高强度灰铸铁熔炼技术

合集下载

中频感应电炉熔炼高强度灰铸铁工艺

中频感应电炉熔炼高强度灰铸铁工艺

双联 熔 炼 工艺 生 产 发 动机 铸 件 , 近 几年 ,随 着 发动 机 功 率 的 不断
铁 强 度 的 方 法 会 带来 许 多 不利 因 素 ,如 铸造 工 艺性 能 变差 、 白 口
料 以 及熔 炼 过 程 的 控 制 来 保 证 , 而铸 件 化 学 成 分 则 通 过 炉 前处 理 过 程 中 的 孕育 及 合金 化 柬 控 制 铸
的化 学 成 分 ,如 表 J 所示 。
料 ,不 使川 生 铁 ,利 用 增 碳 剂进 行增 碳 的 工艺 来 生 产 铸 铁 ,不 仪 消除 生 铁 的 遗 传 性 ,可 使 铸铁 的

按 所 生 产 铸 件 的壁 厚 和 技 术 要 求 合理 选 择 。 传 统 方 法 认 为 ,提 高 灰 铸 铁
强度 灰 铸铁 工 艺进 行 探索 。

倾向增大 ,特 别是薄 壁件 可能 会
引 起 可 加 工性 变 差 的情 况 , 因此
并 未被 广 泛应 用 。
目前 ,普 遍 采 用 的 方 法 是 在 达 到较 高 强 度 的 前提 下 ,使 用尽
町 能 高 的 碳 当 量 。 碳 当 量 的 提
理 完 全 不 一样 , 为 了保 ¨ E 铁 液 质 量 , 使 用 废 钢 加 旧炉 料 进 行 眦
形 态 ,从 而 改 善切 削加 工性 能 , 逐 步认 识 到 灰铸 铁 中硫 含 量 在 一 定 范 围 内是 有利 的 。我 仃 】 根 据 生 产铸 件 的结 构 特 点确 定 了原 铁 液
件化 学 成 分 。
提升 ,对缸体 、缸盖 等铸件要求
越 来越 高 ,材 料 牌号 种 类 变 化 较 大 ,给 生产 带 来 不便 , 目前 新 建 的铸 造 车 间 采 用 中频 感应 电炉 熔 炼 铁 液 。 本 文 主要 是 通 过 在 生产 中 的 实践 ,从 原材 料 质量 控 制 、 配料 、 加料 工 艺 、熔 炼 工 艺 等 几 方面对 l 2 t 中 频 感 应 电 炉 熔 炼 高

现代灰铸铁熔炼技术

现代灰铸铁熔炼技术

$#&
$#!
使用热分析技术 炉 前 利 用 热 分 析 方 法 , 不 足 ’ ()* 就 能 确 定
碳、 硅、 碳当量的多少, 并从冷却曲线的几个拐点 上了解到初生奥氏体的形核过冷温度、 奥氏体生 长期的冷却速度、 共晶石墨或共晶渗碳体形核的 温度、 共晶生长的过冷度, 以及共晶生长的时间、 温度和速度, 从曲线的变化就能确定铸铁组织的 变化及石墨的形态, 有时可以当机立断采用不同 孕育加以调整改进, 又可观察到孕育改进后铁液 凝固的变化 +,-。 用热分析技术, 可以从容掌握与控制铸铁性 能, 是较为灵验的方法。
"
前言 铸铁作为结构材料历史悠久,因为它具有耐
关, 东风公司铸铁一厂使用工频炉熔化, 生产发动 机缸体铸件, 当 % &’( 为 )*)+ 、 废 % &,-( 为 "*!.+ 时, 钢 加 入 量 /#+01#+ 与 同 成 分 少 加 废 钢( 加 入 量
磨、 耐热、 耐氧化、 耐腐蚀、 耐酸碱及好的减震性; 与其他合金比较又具有熔点低、 充型性好、 加工性 好和成本低廉的优越性,所以随着社会文明和人 们生活水平的提高, 铸铁的应用会越来越广。 铸铁的发展决定于吸收和采用先进工艺、 材 料和控制技术。 严格控制冶金因素、 合理选择铸铁 成分, 以及控制金属的冷却与结晶, 不降低碳当量 也能生产出高强度、 低硬度、 低应力的薄壁高强度 灰铸铁。 灰铸铁的产量仍占铸铁件的首位,为促进其 水平的提高与发展, 作者就控制冶金因素诸方面, 提出些意见。
铁液温度 # F 强度性能 弹性模量 硬度 柏松比
/ *22)/ (02 / (02)/ 322 / 322)/ 022
" " "

