华东师大版初中数学复习
华东师大初中数学九年级下册《圆》全章复习与巩固—知识讲解(基础)
《圆》全章复习与巩固—知识讲解(基础)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系;2.探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;3.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;4.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;5.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;6.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等. 要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.两圆的五种位置关系可以概括为三类:要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的有关概念及性质【高清ID号: 362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题1-2】1.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为.【解析】由已知得BC ∥x 轴,则BC 中垂线为2412x -+== 那么,△ABC 外接圆圆心在直线x=1上,设外接圆圆心P(1,a),则由PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为P(1,0) 则 22(11)(03)13r PA ==++-=【总结升华】 三角形的外心是三边中垂线的交点,由B 、C 的坐标知:圆心P (设△ABC 的外心为P )必在直线x=1上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到P (1,0);连接PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,∠DEB =60°, 求CD 的长.【思路点拨】作OF ⊥CD 于F ,构造Rt △OEF ,求半径和OF 的长;连接OD ,构造Rt △OFD ,求CD 的长. 【答案与解析】作OF ⊥CD 于F ,连接OD .∵ AE =1,EB =5,∴ AB =6. ∵ 32ABOA ==,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵ ∠DEB =60°,∴ ∠EOF =30°,∴ 112EF OE ==,∴ 223OF OE EF =-=. 在Rt △DFO 中,OF =3,OD =OA =3,∴ 22223(3)6DF OD OF =-=-=(cm). ∵ OF ⊥CD ,∴ DF =CF ,∴ CD =2DF =26cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.举一反三: 【变式】如图,AB 、AC 都是圆O 的弦,OM⊥AB,ON⊥AC,垂足分别为M 、N ,如果MN =3,那么BC = .【答案】由OM⊥AB,ON⊥AC,得M 、N 分别为AB 、AC 的中点(垂径定理),则MN 是△ABC 的中位线,BC=2MN=6.3.(2017•曲靖一模)如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC 和∠BOC 互补,则弦BC 的长度为.【思路点拨】首先过点O 作OD ⊥BC 于D ,由垂径定理可得BC=2BD ,又由圆周角定理,可求得∠BOC 的度数,然后根据等腰三角形的性质,求得∠OBC 的度数,利用余弦函数,即可求得答案. 【答案】4.【解析】解:过点O 作OD ⊥BC 于D , 则BC=2BD ,∵△ABC 内接于⊙O ,∠BAC 与∠BOC 互补, ∴∠BOC=2∠A ,∠BOC+∠A=180°, ∴∠BOC=120°, ∵OB=OC ,∴∠OBC=∠OCB=(180°﹣∠BOC )=30°, ∵⊙O 的半径为4, ∴BD=OB•cos∠OBC=4×=2,∴BC=4.故答案为:4.【总结升华】此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用. 举一反三:【变式】如图,⊙O 的半径是2,AB 是⊙O 的弦,点P 是弦AB 上的动点,且1≤OP≤2,则弦AB 所对的圆周角的度数是( )N MO C BAA.60°B.120°C.60°或120°D.30°或150°【答案】C.【解析】作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系【高清ID号: 362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题6】4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.请判断直线CE与⊙O的位置关系,并证明你的结论.【答案与解析】直线CE与⊙O相切理由:连接OE∵OE=OA∴∠OEA=∠OAE∵四边形ABCD是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线CE与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为(x、y).(1)求与直线相切时点P的坐标.(2)请直接写出与直线相交、相离时x的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,(,).当与直线相切时,点的坐标为(5,7.5)或(,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD ,∴∠ABC=∠ODB , ∵AB=AC ,∴∠ABC=∠ACB , ∴∠ODB=∠ACB , ∴OD ∥AC ,∵DF 是⊙O 的切线, ∴DF ⊥OD , ∴DF ⊥AC .(2)解:连接OE ,∵DF ⊥AC ,∠CDF=22.5°, ∴∠ABC=∠ACB=67.5°, ∴∠BAC=45°, ∵OA=OE ,∴∠AOE=90°, ∵⊙O 的半径为4,∴S 扇形AOE =4π,S △AOE=8 , ∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,AB 所在圆的圆心为O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【思路点拨】求覆盖棚顶的帆布的面积,就是求以AB 为底面的圆柱的侧面积.根据题意,应先求出AB 所对的圆心角度数以及所在圆的半径,才能求AB 的长. 【答案与解析】连接OB ,过点O 作OE ⊥AB ,垂足为E ,交AB 于点F ,如图(2). 由垂径定理,可知E 是AB 中点,F 是AB 的中点,∴ 12AE AB ==EF =2. 设半径为R 米,则OE =(R-2)m .在Rt △AOE 中,由勾股定理,得222(2)R R =-+. 解得R =4.∴ OE =2,12OE AO =,∴ ∠AOE =60°,∴ ∠AOB =120°.∴AB的长为120481803ππ⨯=(m).∴帆布的面积为8601603ππ⨯=(m2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.【答案】①作法略.如图所示.②如图所示,过O作OC⊥AB于D,交于C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为10cm.。
华东师大版数学初中知识点归纳
七年级上册数学期末复习一、第1章 走进数学世界1.数学是一个充满着观察、实验、归纳、类比和猜测的探索过程;2.根据已有的信息,发现并找出内在的规律,养成独立思考与合作交流的习惯,在数学活动中获得对数学良好的感性认识.例1 计算:)1(1...1216121+++++n n =_______ 例2 找规律填数字:1,1,2,3,5,8,13,______,______例3 五位老朋友a ,b ,c ,d ,e 相约去公园游玩,他们见面后,都要和对方握手以示问候,已知a 握了4次,b 握了1次,d 握了3次,e 握了2次,那么到现在为止,c 握了几次?例4 若a ⊙b =4a -2b +21ab ,则21⊙51=________ 例5 如图1所示,图中共有____个三角形、______个正方形.例6 要从一张长为40cm ,宽为20cm 的矩形纸片中剪出长为18cm ,宽为12cm 的矩形制片,最多能剪出____ 张 例7 观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,….这些等式反映了自然数之间的某种规律,设n(n ≥1)表示自然数,用关于n 的等式表示这个规律是________ 例8 在一列数1,2,3,4,…,1000中,数字0共出现了( )A .182次B .189次C .192次D .194次二、第2章 有理数3.负数、正数;0既不是正数,也不是负数.4.整数:正整数、零和负整数统称整数;分数:正分数和负分数统称分数;有理数:整数和分数统称有理数.5.有理数的分类:6.数轴:规定了_____、_______和___________的直线叫做数轴.7.相反数:只有正负号不同的两个数称互为相反数;零的相反数是零.(1)在数轴上表示互为相反数的两个点分别位于原点的两旁,且与原点的距离相等.(2)a 的相反数记作___.当a 表示一个多项式时,将a 括起来,在括号前面添“-”号.8.绝对值:在数轴上表示数a 的点与原点的________叫做数a 的绝对值,记作|a ︱.(1)一个正数的绝对值是它______;零的绝对值是______;一个负数的绝对值是它的____________.(2)a 的绝对值是非负数(正数和0).即对任意有理数a ,总有|a ︱≥0.图1 有理数整数 分数或 有理数 正有理数 零 负有理数a (a ___0)(3)|a ︱=-a (a ___0)9.有理数的大小比较(1)在数轴上表示的两个数,右边的数总比左边的数______;(2)正数都_______零,负数都______零,正数______负数;(3)两个负数绝对值大的反而_______;(4)把两个数(或代数式)相减,若差大于0,则被减数______减数;差等于0,被减数________减数;差小于0,被减数________减数;(5)把两个正数相除,若商大于1,则被除数_____除数;商小于1,被除数_______除数.10.有理数的加法法则(1)同号两数相加,取与加数相同的正负号,并把绝对值________; (2)绝对值不相等的异号两数相加,取绝对值较大的加数的正负号,并用较大的绝对值_______较小的绝对值;(3)互为相反数的两个数相加得_____;(4)一个数与零相加,仍得这个数.11.有理数加法运算律(1)加法交换律:两个数相加,交换加数的位置,和不变;即a +b =________(2)加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变;即a +b +c =( )+c =a +( )12.有理数的减法法则:减去一个数等于加上这个数的_________13.有理数的加减混合运算:可先用去括号法则化简,再用加法交换律运算.例9 计算: )1()31()51()54()32(+---+--++ 14.有理数的乘法法则: (1)两数相乘,同号得______,异号得______,并把________相乘.(2)几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为_______;当负因数的个数有偶数个时,积为_______.(3) 几个数相乘,有一个因数为零,积就为______.(4)两数相乘,同时改变这两个因数的正负号,积_______.15.有理数乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积______.即ab =______(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积_______. 即abc =(ab )c =a (bc )(3)乘法分配律:一个数与两个数的和相乘,等于把这个分别与这两个数相乘,再把积____, 即a (b +c )=____________16.倒数:(1)乘积是1的两个数互为_____数;(2)a (a ≠0)的倒数等于_______;(3)若a 与b 互为倒数,则ab =_____.17.有理数的除法:(1)除以一个数等于乘以这个数的________(注意零不能做除数);(2)两数相除,同号得_____,异号得_____,并把_______相除.(3)零除以任何一个不等于零的数,都得_____.18.有理数的乘方:(1)求几个相同因数的积的运算,叫做_______,乘方的结果叫做____;(2)na 中,a 叫做_____,n 叫做______;(3)正数的任何次幂都是_____数;(4)负数的奇次幂是_____数,偶次幂是______数.19.科学计数法:一个绝对值大于10的数记成___________的形式,其中1≤︱a ︱<10,n 是正整数(其中n 比所给数字的整数位数小1).20.有理数的混合运算顺序:(1)先算_______,再算______,最后算________;(2)同级运算,按照____________的顺序进行;(3)如果有括号,就先算_________里的,再算______里的,然后算________里的.例10 计算:[]24)3(2611--⨯-- 21.近似数和有效数字:(1)一个近似数,四舍五入到某一位,就说这个近似数精确到那一位;(2)有效数字:一个数从左边第一个不是_____的数字起,到末位数字为止,所有的数字都叫做这个数字的有效数字.三、第3章 整式的加减22.代数式:由数和字母用___________连结所成的式子,称为代数式,如a ,a +b ,ab ,(a +b )2,0,-3,5m -2n ,2)1(+n n 等;单独________或____________也是代数式. 23.代数式的值:用数值代替代数式里的_______,按照代数式中的运算计算出的结果,叫做代数式的值.24.整式:(1)单项式:由数与字母的________组成的代数式叫做单项式;单独________或____________也是单项式.单项式中的__________叫做这个单项式的系数;单项式中所有字母的________叫做这个单项式的次数.(2)多项式:几个单项式的______叫做多项式,其中,每个单项式叫做多项式的______,不含字母的项叫做________;多项式里,次数最高项的_______,就是这个多项式的次数.(3)多项式的升幂排列和降幂排列;(4)单项式与多项式统称________.25.同类项:所含字母相同,并且相同字母的指数也_______的项叫做同类项.26.合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数_____.27.去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都_______________;(2)括号前是“―”号,把括号和它前面的“―”号去掉,括号里各项都______________.28.添括号法则:(1)所添括号前面是“+”号,括到括号里的各项都_______________,(2)所添括号前面是“―”号,括到括号里的各项都_________________.29.整式的加减的一般步骤:先_________,再_______________.四、第4章 图形的初步认识30.填出以下生活中的立体图形的名称;其中,图(1)和图(5)这两个立体图形的每个一面都是平的,像这样的立体图形,又称为__________体.(1)________ (2)______ (3)_______ (4)______ (5)_______31.写出知识点30中图(1)~(5)的主视图、左视图和俯视图.图(1)主视图:____________,左视图:___________,俯视图:__________;图(2)主视图:____________,左视图:___________,俯视图:__________;图(3)主视图:____________,左视图:___________,俯视图:__________;图(4)主视图:____________,左视图:___________,俯视图:__________;图(5)主视图:____________,左视图:___________,俯视图:__________.32.