(n).于是数列的一般形式为a1, a2, …, an, …, 简记为{an}.3. an 与Sn 的关系设Sn =a1+a2+a3+…+an,则a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1(n ≥2). 二、等差数列1. 等差数列的定义如果一个数列从第二项起, 每一项与它的前一项的差都等于同一个常数, 这样的数列叫做等差数列.2. 等差中项如果三数a 、A.b 成等差数列, 则A 叫做a 和b 的等差中项, ∴A = .3. (1)通项公式a n =a 1+(n -1)d .推导方法: 累加法an =(an -an -1)+(an -1-an -2)+…+(a2-a1)+a1.(2)前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d . 推导方法: 倒序相加法.4. 用函数观点认识等差数列(1)an =nd +(a1-d)是n 的一次函数.(2)Sn = n2+(a1- )n, 是关于n 的常数项为零的二次函数.5. 等差数列的判定方法(1)定义法: an +1-an =d(常数)(n ∈N*)⇔{an}是等差数列;(2)中项公式法: 2an +1=an +an +2(n ∈N*)⇔{an}是等差数列;(3)通项公式法: an =kn +b(k, b 是常数)(n ∈N*)⇔{an}是等差数列;(4)前n 项和公式法:Sn =An2+Bn(A 、B 是常数)(n ∈N*)⇔{an}是等差数列.(5){a n }是等差数列⇔{S n n}是等差数列 6. 等差数列的性质(1)下标和与项的和的关系在等差数列中, 若p +q =m +n, 则有ap +aq =am +an ;若2m =p +q, 则有2am =ap +aq, (p, q, m, n ∈N*).(2)任意两项的关系在等差数列{an}中, m 、n ∈N*, 则am -an =(m -n)d 或am =an +(m -n)d 或 =d.(3)在等差数列中, 等距离取出若干项也构成一个等差数列, 即an, an +m, an +2m, …为等差数列, 公差为md.等差数列的依次n项的和也构成一个等差数列, 即Sn, S2n-Sn, S3n-S2n, ……为等差数列, 公差为n2d.即下标成等差的项成等差数列, 下标和成等差的具有相同构成规律的项的和成等差数列.(4)设等差数列{an}的公差为d, 那么d>0⇔{an}是递增数列;d<0⇔{an}是递减数列;d=0⇔{an}是常数数列.(5)①数列{λan+b}仍为等差数列, 公差为λd.若{bn}, {an}都是等差数列, 则{an±bn}仍为等差数列, {λ1an+λ2bn}(λ1, λ2为常数)也是等差数列.②项数为n的等差数列中, n为奇数时, 设m= , 则S奇-S偶=am, = , Sn=na 中=nam.n为偶数时, S偶-S奇= d.③若{an}与{bn}为等差数列, 且前n项和分别为Sn与S′n, 则= .④等差数列{an}中, 若an=m, am=n(m≠n), 则am+n=0.⑤若数列{an}的前p项和为Sp=q, 前q项和为Sq=p(p≠q), 则Sp+q=-(p+q).⑥若数列{an}的前n项和为Sn, Sp=Sq(p≠q), 则Sp+q=0.三、等比数列1. 等比数列的定义一般地, 如果一个数列从第2项起, 每一项与它的前一项的比等于同一个常数, 这个数列就叫做等比数列.2. 等比中项如果三个数a、G、b成等比数列, 那么G叫做a和b的等比中项, 即G2=ab.3. 等比数列的通项公式an=a1·qn-1(n∈N*).推导方法: 累乘法: ·……·=qn-1.4. 等比数列的前n项和当q=1时, Sn=na1,当q≠1时. Sn==.推导方法: 乘公比、错位相减法.5. 等比数列的判定方法(1)an+1=anq(q是不为0的常数, n∈N*, an≠0)⇔{an}是等比数列.(2)an=cqn-1(c, q均是不为0的常数, n∈N*)⇔{an}是等比数列.(3)an+12=an·an+2(an≠0, n∈N*)⇔{an}是等比数列.(4)Sn=A·qn-A(A.q为常数且A≠0, q≠0,1)⇔{an}是公比不为1的等比数列.6. 等比数列的主要性质(1)下标和与项的积的关系在等比数列{an}中, 若m、n、p、q∈N*且m+n=p+q, 则am·an=ap·aq.