高强度灰铸铁联体缸盖熔炼生产工艺

高强度灰铸铁联体缸盖熔炼生产工艺

高强度灰铸铁联体缸盖熔炼生产工艺高强度灰铸铁联体缸盖是发动机的重要零部件之一,作为发动机的“头盖子”,负责密封气缸、控制燃烧室的气流,保证发动机正常运转。

研发高强度灰铸铁联体缸盖的生产工艺,对于提升汽车发动机的性能、耐久性和节能降耗有着不可忽视的作用。

一、工艺流程高强度灰铸铁联体缸盖的生产工艺流程主要包括模具制造、熔炼、铸造、加工和质检五个环节。

具体流程如下:1.模具制造:根据产品设计要求,制造各种型号规格的砂型,并加工成具有一定精度和光洁度的铸造模具。

2.熔炼:采用高频感应炉,将灰铸铁和合金料分别放入炉内进行熔化,经过严格的合金成分控制和合金调配,确保配比精确。

3.铸造:将熔化的灰铸铁合金倒入铸造模具中,经过冷却凝固后,取出铸件,进行切割和去毛刺等处理。

4.加工:在数控机床等设备上进行精细加工,包括铣削、镗孔、钻孔、攻丝等加工工序,使得产品达到设计精度和光洁度要求。

5.质检:对产品进行全面的检测和测试,检查产品的组织结构、硬度、尺寸精度、表面质量等各项指标是否符合要求。

二、工艺特点高强度灰铸铁联体缸盖的生产工艺相较于传统的铸造工艺,具有以下几个明显的特点:1.精细化:采用数控机床等高精度加工设备进行砂型加工、铸造加工等关键工序,精度高、尺寸准确。

2.稳定性:利用高频感应炉等现代化熔炼设备进行熔炼,合金成分精确,产品质量稳定。

3.节能环保:采用中频感应炉进行铸造熔炼,无污染、无噪音、无排放、节能环保。

4.耐用性:高强度、高耐磨性的灰铸铁合金材料,可保证产品的耐久性和使用寿命。

三、工艺优点与传统工艺相比,高强度灰铸铁联体缸盖的生产工艺具有以下几个显著的优点:1.产品精度高,质量稳定,能够满足高性能发动机的要求,提升发动机的性能和使用效果。

2.生产工艺流程简单、环保,不会污染环境,能够实现清洁生产。

3.生产效率高,减少了人工操作,提高了生产效率和安全性。

4.产品耐用、可靠,使用寿命长,可为汽车等行业客户提供长期的保障和服务。

电炉熔炼灰铸铁技术要点讲解

电炉熔炼灰铸铁技术要点讲解

电炉熔炼灰铸铁技术要点讲解在现代铸铁生产中,冲天炉因环保问题正被逐步关停,大多数铸造企业改用中频炉熔炼铸铁。

与冲天炉相比,中频炉熔炼工艺相对简单;铁水的化学成分和温度容易控制,不增碳不增硫有利于低硫铁水的获得;环境污染小,炉前冶炼的工作环境和劳动强度也大为改善;利用夜间电价低谷熔炼,生产成本可大致与冲天炉相当;同样化学成分的铁水、同样的铸型浇注的铸件,中频炉比冲天炉熔炼的灰铁强度和硬度高;中频炉铁水比冲天炉铁水过热温度高、流动性差,并具有以下不良特性:铁水的晶核数量少,过冷度、白口和收缩倾向大,铸件厚壁处易产生缩孔和缩松,薄壁处易产生白口和硬边等铸造缺陷。

