船舶自动舵知识

合集下载

自动舵

自动舵

号,且其极性反映交流信号的相位,大小反映交流
信号的幅值。能完成此功能的整流电路称为相敏整
流电路。
1、环形相敏整流电路
5
+ Eref 6 + Eref R11 7 Ein Rf Uout D6 D5 R12 D3 D4
相敏整流电路分析
条件:参考(调制)电压远大于输入电压 5 正半周
Eref +5 Eref 6+
2 RRf Uout if * Rf Ein r( Rf 2 R) 2 R( Rf R)
波形
Eref
Ein
Uout
2、整流桥式相敏整流电路
U * +
* E0
U1
* E0
-
3、晶体管调制解调器
4、运算放大器相敏整流电路
二、灵敏度调整电路
偏航信号
三、比例、微分、积分电路
偏航信号输入
• 舵机
舵机 [Steering Gear]
一、泵控型液压舵机
防浪阀(双联溢流阀): 太软:无法转舵 防冲击,沟通高低压油路 储能弹簧 太硬:不起作用
ACB:浮动杆追随机构[Float Hunting Gear]
三点浮杆追随机构原理
作用:加快转舵速度 操纵杆 A A1 A2
变量控制杆
C
C1
反馈杆 B2 B1 B
即使这种单侧偏航角度超过灵敏度,但不对称偏航所引 起的偏舵也是不对称的.因此时间长了,船舶也会出现 单侧偏航.实际航海中,通常人为压一个合适的舵角航行, 以纠正单侧偏航。 实现积分控制的方案: 1、电动机积分环节:
UC
UC
U
UI
2、热积分环节:
偏航加热器
UI

【精品】船舶舵机基础知识(可编辑

【精品】船舶舵机基础知识(可编辑
模型参考控制系统: 设计一个理想(最优)的参考模型,计算机根据实际检
测,实现接近该理想模型的控制规律。 说明:具体
工作原理分析需 要较深基础知识。 因此,本节只做 一般了解。
[第四节要点]:自适应舵的概念一节:舵机的分类、特点;基本要求。 第二节:操舵方式(种类、原理);自动操舵仪
原因:装载不对称,斜向风的持续影响,斜向海潮的持 续影响。—— 对于具有双螺旋桨推进的船舶,螺旋桨推进 的不平衡也会产生不对称偏航。
积分环节工作原理:积分环节可以对偏航持续时间进行 累积,当某舷(侧)偏航持续的时间比另一舷(侧)持续时 间长时,通过环节输出的信号(偏舵角)将继续保持,这个 信号将通过执行机构使舵叶维持在一定的偏转角度上,从而 使船舶具有克服单向偏航的能力。
定义:通过计算机将所有检测信号进行 处理,使舵机按照给定航线进行操舵的自动 舵称为自适应舵。自适应舵可以自动对航线 进行判别,可以自动修正内部参数(例如比 例系数等)以适应船舶的各种状态或海况。
分类:——可分为两类 自校正自适应控制系统和模 型参考自适应控制系统。
自适应舵说明
自校正控制系统: 自动校正系统的控制参数,使性能指标接近最优。
三种基本类型:⑴.比例舵;⑵.比例 - 微分舵;⑶.比例 - 微分 - 积分舵。
说明:不同基本类型的自动舵,对舵 叶的调节规律是不同的。
偏航与操舵
自动舵方框图
比例舵
比例舵操舵的规律是:偏舵角β的大小与偏航 角φ的大小成比例关系,即:
β= - K1φ 其中:K1为比例系数,负号表示与偏航方向相反。
特点:机构简单,航行保持精度较差,船舶营 运经济性较差(会出现S形航迹)。
时针方向转动,使舵叶向右偏转。
同时舵角反馈同步传递机构带动

自动操舵系统的基本要求和工作原理

自动操舵系统的基本要求和工作原理

自动操舵系统的基本要求和工作原理1.自动操舵系统基本要求在给定的航向上,为使船舶以足够的精度安全航行自动舵必须满足以下的基本要求:(1)自动操舵性能良好当船舶偏离给定航向一定角度(超过系统灵敏度所整定的角度)时,系统应立即工作,使舵叶偏转一定的角度,这个初始转舵角叫做一次偏舵角。

初始舵角应有适当的数值,如果过大会降低船舶航行速度,过小则产生的转船力矩不足以使船舶回到正航向来。

如果给出初始偏航舵角后船舶仍然偏离预定航向,自动舵必须保证有附加舵角(二次偏舵角)。

上述要求,实质上是选择比例舵的比例系数问题。

此外,在自动舵中还应具有微分和积分(或压舵)校正环节,其目的是使自动舵在调节过程中具有良好的动态性能和静态性能。

(2)具有必要的调节装置为了使同一型号的自动舵装置能够适用于不同的排水量、装载量、航速及舵机拖动装置的船舶,并能适应各种天气、海况,在自动舵系统中应有如下的基本调节装置:①灵敏度调节(俗称天气调节)。

灵敏度是指系统开始投入工作时的最小偏航角。

它视天气、海况而定。

在风平浪静时,灵敏度要调高一些;在大风大浪下,应适当降低自动舵的灵敏度,以减少动舵次数。

②舵角比例调节。

偏舵角与偏航角之比(即K1的数值)的大小,直接影响自动舵给出的一次偏舵角和二次偏舵角的数值,因此要根据船型、装载、航速等情况调节舵角比例,以获得一个合适的舵角比。