立体图形的表面展开图(ppt 课件)33.点和线(1)如下图,在图中标出的点有点_____、_____、______;线段有____、____、_____;射线共有_____条,其中以点B 为端点的射线是______和______;图中的线段或直线还可以用一个______字母表示. (2)线段公理:两点之间,______最短. · · · A B C(3)直线公理:经过两点有一条直线,并且____________直线.(4)线段中点:把一条线段分成两条相等线段的点,叫做这条线段的中点.如图,若点C 是线段AB 的中点,则AC=_______=21______ 34.角 (1)角的概念:角是由两条有公共______的_______组成的图形;角还可以看成是由一条射线绕着它的端点旋转而成的图形.(2)如右图,∠AOB 是_____角.(3)1周角=___°,1平角=____°,1直角=___°,1°=_____′,1′=______″.(4)角的表示:把下图中的角表示在横线上.____________ ___________ ____________ ______________(5)在方位坐标中用角度表示方向,如图34.5,射线______表示北偏东30o ,射线____表示北偏西60o ,射线______表示西南方向,射线_______表示南偏东25o .(6)角平分线:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图34.6,若OC 平分∠AOB ,则∠AOC=∠_____=21∠_____.(7)余角和补角:若∠1与∠2互为余角,则∠1+∠2=______ ;若∠1与∠2互为补角,则∠1+∠2=______ .五、第5章 相交线与平行线35.相交线:(1)如图35.1,∠1的对顶角是_____,∠4的对顶角是_____,∠2的邻补角有__________.(2)对顶角的性质:对顶角______.(3)如图35.2,若∠DOB=90o ,则直线AB与CD 互相_______,记作_________,直线AB 与CD 的交点O 叫做_____.(4)垂线公理:过一点有且只有____条直线与已知直线垂直.(5)点到直线的距离:从直线外一点到这条直线的垂线段的_______,叫做点到直线的距离.36.同位角、内错角、同旁内角 (1)在图36.1中,四对同位角是____________________,两对内错角是_________________,两对同旁内角是_________________. 37.平行线(1)平行线的定义:在同一平面内,不_______的两条直线叫做平行线.(2)平行公理:过直线外一点有且只有_____条 直线与这条直线平行.(3)平行线的判定:①同位角_______,两直线 平行;②内错角_______,两直线平行;③同旁内角_______,两直线 平行.④如果两条直线都和第三条直线平行,那么这两条直线也____ _____.⑤在同一平面内,垂直于同一条直线的两条直线________.(4)平行线的性质:①两直线平行,同位角_____;②两直线平行, 内错角_______;③两直线平行,同旁内角________.· · · A BC · A B O A B OO 1 α A BC D 东西北 南 30o 45o 25o 60o O 图34.5 A O B C 图34.6 A B O C D 1 2 3 4 图35.1 A B C D O 图35.2 12 3 4 6 5 7 8 a b l 图36.1七年级下册数学期末复习一、第6章 一元一次方程1.方程的概念:含有未知数的________叫做方程.2.方程的解:使方程左右两边的值__________的未知数的值.3.等式的基本性质:(1)如果a =b ,那么a +c =b +c ,a -c =b -c .即等式的两边都加上(或都减去)同一个数或同一个整式,所得的结果仍是__________.(2)如果a =b ,那么ac =bc ,cb c a =(c ≠0).即等式的两边都乘以(或都除以)同一个数(除数不能为______),所得的结果仍是__________.4.方程的变形规则: (1)方程两边都加上(或都减去)同一个____或同一个_____,方程的解不变.(2)方程两边都乘以(或都除以)同一个不等于_____的数,方程的解不变.5.移项:将方程中的某些项_____________后,从方程的一边移到另一边的变形叫做移项.6.一元一次方程定义:含有____个未知数,并且含有未知数的式子都是____式,未知数的次数都是_____的方程.7.解一元一次方程的一般步骤:(1)去______,(2)去________,(3)________,(4)合并_________,(5)未知数的系数化为_____.例1.解方程:15334--=-x x 8.列方程解应用题的常见问题(1)行程问题:路程=______×______. ①相遇问题:总乙甲S S S =+;②追击问题:=-慢快S S 两者出发地点间的距离;③水流问题:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.(2)工程问题:工作总量=工作效率×_________.(3)浓度问题:溶质质量=溶液质量×_________________.(4)利率问题:本息和=_____+_____,利息=本金×年利率×年数.(5)两或三位数大小的表示问题:一个三位数,百位上数字是a ,十位上数字是b ,个位上数字是c ,则这个三位数大小表示为_____________.(6)利润率问题:利润率=进价利润,利润=售价-进价,售价=标价×打折数.(7)几何图形的周长、面积,几何体的体积、表面积公式.9.列方程解应用题的一般步骤:(1)设(直接或间接)未知数;(2)根据题意找出相等关系;(3)用代数式表示相等关系中的量,得到方程.二、第7章 一次方程组10.二元一次方程的概念:含有_____个未知数,并且未知数_____的次数都是_____的方程叫做二元一次方程.11.二元一次方程组的概念:把两个二元一次方程(或一元一次方程)合在一起,就组成了二元一次方程组.12.二元一次方程组的解:使二元一次方程组中_____个方程的左右两边的值都_______的两个未知数的值.13.二元一次方程组的解法 (1)代入消元法;(其中,把一个二元一次方程变形成用含有一个未知数的代数式表示另一个未知数的形式,是用代入法解二元一次方程组的关键环节). 例如,用含x 的代数式表示y :把含x 的项和常数项全部移到方程右边,把含y 的项全部移到方程左边,合并同类项,把y 的系数化为1.(2)加减消元法;①加减消元法一般把每个二元一次方程变形为ax +by =c 的形式;②当某一未知数的系数相等就用减法,系数互为相反数就用加法;③若未知数的系数不相等也不互为相反数,只须找到某一未知数系数的最小(绝对值最小)公倍数,将两个方程变形,使这一未知数的系数相等或互为相反数,再用加减法.例2.解方程组: ⎩⎨⎧=+=-.75,1734y x y x (用两种方法解) 14.三元一次方程组的解法:通过消元(用加减消元法或代入消元法消元),把三元一次方程组转化为二元一次方程组,或转化为一元一次方程.例3.解方程组:⎪⎩⎪⎨⎧=--+=++-=-+0623083242z y x z y x z y x 15.列一次方程组解应用题(列方程的方法与列一元一次方程相同):三、第8章 一元一次不等式16.不等式定义:用不等号“<”、“≤”、“>”、“≥”或“≠”表示_______关系的式子,叫做不等式.17.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.18.用不等式表示:a 是负数______,a 是正数_____,a 是非负数_____,a 是非正数______19.不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集.在数轴上表示不等式的解集的方法: 没有等号画空心圆点,有等号画实心圆点;“大于”或“大于等于”方向向右,“小于”或“小于等于”方向向左.20.不等式的基本性质:(1)如果a >b ,那么a +c _____b +c ,a -c _____b -c ;即不等式的两边都加上(或都减去)同一个数或同一个整式,不等号的方向________. (2) 如果a >b ,并且c >0,那么ac _____bc ,c a _____cb ;即不等式的两边都乘以(或都除以)同一个正数,不等号的方向______.(3)如果a >b ,并且c <0,那么ac _____bc ,c a _____c b .即不等式的两边都乘以(或都除以)同一个负数,不等号的方向_______.21.一元一次不等式的定义:只含有一个未知数,并且含未知数的式子是____式,未知数的次数是_____的不等式叫做一元一次不等式.22.一元一次不等式的解法:一元一次不等式的解法与一元一次方程的解法步骤一样,就是要将不等式最终变形成x >a 或x <a 的形式.23.不等式组的解集:不等式组中几个不等式的解集的_________,叫做这个不等式的解集.24.一元一次不等式组的解法:分别解出不等式组中每一个不等式,再求出它们的公共解集. 一元一次不等式组的公共解集的确定方法:(1) 同“大”取大,同“小”取小,“大”小“小”大中间找,“大”大“小”小无解了.(2)把每一个不等式的解集在数轴上表示出来,再找其解集的公共部分.例4.(1)解不等式:21334--+x x >1. (2)求不等式组⎩⎨⎧-≥--<-15764,2552x x x x 的自然数解. 四、第9章 多边形25.三角形的有关概念:(1)三角形定义:三角形是由三条不在同一条直线上的_______首问题 分析 抽象方程(组) 求解 检验 解答尾顺次连结组成的平面图形,这三条线段就是三角形的______.(2)三角形用符号 “△”表示,如△ABC .(3)三角形两条边的公共端点叫三角形的_________,用大写字母表示.(4)三角形每两条边所组成的角叫做三角形的________.(5)三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的_______.26.三角形按角分类: ______三角形,______三角形,______三角形.27.等腰三角形定义:有两条边相等的三角形称为_______三角形,相等的边都叫做等腰三角形的_____;把三条边都相等的三角形称为等边三角形(或_____________).28.三角形的中线、角平分线、高、 如图28-1,取△ABC 边AB 的中点E ,连结CE ,线段CE 就是△ABC 的一条_______;作△ABC 的内角∠BAC 的平分线交对边BC 于D ,线段AD 就是△ABC 的一条_______;过顶点B 作△ABC 的边AC 的垂线,垂足为F ,线段BF 就是△ABC 的一条______.△ABC 有_____条中线,_____条角平分线,_____条高.三角形的三条中线、三条角平分线和三条高(或所在的直线)分别_____________;直角三角形三条高的交点就是_____________;直角三角形有两条高就是直角三角形的两条______边,钝角三角形有两条高在三角形的_____部.29.三角形的内、外角和 (1)三角形的内角和等于_______;直角三角形的两个锐角___ ______.(2)三角形的一个外角等于与它不相邻的两个_____________;三角形的一个外角_______任何一个与它不相邻的内角.如图29-1,∠CBD =∠____+∠_____,∠CBD____∠A ,∠CBD_____∠C .(3)三角形的外角和等于_______.如图29-2,∠1+∠2+∠3=_______.30.三角形的三边关系 (1)三角形任何两边的和______第三边;(2)已知三角形的两边长分别为2和5,则第三边x 的取值范围是_____________.(3)实践中常用三角形结构固定物体,利用三角形的_________性.31.n 边形的概念:由n 条不在同一直线上的__________首尾顺次连结组成的平面图形称为n 边形.32.正多边形概念:如果多边形的各边都_______,各内角都______,那么就称它为正多边形.如正三角形(等边三角形)、正四边形(正方形)、正五边形等.33.n 边形的内角和为___________________;任意多边形的外角和都为_________.34.从n 边形的一个顶点出发可以作______条对角线;一个n 边形共有_________条对角线.35.用正多边形或任意三角形、四边形拼地板的关键是围绕一点拼在一起的几个内角加在一起恰好组成一个_________时,就可以铺满地面.(1)用一种正多边形能铺满地面的是:正三角形、正方形、正六边形;(2)用两种正多边形能铺满地面的常见组合是:①正三角形和正方形;②正三角形和正六边形;③正八边形和正方形;④正三角形和正十二边形;(3)用三种正多边形能铺满地面的常见组合是:①正三角形、正方形和正六边形;②正方形、正六边形和正十二边形.五、第10章 轴对称、平移与旋转36.轴对称图形的定义:把一个图形沿某条直线对折,对折后的两部分能完全_________,即为轴对称图形,这条直线即为这个图形的___________. A B C DE F 图28-1 A B D C 图29-1 图29-2A l O · ·A ' 图41-137.轴对称的定义:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形______,那么就说这两个图形成_______,这条直线就是________.两个图形中的对应点叫做_______.38.轴对称图形的基本特征:轴对称图形(或成轴对称的两个图形)的对应线段(对折后重合的线段)_________,对应角(对折后重合的角)_________.39.线段垂直平分线定义:把垂直并且平分一条线段的直线称为这条线段的____________,垂直平分线又可称为___________.40.作轴对称图形的对称轴:如果一个图形是轴对称图形,那么连结对称点的线段的____ ____________就是该图形的对称轴.41.画轴对称图形:已知点A和直线l,画出点A关于直线l对称的点A'.作法:如图41-1,过点A作AO____l,垂足为O,延长AO到A',使O A'=_____,则点A'就是所求的点.42.常见的轴对称图形有:线段、角、等腰三角形、矩形、菱形、正方形、等腰梯形、圆等.43.平移的定义:平面图形在它所在的平面上的_____________,简称为平移.平移是由移动的__________和_________所决定的.44.平移的特征:平移后的图形与原来的图形的对应线段_________(也可能在同一直线上)并且_________,对应角________,图形的形状大小__________.平移后对应点所连的线段__________(也可能在同一直线上)并且_________.45.旋转的定义:一个图形绕着一个点在一个平面上_________,像这样的运动,就叫做旋转.绕着哪个点旋转,这个点就是_____________.图形的旋转由___________、__________和_______________所决定.46.旋转的特征:图形中每一点都绕着____________按同一_____________旋转了同样大小的_________,对应点到旋转中心的距离_________,对应线段_________,对应角________,图形的形状大小________.47.旋转对称图形:旋转一定角度后能与自身________的图形就称为旋转对称图形.48.图形变换间关系:将一个图形作两次翻折(轴对称),如果两次翻折的两条对称轴平行,则相当于作一次平移,如果两次翻折的两条对称轴相交,相当于作一次旋转.49.中心对称图形的定义:一个图形绕着中心旋转________后能与自身重合,把这种图形叫做中心对称图形.这个中心叫做对称中心.50.中心对称的定义:把一个图形绕着某一点旋转______,如果它能够和另一个图形_____,那么这两个图形成中心对称.51.中心对称(图形)的特征:在成中心对称的两个图形中,连结对称点的线段都经过____ _________,并且被对称中心________.52.两个图形成中心对称的判定方法:如果两个图形的所有对应点连成的线段都经过某一点,并且被该点_______,那么这两个图形关于这一点成中心对称.53.画中心对称图形:已知点A和点O,作点A关于点O成中心对称的点A'.作法:连结AO,并延长AO到点A',使OA'=OA,则点A'即为所求的点.54.常见的中心对称图形:线段,平行四边形,矩形(长方形),正方形,菱形,圆等.55.全等多边形定义:一个多边形经过图形变换与另一个多边形能重合,称这两个多边形为全等多边形.