特别地, 若2m=p+q, 则ap·aq=am2;a1an=a2an-1=a3an-2=….(2)任意两项的关系若{an}为等比数列, 则=qm-n或am=an·qm-n(m、n∈N*).(3)等间隔的k项和(或积)仍成等比数列.例如: {an}是等比数列, 则①a1, a3, a5, …, a2n-1;②a1+a2, a2+a3, a3+a4, …;③a1a2, a2a3, a3a4, …;④a1+a2, a3+a4, a5+a6……均成等比数列.(4)等比数列{a n}的单调性当, 或时, {an}为递增数列;当或时, {an}为递减数列.(5)①{an}是等比数列⇒{c·an}是等比数列(c≠0).②{an}、{bn}均为等比数列⇒{an·bn}、{ }仍是等比数列.③若{an}是等比数列, 则{an2}、{ }(an>0)、{ }、{|an|}均为等比数列.④非零常数列既是等差数列, 也是等比数列.⑤若{an}是等差数列, 则{ban}是等比数列.若{an}是正项等比数列, 则{lgan}是等差数列.误区警示1. 数列与数集应予区别, 数列中的数排列有序, 数集中的元素无序;数列中的数可重复出现, 数集中的元素互异.2. 并不是每一个数列都有通项公式, 给出前n项时, 写出的通项公式可以不止一个.3.已知{an}的前n项和Sn求an时,用an=求解应注意分类讨论.an=Sn-Sn-1是在n≥2条件下求出的, 应检验a1是否适合. 如果适合, 则合写在一块, 如果不适合, 则分段表示. 千万注意用an=Sn-Sn-1判断数列{an}是否为等差(或等比)数列时, 不要忘记验证a1是否满足.如: Sn=n2+n时, {an}是等差数列.Sn=n2+n+1时, {an}不是等差数列.Sn=2n-1时, {an}是等比数列.Sn=2n+1时, {an}不是等比数列.4. 在讨论等差数列{an}的前n项和Sn的最值时, 不要忽视n是整数的条件及含0项的情形.如: 在等差数列{an}中, 已知a1=20, 前n项和为Sn, 且如S10=S15, 求当n取何值时, Sn有最大值, 并求出它的最大值.取最大值的应为S12和S13.5. G是a、b的等比中项 G=.6. 在应用等比数列的前n项和公式时, 一定要对q=1与q≠1进行分类讨论.7.等比数列中隐含着各项不为零、公比不为零, 项与公比的符号有着密切的联系, 解题时应特别注意.。
高中数学数列知识点总结5篇
高中数学数列知识点总结5篇篇1一、数列的基本概念数列是一种特殊的函数,其定义域为自然数集或其自然数子集。
数列分为等差数列和等比数列两种基本形式,此外还有更为复杂的数列形式。
数列的通项公式是描述数列的一般规律的重要工具,对于等差数列和等比数列,其通项公式分别为an=a1+(n-1)d和an=a1×q^(n-1)。
掌握数列的基本概念对于后续的学习至关重要。
二、等差数列等差数列是一种常见且重要的数列形式,其任意两项之差都相等。
在等差数列中,需要掌握的主要知识点包括等差数列的通项公式、求和公式、中项公式等。
等差数列的求和公式为Sn=n(a1+an)/2或Sn=na1+[n(n-1)/2]d,这些公式在处理与等差数列相关的问题时非常实用。
等比数列的特点是任意两项之比都相等。
在等比数列中,需要掌握的知识点包括等比数列的通项公式、求和公式以及公比的概念。
等比数列的求和公式为Sn=a1(1-q^n)/(1-q),掌握这个公式对于解决涉及等比数列的问题非常关键。
四、数列的极限数列的极限是描述数列变化趋势的重要概念。
当n趋近于无穷大时,数列的项会趋近于一个固定的值,这个值就是数列的极限。
掌握数列极限的概念和计算方法是分析数列性质的重要工具。
五、数列的应用数列在实际生活中有着广泛的应用,如金融、物理、工程等领域。
例如,在金融领域,复利计算就涉及等比数列的应用;在物理领域,许多物理量的变化可以看作是等差或等比数列的形式。
掌握数列的应用对于解决实际问题具有重要意义。
除了等差数列和等比数列外,还有一些特殊数列需要了解,如斐波那契数列、三角数列等。
这些数列具有独特的性质和应用场景,了解这些数列有助于拓宽数学视野,提高数学素养。
七、数列的证明在数列的学习中,还需要掌握一些证明方法,如数学归纳法、反证法等。
这些证明方法在证明数列的性质和解决问题时非常有用。