③反舵角调节。

偏航中的船舶在自动舵的作用下回复到正航向时,舵叶应先回到艏艉线上,然后再向另一舷偏过一个小角度,以防止船舶因惯性力而继续向另一侧偏航,这个预先的偏舵角称之为反舵角(又称制动舵角,稳舵角,纠偏舵角),应根据船型、装载、天气等情况进行调节。

反舵角可以由微分环节来实现反舵角调节主要调节微分系数K2,又称微分调节。

④压舵调节。

为了纠正船舶由于受到单侧风浪、水流等因素影响而引起的不对称偏航单侧偏航,自动舵中应当设有自动压舵/人工压舵的调节装置。

在具有航向积分环节的自动舵中,则设有积分调节,主要调节积分系数K3。

浅谈船用自动舵_兼析AUTO_PILOT_GYLOT自动舵故障实

浅谈船用自动舵_兼析AUTO_PILOT_GYLOT自动舵故障实
伺 服 电机 和 与 之 机 械 连 接 的 测 速 发 电机 及 自 整 角 变 压 器 使 用 阻 尼 开 关 即 滤 波 器 可 滤 除 由 于 风 浪 的杂

,
,
航 向 设 定 改 变航 向 压 舵 均 由 一 个 旋 钮 操 作 改 变
航 向 时 一 次 不 能超 过
被破坏




波 千 扰 其 反 馈 环 节 与 舵 轮 随 动 操 舵 的 自整 角 度 变
,
,

由上 述 原 理 可知 分 油 机 不 排 渣 只 和 滑 动 底 盘
下 部 的 配 水机 沟 有 关 为 此 在 对 分 油 机 解体 后 重
,
,
,
三 结束 语
据事后 分析 该 故 障造 成 的 原 因很 可 能 是 船 员
在拆 装 分 油机 时 由于 对 其 结 构 不 甚 了 解 而 造 成 的
。 、
算 并 判 断 故 障 发 出声 去 报 警 其 工 作 方 式 自适 应
、 、 。
因此必 须 定期清
自动 随 动 应 急 由 自 动 舵 转 自 适 应 舵 时 计 算 机 进
,
洗加 油
行 程 序 自检 短 时 间 后 出 现 航 向 偏 差 数 字 显 示 使 用
,

安 休 茨 机 电型 自动 舵
浅 谈 船 用 自 动 舫
兼析

自动 舵 故 障 实例
杨俊雄

上 海 远 洋运 输 公 司
自动 舵 放 大 环 节 采 用 磁 放 大 器 信 号 为 交 流 传 递 调 节属

,

,
松 动 而 造 成 自 动 舵 失 灵 向 阳 型 自动 舵 有 积 分 调 节

2-2-5自动舵(精)

2-2-5自动舵(精)

五、自动舵
3)反舵角调节(rate adjust):又称微分 旋钮,在船舶偏航用舵克服使其向原航向回转 时,还必须再操一个反舵角来克服船舶回转时的 惯性。因此,使用反舵角调节可给出反舵角的 大小,以阻止船舶向另一侧的偏摆。大船、 重载、旋回惯性大时微分要调大;反之,要 调小。海况恶劣,微分作用要调小或调至0。 4)压舵调节:是用一固定信号使舵叶偏转 一个固定的角度,以抵消单侧偏航的作用。
五、自动舵
3. 使用自动操舵仪的注意事项 1)在大风浪航行时,为保护自动舵应改用 人工操舵; 2)在运输繁忙区域,如避让、改向、过转向 点,狭水道、渔区、复杂航道、靠离泊、能见度 不良及所有航行危险的情况应尽可能改为人工 操舵; 3)在上述情况下,应可能快地为驾驶员提供 一位合格的舵工,该舵工应随时接过操舵;
五、自动舵
4)自动舵与人工舵转换时应有负责的 值驾操作或在其监督下进行; 5)长期使用自动舵后及进入谨慎驾驶前 均应试验人工操舵,通常每一航行班次(每4 小时)至少应检查一次随动操舵装置是否正常; 6)随动操舵时各个自动舵调节旋纽不起 作用,但转入自动舵时应先将压舵旋纽和自动 改向旋纽调至零位。
五、自动舵
一般自动舵是目前在海船上最常见的自动 舵。它与人工操舵比较,其优点是:自动纠正偏 航角,减轻人员的劳动强度,航向精度高,提高 航速,减少燃料消耗,缩短航程。 一)自动舵的种类 1. 比例舵: 按船舶偏航角ф来操舵的自动舵。这种自动 舵采用比例控制系统,偏舵角α和偏航角ф成正 比关系,即:α=-k1ф式中:k1——比例系数— —负号表示偏舵的方向与偏航方向相反。比例系 数k1可以根据船舶类型、海况、装载情况加以选 择和调整;
五、自动舵
但它不能克服偏航角速度的影响,航向稳定 的过程较慢,航迹易成“S”形曲线,精度较差, 故新建船舶已不再采用。 2. 比例-微分舵 按船舶偏航角ф和偏航角速度dф/dt来操舵的 自动舵这种自动舵采用比例—微分控制系统,其 偏舵角α和偏航角ф之间的关系为:α=-(k1ф+ k2dф/dt)式中:k1——比例系数;k2——微分 系数。