互相重合的顶点叫做______________,互相重合的边叫做__________,互相重合的角叫做___________.56.全等多边形的性质:全等多边形的对应边_________,对应角_________.57.全等多边形的判定:边、角分别_______________的两个多边形全等.58.全等三角形的性质:全等三角形的对应边、对应角分别__________.58.全等三角形的判定:若两个三角形的边、角分别____________,则这两个三角形全等.八年级上册数学期末复习一、第11章 数的开方1.如果一个数的平方等于a ,那么这个数叫做a 的________. 即若a x =2,则x =_______2.正数a 的正的平方根,叫做a 的_____________,记作________3.如果一个数的立方等于a ,那么这个数叫做a 的_______.即a x =3,则x =_______4.无限不循环小数叫做__________,如2、35、π、0.1010010001…等都是无理数;有理数与无理数统称__________;_________与数轴上的点一一对应.5.2)(a =________(a ____0), 即一个非负数的算术平方根的平方等于它本身.二、第12章 整式的乘除6.幂的运算(1)m a ·n a =__________.同底数幂相乘,底数不变,指数_______.(2)n m a )(=__________.幂的乘方,底数不变,指数________.(3)n ab )(=__________.积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.(4)m a ÷n a =_________.同底数幂相除,底数不变,指数_______.7.整式的乘法(1)单项式与单项式相乘,只要将它们的______、__________的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.(2)单项式与多项式相乘,只要将单项式分别乘以多项式的_______,再将所得的积相加.(3)多项式与多项式相乘,先用一个多项式的________分别乘以另一个多项式的_______,再把所得的积相加.8.乘法公式(1)(a +b )(a -b )=___________.两数和与这两数差的积,等于这两数的平方差.(2)2)(b a +=_______________.两数和的平方,等于这两数的平方和加上它们的积的2倍.(3)2)(b a -=_______________.两数差的平方,等于这两数的平方和减去它们的积的2倍.9.整式的除法(1)单项式除以单项式:单项式相除,把_______、____________分别相除作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的_______除以这个单项式,再把所得的商相加.10.因式分解(1)定义:把一个多项式化为几个整式的______的形式,叫做多项式的因式分解.(2)方法:①提公因式法(公因式:各项系数的最大公约数与同底数幂中的最小指数幂的积);②公式法 平方差公式22b a -=___________,完全平方公式222b ab a +±=____ _________;③分组分解法 分组后能提公因式;分组后能运用公式.④十字相乘法 例.1、2x (a -2)-y (2-a ) 2、252216y x - 3、3m 2-6mn +3n 24、ab +a +b +15、1222-+-y y x6、x 2-5x -6 三、第13章 全等三角形11.命题:判断某一件事情的语句叫做命题.命题必须具备两个条件:(1)命题必须是一个完整的句子;(2)必须对某件事情做出肯定或否定的判断.命题分为题设和结论两部分.互逆命题:在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做__________.互逆定理:如果一个定理的逆命题也是定理,那么这两个定理叫做____________.12.证明:根据条件、定义以用基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明.13.三角形全等的判定:_____(边角边)、_____(角边角)、_____(角角边)、_____(边边边)、HL(斜边直角边,用于直角三角形全等的判定);注意:SSA(边边角)不能用来证明两个三角形全等; 如图13-1,已知,AC=AD ,AB=AB ,∠B=∠B ,但△ABC 与△ABD 不全等.14.等腰三角形:(1)定义:有两条边相等的三角形叫做等腰三角形;等腰三角形中,相等的两边都叫做_______,另一边叫做__________,两腰的夹角叫做_______,腰和底边的夹角叫做________.(2)性质:①等腰三角形的两底角相等.(简写成:____________) ②等腰三角形底边上的高、中线及顶角的平分线互相重合.(简称____________)(3)判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称_______)15.等边三角形:(1)定义:三条边都相等的三角形是_________三角形;(2)性质:等边三角形的各个角都相等,并且每一个角都等于60o ;(3)判定:①三个_____都相等的三角形是等边三角形;②有一个角等于______的_________三角形是等边三角形.16.尺规作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知角的平分线;(4)经过一已知点作已知直线的垂线;(5)作已知线段的垂直平分线.17.线段垂直平分线:(1)性质定理:线段垂直平分线上的点到线段两端的距离________.如图13-2,∵CD ⊥AB ,OA=OB ,∴PA=PB .(2)逆定理:到线段两端距离相等的点,在线段的__________________上.如图13-3,∵PA=PB ,∴点P 在AB 的垂直平分线上.18.角平分线:(1)性质定理:角平分线上的点到角两边的距离________.如图13-4,∵OC 平分∠AOB ,PE ⊥OA ,PD ⊥OB ,∴PE=PD .(2)逆定理:角的内部到角的两边距离相等的点在角的____________上.如图13-4,∵PE ⊥OB ,PD ⊥OA ,PE=PD ,∴OC 平分∠AOB .四、第14章 勾股定理19.勾股定理:直角三角形两直角边的__________等于斜边的平方.如图14-1,在Rt △ABC中,∠C=90o ,则AC 2+BC 2=AB 2..20.直角三角形的判定:(1)有一个角是直角的三角形是直角三角形.(2)有两个锐角的和等于90°的三角形是直角三角形.(3)勾股定理的逆定理:如果三角形的三边长a 、b 、c 有关系a 2+b 2=c 2,那么这个三角形是直角三角形,且边c 所对的角为直角.21.反证法:(1)先假设结论的反面是正确的;(2)通过演绎推理,推出假设与基本事实、定理、定义或已知条件相矛盾;(3)得出原结论正确. A BD 图13-1 图14-1 图13-2 B 图13-3 A B O P C E D 图13-4。
华东师大版初中数学同步知识框架
4、判断两个图形是否全等
旋转的综合应用
好:2次
中:3次
差:4次
第十六章 平行四边形的认识
1、平行四边形的性质
2、矩形的性质
3、菱形的性质
4、正方形的性质
5、梯形的性质
1、平行四边形的性质
2、矩形的性质
3、菱形的性质
4、正方形的性质
5、梯形的性质
1、平行四边形、矩形、菱形、正方形性质的综合应用
2、梯形的性质的应用以及常见辅助线的应用
好:4次
中:5次
差:6次
八
年
级
下
第十七章 分式
1、分式及其根本性质
2、分式的运算
3、可化为一元一次方程的分式方程
4、分式方程与实际运用
5、零指数幂与负整指数幂
1、分式的运算
2、解分式方程
3、分式方程与实际运用
分式方程与实际运用
好:2次
中:3次
差:4次
第十八章 函数及其图形
2、多边形的角和与外角和
1、三角形的分类与性质
2、多边形角和公式和外角和的应用
多边形的角和公式和外角和公式
好:1次
中:1.5次
差:2次
第十章 轴对称
1、轴对称的认识
2、等腰三角形
1、正确判断轴对称图形
2、会画轴对称图形
3、等腰三角形的性质及其应用
1、轴对称的综合应用
2、等腰三角形性质的应用
好:2次
中:3次
2、用树状图或表格法表示概率
用树状图或表格法表示随机事件与概率
好:1次
中:1.5次
差:2次
九
年
级
下
第二十七章
华东师大初中数学中考总复习:圆综合复习--知识讲解(基础)
中考总复习:圆综合复习—知识讲解(基础)【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点诠释:圆心确定圆的位置,半径确定圆的大小.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB ,BC ,AC 都是弦.②直径:经过圆心的弦叫做直径,如AC 是⊙O 的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧.⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧.⑦同心圆:圆心相同,半径不相等的圆叫做同心圆.⑧弓形:由弦及其所对的弧组成的图形叫做弓形.⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角.考点二、圆的有关性质1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合.2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB 不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r要点诠释:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点诠释:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.要点诠释:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r 1-r 2”时,要特别注意,r 1>r 2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°. 要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n n n n n S a r n P r ==.考点五、圆中的计算问题1.弧长公式:180n R l π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇. 3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和.要点诠释:在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.考点六、求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.【典型例题】类型一、圆的有关概念及性质1. (2015•石景山区一模)如图,A ,B ,E 为⊙0上的点,⊙O 的半径OC ⊥AB 于点D ,若∠CEB=30°,OD=1,则AB 的长为( )A .B .4C .2D .6【思路点拨】 连接OB ,由垂径定理可知,AB=2BD ,由圆周角定理可得,∠COB=60°,在Rt △DOB 中,OD=1,则BD=1×tan60°=,故AB=2.【答案】C ;【解析】连接OB ,∵AB 是⊙O 的一条弦,OC ⊥AB ,∴AD=BD ,即AB=2BD ,∵∠CEB=30°,∴∠COB=60°,∵OD=1, ∴BD=1×tan60°=,∴AB=2,故选C .【总结升华】弦、弦心距,则应连接半径,构造基本的直角三角形是垂径定理应用的主要方法.举一反三:【变式】如图,⊙O 的直径CD=5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OD=3:5.则AB 的长是( )A 、2cmB 、3cmC 、4cmD 、221cm【答案】 解:连接OA ,∵CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,∴AB=2AM ,∵CD=5cm ,∴OD=OA=12CD=12×5=52cm , ∵OM :OD=3:5,∴OM=35OD=×=, ∴在Rt △AOM 中,AM =22OA OM -=2253()()22-=2,∴AB=2AM=2×2=4cm.故选C .类型二、与圆有关的位置关系2.如图所示,已知AB 为⊙O 的直径,直线BC 与⊙O 相切于点B ,过A 作AD ∥OC 交⊙O 于点D ,连接CD .(1)求证:CD 是⊙O 的切线;(2)若AD =2,直径AB =6,求线段BC 的长.【思路点拨】要证明DC 是⊙O 的切线,因为点D 在⊙O 上,所以连接交点与圆心证垂直即可.【答案与解析】(1)证明:如图(2),连接OD .∵ AD ∥OC ,∴ ∠1=∠3,∠2=∠A ,∴ OA =OD ,∴ ∠3=∠A ,∴ ∠1=∠2.∵ OD =OB ,OC =OC .∴ △COD ≌△COB ,∴ ∠CDO =∠CBO =90°,∴ CD 是⊙O 的切线.(2)解:连接BD ,∵ AB 是⊙O 的直径,∴ ∠ADB =90°.在△DAB 和△BOC 中,∵ ∠ADB =∠OBC ,∠A =∠2,∴ △DAB ∽△BOC ,∴AD BD OB BC =, ∴ OB BD BC AD =. 在Rt △DAB 中,由勾股定理得22226242BD AB AD =-=-=.∴ 342622BC ⨯==.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,已知CD 是△ABC 中AB 边上的高,以CD 为直径的⊙O 分别交CA 、CB 于点E 、F ,点G 是AD 的中点.求证:GE 是⊙O 的切线.【答案与解析】证法1:连接OE 、DE(如图(1)).∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.∵ G 是AD 的中点,∴ EG =12AD =DG . ∴ ∠1=∠2.∵ OE =OD ,∴ ∠3=∠4.∴ ∠1+∠3=∠2+∠4,即∠OEG =∠ODG =90°.∴ GE 是⊙O 的切线.证法2:连接OE 、ED(如图(2)).在△ADC 中,∠ADC =90°,∴ ∠A+∠ACD =90°.又∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.在△AED 中,∠AED =90°,G 是AD 中点,∴ AG =GE =DG ,∴ ∠A =∠AEG .又∵ OE =OC ,∴ ∠OEC =∠ACD .又∵ ∠A+∠ACD =90°,∴ ∠AEG+∠OEC =90°.∴ ∠OEG =90°,∴ OE ⊥EG .∴ GE 是⊙O 的切线.类型三、与圆有关的计算3.在一节数学实践活动课上,老师拿出三个边长都为5cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为 cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.【思路点拨】(1)(Ⅰ)连接正方形的对角线BD,利用勾股定理求出BD的长即可;(Ⅱ)利用勾股定理求出小正方形对角线的长即可;(Ⅲ)找出过A、B、C三点的圆的圆心及半径,利用勾股定理求解即可;(2)连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,再根据勾股定理解答.【答案与解析】解:(1)(Ⅰ)如图连接BD,∵ AD=3×5=15cm,AB=5cm,∴ BD==cm;(Ⅱ)如图所示,∵三个正方形的边长均为5,∴ A、B、C三点在以O为圆心,以OA为半径的圆上,∴ OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)如图所示,连接OA,OB,∵ CE⊥AB,AC=BC,∴ CE是过A、B、C三点的圆的直径,∵ OA=OB=OD,∴ O为圆心,∴⊙O的半径为OA,OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为5×2=10cm;(2)如图④为盖住三个正方形时直径最小的放置方法,连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,则有:,解得:,则ON=,∴直径为.