掌握这些证明方法有助于提升数学思维和逻辑推理能力。
综上所述,高中数学中的数列知识点丰富且重要,需要掌握基本概念、等差数列和等比数列的性质、数列的极限、应用、特殊数列以及证明方法等方面的知识。
数学必修五数列知识点总结归纳
数学必修五数列知识点总结归纳数列是数学中重要的概念之一,它在各个领域都有广泛的应用。
在必修五的数学课程中,数列是一个重要的知识点,学好数列的相关知识对于理解高中数学以及以后的数学学习都是至关重要的。
本文将对数学必修五中的数列知识点进行总结和归纳,帮助读者更好地理解和掌握数列的概念和性质。
一、基本概念1. 数列的定义:数列是按照一定顺序排列的一组数,这些数之间存在一种特定的关系。
2. 通项公式:数列中的每一项可以由一个公式来表示,这个公式称为数列的通项公式。
3. 等差数列:如果一个数列中的任意两项之差都是一个常数,那么这个数列就是等差数列。
4. 等比数列:如果一个数列中的任意两项之比都是一个常数,那么这个数列就是等比数列。
5. 递推公式:等差数列、等比数列中的每一项可以通过前一项来计算的公式,称为递推公式。
二、等差数列1. 基本性质:等差数列的基本性质包括公差、首项、末项和项数等。
2. 通项公式:等差数列的通项公式可以用来计算数列中的任意一项。
3. 前n项和公式:等差数列的前n项和公式可以用来计算数列前n项的和。
三、等比数列1. 基本性质:等比数列的基本性质包括公比、首项、末项和项数等。
2. 通项公式:等比数列的通项公式可以用来计算数列中的任意一项。
3. 前n项和公式:等比数列的前n项和公式可以用来计算数列前n项的和。
四、数列的应用1. 数列在初等数学中的应用:数列的应用不仅限于数学学科本身,在初等数学中,数列还有很多实际应用,例如求和、求平均数等。
2. 数列在自然科学中的应用:数列在自然科学中也有着广泛的应用,例如物理学中的运动学问题、化学中的化学反应速率等都可以通过数列来描述和求解。
五、数列知识点的拓展1. 等差数列和等比数列的推广:除了等差数列和等比数列之外,还存在其他形式的数列,例如等差递推数列和等比递推数列。
2. 数列的收敛性:数列的收敛性是数学分析中的一个重要概念,它与数列中项的趋势和极限有关。
高中数学必修5 数列 知识点总结 等差数列 等比数列
高中数学必修5数列知识点总结1数列一般地,按照一定次序排列的一列数。
1.1.1项数列中的每一个数1.1.2首项数列的第1项a11.1.3通项数列的第n项a n1.2.1有穷数列项数有限的数列1.2.2无穷数列项数无限的数列1.3通项公式如果数列{a n}的第n项与n之间的函数关系可以用一个式子表示成a n=f(n),那么这个式子就叫做这个数列的通项公式。
1.4.1递增数列一般地,一个数列{a n},如果从第2项起,每一项都大于它前面的一项,即a n+1>a n,那么这个数列叫做递增数列。
1.4.2递减数列如果从第2项起,每一项都小于它前面的一项,即a n+1<a n,那么这个数列叫做递减数列。
1.4.3常数列如果数列{a n}的各项都相等,那么这个数列叫作常数列。
2等差数列从第2项起,每一项与前一项的差是同一个常数,这样的数列称为等差数列。
2.1公差这个常数d称为公差。
2.2等差数列通项公式推导方法:迭代法a1=a1,a2=a1+d,a3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,……得到a n=a1+(n-1)d2.3等差数列的函数特征a n=f(n)=a1+(n-1)d=dn+(a1-d) d为斜率,a1-d为a n轴截距d>0,{a n}为递增数列;d<0,{a n}为递减数列;d=0,{a n}为常数列。
2.4等差中项如果在a与b中间插入一个数A,使a,A,b成等差数列,那么A叫作a与b的等差中项。
2.5等差数列的前n项和推导方法:倒序相加法S n=a1+a2+a3+…+a n。
高一必修五数学数列全章知识点(完整版)
高一数学数列知识总结知识网络、知识梳理一、看数列是不是等差数列有以下三种方法① a n a n 1 d(n 2, d为常数)②2a n a n 1 a n 1(n 2)③ a n kn b(n,k 为常数).二、看数列是不是等比数列有以下两种方法:① a n a n 1q(n 2,q为常数,且0)(n 2,a n a n 1a n 1 0)② a n a n 1 a n 1三、在等差数列{ a n }中,有关S n 的最值问题:(1)当a1 >0,d<0 时,满足a m 0的项数m 使a m 1 0a m 0得s m取最大值 . (2)当a1 <0,d>0 时,满足m的项数 m 使得s m 取最小值。