在亚共晶灰铸铁中,A 型石墨数量极易减少,D、E 型石墨及其伴生的铁素体数量增加,珠光体数量少。

所有这些再加上日常生产中的一些不当因素,都在生产中表现为铸件质量的波动,影响了铸铁的正常生产。

针对中频炉熔炼灰铁出现的新问题,笔者克服了电炉熔炼工艺、技术资料少,实践、探索难度大等诸多困难,逐步摸索和总结积累了一些生产技术经验和体会,期望能对正处于艰难经营和转型升级阵痛中的中小铸造企业提供微薄帮助。

1.原材料的选用及炉料配比炉料优劣直接影响铁水的质量,中频炉熔炼灰铁对于炉料的清洁程度和干燥要求较高,炉料不干净、含有有害元素或熔炼控制不好,会导致铁水氧化和纯净度低,严重恶化铁水的冶金质量,影响铸铁的基体组织和石墨形态,引起孕育不良、白口和缩松倾向大、气孔多等问题。

因此应强化对原辅材料的管理,严禁使用锈蚀严重、有油污的炉料。

同时,为提高铁水的纯净度和稳定铁水的化学成分,应选用碳素钢废钢做炉料,并使其在炉料配比中占 50%以上;对于回炉料应选用同材质铸件浇冒口,并清理掉粘附的型砂和涂料后再使用,使用量以40%左右为宜;废铁屑也应是同材质铸件机加工铁屑;对于生铁,因其中的杂质和微量元素以及组织缺陷都具有遗传性,应选用来源稳定、干净少绣、有害元素低、最好是Z18 以上牌号的铸造生铁,这样的生铁生产的铸件内在质量好且稳定,不要轻易变换生铁的来源,否则对于使用存在不合格因素的炉料而可能引起的质量问题将防不胜防, 并且生铁的加入应在熔炼初期加入为好,配比可占15%,以利于改善铸铁的石墨形态;增碳剂应选用商品石墨增碳剂或经高温石墨化处理过的增碳剂,并在熔炼中尽量早加,使增碳剂与铁水直接接触, 且有充足的时间熔化吸收;铁合金和孕育剂应化学成分合格、粒度适宜。

高强度灰铸铁实用技术

高强度灰铸铁实用技术

高强度灰铸铁实用技术铸造工业网2022-08-16 19:01发表于河南一、电炉熔炼高强度灰铸铁,做好这几点才能保障质量!1.高强度合金灰铸铁成分的设计以壳体为例,其材质为灰铸铁250,硬度大于200,要求易切削加工,进行油压试验不渗漏,在铸铁中添加微量多元合金成分,选择合理的工艺参数,使铸件具有一定的化学成分和冷却速度,获得理想的金相组织和力学性能。

要保证力学性能,就必须控制好基体组织和石墨形态高强度低合金化孕育铸铁的成分设计,首先要考虑铁液碳当量与冷却速度的影响作用。

碳当量过高,铸件厚壁处冷却速度缓慢,铸件厚壁处易产生晶粒粗大、组织疏松,油压试验易产生渗漏;若碳当量过低,铸件薄壁处易形成硬点或局部硬区,导致切削性能变差。

将碳当量控制在3.95%~4.05%,即可保证材质的力学性能,又接近共晶点,其铁液的凝固温度范围较窄,为铁液实现“低温”浇注创造了条件;而且有利于削除铸件的气孔、缩孔缺陷。

其次要考虑合金元素的作用,铬、铜元素在共晶转变中,铬阻碍石墨化,促成碳化物、促进白口;而铜则促进石墨化作用,减少断面白口。

两元素相互作用在一定程度上得到中和,避免在共晶转变中产生渗碳体而导致铸件薄壁处形成白口或硬度提高;而在共析转变中,铬和铜都可以起到稳定和细化珠光体的复合作用,但各自的作用又不尽相同。

以恰当比例配合,能更好发挥两者各自的作用。

在含铬=0.2%灰铸铁中加入大于2.0%的铜,不仅能促进珠光体转变,提高并稳定珠光体量和细化珠光体,促进A型石墨产生和均化石墨形态;还能在铬r小于0.2%灰铸铁中提高铁水的流动性,这尤其对壳体薄壁累铸件有利。