【总结升华】此题比较复杂,解答此题的关键是找出以各边顶点为顶点的圆的圆心及半径,再根据勾股定理解答.举一反三:【变式】如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).【答案】 解:(1)图1:∵点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动,∴∠BAM=∠CBN ,又∵∠APN=∠BPM ,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;同理可得:图2中,∠APN=90°;图3中∠APN=108°.(2)由(1)可知,∠APN=所在多边形的内角度数,故在图n 中,.4.如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【思路点拨】观察图形,可以适当进行“割”与“补”,使阴影面积转化为扇形面积.【答案】256π; 【解析】连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD. 答案:256π. 【总结升华】用等面积替换法将不规则的图形转化为简单的规则图形是解本类题的技巧.类型四、与圆有关的综合应用5.(2014•黄陂区模拟)如图,在△ABC中,以AC为直径的⊙O交BC于D,过C作⊙O的切线,交AB的延长线于P,∠PCB=∠BAC.(1)求证:AB=AC;(2)若sin∠BAC=35,求tan∠PCB的值.【思路点拨】(1)连接AD,根据圆周角定理求得∠ADC=90°,根据弦切角定理求得∠PCB=∠CAD,进而求得∠CAD=∠BAD,然后根据ASA证得△ADC≌△ADB,即可证得结论.(2)作BE⊥AC于E,得出BE∥PC,求得∠PCB=∠CBE,根据已知条件得出=,从而求得=,根据AB=AC,得出tan∠CBE===,就可求得tan∠PCB=.【答案与解析】解:(1)连接AD,∵AC是⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵PC是⊙O的切线,∴∠PCB=∠CAD,∵∠PCB=∠BAC,∴∠CAD=∠BAD,在△ADC和△ADB中,,∴△ADC≌△ADB(ASA),∴AB=AC.(2)作BE⊥AC于E,∵PC是⊙O的切线,∴AC⊥PC,∴BE ∥PC ,∴∠PCB=∠CBE ,∵sin ∠BAC==, ∴=, ∵AB=AC ,∴tan ∠CBE===,∴tan ∠PCB=.【总结升华】本题考查了圆周角定理,切线的性质,三角形全等的判定和性质,直角三角函数等,作出辅助线构建直角三角形是解题的关键.举一反三:【高清课堂:圆的综合复习 例2】【变式】已知:如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC=30°,CD 是⊙O 的切线,ED ⊥AB 于F .(1)判断△DCE 的形状并说明理由;(2)设⊙O 的半径为1,且213-=OF ,求证△DCE ≌△OCB .【答案】(1)解:∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD=90°,∴∠DCE=180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED=90°-∠BAC=30°.故△CDE 为等腰三角形.(2)证明:在△ABC 中,∵AB=2,AC=AO=1,∴BC=2212-=3.OF=213-,∴AF=AO+OF=213+.又∵∠AEF=30°,∴AE=2AF=3+1.∴CE=AE-AC=3=BC .而∠OCB=∠ACB-∠ACO=90°-60°=30°=∠ABC,故△CDE ≌△COB.6.如图,已知⊙O 的直径AB =2,直线m 与⊙ O 相切于点A ,P 为⊙ O 上一动点(与点A 、点B 不重合),PO 的延长线与⊙ O 相交于点C ,过点C 的切线与直线m 相交于点D .(1)求证:△APC ∽△COD .(2)设AP =x ,OD =y ,试用含x 的代数式表示y .(3)试探索x 为何值时, △ACD 是一个等边三角形.【思路点拨】(1)可根据“有两个角对应相等的两个三角形相似”来说明 △APC ∽△COD ; (2)根据相似三角形的对应边成比例,找出x 与y 的关系;(3)若△ACD 是一个等边三角形,逆推求得x 的值.【答案与解析】解 (1)∵PC 是⊙O 的直径,CD 是⊙O 的切线, ∴∠PAC =∠OCD =90°.由△DOA ≌△DOC ,得到∠DOA =∠DOC , ∴∠APC =∠COD , ∴△APC∽△COD.(2)由△APC∽△COD,得AP OC PC OD = , ∴y x 12= 则 xy 2= (3)若ACD △是一个等边三角形,则6030ADC ODC ∠=∠=,于是2OD OC =,可得2y =,从而1=x ,故当1x =时,ACD △是一个等边三角形.【总结升华】本例是一道动态几何题.(1)考查了相似三角形的判定,证三角形相似有:两个角分别对应相等的两个三角形相似;两条边分别对应成比例,且夹角相等的两个三角形相似;三条边分别对应成比例的两个三角形相似;(2)考查了相似三角形的性质.利用第一问的结论,得出对应边成比例,找出y 与x 间的关系.(3)动点问题探求条件.一般运用结论逆推的方法找出结论成立的条件.本题应从ACD △是一个等边三角形出发,逆推6030ADC ODC ∠=∠=,,于是2OD OC =,可得2y =,从而1=x , 故当1x =时,ACD △是一个等边三角形.举一反三:【高清课堂:圆的综合复习 例1】【变式】如图,MN 是⊙O 的直径,2MN =,点A 在⊙O 上,30AMN =∠,B 为弧AN 的中点,P 是直径MN 上一动点,则PA PB +的最小值为( ) A.22 B.2 C.1 D.2【答案】选B ;解:过B 作BB ′⊥MN 交⊙O 于B ′,连接AB ′交MN 于P ,此时PA+PB =AB ′最小.连AO 并延长交⊙O 于C ,连接CB ′,在Rt △ACB ′中,AC =2,∠C =190452⨯=°°, ∴ 2sin 45222AB AC '==⨯=°.。
(全册系列精选)华东师大初中七年级上册数学《代数式》全章复习与巩固(提高)知识讲解
《代数式》全章复习与巩固(提高)知识讲解【学习目标】1、进一步理解用字母表示数的意义,能分析简单问题的数量关系,并用代数式表示;2、理解代数式的含义,能解释一些简单代数式的实际背景或几何意义,体会数学与现实生活的密切联系;3、会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律; 4.理解并掌握单项式与多项式的相关概念;5.理解整式加减的基础是去括号和合并同类项,并熟练运用整式的加减运算法则,进行整式的加减运算、求值;6.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、代数式如:16n ,2a+3b ,34 ,2n ,2)(b a 等式子,它们都是用运算符号(+、-、×、÷、乘方、开方)把数和表示数的字母连接而成的,像这样的式子叫做代数式,单独的一个数或一个字母也是代数式.要点诠释:代数式的书写规范:(1)字母与数字或字母与字母相乘时,通常把乘号写成“· ”或省略不写;(2)除法运算一般以分数的形式表示;(3)字母与数字相乘时,通常把数字写在字母的前面;(4)字母前面的数字是分数的,如果既能写成带分数又能写成假分数,一般写成假分数的形式;(5)如果字母前面的数字是1,通常省略不写.要点二、整式的相关概念1.单项式:由数与字母的乘积积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式. 要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项. 要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n 次,有m 个单项式,我们就把这个多项式称为n 次m 项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点三、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、代数式1.某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为促销制定了如下两种优惠方式:第一种:买一支毛笔附赠一本书法练习本;第二种:按购买金额打九折付款.八年级(5)班的小明想为本班书法兴趣小组购买这种毛笔10支,书法练习本 x(x≥10)本.(1)用代数式分别表示两种购买方式应支付的金额.(2)若小明想为本班书法兴趣小组购买书法练习本30 本,试问小明应该选择哪一种优惠方式才更省钱【思路点拨】小明应该选择哪一种优惠方式才更省钱,是由购买的练习本的数量来确定的,把两种方式所应付的钱数,表示成练习本数量的代数式,进而比较代数式的值的大小.【答案与解析】解:设买练习本x,则得两种购买方法的代数式为:(1) 代数式分别为:25×10+5(x-10),(25×10+5x) ×90%(2)把x=30分别代入两个代数式:25×10+5(x-10) =25×10+5(30-10) =350(元)(25×10+5x) ×90%=(25×10+5×30) ×90% =360 (元)所以选择第一种优惠方式.【总结升华】本题这一类方案的选择问题是中考中经常出现的题目类型.类型二、整式的相关概念2.(2016春•新泰市期中)下列说法正确的是()A.1﹣xy是单项式 B.ab没有系数C.﹣5是一次一项式 D.﹣a2b+ab﹣abc2是四次三项式【思路点拨】根据多项式是几个单项式的和,数字因数是单项式的系数,字母指数和是单项式的次数,多项式中次数最高的单项式的次数是多项式的次数,每个单项式是多项式的项,可得答案.【答案】D .【解析】解:A 、1﹣xy 是多项式,故A 错误;B 、ab 的系数是1,故B 错误;C 、﹣5是单项式,故C 错误;D 、﹣a 2b+ab ﹣abc 2是四次三项式,故D 正确;故选:D .【总结升华】本题考查了多项式,多项式中次数最高的项的次数是多项式的次数,每个单项式是多项式的项.举一反三:【变式1】若单项式22a b x y+-与单项式253b y x -的和是单项式,那么3a b -= . 【答案】15【变式2】若多项式31(4)5(2)n m x x x n m -++---+是关于x 的二次三项式,则________m =, ________n =,这个二次三项式为 .【答案】4,3,-259x x --类型三、整式的加减运算3.若315212135m n m n x y x y --+-与是同类项,求出m, n 的值,并把这两个单项式相加. 【答案与解析】 解:因为312121535m n m n x y x y --+-与是同类项, 所以315,21 1.m n -=⎧⎨-=⎩ 解得2,1.m n =⎧⎨=⎩当2m =且1n =时,55553152121424214()()35353515m n m n x y x y x y x y x y x y --++-=-=-=. 【总结升华】本题考查了同类项:含有相同的字母,并且相同字母的指数相等;合并同类项就是把系数相加减,字母部分不变.举一反三:【变式】合并同类项.(1)2222344522x xy y x xy y -+-+-; (2)3232399111552424xy x y xy x y xy x y --+---. 【答案】(1)原式=22(35)(42)(42)x xy y -+-++-22222x xy y =--+ (2)原式3232391191554422xy x y x y x y ⎛⎫⎛⎫=--+-+-- ⎪ ⎪⎝⎭⎝⎭32345x y x y =---.【高清课堂:整式的加减单元复习388396经典例题3】4. 从一个多项式中减去234ab bc -+,由于误认为加上这个式子,得到221bc ab --,试求正确答案.【答案与解析】解:设该多项式为A ,依题意,(234)221A ab bc bc ab +-+=--(221)(234)A bc ab ab bc =----+(234)(221)2(234)A ab bc bc ab ab bc --+=----+221468869bc ab ab bc bc ab =---+-=--答:正确答案是869bc ab --.【总结升华】当整式是一个多项式,不是一个单项式时,应用括号把一个整式作为一个整体来加减. 举一反三:【变式1】已知A =x 2+2y 2-z 2,B =-4x 2+3y 2+2z 2,且A +B +C =0,则多项式C 为( ).A .5x 2-y 2-z 2B .3x 2-5y 2-z 2C .3x 2-y 2-3z 2D .3x 2-5y 2+z 2【答案】B【变式2】先化简代数式22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭,然后选取一个使原式有意义的a 的值代入求值. 【答案】22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭22211[(3515)]333a a a a a =---+-- 222116[(34)]333a a a a =----222116(34)333a a a a =--++ 22816(4)333a a a =--++228164333a a a =+--2814433a a =--. 当0a =时,原式=0-0-4=-4. 【变式3】(1) (x +y )2-10x -10y +25=(x +y )2-10(______)+25;(2) (a -b +c -d )(a +b -c -d )=[(a -d )+(______)][(a -d )-(______)].【答案】(1)x +y (2)-b +c ,-b +c类型四、化简求值5. (1)直接化简代入 当时,求代数式15a 2-{-4a 2+[5a -8a 2-(2a 2-a )+9a 2]-3a }的值.(2)条件求值已知(2a +b +3)2+|b -1|=0,求3a -3[2b -8+(3a -2b -1)-a ]+1的值. (3)整体代入 (鄂州)已知210m m +-=,求3222009m m ++的值.【思路点拨】对于化简求值问题,要先看清属于哪个类型,然后再选择恰当的方法进行 求解.【答案与解析】 解:(1)原式=15a 2-[-4a 2+(5a -8a 2-2a 2+a +9a 2)-3a ]=15a 2-[-4a 2+(6a -a 2)-3a ]=15a 2-(-4a 2+6a -a 2-3a )=15a 2-(-5a 2+3a ) =15a 2+5a 2—3a =20a 2—3a当时,原式===(2)由(2a +b +3)2+|b -1|=0可知:2a +b +3=0,b -1=0,解得a = -2,b =1.3a -3[2b -8+(3a -2b -1)-a ]+1=3a -3(2b -8+3a -2b -1-a )+1=3a -3(2a -9)+1=3a -6a +27+1=28—3a由a = -2 则 原式=28—3a =28+6=34(3)∵ 210m m +-=,∴ 21m m +=.∵ 22222009m m m +++3222009m m m =+++322()2009m m m =+++ 22()2009m m m m =+++22009m m =++12009=+2010=.所以3222009m m ++的值为2010.【总结升华】整体代入的一般做法是对代数式先进行化简,然后找到化简结果与已知条件之间的联系.举一反三:【变式】(2014秋•越秀区期末)先化简,再求值:(1)(5x+y )﹣(3x+4y ),其中x=,y=;(2)(a+b )2+9(a+b )+15(a+b )2﹣(a+b ),其中a+b=.【答案】解:(1)原式=5x+y ﹣3x ﹣4y=2x ﹣3y ,当x=,y=时,原式=1﹣2=﹣1;(2)原式=16(a+b )2+8(a+b ),当a+b=时,原式=1+2=3.类型五、综合应用6. 对于任意有理数x ,比较多项式2452x x -+与2352x x --的值的大小.【答案与解析】解:22222(452)(352)4523524x x x x x x x x x -+---=-+-++=+∵240x +>∴无论x 为何值,2452x x -+>2352x x --.【总结升华】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.举一反三:【变式】如果关于x ,y 的多项式2(2)mx xy x +-与 2(323)x nxy y -+的差不含二次项,求m n 的值.【答案】解:原式=22(2)(323)mx xy x x nxy y +---+=2(3)(22)3m x n xy x y -++--由题意知,则30,220m n -=+=,∴3,1m n ==-.∴3(1)1m n =-=-.。