在解含绝对值a m 1 0的数列最值问题时 ,注意转化思想的应用。
四. 数列通项的常用方法:( 1)利用观察法求数列的通项 .( 2)利用公式法求数列的通项:① a S(1 n 1);② a n等差、等比数列a n公式 .S n S n 1(n 2)( 3)应用迭加(迭乘、迭代)法求数列的通项:①a n 1 a n f (n) ;②a n 1 a n f (n).(4)造等差、等比数列求通项:①a n 1 pa n q ;②a n 1 pa n q n ;③a n 1 pa n f (n) ;④a n 2 p a n 1 q a n .第一节通项公式常用方法题型 1 利用公式法求通项例 1: 1. 已知 {a n} 满足 a n+1=a n+2 ,而且 a1=1。
求 a n。
2. 已知S n 为数列a n 的前n 项和,求下列数列a n 的通项公式:⑴ S n 2n2 3n 1;⑵ S n 2n 1.S1(n 1)总结 :任何一个数列,它的前n 项和S n与通项a n都存在关系:a n1若a1适S n S n 1(n 2)合a n ,则把它们统一起来,否则就用分段函数表示.题型 2 应用迭加(迭乘、迭代)法求通项例 2:⑴已知数列a n 中,a1 2,a n a n 1 2n 1(n 2) ,求数列a n 的通项公式;⑵已知S n 为数列a n 的前n 项和,a1 1,S n n2 a n ,求数列a n 的通项公式 . 总结:⑴迭加法适用于求递推关系形如“a n 1 a n f (n) ”;迭乘法适用于求递推关系形如an 1 anf (n) “;⑵迭加法、迭乘法公式:a n (a n a n 1) (a n 1 a n 2) (a n 2 a n 3) (a2 a1) a1②a n a n 1 a n 2 a3 a2②a n a1 .a n 1 a n 2 a n 3 a2 a1题型 3 构造等比数列求通项例 3 已知数列a n 中,a1 1,a n 1 2a n 3,求数列a n 的通项公式总结:递推关系形如“ a n 1 pa n q ” 适用于待定系数法或特征根法:①令a n 1 p(a n );② 在a n 1 pa n q 中令a n 1 a n x x ,a n 1 x p(a n x) ;1p③由a n 1 pa n q得a n pa n 1 q ,a n 1 a n p(a n a n 1).例 4 已知数列a n中,a1 1,a n 1 2a n 3n,求数列a n的通项公式 .总结:递推关系形如“ a n 1 pa n q n”通过适当变形可转化为:“ a n 1 pa n q”或“ a n 1 a n f (n)n求解 .例5 已知数列a n 中,a1 1,a2 2,a n 2 3a n 1 2a n ,求数列a n 的通项公式总结:递推关系形如“ a n 2 p a n 1 q a n ”,通过适当变形转化为可求和的数列 . 强化巩固练习1、已知S n为数列a n 的前n项和,S n 3a n 2(n N ,n 2) ,求数列a n 的通项公式 .2、已知数列a n 中,a1 2,(n 2)a n 1 (n 1)a n 0(n N ) ,求数列a n 的通项公式 .小结:数列通项的常用方法:⑴利用观察法求数列的通项;⑵利用公式法求数列的通项;⑶ 应用迭加(迭乘、迭代)法求数列的通项:①a n 1 a n f (n) ;② a n 1 a n f (n). (4)构造等差、等比数列求通项:①a n 1pa n q ;②a n 1 pa nq n;③ an 1panf (n) ;④a n 2 p a n 1 q a n .3、数列a n 中,a1 1,a n n(a n 1 a n) ,则数列a n 的通项a n 。
高中数学数列知识点归纳
高中数学数列知识点归纳一、数列的概念与性质1.数列的定义:数列是一组按照一定规律排列的实数,通常用{a1, a2,a3,...}表示。
2.数列的分类:根据项的性质,数列可分为整数数列、有理数数列、实数数列等;根据项之间的关系,数列可分为等差数列、等比数列、几何数列等。