自动舵的名词解释

自动舵的名词解释

自动舵的名词解释
1。

灵敏度—当船舶偏离航向时,自动舵能立即投入工作,使舵叶偏转一定角度的最小偏航角度(一般规定0.2~0.50)。

灵敏度调节,又称为“天气调节”。

依据天气和海况而定。

好天时,灵敏度调节得高,保证船舶有较高的航向精度。

坏天时,灵敏度调节得低,防止自动舵操纵过于频繁,影响舵机寿命。

2。

稳舵角—又称“反舵角”,“制动舵角”、“阻尼舵角”“纠偏舵角”。

船舶在舵的作用下返回到给定航向时,由于船舶的惯性,可能向另一方向
偏航。

为了使船舶恰好回到给定航向而又不超过,此时舵必须向另一舷转
过一个小角度抵抗船舶的惯性。

“反舵角”调节,又称“微分”调节。

自动舵使船舶返回到给定航向的过程中,为了使船舶的行踪作“S”型衰
减震荡,并能尽快的稳定下来,自动舵系统就必须给出“反舵角”。

“反舵角”的调节,依据船型、装载等情况所决定的惯性力和天气情况而定。

3。

压舵—由于船舶在航行中受到不对称的外界干扰(如一舷受风浪,螺旋桨不对称,装载量不对称等因素),会产生一舷的持续力矩,船舶将产生不对称偏航。

为此,
必须使舵偏离首尾线一个角度,来抵消另一舷的持续力矩。

“压舵”调节,又称“偏航”调节,“积分舵”调节、或“人工压舵”调节。

4。

舵角比例调节—即偏舵角与偏航角之比。

舵角比例过小时,转船力矩小,回转性能差。

舵角比例过大时,转船力矩大,可能使船舶回转过头,稳定性差,并会降低航速。

5。

航向调节—用于船舶在使用自动舵航行时,改变船舶的给定航向,使船舶按照新的航向航行。

船用舵机工作原理

船用舵机工作原理

船用舵机工作原理
船用舵机是船舶上常见的一种控制装置,主要用于控制船舶的舵角,实现船舶的转向和航向调整。

船用舵机的工作原理如下:船用舵机主要由电动机、减速装置、传动机构和控制系统等部分组成。

控制系统根据船舶的航行需求,向舵机发出控制信号,电动机通过减速装置和传动机构将动力传递到舵叶上,从而实现船舶的转向。

舵机的控制信号可以来自舵机手柄、自动舵或GPS导航系统等。

在手动控制模式下,船员通过手柄上的转向操作,向舵机发出指令,控制舵叶的转向角度;在自动控制模式下,船用舵机通过接收GPS导航系统的信号,调整舵叶的角度,以保持船舶的航向。

船用舵机的工作原理可以说是一种简单而又可靠的机械控制系统,通过电动机和传动机构的配合,实现了船舶的灵活转向和航向调整。

在船舶的安全航行中,船用舵机起着非常重要的作用,也体现了现代化船舶控制技术的先进性。

- 1 -。

自动舵中FU和NFU的区别

自动舵中FU和NFU的区别

随动舵可以简化操舵工作,操舵人员不必不断转动舵轮,并仔细观察舵角指示器,只需将手轮转到要求的舵角,跟踪系统就可使被控制机械来复演控制机构所规定的运动,从而使舵叶与舵轮位置相一致,将舵准确地停在给定的角度上。

自动舵一种将舵电动机的控制系统与电罗经联系起来的操舵装置,当船舶由于某种原因,偏离规定航向时,由于电罗经与船舶的相对运动,使控制系统在无人发令情况下进行工作,由于执行电动机自动带动舵叶偏转,使船舶重新返回到原来的航向上。

根据上述我认为fu或者nfu都不是自动舵,区别就是一个需要观察舵角指示器一个不需要
FU: Follow-Up,随动操舵
NFU: Non Follow-Up,非随动操舵,为应急操舵
Autopilot:为自动舵。

船舶自动舵知识

船舶自动舵知识

二、按比例、微分控制的自动操舵
பைடு நூலகம்
(kp kd d )
dt
式中, d d * d
dt
dt
dt
则,
k
p
kd
d
dt
d
dt
* 0
t
kd
d
dt
t
kp
实现比例、微分控制的方案 1、航向控制器为运算放大器组成的比例、微分调节器 其方框图如下:
φ* Δφ
β*
β
φ
PD控制器
舵机控制器
11、舵杆直径>230mm的舵机,45s内提供替代动力; 1万Gt以上工作 30min, 其他工作10min。
§4-3自动操舵的工作原理
一、人工操舵的一般规律
360
270
90
180
二、自动操舵原理及方框图
常规自动操舵通常是指用电罗经或磁罗经检测航向 偏差,在通过航向控制器进行舵角操纵,达到航向 纠偏。其控制方框图如下:
三点浮杆追随机构原理
作用:加快转舵速度
操纵杆
A
A1 A2
变量控制杆
C
C1
反馈杆
B2
B1 B
二、阀控型液压舵机
使用单向定量油泵,转舵靠驾驶台遥控换向 阀实现,油泵排油回泵的进口或回油箱。
特点:系统简单,造价低;冲击大,可靠性 差,油液发热量大,经济性差。
缺点:
1.液压伺服系 统故障率大
2.转换遥控系 统时间长
即使这种单侧偏航角度超过灵敏度,但不对称偏航所引 起的偏舵也是不对称的.因此时间长了,船舶也会出现 单侧偏航.实际航海中,通常人为压一个合适的舵角航行, 以纠正单侧偏航。
实现积分控制的方案:

自动操舵仪

自动操舵仪
自动操舵仪
介绍
01 设备简介
03 系统组成
目录
02 工作原理 04 设备分类
基本信息
又称自动操舵装置,是船舶上用于自动控制舵机,以保持船舶按规定航向航行的设备。船舶水面航行主要是 依靠舵来控制航向,自动操舵仪指代替舵手操舵,保证船舶自动跟踪指令航向,达到自动保持与改变航向的目的。
结合陀螺罗经或磁罗经使船能自动保持预定航向的装置。在船正航时,通连罗经刻度盘的接触器处于绝缘位 置,对舵不起作用。船偏航时,接触器接通电流开动操舵电动机以绑正偏航直至船回复并按预定航向前进。因其 对偏航反应灵敏,可使船沿较直航线前进。可全自动操舵或与人工操舵共同运用,也可将其关闭全用人工操舵。
自动操舵仪是根据指令信号自动完成操纵舵机,以使船舶能够保持在预定航线上稳定航行的设备,性能优良 的自动操舵可保持高精度的船舶航向、航迹,减少偏航,由此相应缩短航程,节省燃料,提高航行的经济效益。 用于海洋船舶的操舵仪操舵范围应为±35°,用于内河船舶的操舵范围应为±40°。
自动操舵有两种工况:一种是自动稳定航向;另一种是改变航向。普通自动舵仅有航向保持功能,航迹舵具 有控制船舶精确的航行轨迹。自动操舵仪与ECDIS相结合,可实现航迹控制,在航路点(WP)处。自动转向;在偏 离航迹时,自动控制船舶回到设定的航迹。
谢谢观看
自动操舵仪通常都应具有自动、随动和非随动三种工作状态,有的还有越控功能。其组成主要包括主操舵台、 简易操纵台、反馈机构、伺服机构、转换开关等,并应具有就地应急操舵功能。
(1)主操纵台是自动操舵仪的主要部件,安装在驾驶室中央,一般具有自动、随动、非随动三种工作状态。 (2)简易操纵台安装在舵机舱,进行应急操舵。 (3)反馈机构安装在舵机舱。 (4)伺服机构安装在舵机舱。 (5)转换开关箱安装在舵机舱。 (6)电源转换器安装在舵机舱。 自动操舵仪应与舵机系统和罗经系统紧密配合(当电罗经有故障时,也可通过磁罗经的传感器获得航向信号)。

自动舵

自动舵

PR-7000-L 自动舵第一章综述1.1介绍本自动舵作为一款简便的操纵仪,具有4种操作模式:计算机辅助操纵(CPU)、手动操纵(HAND)、应急操纵(NFU)及遥控操纵(RC-1、RC-2)(可选择);并可只通过转换MODE SELECTOR SWITCH(模式选择开关)来进行选择。

另外,通过按下在MODE SELECTOR SWICH键左边的MODE SELECTOR PUCH BUTTON SWICH(模式选择按钮)操纵CPU选择三种不同的操作模式:自动舵(AUTO)、积分舵(RATE)、自动导航(NA V:选择)具有双重模式的自适应舵具有两套完整的系统,SYSTEM SELECTOR SWITCH(系统选择开关)有以下几档:NO.1-OFF-NO.2,当开关转至所需运行的系统位时,系统会自动进入运行状态,而当开关转到OFF档时,整个系统将停止工作。

自动舵是一套使船舶维持在预先设定的航向上航行的自动操舵控制装置,近来,对于自动舵的性能评估已从“能使船舶精确维持航向”变为“在各种情况下,最省油的操纵”。

然而,船舶的操纵取决于船舶的尺度及具体的技术指标,同时也随着船舶的航速,装载情况及海况的不同而不同。

因此,对于自动舵的评价没有明确的标准。

为了解决这些问题,本款自适应舵引入了性能测试功能以测定在自动舵协助的情况下,能节省的能量。

本款自适应舵有如下特性:;控制操纵装置运用的是一套微处理器并且完全数字化;;基本控制方式是自适应控制系统反馈模型;根据船舶速度和装载状况的改变能迅速调整,能够在各种状态下,进行最佳的操纵。

;三种航向维持模式,可根据实际,适用于各种海况:OPEN SEA(开放水域模式)适用于只需小幅度操纵导航的情况,如在大洋上航行,为的是节省燃料的费用。

CONFINED(限制模式)适用于大幅度的操纵情况,如在狭水道中航行,为的是提高航向维持的精确性。

比例舵(RATE)作为一种标准的操纵模式,可以通过旋转舵轮给出的指令指示,按设定的转向速率来控制船舶。

船舶自动舵的设计

船舶自动舵的设计

船舶自动舵的设计吕振望,高帅(大连海事大学航海学院大连 116026 )摘要:自动舵作为船舶改变航向和保持船舶航行在给定航向上的重要设备,对于船舶航行的安全性和经济性具有至关重要的作用。

本文就自动舵设计所采用的二阶响应数学模型(Nomoto模型)进行了介绍。

同时,主要以在线自整定PID(Proportional Integral Differential)船舶自动舵为例,简述了继电型自整定PID控制的基本原理及PLC (Programmable Logic Controller)实现的基本方法,给出了基于PLC的在线自整定PID 船舶自动舵的设计原理和实现方案。

关键词:船舶自动舵;自整定PID;船舶0 引言自动舵是一种自动操舵装置控制系统,能模拟并代替人力操舵,还可和其他导航设备结合组成自动导航系统,使船舶全程无人驾驶成为可能,大大提高了自动化水平。