复合加入铬、铜可使铸件致密性进一步提高,因此对于要求耐渗漏的铸件。

加入适量的铬、铜、有利于改善材质本身的致密性,提高其抗渗漏能力。

珠光体基本是高强度灰铸铁生产中希望获得的组织,因为只有以珠光体为基础的铸铁强度高、耐磨性好。

锡能有效增加基体组织中珠光体含量,并促进和稳定珠光体形成,我们生产实践的结论是把锡含量控制在0.7%~0.9%. 2.严把原辅料质量关入厂原辅材料须进行取样分析,做到心中有数,不合格的原辅材料绝不投入使用。

高强度灰铸铁熔炼技术发展趋势及最新研究成果

高强度灰铸铁熔炼技术发展趋势及最新研究成果
到更 好 的渗碳 效 果并 促进 形核 。另 外 , 有一 项 在 还
使用 的是 高 纯生铁 也 被证 明是落 后 的 , 它是 熔化 设 备 和熔炼 丁 艺落 后 的双 重体 现 。 同时需 要说 明 , 大 量使 用废 钢 增碳 工艺 提 高灰 铸铁 性 能 , 其铁 液 的收
缩 和 白口倾 向反 而降低 , 就是增 碳 的功劳 。 进入 新世 纪 , 铸铁 的研 究 进 入 了一个 新 的活 灰 跃期 。许 多 新技 术 、 r 的开 发应 用 为灰 铸铁 材 新一 艺
随着 重 型 卡 车 功率 的不 断 提 高 和 节 能 减 排 指 标 的更 加严 格 , 柴油 发动 机 缸体 缸盖 正 在 向更 高 强
度 发展 , 料 已从 H 2 0发展 到 H 2 0 近 几 年 更 材 T0 T5 ,
收 缩倾 向并没 有 因此 增加 。
1 灰铸 铁 熔 炼技 术 简要 回顾 及 发展 趋
向 ,减少灰铸铁 的断面敏感性 ,改善石墨形态 ,提高材料性能 。指 出随着熔炼 _艺水平的提高和铁 液炉前处理技术的创新 , r
H 30材 料 已产 业 化 应 用 , T 5 及 更 高 牌 号 的 灰 铸铁 材 料 也 已经 能够 达 到 。 T0 H 30 关键 词 : 铸 铁 ; 强 度 ; 灰 高 冲天 炉一 感 应 炉 双 联 ; 应 炉增 碳 感
是要 求 H 30 T 0 。更 高牌号 的灰 铸铁材 料被 多数人认 为并 不适 合 生产 缸体 缸 盖这 类复 杂 铸件 , 如有 需 求 可能会 被蠕 墨铸铁 所替 代 。然 而 , 许多 研究 表 明 , 如
能采 取先 进 的熔 炼工 艺 以及 先进 的铁 液 处理 技 术 , 灰铸 铁 的强度 性 能仍 有大 幅提高 的潜 力 , 铁 液 的 而

高强度灰铸铁熔化技术.

高强度灰铸铁熔化技术.

高强度灰铸铁熔化技术长城须崎铸造股份有限公司(简称 CSMF 传统的灰铸铁熔炼控制方向是低碳高强度铸铁( C :2.7~3.0 ,Si :2.0~2.3 ,Mn :0.9~1.3 )这样的材料虽然能够满足材料机械性能的要求,但其铸 造性能、加工性能却较差,随着公司市场开发拓展,越来越多的高难度、高技术质量要求的铸造产品纳入CSMF 勺生产序列,特别是 CSMf 用工频电炉熔炼工艺取代冲天炉熔炼工艺,如何在电炉熔炼条件下获得高碳当量高强度铸铁,满足顾客的定货要求,是我们当时的一个研究课题,本文叙述了电炉熔炼的条件下高 强度灰铸铁勺生产技术。

1 影响材料性能勺因素1.1 碳当量对材料性能勺影响决定灰铸铁性能勺主要因素为石墨形态和金属基体勺性能。

当碳当量( 较高时,石墨勺数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。

这样勺石墨使金属基体 能够承受负荷勺有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体勺强度不能正常发挥, 从而降低铸铁勺强度。