华东师大初中数学七年级下册《多边形》全章复习与巩固—知识讲解(提高)
《多边形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解它们这些性质在生产、生活中的广泛应用.5.理解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和公式,并能灵活运用公式解决有关问题.体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边. 要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线在三角形中,连接它的一个顶点与它的对边中点的线段叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n 边形共有(3)2n n - 条对角线. 要点五、多边形的内角和及外角和公式1.内角和公式:n 边形的内角和为(n -2)·180°(n≥3,n 是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有 关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( ).A .6个B .5个C .4个D .3个【答案】D ;【解析】x 的取值范围:511x <<,又x 为偶数,所以x 的值可以是6, 8, 10,故x 的值有3个.【总结升华】不要忽略“x 为偶数”这一条件.举一反三:【变式】三角形的三边长为2,x-3,4,且都为整数,则共能组成 个不同的三角形.当x 为 时,所组成的三角形周长最大.【答案】三,8;提示:由三角形两边之和大于第三边,两边之差小于第三边,有4-2<x-3<4+2,解得5<x <9,因为x 为整数,故x 可取6,7,8;当x=8时,组成的三角形周长最大为11.2.如图,O 是△ABC 内一点,连接OB 和OC .(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=3BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少? 【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,∵ BD是AC边上的高(已知),∴∠ADB=90°(垂直定义).又∵∠ABD=30°(已知),∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.又∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=120°,又∵∠ABC=∠C,∴∠C=60°.(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,∵∠ABD=30°(已知),所以∠BAD=60°.∴∠BAC=120°.又∵∠BAC+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=60°.∴∠C=30°.综上,∠C的度数为60°或30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图所示,表示∠1,∠2,∠3,∠4的关系正确的选项为()A. ∠1+∠2=∠4﹣∠3B. ∠1﹣∠3=∠2﹣∠4C. ∠1+∠2=∠3+∠4D. ∠1﹣∠2=∠4﹣∠3【答案】A;提示:∵∠AEF是△BDE的外角,∴∠AEF=∠2+∠3,同理,∠4是△AEF的外角,∴∠4=∠AEF+∠1,即∠4=∠1+∠2+∠3,即∠1+∠2=∠4﹣∠3.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
华东师范大学出版社初中数学七年级下册 复习题(省一等奖)
尺规作图教学设计长治市城区清华中学校陈文栋华东师大版七年级下册数学【课标要求】①完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线。
②利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。
③探索如何过一点、两点和不在同一直线上的三点作圆。
④了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明)。
【教材分析】在尺规作图知识的学习过程中,教材设计了许多让学生经历尺规作图的活动,解决了一些简单的问题,如:作三角形的问题,让学生感受到尺规作图在数学中的一定作用,获得了从事尺规作图活动的一些数学活动经验;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
【学情分析】学生在七年级上册的学习中,教材介绍了如何用直尺和圆规作一条线段等于已知线段;在七年级下册的学习中,教材学习了用尺规作一个角等于已知角,学习了角的平分线的相关概念。
学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为复习课的学习奠定了良好的知识基础。
【教学目标】知识与能力目标:(1)掌握尺规作图的定义、方法及一般步骤;(2)掌握五种基本作图,明确尺规作图的意义。
过程与方法目标:经历五个基本作图的学习,感受尺规作图的几何意义,规范学生的作图语言,积累一些尺规作图的方法与经验,感受数学的严谨性以及数学结论的确定性。
情感、态度与价值观目标:通过学习尺规作图,进一步加强学生的作图能力,使学生养成良好的动手操作、实践探索、合作交流的学习习惯。
【教学重点、难点】教学重点:五个基本作图的运用,画图,写出尺规作图的作法。
教学难点:画图,写出尺规作图的作法,尺规作图的应用。
【教学方法和工具】教学方法:讲练结合法教学工具:多媒体课件、教学用尺、圆规【教学过程】(一)新课讲授尺规作图的定义只利用和,准确地按要求作出图形,叫做尺规作图。
华师初中数学知识点总结
华师初中数学知识点总结一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。
- 有理数的分类:正有理数、负有理数和零。
- 有理数的运算:加法、减法、乘法、除法、乘方、开方。
2. 整数- 整数的性质:奇数与偶数、质数与合数。
- 整数的运算:加法交换律、结合律;减法、乘法、除法的性质。
3. 分数与小数- 分数的基本性质:分数的基本线、通分与约分。
- 小数与分数的互化:小数转化为分数的方法,分数转化为小数的方法。
- 四则运算:分数与小数的加、减、乘、除运算。
4. 代数表达式- 代数式的概念:用字母表示数的式子。
- 单项式与多项式:单项式的定义、多项式的定义及它们的运算。
- 代数式的简化:合并同类项、分配律等。
5. 一元一次方程- 方程的概念:含有未知数的等式。
- 解方程的方法:移项、合并同类项、系数化为1。
- 实际问题的建模:根据实际情况建立一元一次方程。
6. 二元一次方程组- 方程组的概念:含有两个未知数的一元一次方程的集合。
- 解方程组的方法:代入法、消元法。
- 三元一次方程组:解法及转化思想。
7. 不等式与不等式组- 不等式的概念:表示大小关系的式子。
- 不等式的解法:移项、合并同类项、不等式的性质。
- 不等式组的解集:求解不等式组的解集。
二、几何1. 平面图形- 点、线、面的基本性质。
- 角的概念:邻角、对角、同位角等。
- 三角形的分类与性质:等边、等腰、直角三角形的性质。
- 四边形的分类与性质:矩形、菱形、正方形、平行四边形、梯形。
2. 图形的变换- 平移:图形沿直线移动。
- 旋转:图形绕一点旋转一定角度。
- 轴对称:图形关于某条直线对称。
3. 圆的性质- 圆的定义:平面上所有与定点等距离的点的集合。
- 圆的要素:圆心、半径、直径、弦、弧、切线。
- 圆的性质:圆周角、圆心角、切线长定理。
4. 圆的相关计算- 圆的周长与面积公式。
- 扇形的弧长与面积计算。
- 圆锥与圆柱的侧面积与体积。
华东师大初中七年级上册数学《有理数》全章复习与巩固(提高)知识讲解
《有理数》全章复习与巩固(提高)知识讲解【学习目标】1.理解正负数的意义,掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算. 3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法及近似数的相关概念并能灵活应用;5. 体会数学知识中体现的一些数学思想.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·1b(b≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法、近似数及精确度1.科学记数法:把一个大于10的数表示成10na ⨯的形式(其中110a ≤<,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210 .2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度. 要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米,而有效数字往往用来比较几个近似数哪个更精确些. 【典型例题】类型一、有理数相关概念1.已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn)a+(x+y)2009+(-mn)2010的值.【思路点拨】(1)若有理数x 与y 互为相反数,则x+y =0,反过来也成立. (2)若有理数m 与n 互为倒数,则mn =1,反过来也成立. 【答案与解析】解:因为x 与y 互为相反数,m 与n 互为倒数,(a-1)2≥0, 所以x+y =0,mn =1,a =1,所以a 2-(x+y+mn)a+(x+y)2009+(-mn)2010=a 2-(0+1)a+02009+(-1)2010=a 2-a+1.∵a=1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三:【高清课堂:有理数的复习与提高 357129 复习例题2】【变式1】选择题 (1)已知四种说法:①|a|=a 时,a>0;|a|=-a 时, a<0. ②|a|就是a 与-a 中较大的数. ③|a|就是数轴上a 到原点的距离. ④对于任意有理数,-|a|≤a≤|a|. 其中说法正确的个数是( ) A .1 B .2 C .3 D .4 (2)有四个说法:①有最小的有理数 ②有绝对值最小的有理数 ③有最小的正有理数 ④没有最大的负有理数 上述说法正确的是( )A .①② B.③④ C.②④ D.①② (3)已知(-ab)3>0,则( )A .ab<0B .ab>0C .a>0且b<0D .a<0且b<0 (4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( ) A .120 B .-15 C .0 D .-120 (5)下列各对算式中,结果相等的是( )A .-a 6与(-a)6B .-a 3与|-a|3C .[(-a)2]3与(-a 3)2D .(ab)3与ab 3【答案】(1)C ;(2)C ;(3)A ;(4)D ;(5)C【变式2】(2015•呼伦贝尔)中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 .【答案】9.6×106.2.(2016•江西校级模拟)如果m ,n 互为相反数,那么|m+n ﹣2016|=________. 【思路点拨】先用相反数的意义确定出m+n=0,从而求出|m+n ﹣2016|. 【答案】2016.【解析】解:∵m ,n 互为相反数, ∴m+n=0,∴|m+n ﹣2016|=|﹣2016|=2016; 故答案为2016.【总结升华】此题是绝对值题,主要考查了绝对值的意义,相反数的性质,熟知相反数的意义是解本题的关键.类型二、有理数的运算【高清课堂:有理数专题复习 357133 有理数的混合运算】3.(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)5153()( 1.5)()1244-÷⨯-÷-()()23541(3)24121522⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭(4)137775111 2.534812863⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(5)()1003221511221132⎛⎫----÷- ⎪⎝⎭+--⨯【答案与解析】解:(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=-(3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=-(4)原式12561[1(2)1]()233253=+-++-⨯⨯-=(5)1125112()41192---÷-=+--⨯原式 3.9=- 【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac ;逆向应用分配律:ab+ac =a(b+c)等. 举一反三: 【变式】(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯【答案】解:(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--251471834()199(2)492584929=⨯⨯-⨯-⨯- 118343()199(2)449292=-⨯-⨯-⨯20(3)3=--2033=-+123=(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯955515()()()()499289=⨯---⨯-+-⨯5951()()942817224=-⨯++=-4. 先观察下列各式:11111434⎛⎫=- ⎪⨯⎝⎭;111147347⎛⎫=- ⎪⨯⎝⎭; 11117103710⎛⎫=- ⎪⨯⎝⎭;…;1111(3)33n n n n ⎛⎫=- ⎪++⎝⎭,根据以上观察,计算: 1111447710+++⨯⨯⨯ (120052008)+⨯的值. 【答案与解析】 解:原式111111111111343473710320052008⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… 111111111344771020052008⎛⎫=-+-+-+⋅⋅⋅+- ⎪⎝⎭1113200812007320086692008⎛⎫=- ⎪⎝⎭=⨯=【总结升华】根据题中提供的拆项方法把每一项拆成11133n n ⎛⎫- ⎪+⎝⎭的形式,然后再进行计算.举一反三:【高清课堂:有理数的复习与提高 例2】 【变式】用简单方法计算:120180148124181++++ 【答案】解:原式=1111111111115(...)244668810101222446101224++++=-+-++-=⨯⨯⨯⨯⨯ 类型三、数学思想在本章中的应用5.(2014•香洲区校级二模)(1)阅读下面材料:点A ,B 在数轴上分别表示实数a ,b ,A ,B 两点之间的距离表示为|AB|. 当A ,B 两点中有一点在原点时,不妨设点A 在原点,如图(1),|AB|=|OB|=|b|=|a ﹣b|; 当A ,B 两点都不在原点时, ①如图(2),点A ,B 都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b ﹣a=|a ﹣b|; ②如图(3),点A ,B 都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b ﹣(﹣a )=|a ﹣b|; ③如图(4),点A ,B 在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b )=|a ﹣b|; 综上,数轴上A ,B 两点之间的距离|AB|=|a ﹣b|. (2)回答下列问题:①数轴上表示2和5的两点之间的距离是 ,数轴上表示﹣2和﹣5的两点之间的距离是 ,数轴上表示1和﹣3的两点之间的距离是 ;②数轴上表示x 和﹣1的两点A 和B 之间的距离是 ,如果|AB|=2,那么x 为 ; ③当代数式|x+1|+|x ﹣2|取最小值时,相应的x 的取值范围是 . ④解方程|x+1|+|x ﹣2|=5.【答案与解析】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3; 数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4.②数轴上表示x 和﹣1的两点A 和B 之间的距离是|x ﹣(﹣1)|=|x+1|,如果|AB|=2,那么x 为1或﹣3.③当代数式|x+1|十|x ﹣2|取最小值时,∴x+1≥0,x﹣2≤0,∴﹣1≤x≤2.④当x≤﹣1时,﹣x﹣1﹣x+2=5,解得x=﹣2;当﹣1<x≤2时,3≠5,不成立;当x>2时,x+1+x﹣2=5,解得x=3.故答案为:3,3,4,|x+1|,1或﹣3,﹣1≤x≤2.【总结升华】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,体现了数形结合的优点.类型四、规律探索6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ).A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和.【答案】A【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来.举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是().A.1132B.1360C.1495D.1660【答案】B 提示:观察发现:分子总是1,第n 行的第一个数的分母就是n ,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的(1)2n -倍.根据图表的规律,则第10行从左边数第3个位置上的数是111094360=⨯⨯.。