随着智能控制理论与计算机工业的飞速发展,许多新型的控制理论伴着微型计算机的广泛应用,同样也应用到自动舵上。

本文主要以自整定PID自动舵为例,说明了船舶自动舵的设计原理,对在自动舵设计中,所采用的数学模型进行了探讨,同时介绍自整定PID的算法以及如何正确地使用自动舵。

1 船舶自动舵的设计原理船舶自动舵的主要结构是控制系统,其标准反馈结构图1如下:信号部分r,d,y,u;控制部分K;被控对象部分P;和传感器部分M。

图1 控制系统的框图1.1 船舶运动响应模型研究船舶自动舵的设计需从船舶运动的数学模型开始,船舶运动的数学模型是船舶自动舵设计原理中很重要的一部分。

本文以响应模型[1]为例来说明船舶的运动。

响应模型略去了横漂速度,抓住船舶动态从舵角到航向的导数再到航向的主要脉络,所获得的微分方程可保留非线性影响,把风浪干扰作用折合成为某一种干扰舵角构成一种输入信号与实际舵角δ一道进入船舶模型。

该模型为Nomoto 模型的推广。

已知2阶Nomoto 模型为 δϕϕTK T 1='+'' (1) 对于某些静态不稳定船舶,式(1)左端第二项T ϕ'必须代之以一个非线性)(ϕ'H T K ,且3H ϕβϕαϕ'+'=')( (2) 于是非线性的2阶船舶运动响应模型成为 δϕϕTK H T K ='+'')( (3) 显然,在线性情况下为使(1)和(3)式一致,必须有.0K 1==βα,由此可看出ϕβα,,,,T K 的关系。

船舶结构与设备-第5章-舵设备PPT课件

船舶结构与设备-第5章-舵设备PPT课件
•51
一、一般自动舵
• 3、自动舵的调节 • 1)灵敏度调节 • 又叫天气调节,航摆角调节。调节舵对偏
航信号的敏感程度,即死区大小。 • 海况差时调低。
•52
3、自动舵的调节
• 2)舵角调节
• 调节 k 1 ,又叫比例调节。
• 重载、空载舵叶浸水面积小、海况差时 调高。
•53
3、自动舵的调节
• 3)微分调节(反舵角调节或速率调节)
•26
二、舵机
• 2、液压舵机(hydraulic stearing gear) • 1)、液压舵机的组成、特点
(1)组成:电动机、油泵、管路、转舵 机构。
(2)特点:传动平稳、无噪声、操作方 便能实现无级调速、可靠性高、尺寸小、 重量轻、布置紧凑。
•27
粤海铁1号2号火车轮渡舵机
•28
2、液压舵机
• 4、设置要求:除可共用舵柄或舵扇外,辅 助操舵装置不应属于主操舵装置中的任何 部分。
•23
一、操舵装置的设置
• 5、配置方案: 1)一套主操舵装置和一套辅助操舵装置 2)主操舵装置设置两套相同的动力设备,并设两
套操舵控制系统: a、一套随动控制 b、一套手柄控制
•24
一、操舵装置的设置
随动控制 手柄控制
•50
自动舵的启用
• 当船舶航行于海上,不需要人工操舵时, 可由随动操舵方式转换为自动操舵方式。
• 压舵旋钮和自动改向调节旋钮(如设有) 归零位
• 船舶稳定在指定的航向上。 • 当处于正舵时,将选择开关从随动转至自
动位置上,船舶就进入自动操舵状态。
• 根据船舶载重情况和海况,调节主操舵台 面板上的有关旋钮。
2)充气试验 P=0.005d+0.025(N/mm2)、保持

船舶舵机装置的自动控制系统介绍

船舶舵机装置的自动控制系统介绍

三、对舵机拖动控制系统的技术要求 (一)、从主配电板到舵机舱应采用双线供电制,并尽可能远离 分开敷设(如左、右舷两路)。在正常情况下应急配电板供电时, 其中一路可以经应急配电板供电。驾驶室与舵机舱的操舵装置应使 用同一电源。 (二)、舵机电动机应满足舵机的技术性要求,并能保证堵转 1min的要求。 (三)、拖动电动机组应采用双机系统,各机组可单独运行(一 机组为备用),也可同时运行。一机组故障碍时,另一机组应能自 动投入运行。 (四)、至少设有驾驶室和舵机舱两个控制站,并设有转换装置, 防止两地同时操纵。 (五)、现代船舶驾驶室多装有操舵仪,一般设有自动、随动、 应急三种操舵方式,也可只设两种。 (六)、船舶处于最深航海吃水并以最大营运航速前进时,不仅 能满足舵自一舷350转至另一舷350的最大舵角要求,还应满足自任 一舷350转至另一舷300的时间不超过28s的转舵速度要求。 (七)、舵角指示器指示舵角的误差应不大于±10。
右偏,并自动停在右舵,舵操右舵XX0,舵叶右偏,并且自动停在 右舵XX0上。为了减小S形航迹的振幅,船舶在返回正航向过程中, 必须操回舵 .
图13-8 随动操舵方框图
图13-9为自动操舵的原理图。当船舶沿给定航向上航行,舵叶 在艏艉线上,如图示,滚轮1恰好与绝缘块4接触,两个继电器KA1、 KA2线圈都不通电,其常开触头都开启,直流发电机G磁场电流为 零,输出电压U0为零,直流电动机M停转。沿着正航向航行的船舶, 当受到风、水流等外界干扰而向右或左偏转离开正航向K某一角度γ 时,通过罗经的航向发送器,使航向接受器也转动同一角度 γ,于 是被航向接受器带动的滚轮1也就在两个导电半圆环2、3内侧滚动 某一角度,或与导电半圆环2接触,或与3接触,于是
Aura′=0,电动机停止转动。舵叶处于右舵与舵轮转角相对应的某 一角度的位置上。 如果要求回舵,就得舵轮扳回零位,R1的滑动点从a点重新返 回到0点,电桥平衡又被破坏,但这时放大器的输入信号U0a′<0, 发电机励磁电流IfG和输出电压U0为负,电动机逆时针方向转动, 舵叶向着艏艉线方向偏转。当回到艏艉线上时,通过反馈机构,R2 的滑动点也从a′点返回到0′点电桥又重新恢复平衡,放大器输入信 号U00′=0,电动机停止转动。 改变舵轮的转动方向,便可以改变电动机旋转和舵叶偏转的方 向。随动操舵的方框图如图13-8所示。由方框图可知,就其工作原 理来说,随动操舵就是一个闭环的随动系统,是一个根据偏差进行 自动调节的系统。这种系统的停舵指令不是由操舵人员发出的,而 是在舵叶偏转过程中,由它本身通过反馈机构发出的。由于闭环系 统中采用了比较环节(由两个电位器组成的电桥)进行比较,因此 只有当舵角反馈信号(与偏舵角β成比例)与操舵信号(分操舵角γ 成比例)相等时,偏关信号U1=0,舵叶才会停止偏转。舵轮从角回 互零位,舵叶也从β角回到艏艉线上。图13-8 随动操舵方框图 随动操舵的方法是,船舶在偏航右舵,舵轮操右舵XX0,舵叶右