3.数列的性质:数列具有交换性、结合律、分配律等基本运算性质。
二、等差数列1.等差数列的定义与性质:等差数列是相邻两项之差为一个常数的数列。
2.等差数列的通项公式:an = a1 + (n-1)d,其中a1为首项,d为公差。
3.等差数列的前n项和公式:Sn = n/2 * (a1 + an) = n/2 * [2a1 + (n-1)d]。
4.等差数列的求和公式应用:求解等差数列前n项和的最值、求解等差数列中的未知量等问题。
三、等比数列1.等比数列的定义与性质:等比数列是相邻两项之比为一个常数的数列。
2.等比数列的通项公式:an = a1 * q^(n-1),其中a1为首项,q为公比。
3.等比数列的前n项和公式:Sn = a1 * (1 - q^n) / (1 - q)。
4.等比数列的求和公式应用:求解等比数列前n项和的最值、求解等比数列中的未知量等问题。
四、其他数列1.几何数列:几何数列是相邻两项之比为一个常数的数列,通项公式为an = a1 * r^(n-1)。
2.调和数列:调和数列是相邻两项之比为根号下n的数列,通项公式为an = a1 * (n^(1/2))^(n-1)。
3.Fibonacci数列:Fibonacci数列是满足递推关系F(n) = F(n-1) + F(n-2)的数列,具有递归关系。
五、数列的递推关系与迭代1.递推关系的定义与性质:递推关系是利用数列的前几项求解后续项的关系。
2.迭代的方法与应用:迭代是求解递推关系的一种方法,可用于求解数列中的未知量、求解数列的极限等。
六、数列的极限与连续1.数列极限的定义与性质:数列极限是数列趋于某个值的过程,具有唯一性、无穷小性等性质。
数学必修五数列知识点提纲
数学必修五数列知识点提纲
数学必修五数列知识点提纲如下:
1. 数列的定义:数列是按一定顺序排列的一串数,其中每个数称为该数列的项。
2. 等差数列:等差数列是指数列中相邻两项之差为固定常数的数列。
公式为:an = a1 + (n-1)d,其中an为第n项,a1为首项,d为公差。
3. 等差数列的前n项和:若知道等差数列的首项a1、末项an以及项数n,则前n项和Sn可以计算为:Sn = (a1 + an)n/2。
4. 等差数列的性质:等差数列的性质包括:公差相同、任意两项的和等于中间项与首尾两项之和、等差数列的奇数项和与偶数项和之和等于项数的二分之一乘总和等。
5. 等比数列:等比数列是指数列中相邻两项之比为固定常数的数列。
公式为:an = a1 * r^(n-1),其中an为第n项,a1为首项,r为公比。
6. 等比数列的前n项和:若知道等比数列的首项a1、末项an以及项数n,且公比r不等于1,则前n项和Sn可以计算为:Sn = (a1 * (r^n - 1))/(r - 1)。
7. 等比数列的性质:等比数列的性质包括:公比相同、任意两项的比等于中间项与首尾两项之比、等比数列的前n项和与后n项和之差等于第n+1项与第2项之差等。
8. 通项公式:数列的通项公式是用来表示数列中第n项的公式。
对于等差数列和等比数列,已经列出了通项公式,可以根据已知条件来确定数列中任意项的值。
9. 等差数列与等比数列的应用:等差数列和等比数列在实际生活中有很多应用,如计算利息、计算成绩排名等。
总结:以上是数学必修五数列的主要知识点提纲,学生可以通过理解这些知识点来提高对数列的理解和运用能力。
数学数学必修5数列总结
工具
第二章 数列
栏目导引
(3)各项的分母分别是 22,23,24,25,…,分子比分母小 1. ∴数列的通项公式为 an=2n2+n1+-1 1. (4)各项可看作 21=2×10+1,203=2×100+3,2 005= 2×1 000+5,20 007=2×10 000×7. ∴数列的通项公式为 an=2×10n+(2n-1).
工具
第二章 数列
栏目导引
2.分组化归法 将数列的每一项拆成多项,然后重新分组,将一般数列求 和问题转化为特殊数列求和问题,我们将这种方法称为分组化 归法,运用这种方法的关键是将通项变形.
工具
第二章 数列
栏目导引
求数列 1 12,3 14,5 18,…,2n-1+21n的前 n 项和. 解析: Sn=1 12+3 14+5 18+…+2n-1+21n =(1+3+5+…+2n-1)+12+14+18+…+21n =1+2n2-1·n+1211--1212n =n2+1-21n.