在材料中珠光体具有好勺强度、硬度,而铁素体则质底较软而且强度较低。

当随着C 、 Si 勺量提高,会使珠光体量减少,铁素体量增加。

因此,碳当量勺提高将在石墨形状和基体组织两方 面影响铸铁铸件勺抗拉强度和铸件实体勺硬度。

在熔炼过程控制中,碳当量勺控制是解决材料性能勺一个 很重要勺因素。

1.2 合金元素对材料性能勺影响在灰铸铁中的合金元素主要是指 Mn Cr 、Cu 、Sn 、Mo 等促进珠光体生成元素,这些元素含量会直接影响珠光体勺含量,同时由于合金元素勺加入,在一定程度上细化了石墨,使基体中铁素 体勺量减少甚至消失,珠光体则在一定勺程度上得到细化,而且其中勺铁素体由于有一定量勺合金元素而 得到固溶强化,使铸铁总有较高勺强度性能。

在熔炼过程控制中,对合金勺控制同样是重要勺手段。

1.3 炉料配比对材料勺影响过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料勺观点,而实际上这种观点所看到勺只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起 的作用。

高强度灰铸铁生产中不可忽视的技术问题完整

高强度灰铸铁生产中不可忽视的技术问题完整

高强度灰铸铁生产中不可忽视的技术问题完整(可以直接使用,可编辑优质资料,欢迎下载)高强度灰铸铁生产中不可忽视的技术问题1、摘要:灰铸铁是“面大量广”的常用金属结构材料。

本文主要论述了合金元素硫、锰含量及其比例,微量元素钛和氮的控制,以及孕育剂加入量对灰铸铁组织和性能的影响。

据统计,2007年我国铸件产量达到了3000万多吨,其中,灰铸铁占60-70%。

由于灰铸铁具有独特的性能特点,它在机械、机床、冶金、汽车等行业的应用中占有非常重要的位置。

改革开放30年来,我国的灰铸铁生产技术水平获得了很大提高。

但与国外先进国家相比,还存在着较大差距。

在高强度灰铸铁生产过程中,我国大多数工厂比较注重五大元素、合金元素、熔炼温度、铸造工艺等因素的控制,这些因素的控制对提高灰铸铁的内在质量和外在质量是至关重要的。

但是,还有一些其他因素没有引起人们足够的重视,这些同样对灰铸铁的质量有着重要影响,譬如,元素硫与锰的含量与比例,微量元素钛、氮的控制以及孕育剂加入量等细节的掌握。

本文就这些因素对灰铸铁组织和性能的影响进行讨论,抛砖引玉,以期引起人们的注意。

1硫、锰的控制(1)硫过去,由于我国的灰铸铁和球墨铸铁大部分利用冲天炉熔炼,铁液的增硫比较严重,导致原铁液的含硫量较高,使得铸铁的铸造性能、力学性能降低,球化效果不好,所以,在人们的记忆中硫是一个有害元素。