华东师大版初中七年级数学上册期末复习知识点总结
华东师大版初中七年级数学上册期末复习知识点总结七年级数学(上)期末复提纲——知识点总结第二章有理数1.正数和负数是数学中的基本概念。
正数包括所有大于零的数,负数包括所有小于零的数。
零既不是正数也不是负数。
2.整数包括正整数、零和负整数,分数包括正分数和负分数。
整数和分数统称为有理数。
3.数轴是一条直线,规定了原点、正方向和单位长度。
数轴可以用来表示有理数。
4.在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
5.互为相反数的两个数只有正负号不同,它们在数轴上的位置相对于原点对称。
我们通常在一个数前面添上“-”号,表示这个数的相反数;在一个数前面添上“+”号,表示这个数本身。
6.绝对值是数轴上表示数a的点与原点的距离。
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数。
任意有理数a,总有|a|≥0.7.两个负数,绝对值大的反而小。
8.有理数的加法法则:(1)同号两数相加,取相同的正负号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同相加,仍得这个数。
注意:一个有理数由正负号和绝对值两部分组成,所以进行加法运算时,应注意确定和的正负号与绝对值。
9.加法交换律:两个数相加,交换加数的位置,和不变,如:a+b=b+a。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,如:(a+b)+c=a+(b+c)。
10.有理数减法法则:减去一个数,等于加上这个数的相反数。
11.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数乘以0得0.12.乘法交换律:两个数相乘,交换因数的位置,积不变,如:ab=ba。
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,如:(ab)c=a(bc)。
分配律:一个数乘以两个数的和,等于这个数分别乘以这两个数,再把积相加,如:a(b+c)=ab+ac。
华师大版七年级数学下册总复习
华师大版七年级数学下册总复习按住ctrl键点击查看更多初中七年级资源第1课时一元一次方程(复习1)教学目的:1.知识与技能:(1)了解一元一次方程的概念,根据方程的特点灵活运用一元一次方程的解法解一元一次方程。
(2)进一步提高学生运用方程解决实际问题的能力。
2.过程与方法:(1)通过复习一元一次方程的解法,进一步渗透“转化”的思想方法。
(2)进一步了解用方程解决实际问题的基本过程,体会数学的应用价值。
3.情感态度与价值观:(1)鼓励学生大胆尝试,从中获得成功的体验,激发学生学习数学的热情。
(2)通过学习,更加关注生活,增强用数学的意识。
教学重点与难点:1.一元一次方程的解法和列出一元一次方程解应用题。
2.根据具体问题中的数量关系列出一元一次方程解决实际问题。
课型:复习课教学方法:转化归纳教学过程:一、知识结构图:二、重要知识与方法规律总结:1.一元一次方程的概念。
2.方程的基本变形。
3.移项法则。
4.解一元一次方程的一般步骤。
5.列出一元一次方程解应用题的步骤。
三、典型例题。
1.当a为何值时,x -1=0是一元一次方程?2.已知2是关于x的方程x -2a=0的一个解,则2a-1的值是_______。
3.5(x+2)=2a+3与的解相同,那么a的值是_______4.已知=0,则=________5.已知=5 ,且ax-2a=6,求a的值。
6.解方程7.解方程8.实践与探索P14―――15问题四、课堂练习:教材19面A 1.(2)(4)(6)2―――7五、课堂小结:在解一元一次方程时要注意选择合理的解方程步骤,解方程的方法、步骤可以灵活多样,但基本思路都是把“复杂”转化为“简单”,把“新”转化为“旧”,求出解后,要自觉反思求解过程和检验方程的解是否正确。
方程是刻画现实世界的有效数学模型,列方程解实际问题的关键是找出“相等关系”,在寻找相等关系时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义。
华东师大初中七年级上册数学《相交线与平行线》全章复习与巩固(提高)知识讲解[精选]
《相交线与平行线》全章复习与巩固(提高)知识讲解【学习目标】1.熟练掌握对顶角,邻补角及垂线的概念及性质,了解点到直线的距离与两平行线间的距离的概念;2. 区别平行线的判定与性质,并能灵活运用;3. 了解平移的概念及性质.【知识网络】【要点梳理】要点一、相交线1.对顶角、邻补角两直线相交所成的四个角中存在几种不同关系,它们的概念及性质如下表:(1)对顶角是成对出现的,对顶角是具有特殊位置关系的两个角.对顶角的特征:有公共顶点,角的两边互为反向延长线.(2)如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角.(3)如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.邻补角的特征:有公共顶点,有一条公共边,另一边互为反向延长线.(4)两直线相交形成的四个角中,每一个角的邻补角有两个,对顶角有一个.2.垂线及性质、距离(1)垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图1所示,符号语言记作: AB ⊥CD,垂足为O.要点诠释:要判断两条直线是否垂直,只需看它们相交所成的四个角中,是否有一个角是直角,两条线段垂直,是指这两条线段所在的直线垂直.(2)垂线的性质:垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记).垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,如图2:PO⊥AB,点P 到直线AB的距离是垂线段PO的长.要点诠释:垂线段PO是点P到直线AB所有线段中最短的一条.要点二、平行线1.平行线判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图3,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB 与CD间的距离.要点诠释:(1)两条平行线之间的距离处处相等.(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)如何理解“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.要点三、图形的平移1.命题:判断一件事情的语句,叫做命题.每个命题都是题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.2.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:平移的性质:(1)平移后,对应线段平行(或共线)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行(或共线)且相等;(4)平移后,新图形与原图形是一对全等图形.【典型例题】类型一、相交线1.(2015•凉山州一模)我们知道两直线交于一点,对顶角有2对,三条直线交于一点,对顶角有6对,四条直线交于一点,对顶角有12对,…(1)10条直线交于一点,对顶角有对.(2)n(n≥2)条直线交于一点,对顶角有对.【答案与解析】解:(1)如图①两条直线交于一点,图中共有=2对对顶角;如图②三条直线交于一点,图中共有=6对对顶角;如图③四条直线交于一点,图中共有=12对对顶角;…;按这样的规律,10条直线交于一点,那么对顶角共有:=90,故答案为:90;(2)由(1)得:n(n≥2)条直线交于一点,对顶角有:=n(n﹣1).故答案为:n(n﹣1).【总结升华】此题主要考查了对顶角以及图形变化规律,本题是一个探索规律型的题目,解决时注意观察每对数之间的关系.这是中考中经常出现的问题.2.直线AB、CD相交于点O,OE⊥AB于点O,∠COE=40°,求∠BOD的度数. 【答案与解析】解:分两种情况.第一种:如图1,直线AB,CD相交后,∠BOD是锐角,∵OE⊥AB, ∴∠AOE=90°,即∠AOC+∠COE=90°.∵∠COE=40°, ∴∠AOC=50°.∵∠BOD=∠AOC ∴∠BOD=50°第二种:如图2,直线AB、CD相交后,∠BOD是钝角,∵OE⊥AB, ∴∠AOE=90°.∵∠COE=40°,∴∠AOC=90°+40°=130°,∴∠BOD=∠AOC=130°.【总计升华】本题属于无图题,首先应根据题意,画出图形,画图时要考虑两种情况:一种情况为∠BOD是锐角,第二种情况是∠BOD是钝角.此外关于两条直线相交,应想到邻补角、对顶角的定义及性质.举一反三:【变式】(2015•河北模拟)如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A.35°B.45°C.55°D.65°【答案】C.解:∵∠1=145°,∴∠2=180°﹣145°=35°,∵CO⊥DO,∴∠COD=90°,∴∠3=90°﹣∠2=90°﹣35°=55°.类型二、平行线的性质与判定3.如图所示,AB∥CD,∠1=∠B,∠2=∠D,试说明BE⊥DE.【思路点拨】这是初学几何时较为复杂的题目,通常是过“拐点”(拐角处的顶点)作平行线为辅助线,把一个大角分成两个角,分别与两个已知角建立起了联系.【答案与解析】解:过E点作EF∥AB,因为AB∥CD(已知),所以EF∥CD.所以∠4=∠D(两直线平行,内错角相等).又因为∠D=∠2(已知),所以∠4=∠2(等量代换).同理,由EF∥AB,∠1=∠B,可得∠3=∠1.因为∠1+∠2+∠3+∠4=180°(平角定义),所以∠1+∠2=∠3+∠4=90°,即∠BED=90°.故BE⊥DE.【总结升华】解此题的关键是如何构造平行关系,即过哪一点作哪条直线的平行线,只有通过适当的练习才能逐步达到熟练解题的目的.举一反三:【变式1】已知直线AB∥CD,当点E在直线AB与CD之间时,有∠BED=∠ABE+∠CDE成立;而当点E在直线AB与CD之外时,下列关系式成立的是(). A.∠BED=∠ABE+∠CDE或∠BED=∠ABE-∠CDEB.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABE或∠BED=∠ABE-∠CDED.∠BED=∠CDE-∠ABE【答案】C (提示:过点E作EF∥AB)【变式2】如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=.【答案】900°4.如图,已知CD∥EF,∠1+∠2=∠ABC,求证:AB∥GF.【答案与解析】证明:如图,过点C做CK∥FG,并延长GF、CD交于点H,∵ CD∥EF (已知),∴∠CHG=∠1(两直线平行,同位角相等).又∵ CK∥FG,∴∠CHG+∠2+∠BCK=180°((两直线平行,同旁内角互补).∴∠1+∠2+∠BCK=180°(等量代换).∵∠1+∠2=∠ABC(已知),∴∠ABC+∠BCK=180°(等量代换).∴ CK∥AB(同旁内角互补,两直线平行).∴ AB∥GF(平行的传递性).【总结升华】反复应用平行线的判定与性质,见到角相等或互补,就应该想到判断直线是否平行,见到直线平行就应联想到角相等或互补.类型三、图形的平移5.(吉林)如图所示,把边长为2的正方形的局部进行图①~④的变换,组成图⑤,则图⑤的面积是()A.18 B.16 C.12 D.8【思路点拨】根据平移的基本性质,平移不改变图形的形状和大小,即图形平移后面积不变,则⑤面积可求.【答案】B【解析】图①到图②是将一个等腰三角形由下方平移到上方.图③到图④是将右边的小长方形平移到左侧,所以图④中阴影部分的面积与边长为2的正方形的面积是相等的,图⑤是由4个图④组成的,所以图⑤的面积是4×4=16.【总结升华】平移是由平移的方向和距离决定的.平移的性质是平移前后,图形的形状、大小不变.类型四、实际应用6.手工制作课上,老师先将一张长方形纸片折叠成如图所示的那样,若折痕与一条边BC的夹角∠EFB=30°,你能说出∠EGF的度数吗?【思路点拨】长方形的对边是平行的,所以AD∥BC,可得∠DEF=∠EFG=30°,又因为折后重合部分相等,所以∠GEF=∠DEF=30°,所以∠DEG=2∠DEF=60°,又因为两直线平行,同旁内角互补,所以∠EGF=180°-∠DEG,问题可解.【答案与解析】解:因为AD∥BC(已知),所以∠DEF=∠EFG=30°(两直线平行,内错角相等).因为∠GEF=∠DEF=30°(对折后重合部分相等),所以∠DEG=2∠DEF=60°.所以∠EGF=180°-∠DEG=180°-60°=120°(两直线平行,同旁内角互补). 【总结升华】本题利用了:(1)折叠的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;(2)平行线的性质.举一反三:【变式】(山东滨州)如图,把—个长方形纸片对折两次,然后剪下—个角.为了得到一个正方形,剪刀与折痕所成的角的度数应为().A.60° B.30° C.45° D.90°【答案】C。
华东师大初中数学八年级上册勾股定理全章复习与巩固(提高)知识讲解