浅谈自动舵

浅谈自动舵

大连海事大学毕业论文二〇一五年六月自动舵技术的发展专业班级:航海技术11-4班*名:**指导教师:航海学院摘要此文论述了自动舵的发展在实现船舶自动化过程中的重要地位,综述了航海自动舵的发展史及今后发展的展望。

此文从应用技术的观点出发,介绍与比较了船舶操纵的各种自动舵控制方法和它们的优缺点,船舶自动舵可分为四个发展阶段,即传统的机械舵、PID舵、自适应舵和智能舵,其中智能舵为目前最先进的自动舵,它的控制系统又分为专家控制、模糊控制和神经网络控制。

介绍了国内外对船舶自动舵的航向保持控制、航迹保持控制及其他功能方面的研究成果,将船舶自动舵研究与IMO 的“e-Navigation”战略实施计划结合起来,说明了船舶未来的发展方向。

关键词:自动舵、机械自动舵、PID自动舵、自适应控制、智能控制;AbstractThis article illustrates the key status of autopilot development in the process of realizing ship automation, and summarizes the phylogeny of marine autopilot and prospect for the future. From the viewpoint of technology application, this article introduces and compares several autopilot control methods of ship maneuver and corresponding merits and demerits. Evolution of marine autopilot falls into three phases, namely the traditional mechanical rudder, PID rudder, adaptive steering rudder and intelligent rudder, among which intelligent rudder is the most advanced autopilot at present, whose control system can further be divided into expert control, fuzzy control and neural network control. In addition, this article introduces domestic and overseas research achievements in terms of marine autopilot course keeping control, track keeping control and other functions, and integrates marine autopilot research with ‘e-Navigation’ strategic implementation plan of IMO, which demonstrates the development orientation of ships in the future.Keywords: autopilot, mechanical autopilot, PID autopilot, adaptive control , intelligent control目录1. 绪论 (VI)1.1研究的意义 ..................................................................................................... V I1.2自动舵的基本原理 ......................................................................................... V I2.机械自动舵 .............................................................................................................. V II3.PID自动舵 ................................................................................................................ V II3.1PID自动舵的发展........................................................................................... V II3.2PID自动舵的不足........................................................................................... V II4.自适应技术与自适应舵 ......................................................................................... V III4.1自适应技术的发展和应用 ........................................................................... V III4.2早期自适应舵的优缺点 ............................................................................... V III4.3自矫正控制系统的发展 ............................................................................... V III4.4育鲲轮上的自适应舵的特点 ....................................................................... V III5.新型智能舵的发展及未来 ....................................................................................... I X5.1智能控制的特点 ............................................................................................. I X5.2智能控制还需解决的问题 ............................................................................. I X5.3智能控制的发展和应用 ................................................................................. I X5.4典型的智能控制方法 (X)5.4.1专家控制 (X)5.4.2模糊控制 (X)5.4.3神经网络控制 (X)6.自动舵研究的发展趋势 (X)自动舵技术的发展1.绪论1.1研究的意义船舶借助螺旋桨的推力和舵的舵力来改变和保持航速或航向,实现从出发港到目的港的航行计划。

自动舵

自动舵

PR-7000-L 自动舵第一章综述1.1介绍本自动舵作为一款简便的操纵仪,具有4种操作模式:计算机辅助操纵(CPU)、手动操纵(HAND)、应急操纵(NFU)及遥控操纵(RC-1、RC-2)(可选择);并可只通过转换MODE SELECTOR SWITCH(模式选择开关)来进行选择。

另外,通过按下在MODE SELECTOR SWICH键左边的MODE SELECTOR PUCH BUTTON SWICH(模式选择按钮)操纵CPU选择三种不同的操作模式:自动舵(AUTO)、积分舵(RATE)、自动导航(NAV:选择)具有双重模式的自适应舵具有两套完整的系统,SYSTEM SELECTOR SWITCH(系统选择开关)有以下几档:NO.1-OFF-NO.2,当开关转至所需运行的系统位时,系统会自动进入运行状态,而当开关转到OFF档时,整个系统将停止工作。