栏目导引
所以数列{Sn2}是以 S12=a12=1 为首项,公差 d=1 的等 差数列,
即 Sn2=1+(n-1)·1=n. ∵an>0,∴Sn>0,∴Sn= n, ∴当 n≥2 时,an=Sn-Sn-1= n- n-1. 而 n=1 时,a1=1 也适合上式, ∴{an}的通项公式 an= n- n-1.
栏目导引
(6)各项可看作 1=1+0,32=12+1,13=13+0, 54=14+1,15=15+0,76=16+1,…, ∴数列的通项公式为 an=1n+1+2-1n.
工具
第二章 数列
栏目导引
2.公式法 等差数列与等比数列是两种常见且重要的数列,所谓公式 法就是分析后项与前项的差或比是否符合等差数列或等比数列 的定义,然后用等差、等比数列的通项公式表示它.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列知识点总结
二、求数列通项公式的方法
1、通项公式法:等差数列、等比数列
2、涉及前n项和S n 求通项公式,利用a n 与S n 的基本关系式来求。
即 例1、在数列{n a }中,n S 表示其前n项和,且2
n n S =,求通项n a .
例2、在数列{n a }中,n S 表示其前n项和,且n n a 32S -=,求通项n a 3、已知递推公式,求通项公式。
(1)叠加法:递推关系式形如()n f a a n 1n =-+型
⎩⎨⎧≥-===-)
2()
1(111n s s n a s a n n n
例3、已知数列{n a }中,1a 1=,n a a n 1n =-+,求通项n a 练习1、在数列{n a }中,3a 1=,n
n 1n 2a a +=+,求通项n a
(2)叠乘法:递推关系式形如
型 例4、在数列{n a }中,1a 1=, ,求通项n a 练习2、在数列{n a }中,3a 1=,n
n 1n 2a a •=+,求通项n a (3)构造等比数列:递推关系式形如B Aa a n 1n +=+(A,B 均为常数,A ≠1,B ≠0) 例5、已知数列{n a }满足4a 1=,2a 3a 1n n -=-,求通项n a 练习3、已知数列{n a }满足3a 1=,3a 2a n 1n +=+,求通项n a (4)倒数法
例6、在数列{a n }中,已知1a 1=, ,求数列的通项n a
四、求数列的前n 项和的方法
1、利用常用求和公式求和: 等差数列求和公式:d n n na a a n S n n 2
)
1(2)(11-+=+=
等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)
1(11)1()1(111q q q a a q
q a q na S n n
n
2、错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列 .[例1] 求数列
⋅⋅⋅⋅⋅⋅,2
2,,26,24,2232n n
前n 项的和. [例2] 求和:1
32)12(7531--+⋅⋅⋅++++=n n x n x x x S
3、倒序相加法:数列{n a }的第m 项与倒数第m 项的和相等。
即:
1m n m 1n 2n 1a a a a a a +--+==+=+ [例3] 求
89sin 88sin 3sin 2sin 1sin 2
2
2
2
2++⋅⋅⋅+++的值 [例4] 函数()x f 对任R x ∈都有()()2
1
x 1f x f =-+,求: ()()1f n 1n f n 2f n 1f 0f +⎪⎭
⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫
⎝⎛+ 4、分组求和法:主要用于求数列{a n +b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列 [例5] 求数列: ,2
1
n ,,813,412,211n ++++
的前n 项和 [例6] 求和:()()()()
n a 3a 2a 1a n
3
2
-++-+-+-
()n f a a n
1n =+n 1
n a 1
n n
a +=+2
a a 2a n n
1n +=+
5、裂项相消法:通项分解 (1)111)1(1+-=+=
n n n n a n (2))k n 1
n 1(k 1)k n (n 1a n +-=+=
(3)n 1n n 1n 1a n -+=++=
(4))n k n (k
1
n k n 1a n -+=++=
[例7] 在数列{a n }中,1
n n
1n 21n 1a n ++
++++=
,又1n n n a a 2b +•=,求数列{b n }的前n 项的和. [例8] 已知正项数列{a n }满足1a 1=且()
*n 21
n 2N n 1a a ∈=-+
(Ⅰ)求数列{a n }的前n 项的和 (Ⅱ)令1
n n n a a 1
b ++=
,求数列{b n }的前n 项的和n T
五、在等差数列{n a }中,有关S n 的最值问题
:(1)当1a >0,d<0时,满足⎩⎨
⎧≤≥+0
1m m a a 的项数m 使得m s 取最大值.
(2)当1a <0,d>0时,满足⎩⎨⎧≥≤+00
1
m m a a 的项数m 使得m s 取最小值。