勾股定理全章复习与巩固(提高)【学习目标】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题. 【知识网络】【要点梳理】【高清课堂 勾股定理全章复习 知识要点】 要点一、勾股定理 1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=) 2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)求作长度为的线段.要点二、勾股定理的逆定理 1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题. 2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤: (1)首先确定最大边,不妨设最大边长为c ;(2)验证2c 与22a b +是否具有相等关系,若222a b c +=,则△ABC 是以∠C 为直角的直角三角形,反之,则不是直角三角形. 3.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征: 1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.【典型例题】类型一、勾股定理及逆定理的应用1、如图所示,直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD =AB =BC =E 是AB 上一点,且AE =E 到CD 的距离EF .【思路点拨】连接DE 、CE 将EF 转化为△DCE 一边CD 上的高,根据题目所给的条件,容易求出△CDE 的面积,所以利用面积法只需求出CD 的长度,即可求出EF 的长度,过点D 作DH ⊥BC 于H ,在Rt △DCH 中利用勾股定理即可求出DC . 【答案与解析】解:过点D 作DH ⊥BC 于H ,连接DE 、CE ,则AD =BH ,AB =DH ,∴ CH =BC -BH ===AB =在Rt △CDH 中,22222625CD DH CH =+=+=,∴ CD =25,∵ CDE ADE BCE ABCD S S S S =--△△△梯形111()222AD BC AB AD AE BC BE =+--111125222=⨯⨯⨯⨯=又∵ 12CDE S DC EF =△,∴ 1251252EF ⨯=,∴ EF =10.【总结升华】(1)多边形的面积可通过辅助线转化为多个三角形的面积,利用面积法求三角形一边上的高是一种常用的简易方法.(2)利用勾股定理求边长、面积时要注意边长、面积之间的转换. 举一反三:【变式】如图所示,在△ABC 中,D 是BC 边上的点,已知AB =13,AD =12,AC =15,BD =5,求DC 的长.【答案】解:在△ABD 中,由22212513+=可知:222AD BD AB +=,又由勾股定理的逆定理知∠ADB =90°.在Rt △ADC 中,9DC ===. 类型二、勾股定理与其他知识结合应用2、如图所示,牧童在A 处放牛,其家在B 处,A 、B 到河岸的距离分别为AC =400米,BD =200米,CD =800米,牧童从A 处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?【思路点拨】作点A 关于直线CD 的对称点G ,连接GB ,交CD 于点E ,利用“两点之间线段最短”可知应在E 处饮水,再根据对称性知GB 的长为所走的最短路程,然后构造直角三角形,利用勾股定理可解决. 【答案与解析】解:作点A 关于直线CD 的对称点G ,连接GB 交CD 于点E ,由“两点之间线段最短”可以知道在E 点处饮水,所走路程最短.说明如下:在直线CD 上任意取一异于点E 的点I ,连接AI 、AE 、BE 、BI 、GI 、GE . ∵ 点G 、A 关于直线CD 对称,∴ AI =GI ,AE =GE .由“两点之间线段最短”或“三角形中两边之和大于第三边”可得GI +BI >GB =AE +BE ,于是得证.最短路程为GB 的长,自点B 作CD 的垂线,自点G 作BD 的垂线交于点H ,在直角三角形GHB 中,∵ GH =CD =800,BH =BD +DH =BD +GC =BD +AC =200+400=600,∴ 由勾股定理得222228006001000000GB GH BH =+=+=. ∴ GB =1000,即最短路程为1000米.【总结升华】这是一道有关极值的典型题目.解决这类题目,一方面要考虑“两点之间线段最短”;另一方面,证明最值,常常另选一个量,通过与求证的那个“最大”“最小”的量进行比较来证明,如本题中的I 点.本题体现了勾股定理在实际生活中的应用. 举一反三:【变式】如图所示,正方形ABCD 的AB 边上有一点E ,AE =3,EB =1,在AC 上有一点P ,使EP +BP 最短.求EP +BP 的最小值.【答案】解:根据正方形的对称性可知:BP =DP ,连接DE ,交AC 于P ,ED =EP +DP =EP +BP , 即最短距离EP +BP 也就是ED .∵ AE =3,EB =1,∴ AB =AE +EB =4,∴ AD =4,根据勾股定理得:222223425ED AE AD =+=+=. ∵ ED >0,∴ ED =5,∴ 最短距离EP +BP =5.3、如图所示,等腰直角△ABC 中,∠ACB =90°,E 、F 为AB 上两点(E 左F 右),且∠ECF =45°,求证:线段AE,BF,EF 之间的数量关系.【思路点拨】:由于∠ACB =90°,∠ECF =45°,所以∠ACE +∠BCF =45°,若将∠ACE 和∠BCF 合在一起则为一特殊角45°,于是想到将△ACE 旋转到△BCF 的右外侧合并,或将△BCF 绕C 点旋转到△ACE 的左外侧合并,旋转后的BF 边与AE 边组成一个直角,联想勾股定理即可证明. 【答案与解析】解:(1)222AE BF EF +=,理由如下:将△BCF 绕点C 旋转得△ACF ′,使△BCF 的BC 与AC 边重合, 即△ACF ′≌△BCF ,∵ 在△ABC 中,∠ACB =90°,AC =BC ,∴ ∠CAF ′=∠B =45°,∴ ∠EAF ′=90°. ∵ ∠ECF =45°,∴ ∠ACE +∠BCF =45°.∵ ∠ACF ′=∠BCF ,∴ ∠ECF ′=45°. 在△ECF 和△ECF ′中:45CE CE ECF ECF CF CF =⎧⎪'∠=∠=⎨⎪'=⎩°∴ △ECF ≌△ECF ′(SAS),∴ EF =EF ′. 在Rt △AEF ′中,222AE F A F E ''+=,∴ 222AE BF EF +=.【总结升华】若一个角的内部含有同顶点的半角,(如平角内含直角,90°角内含45°角,120°角内含60°角),则常常利用旋转法将剩下的部分拼接在一起组成又一个半角,然后利用角平分线、全等三角形等知识解决问题.4、在△ABC 中,BC=a ,AC=b ,AB=c ,设c 为最长边.当a 2+b 2=c 2时,△ABC 是直角三角形;当a 2+b 2≠c 2时,利用代数式a 2+b 2和c 2的大小关系,可以判断△ABC 的形状(按角分类).(1)请你通过画图探究并判断:当△ABC 三边长分别为6,8,9时,△ABC 为 三角形;当△ABC 三边长分别为6,8,11时,△ABC 为 三角形.(2)小明同学根据上述探究,有下面的猜想:“当a 2+b 2>c 2时,△ABC 为锐角三角形;当a 2+b 2<c 2时,△ABC 为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=2,b=4时,最长边c 在什么范围内取值时,△ABC 是直角三角形、锐角三角形、钝角三角形?【思路点拨】(1)利用勾股定理列式求出两直角边为6、8时的斜边的值,然后作出判断即可;(2)根据三角形的任意两边之和大于第三边求出最长边c 点的最大值,然后得到c 的取值范围,然后分情况讨论即可得解. 【答案与解析】 解:(1)∵两直角边分别为6、8时,斜边==10, ∴△ABC 三边分别为6、8、9时,△ABC 为锐角三角形;当△ABC 三边分别为6、8、11时,△ABC 为钝角三角形; 故答案为:锐角;钝角; (2)∵c 为最长边,2+4=6,∴4≤c<6,a 2+b 2=22+42=20,①a 2+b 2>c 2,即c 2<20,0<c <2,∴当4≤c<2时,这个三角形是锐角三角形; ②a 2+b 2=c 2,即c 2=20,c=2,∴当c=2时,这个三角形是直角三角形; ③a 2+b 2<c 2,即c 2>20,c >2,∴当2<c <6时,这个三角形是钝角三角形.【总结升华】本题考查了勾股定理,勾股定理逆定理,读懂题目信息,理解理解三角形为锐角三角形、直角三角形、钝角三角形时的三条边的数量关系是解题的关键.类型三、本章中的数学思想方法1.转化的思想方法:我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决.5、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长.【答案与解析】解:连接AD.因为∠BAC=90°,AB=AC.又因为 AD为△ABC的中线,所以 AD=DC=DB.AD⊥BC.且∠BAD=∠C=45°.因为∠EDA+∠ADF=90°.又因为∠CDF+∠ADF=90°.所以∠EDA=∠CDF.所以△AED≌△CFD(ASA).所以 AE=FC=5.同理:AF=BE=12.在Rt△AEF中,由勾股定理得:,所以EF=13.【总结升华】此题考查了等腰直角三角形的性质及勾股定理等知识.通过此题,我们可以知道:当已知的线段和所求的线段不在同一三角形中时,应通过适当的转化把它们放在同一直角三角形中求解.举一反三:【变式】已知凸四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,求证:【答案】解:将△ABD绕点D顺时针旋转60°.由于DC=AD,故点A转至点C.点B转至点E,连结BE.∵ BD=DE,∠BDE=60°∴△BDE为等边三角形,BE=BD易证△DAB≌△DCE,∠A=∠2,CE=AB∵四边形ADCB中∠ADC=60°,∠ABC=30°∴∠A+∠1=360°-60°-30°=270°∴∠1+∠2=∠1+∠A=270°∴∠3=360°-(∠1+∠2)=90°∴∴2.方程的思想方法6、(2016•安徽模拟)定义:若三角形三个内角的度数分别是x、y和z,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,“直角三角形是勾股三角形”是真命题还是假命题;(2)已知一勾股三角形三个内角从小到大依次为x、y和z,且xy=2160,求x+y的值;(3)如图,△ABC中,AB=,BC=2,AC=1+,求证:△ABC是勾股三角形.【思路点拨】(1)直接根据“勾股三角形”的定义,判断得出即可;(2)利用已知得出等量量关系组成方程组,进而求出x+y的值;(3)过B作BH⊥AC于H,设AH=x,利用勾股定理首先得出AH=BH=,HC=1,进而得出∠A=45°,∠C=60°,∠B=75°,即可得出结论.【答案与解析】(1)解:“直角三角形是勾股三角形”是假命题;理由如下:∵对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形,∴无法得到,所有直角三角形是勾股三角形,故是假命题;(2)解:由题意可得:,解得:x+y=102;(3)证明:过B作BH⊥AC于H,如图所示:设AH=x,Rt△ABH中,BH=,Rt△CBH中,()2+(1+﹣x)2=4,解得:x=,∴AH=BH=,HC=1,∴BC=2,∴∠HBC=30°,∴∠BCH=60°,∠B=75°,∴452+602=752∴△ABC 是勾股三角形.【总结升华】此题主要考查了新定义、多元方程组解法、勾股定理和直角三角形中,30°角所对的直角边等于斜边的一半,利用勾股定理得出AH ,HC 的长是解题关键. 举一反三:【变式1】直角三角形周长为12cm ,斜边长为5cm ,求直角三角形的面积. 【答案】解:设此直角三角形两直角边长分别是x y ,,根据题意得:由(1)得:7x y +=,∴()249x y +=,即22249x xy y ++= (3)(3)-(2),得:12xy = ∴直角三角形的面积是12xy =12×12=6(2cm ) 【变式2】如图所示,在△ABC 中,AB :BC :CA=3:4:5,且周长为36cm ,点P 从点A 开始沿边向B 点以每秒1cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2cm 的速度移动,如果同时出发,问过3秒时,△BPQ 的面积为多少?【答案】解:设AB 为3xcm ,BC 为4xcm ,AC 为5xcm ,∵周长为36cm , AB+BC+AC=36cm , ∴3x+4x+5x=36, 得x=3,∴AB=9cm ,BC=12cm ,AC=15cm ,∵AB 2+BC 2=AC 2,∴△ABC 是直角三角形,过3秒时,BP=9﹣3×1=6(cm ),BQ=2×3=6(cm ), ∴S △PBQ =BP•BQ=×(9﹣3)×6=18(cm 2). 故过3秒时,△BPQ 的面积为18cm 2.。
华师大版初中数学知识点总结
华师大版初中数学知识点总结
一、基本运算
1.加减乘除的计算
2.带分数与假分数的计算
3.整数的加减乘除
二、数表达式与代数运算
1.代数式的基本概念
2.同类项与合并同类项
3.一元一次方程及其解法
4.一元一次不等式及其解法
5.一元一次方程组及其解法
三、平面图形
1.点、线、面的基本概念
2.四边形的性质与分类
3.三角形的性质与分类
4.直角三角形及其性质
5.平面直角坐标系
6.圆的性质与相关计算
四、空间图形
1.立体图形的基本概念
2.立体图形的展开图与图形变换
3.直角坐标系中点与向量的运算
4.空间图形的投影与相关计算
五、数据与统计
1.数据的收集与整理
2.数据的图表表示与分析
3.概率与统计
六、函数与方程
1.函数的概念与性质
2.一元一次函数与相关计算
3.一元二次函数与相关计算
4.一元一次不等式与一元二次不等式的解法
七、数的综合应用
1.数字运用与推理
2.运算的应用问题
3.算数平方根与应用
4.核数问题
5.等速变化问题
以上是华师大版初中数学的主要知识点总结。
华师大版初中数学注重培养学生的数学思维和解决实际问题的能力,并通过各种实例和题目来帮助学生理解和应用知识。
掌握了这些知识点,学生将能够更好地应对数学考试,并能够应用数学知识解决实际生活中的问题。
华东师大版初中数学总复习教案
华东师大初中数学总复习第1课时 实数的有关概念知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值教学目标:1. 使学生复习巩固有理数、实数的有关概念.2. 了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3. 会求一个数的相反数和绝对值,会比较实数的大小4. 画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
教学重难点:1. 有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题。
教学过程:1、实数的有关概念(1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数,(3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零).从数轴上看,互为相反数的两个数所对应的点关于原点对称.(4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离(5)倒数实数a(a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数. 2、教学实例:3、课堂练习:4、课堂小结:5、板书:6、课堂作业:7、教学反思:第2课 实数的运算知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字、计算器功能鍵及应用。
教学目标:1.了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
2020春华东师大版初中数学七年级下册习题课件--期末复习(二) 一次方程组
二元一次方程组有两种解法,我们可以根据具体的情况来选择简 便的解法.如果方程中有未知数的系数是 1 时,一般采用代入消元法; 如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加 减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.
1.(2018·天津)方程组x2+x+y= y=1106,的解是( A ) x=6 x=5 x=3 x=2
【解答】 解法一:由①,得 y=4-2x,③ 代入②,得 2(4-2x)+1=5x.解得 x=1. 把 x=1 代入③,得 y=2. ∴原方程组的解为xy= =12,.
解法二:①×2,得 4x+2y=8.③ ③-②,得 4x-1=8-5x.解得 x=1. 把 x=1 代入①,得 y=2. ∴原方程组的解为xy= =12,.
下列两个条件:①由两个二元一次方程组成;②方程组的解为
这样的方程组可以是 答案不唯一,如:xx+ -yy= =- 3 1
.
x=1, y=2.
13.已知xy= =-1,2是方程
2x-ay=3
的一个解,则
a
1 的值是 2
.
14.一个两位数的十位数字与个位数字的和为 8,若把这个两位数
5x+2y=10 5x-2y=10 5x+2y=10 5x+2y=8 A.2x+5y=8 B.2x-5y=8 C.2x-5y=8 D.2x+5y=10
4.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车 间 70 名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝 巾 1 800 条或者脖子上的丝巾 1 200 条,一条脖子上的丝巾要配两条手 上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产 脖子上的丝巾,多少名工人生产手上的丝巾?