自动舵是一套使船舶维持在预先设定的航向上航行的自动操舵控制装置,近来,对于自动舵的性能评估已从“能使船舶精确维持航向”变为“在各种情况下,最省油的操纵”。

然而,船舶的操纵取决于船舶的尺度及具体的技术指标,同时也随着船舶的航速,装载情况及海况的不同而不同。

因此,对于自动舵的评价没有明确的标准。

为了解决这些问题,本款自适应舵引入了性能测试功能以测定在自动舵协助的情况下,能节省的能量。

本款自适应舵有如下特性:控制操纵装置运用的是一套微处理器并且完全数字化;基本控制方式是自适应控制系统反馈模型根据船舶速度和装载状况的改变能迅速调整,能够在各种状态下,进行最佳的操纵。

三种航向维持模式,可根据实际,适用于各种海况:OPEN SEA (开放水域模式)适用于只需小幅度操纵导航的情况,如在大洋上航行,为的是节省燃料的费用。

CONFINED(限制模式)适用于大幅度的操纵情况,如在狭水道中航行,为的是提高航向维持的精确性。

比例舵(RATE)作为一种标准的操纵模式,可以通过旋转舵轮给出的指令指示,按设定的转向速率来控制船舶。

自动舵BT82B说明书

自动舵BT82B说明书

自动舵BT82B说明书BT82B自动舵BT31B,是国内第一款可完全由计算机控制的自动舵。

电子装置可精确地控制舵面与齿轮的相对位置。

它是目前业界的先进产品,能实现舵机自动驾驶。

该装置为一台由计算机辅助操作、可单独使用的自动舵机组,适用于各种恶劣天气和要求不高的海轮航行。

BT31B自动舵是一个手动舵机操作系统,其主要作用是将操纵力矩转换为船舶相对转向力。

该装置的特点和作用就在于它可以由计算机主动或被动地将操纵力转换为船舶对向横向运动的向心力,然后利用计算机控制舵机来实现无级转向调节等功能。

该装置在使用中不需要手动控制舵机,因此其成本较低(普通舵机每小时10美元左右),同时可以减少驾驶台操作员的工作时间。

1.主机安装:该主机安装在驾驶台下方,需靠近主驾驶台面安装,尽量避免靠近主舱,因为主机安装在主舱内,靠近驾驶台,所以要远离主船体,避免撞到主舱上壁或者碰到墙壁等导致损伤。

安装位置距主舱顶部一般在300 mm左右吧。

安装位置靠近主船体的顶部时安装要牢固,在安装时不能碰坏主机上的零部件(如主机盖、传感器、主纵轴、主减速器、舵机等),因为这些部件有可能损坏主机的零部件及与主控室的连接处造成主机损坏(如接触不良)。

安装完成后把主机固定在驾驶台面的支架上(最好能固定在驾驶台上)如果有可能的话,可使用专门的支撑架和安装工具将主机固定在支架上。

安装完毕后拧紧主纵轴上的螺丝,安装完成后检查主纵轴上的螺栓是否松动而导致主机不能正常工作的话则应及时更换新的螺栓或紧固件;检查并拧紧主纵轴上的螺丝时需要注意螺丝是否会损伤主纵轴上的齿条,如果损坏则应及时更换新的螺丝等配件;检查BT31B 自动舵装置工作状态与主主机工作状态一致后方可使用。

在工作状态下不能停止运转的情况下应将主机取出(如需更换新的螺栓或紧固件)并停止运行以检查、测试和调整电机等各部件是否存在故障或损坏现象等!如果主机有故障现象应及时更换新的零件)。

2.自动舵机操作(1)手动舵机操作:系统自动舵的每一个换向,并将所记录的换向数据在舵机上显示(包括两种模式),同时按要求将换向信息保存为数据库数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R
U
*
kU
R
+ R -+
U -
UC
M
U K
U
U
UC
(U
UC ) U

U
U
UC
U K
M
UC
四、自动操舵仪中的常用调节环节 1、比例舵角调节 2、反舵角调节(微分舵,制动舵,纠偏舵) 3、灵敏度调节。天气调节。调节规律为:风平浪静, 灵敏度高;大风大浪,灵敏度低。 4、航向调节。用于自动航行中改变航向。 5、罗经匹配旋钮。 6、自动、随动、应急操舵转换开关。 7、航向警报消音按钮。
Eref
7 Ein
R12
Rf Uout
R11
负半周
D3 r
-5 Eref
Ein 6+ - -+ Eref
+7 D6
i1 if
R12 Rf
R11
i3 i2 r
方程组
• Eref+Ein=i1*r+if(R+Rf) • Eref-Ein=i2*r-i3*R • i3*R-if(R+Rf) =0 • if+i3+i2=i1
k
p
kD
d
dt
kI
dt
其中比例和微分控制规律如前所述。这里的积分控制主要 功能是要消除单向航向静差。当这种单向航向偏差出现在 灵敏度以内时,将不会引起动舵。但这种灵敏度以内的小 角度偏航,随着航行时间的增长,将引起船舶较大的偏航。 积分环节的作用就是要将这种小角度偏航进行积累,当积 累的偏航角度超过灵敏度时,给出一个纠偏舵角,此舵角 即为积分舵角。
接电反馈装置
夜控旁通阀: 旁通油、路隔锁断闭液压阀缸
驾 锁驶 闭台 油操 路 舵 锁电 闭信 备号 用油路
溢流节流安阀全:阀调:速伺服
活塞最大输出力
§4-4 自动操舵的控制规律 一、按比例控制的自动操舵
k p
式中 *
Kp随船型而不同,对万吨船来说,一般为2~3, 即偏航1°时,偏舵角为2~3°。比例系数过大, 将使船舶偏航振幅加大。因此比例操舵虽然简 单、可靠,但航向稳定精度较差。当受一舷持 续偏航力矩作用时,不能保证船舶的定向航行。
第四章 船舶航向自动控制系统
§4-1船舶舵机装置的组成及控制系统分类
一、舵机装置组成 1、操舵装置 2、舵机 3、舵叶 二、控制系统分类 1、直接控制系统或称单舵系统、应急操舵。 2、随动控制系统。 3、自动操舵控制系统,又称自动航向稳定系统。 4、航线自动控制系统,又称航向自适应控制系统
§4-2 船舶航行对舵机装置的要求
舵机
船舶
-
-
舵角反馈
航向反馈
2、在舵角反馈回路设置比例、积分环节
φ* Δφ
β*
β
φ
航向控制器
舵机控制器
舵机
船舶
-
-
比例积分
航向反馈
3、“游隙”机构的作用
பைடு நூலகம்
φ* Δφ
β*
β
φ
航向控制器
舵机控制器
舵机
船舶
-
-
舵角反馈
航向反馈
主驱轴
从动轴
* 0
t
1
2
t
kp
三、比例、微分、积分控制的自动操舵
控制方程式:
三点浮杆追随机构原理
作用:加快转舵速度
操纵杆
A
A1 A2
变量控制杆
C
C1
反馈杆
B2
B1 B
二、阀控型液压舵机
使用单向定量油泵,转舵靠驾驶台遥控换向 阀实现,油泵排油回泵的进口或回油箱。
特点:系统简单,造价低;冲击大,可靠性 差,油液发热量大,经济性差。
缺点:
1.液压伺服系 统故障率大
2.转换遥控系 统时间长
§4-5 自动舵中常用典型电路
一、相敏整流电路
许多自动舵中在用于偏航信号检测和舵角反馈 信号转换时,都采用自整角机作为检测元件。而自 整角机输出信号为交流信号,其相位反映偏航方向, 幅值反映偏航角度。因此,必须将其转换为直流信 号,且其极性反映交流信号的相位,大小反映交流 信号的幅值。能完成此功能的整流电路称为相敏整 流电路。
即使这种单侧偏航角度超过灵敏度,但不对称偏航所引 起的偏舵也是不对称的.因此时间长了,船舶也会出现 单侧偏航.实际航海中,通常人为压一个合适的舵角航行, 以纠正单侧偏航。
实现积分控制的方案:
1、电动机积分环节:
UC
U
UC UI
2、热积分环节:
偏航加热器
UI
积分输出
热敏电阻
UC 电源
3、在舵角反馈回路设置微分环节
1、舵机装置供电要采用两舷供电方式。其中一路应经由应 急配电板供电。 2、电动舵机的电动机采取连续工作制,有足够的过载能力, 软机械特性,能堵转一分钟。 3、舵机应能在驾驶台和舵机房两个地方控制,由转换开关 转换。 4、应设有舵叶偏转限位开关,一般为±35°。 5、自动操舵时,设有偏航报警,一般为±8°~±10°。
1、环形相敏整流电路
5
+ Eref 6 + Eref
-
7
D3 D4 D6 D5
Ein
R12 Rf Uout
R11
相敏整流电路分析
D4 r
条件:参考(调制)电压远大于输入电压 5
正半周
Eref
D3 D4
+5 Eref
6+ Eref
-7
Ein
+-
D5
i1
if R11 Rf
R12
i3
r
i2
6 D6 D5
11、舵杆直径>230mm的舵机,45s内提供替代动力; 1万Gt以上工作 30min, 其他工作10min。
§4-3自动操舵的工作原理
一、人工操舵的一般规律
360
270
90
180
二、自动操舵原理及方框图
常规自动操舵通常是指用电罗经或磁罗经检测航向 偏差,在通过航向控制器进行舵角操纵,达到航向 纠偏。其控制方框图如下:
Uout if * Rf
二、按比例、微分控制的自动操舵
(kp kd d )
dt
式中, d d * d
dt
dt
dt
则,
k
p
kd
d
dt
d
dt
* 0
t
kd
d
dt
t
kp
实现比例、微分控制的方案 1、航向控制器为运算放大器组成的比例、微分调节器 其方框图如下:
φ* Δφ
β*
β
φ
PD控制器
舵机控制器
6、设舵机失电报警和舵机电动机过载报警,但不设 过载保护。
7、在船舶高速满载情况下,舵应能自一舷35°转至 另一舷35°。且所需时间不超过28秒。辅助舵机小 于60秒。
9、在驾驶台设有舵角指示器,其与操舵指令和实际 舵角的误差<1°。
10、自动操舵仪应具有自动、随动和应急三种操舵 方式,且能方便转换和相互联锁。
φ* Δφ
β*
β
φ
航向控制器
舵角控制器
舵机
船舶
-
-
舵角反馈
航向反馈
§ 4-4 自动舵的执行机构
• 舵机
舵机 [Steering Gear]
一、泵控型液压舵机
防浪阀(双联溢流阀): 储能弹防簧冲太太击软硬,::沟无不通法起高转作低舵用压油路
ACB:浮动杆追随机构[Float Hunting Gear]
相关文档
最新文档