4(x-y-1)=3(1-y)-2, (3)x2+y3=2. 解:原方程组可化为43xx- +y2= y=5, 12.①②
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分三个部分复习,分别是代数、概率统计和几何:代数:最重要的一部分,主要还是靠多做题概率统计:最简单的部分,但是容易晕,所以其实掌握规律就很简单,不然就特别难几何:比代数简单很多,初中的都是一些比较简单的东西,高中最主要的就是学会添加辅助线,只要添对辅助线,一般问题就解决了你在看书的时候,觉得重要的就摘抄下来,每一章的具体内容在后面,有些重点部分我用红色标记,每一章的重要性也标记出来了。
前面是看书时间,后面是做题时间,你可以均衡一下,随你自己习惯五三上的题你自己看着觉得是那部分的就做就好了代数部分:第一天第1章走进数学世界(20分钟+10)第2章有理数(40分钟+20)第3章整式的加减(40分钟+20)第6章一元一次方程;(40分钟+20)第7章二元一次方程组;(60分钟+30)(可看一半)第二天如果前面第七章没看完就接着看第8章一元一次不等式;(40分钟+20)第12章数的开方(40分钟+20)第13章整式的乘除(60分钟+30)第三天第17章分式(40分钟+20)第18章函数及其图象(100分钟+50)第22章二次根式(60分钟+30)第四天第23章一元二次方程(60分钟+30)第27章二次函数(80分钟+40)总的看一下前面的部分或者做题(五三)统计概率部分:第五天第5章数据的收集与表示(30分钟+20)第11章体验不确定现象(30分钟+20)第21章数据的整理与初步处理(40分钟+20)第六天第26章随机事件的概率(60分钟+30)第30章样本与总体(60分钟+30)总的看一下前面的部分或者做题(五三)几何部分第七天第4章图形的初步认识(20分钟+10)第9章多边形(40分钟+20)第10章轴对称(40分钟+20)第14章勾股定理(60分钟+30)第八天第15章平移与旋转(60分钟+30)第16章平行四边形的认识(40分钟+20)第19章全等三角形(60分钟+30)第九天第20章平行四边形的判定(60分钟+30)第24章图形的相似(60分钟+30)第25章解直角三角形(60分钟+30)(可看一半)第十天25章没看完的看完第28章圆(60分钟+30)第29章几何的回顾(60分钟+30)第十一天整个复习一遍我帮你出套试卷做七年级上第1章走进数学世界(这一章浏览一遍,做做后面的题,不要因为简单就不做哦)§1.1 从实际问题到方程:1. 数学伴我们成长;2. 人类离不开数学;3. 人人都能学会数学;阅读材料华罗庚的故事;视数学为生命的陈景润;少年高斯的速算;§1.2 让我们来做数学;1. 跟我学;2. 试试看;阅读材料幻方.第2章有理数(这是基础,但是也比较简单,如果你觉得掌握了,就可以看快一点,做题)§2.1 正数和负数:1. 相反意义的量;2. 正数与负数;3. 有理数;§2.2 数轴;1. 数轴;2. 在数轴上比较数的大小;§2.3 相反数;§2.4 绝对值;§2.5 有理数的大小比较;1. 数轴;2. 在数轴上比较数的大小;§2.6 有理数的加法;1. 有理数的加法法则;2. 有理数加法的运算律;§2.7 有理数的减法;§2.8 有理数的加减混合运算;1. 加减法统一成加法;2. 加法运算律在加减混合运算中的应用;阅读材料中国人最早使用负数;§2.9 有理数的乘法;1. 有理数的乘法法则;2. 有理数乘法的运算律;§2.10 有理数的除法;§2.11 有理数的乘方;阅读材料10003与31000;§2.12 科学记数法;阅读材料光年和纳米;§2.13 有理数的混合运算;§2.14 近似数和有效数字;§2.15 用计算器进行数的简单运算;阅读材料从结绳记数到计算器;小结;复习题第3章整式的加减(这是基础,但是也比较简单,如果你觉得掌握了,就可以看快一点,做题)§3.1 列代数式:1. 用字母表示数;2. 代数式;3. 列代数式;§3.2 代数式的值;阅读材料有趣的“3x+ 1”问题;§3.3 整式;1. 单项式;2. 多项式;3. 升幂排列与降幂排列;§3.4 整式的加减;1. 同类项;2. 合并同类项;3. 去括号与添括号;4. 整式的加减;阅读材料用分离系数法进行整式的加减运算;供应站的最佳位置在哪里;复习题;课题学习身份证号码与学籍号第4章图形的初步认识(几何开始了,但是也比较简单,如果你觉得掌握了,就可以看快一点,做题)§4.1 生活中的立体图形;阅读材料欧拉公式;(这个公式很重要)§4.2 画立体图形;1. 由立体图形到视图;2. 由视图到立体图形;§4.3 立体图形的表面展开图;§4.4 平面图形;阅读材料七巧板;§4.5 最基本的图形-点和线;1. 点和线;2. 线段的长短比较;§4.6 角;1. 角;2.角的比较和运算;3. 角的特殊关系;§4.7 相交线;1. 垂线;2. 相交线中的角;§4.8 平行线;1. 平行线;2. 平行线的识别;3. 平行线的特征;小结;复习题;第5章数据的收集与表示(浏览就可以,这个特别简单,可以不用做题,但是要看看题型,大概知道怎么做就好)§5.1 数据的收集;1. 数据有用吗;2. 数据的收集;阅读材料赢在哪里;谁是《红楼梦》的作者;§5.2 数据的表示;1. 利用统计图表传递信息;2. 从统计图表获取信息;阅读材料计算机帮我们画统计图小结;复习题;课题学习图标的收集与探讨七年级下:第6章一元一次方程;(基础,简单,但是要理解透彻,做题)§6.1 从实际问题到方程;§6.2 解一元一次方程;1. 方程的简单变形;2. 解一元一次方程;阅读材料丢番图的墓志铭与方程;§6.3 实践与探索;阅读材料2=3吗;小结;复习题第7章二元一次方程组;(基础,有难度,要理解透彻,做题)§7.1二元次方程组和它的解;§7.2二元一次方程组的解法;§7.3实践与探索;阅读材料鸡兔同笼;小结;复习题;第8章一元一次不等式;(基础,比较简单,但是要理解透彻,做题)§8.1认识不等式;§8.2解一元一次不等式;1. 不等式的解集;2. 不等式的简单变形;3. 解一元一次不等式;§8.3一元一次不等式组;小结;复习题;第9章多边形(基础,简单,但是要理解透彻,做题)§9.1三角形;1. 认识三角形;2. 三角形的外角和;3. 三角形的三边关系;§9.2多边形的内角和与外角和;§9.3用正多边形拼地板;1. 用相同的正多边形拼地板;2. 用多种正多边形拼地板;阅读材料多姿多彩的图案;小结;复习题;课题学习图形的镶嵌第10章轴对称(基础,比较简单,但是要理解透彻,做题)§10.1生活中的轴对称;阅读材料剪正五角星;§10.2轴对称的认识;1. 简单的轴对称图形;2. 画图形的对称轴;3. 设计轴对称图案;阅读材料对称拼图游戏;§10.3等腰三角形;1. 等腰三角形;2. 等腰三角形的识别;阅读材料Times and dates;小结;复习题;第11章体验不确定现象(就是概率问题,这涉及到高中学的排列组合问题,很重要,基础,比较简单,但是要理解透彻,做题)§11.1可能还是确定;1. 不可能发生、可能发生和必然发生;2. 不太可能是不可能吗;§11.2机会的均等与不等;1. 成功与失败;2. 游戏的公平与不公平;阅读材料搅匀对保证公平很重要;§11.3在反复实验中观察不确定现象;阅读材料计算机帮我们处理数据;小结;复习题;课题学习红灯与绿灯八年级上第12章数的开方(基础,简单,但是要理解透彻,做题)§12.1 平方根与立方根;1. 平方根;2. 立方根;§12.2 实数与数轴;阅读材料为什么2不是有理数5的算法;(开方的算法一般不要求,如果你要想学,我知道一种方法,以前我们初中老师教的,可以教给你)第13章整式的乘除(很重要,比较难,要理解透彻,做题)§13.1 幂的运算;1. 同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4. 同底数幂的除法;§13.2 整式的乘法;1. 单项式与单项式相乘;2. 单项式与多项式相乘;3. 多项式与多项式相乘;§13.3 乘法公式;1. 两数和乘以这两数差;2. 两数和的平方;阅读材料贾宪三角;(可以了解)§13.4 整式的除法;1. 单项式除以单项式;. 多项式除以单项式;§13.5 因式分解;(非常重要)阅读材料你会读吗;小结;复习;课题学习面积与代数恒等式第14章勾股定理(基础,简单,但是要理解透彻,做题)§14.1 勾股定理;1. 直角三角形三边的关系;2. 直角三角形的判定;阅读材料勾股定理史话;美丽的勾股树;§14.2 勾股定理的应用;小结;复习;课题学习勾股定理的“无字证明”第15章平移与旋转(基础,比较简单,但是要理解透彻,做题)§15.1 平移;1. 图形的平移;2. 平移的特征;§15.2 旋转;1. 图形的旋转;2. 旋转的特征;3. 旋转对称图形;§15.3 中心对称;§15.4 图形的全等;(主要在高中的集合证明中有重要作用)阅读材料古建筑中的旋转对称——从敦煌洞窟到欧洲教堂小结;复习题课题学习图案设计;第16章平行四边形的认识(基础,简单,但是要理解透彻,做题)§16.1 平行四边形的性质;§16.2 矩形、菱形与正方形的性质;1. 矩形;2. 菱形;3. 正方形;阅读材料黄金矩形;§16.3 梯形的性质;阅读材料四边形的变身术小结;复习题八年级下第17章分式(基础,比较难,但是要理解透彻,做题)§17.1 分式及其基本性质;1.分式的概念;2.分式的基本性质§17.2 分式的运算;1.分式的乘除法;2.分式的加减法阅读材料历史上的分数运算法则;§17.3 可化为一元一次方程的分式方程;§17.4 零指数幂与负整指数幂;1.零指数幂与负整指数幂;2.科学记数法小结;复习题第18章函数及其图象(非常重要,困难,要理解透彻,做题)§18.1 变量与函数;§18.2 函数的图象;1.平面直角坐标系;2.函数的图象阅读材料笛卡儿的故事;§18.3 一次函数;1.一次函数;2.一次函数的图象;3.一次函数的性质;4.求一次函数的解析式阅读材料小明算得正确吗?;§18.4 反比例函数;1.反比例函数;2.反比例函数的图象和性质§18.5 实践与探索;阅读材料The Graph of Function小结;复习题第19章全等三角形(基础,比较简单,但是要理解透彻,做题)§19.1 命题与定理;1.命题;2.公理、定理§19.2 全等三角形的判定;1.全等三角形的判定条件;2.边角边;3.角边角;4.边边边;5.斜边直角边阅读材料图形中的"裂缝";§19.3 尺规作图;1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.经过一已知点作已知直线的垂线;5.作已知线段的垂直平分线(要掌握)阅读材料由尺规作图产生的三大难题;§19.4 逆命题与逆定理;1.互逆命题与互逆定理;2.等腰三角形的判定;3.角平分线;4.线段垂直平分线小结;复习题课题学习图形中的趣题第20章平行四边形的判定(基础,比较简单,但是要理解透彻,做题)§20.1平行四边形的判定;§20.2 矩形的判定;阅读材料完美矩形§20.3 菱形的判定;§20.4 正方形的判定;(从上面开始都是一步步顺推的,四边形→平行四边形→矩形;四边形→平行四边形→菱形→正方形)阅读材料折纸中的平行四边形;§20.5 等腰梯形的判定;小结;复习题;第21章数据的整理与初步处理(基础,比较简单,但是要理解透彻,做题,做几道就好,都是类似的题)§21.1 算术平均数与加权平均数;1.算术平均数的意义;2.用计算器求算术平均数;3.加权平均数;4.扇形统计图的制作阅读材料均贫富;§21.2 平均数、中位数和众数的选用;1.中位数和众数;2.平均数、中位数、众数的选用阅读材料计算机帮我们求对平均数、中位数和众数;§21.3 极差、方差和标准差;1.表示一组数据离散程度的指标;2.用计算器求标准差阅读材料早穿皮袄午穿纱;小结;复习题;课题学习心率与年龄九年级上第22章二次根式(重要,难点,要理解透彻,做题)§22.1 二次根式的概念;阅读材料蚂蚁和大象一样重吗?;§22.2 二次根式的乘除法;1.二次根式的乘法;2.积的算术平方根;3.二次根式的除法§22.3 二次根式的加减法;小结;复习题;第23章一元二次方程(基础,比较难,要理解透彻,做题)§23.1 一元二次方程;§23.2 一元二次方程的解法;阅读材料一元二次方程根的判别式(很重要)§23.3 实践与探索;小结;复习题第24章图形的相似(重要,比较简单,但是要理解透彻,做题)§24.1 相似的图形;§24.2 相似图形的特征;1.成比例线段;2.相似图形的性质阅读材料黄金分割;§24.3 相似三角形;1.相似三角形;2.相似三角形的判定;3.相似三角形性质;4.相似三角形的应用阅读材料线段的等分;相似三角形与全等三角形§24.4 中位线;§24.5画相似图形;阅读材料数学与艺术的美妙结合——分形§24.6 图形与坐标;1.用坐标确定位置;2.图形的变换与坐标;小结;复习题第25章解直角三角形(重要,比较简单,但是要理解透彻,做题)§25.1 测量;§25.2 三角函数;1.锐角三角函数;2.用计算器求锐角三角函数值;(要记住特殊角度的三角函数值,记牢,不要混淆)§25.3 解直角三角形;阅读材料葭生池中;小结;复习题课题学习高度的测量;第26章随机事件的概率(基础,比较简单,但是要理解透彻,做题)§26.1 概率的预测;1.什么是概率;2.在复杂情况下列举所有机会均等的结果;阅读材料电脑键盘上的字母为何不按顺序排列;§26.2模拟实验;1.用替代物做模拟实验;2.用计算器做模拟实验小结;复习题;课题学习通讯录的设计附表随机数表九年级下第27章二次函数(重要,难点,要理解透彻,做题)§27.1 二次函数;§27.2 二次函数的图象与性质;1.二次函数y=ax2的图象与性质;2.二次函数y=ax2+bx+c 的图象与性质3.求二次函数的解析式;阅读材料生活中的抛物线;§27.3 实践与探索小结;复习题第28章圆(基础,比较简单,但是要理解透彻,做题)§28.1 圆的认识;1.圆的基本元素;2.圆的对称性;3.圆周角;§28.2 与圆有关的位置关系;1.点和圆的位置关系;2.直线和圆的位置关系;3.切线;4.圆和圆的位置关系.阅读材料你能画吗;§28.3 圆中的计算问题;1.弧长和扇形的面积;2.圆锥的侧面积和全面积;阅读材料古希腊人对大地的测量;圆周率;小结;复习题第29章几何的回顾(基础,比较简单,但是要理解透彻,做题)§29.1 几何问题的处理方法;§29.2 反证法;阅读材料几何原本;小结;复习题;课题学习图形中的趣题第30章样本与总体;1.(基础,比较简单,但是要理解透彻,做题)§30.1 抽样调查的意义;1.人口普查和抽样调查;2.从部分看全体;3.这样选择样本合适吗? 阅读材料空气污染指数;§30.2用样本估计总体;1.简单的随机抽样;2.抽样调查可靠吗:3.用样本估计总体;阅读材料漫谈收视率§30.3 借助调查做决策:1.借助调查做决策;2.容易误导决策的统计图;阅读材料标准分小结;复习题;课题学习改进我们的课桌椅.附表1 男同学身高、体重数据表附表2 女同学身高、体重数据表。