随着电炉熔炼工艺的发展,可以容易获得含硫量低的铁液,这对处理球墨铸铁非常有利。

但是,有些工厂在灰铸铁生产中发现,电炉灰铸铁的材质性能还不如冲天炉好。

因此,硫不能被简单的被认为是一个有害元素。

在灰铸铁生产中发现,硫量控制在一定范围内,随着硫量的增加,片状石墨长度变短,石墨形态变得弯曲,而且石墨的头部变得钝化,并细化共晶团,提高强度。

为什么硫在一定范围内,促进石墨化,改善石墨形态?硫在铁水中的溶解度很低,对Fe-C 系平衡相图的影响不是很大。

但硫降低碳在铁水中的溶解度,理应是一个促进石墨化的元素,实际上它对石墨化的影响比较复杂。

感应电炉熔炼高强度灰铸铁的生产实践

感应电炉熔炼高强度灰铸铁的生产实践
外商 要 求 电 炉生 产 的少 量 灰铁 件 , 大 量 高 强度 灰 铁 件使 用冷 风 冲天炉 生产 。 随着 企 业 的发 展 , 高强 度 、 壁 厚不 均 、 结 构 复杂 的 中高 速船 用 柴 油机 机 体 、 汽 车用 铸 件 和 高端 机 床 件 对 产 品质 量 和熔 炼 技 术 提 出 了更 高 的要 求 : 具 有 较 高 的共 晶度 ( S c ) 和成熟度( R G) 、 冶 金 质量 良好 , 断面 敏感 性 小 , 即较 高 的材 料 强度 、 较 小 的收 缩率 ,
状 况不 断优 化和 调整 炉料 配 比。 3 优 质碳 素废 钢对铁 液成 分 的影 响
量, 铁 液在凝 固过程 中析 出大量 石 墨产生 膨胀 作用 , 高的碳 当量 和微 合金 化工 艺 比低 碳 当量不 加合 金 的 工 艺 收缩倾 向小 , 并且 采用 铁液 预处 理技 术 , 有效 地 解 决 了铸件 的 高强度 和 收缩 的矛盾 。
中国铸造装备与技术 3 / 2 0 1 3● F NI T
2 7
生产技术 P r o d u c t i o n T e c h n i q u e s
氛、 气体含量低 , 铁液的纯净度高 , 提高 了灰铁材料
的强 度 和性 能 , 可 以根 据产 品质量 、 生产 成 本 、 炉 料
程 中析 出的大 量石 墨产 生膨胀 作 用 , 有效 解决 了铸 件 的高 强度和 收 缩 的矛盾 。 关键 词 : 感 应 电炉 ; 高 强度 灰 铸铁 ; 增碳 工 艺 ; 预 处理 ; 石 墨膨 胀
中图分 类 号 : T G 2 5 0. 2 : 文 献标 识码 : A ; 文章编 号 : 1 0 0 6 — 9 6 5 8 ( 2 0 1 3 ) 0 3 — 0 0 2 7 — 3

灰铸铁熔炼技术浅析

灰铸铁熔炼技术浅析

灰铸铁基本上是由铁、碳和硅组成的共晶型合金,其中,碳主要以石墨的形态存在。

生产优质铸件,控制铸铁凝固时形成的石墨的形态和基体金属组织是至关重要的。

孕育处理是生产工艺中最重要的环节之一。

良好的孕育处理可使灰铸铁具有符合要求的显微组织,从而保证铸件的力学性能和加工性能。

在液态铸铁中加入孕育剂,可以形成大量亚显微核心,促使共晶团在液相中生成。

接近共晶凝固温度时,生核处首先形成细小的石墨片,并由此成长为共晶团。

每一个共晶团的形成,都会向周围的液相释放少量的热,形成的共晶团越多,铸铁的凝固速率就越低。

凝固速率的降低,就有助于按铁-石墨稳定系统凝固,而且能得到A型石墨组织。

一孕育处理的作用灰铸铁的力学性能在很大程度上取决于其显微组织。

未经孕育处理的灰铸铁,显微组织不稳定、力学性能低下、铸件的薄壁处易出现白口。

为保证铸件品质的一致性,孕育处理是必不可少的。

铸铁孕育处理所用的孕育剂,加入量很少,对铸铁的化学成分影响甚小,对其显微组织的影响却很大,因而能改善灰铸铁的力学性能,对其物理性能也有明显的影响。

良好的孕育处理有以下作用:◆消除或减轻白口倾向;◆ 避免出现过冷组织;◆减轻铸铁件的壁厚敏感性,使铸件薄、厚截面处显微组织的差别小,硬度差别也小;◆有利于共晶团生核,使共晶团数增多;◆使铸铁中石墨的形态主要是细小而且均匀分布的A型石墨,从而改善铸铁的力学性能。

孕育良好的铸铁流动性较好,铸件的收缩减少、加工性能改善、残留应力减少。

二.灰铸铁的显微组织灰铸铁的力学性能决定于其基体组织和片状石墨的分布状况。

灰铸铁的力学性能主要取决于其基体组织,为了得到高强度,希望基体组织以珠光体为主、尽量减少铁素体含量。

如果铁素体量过多,不仅导致铸铁的强度低,而且加工时会使刀具过热,显著降低刀具的寿命。

与球墨铸铁不同,对灰铸铁不可能有延性和韧性的要求,只要求其强度,所以一般都以珠光体含量高为好。

灰铸铁中的石墨片,有切割金属基体、破坏其连续性、使其强度降低的作用。

必知高强灰铸铁熔炼技术

必知高强灰铸铁熔炼技术

本文介绍了在电炉熔炼过程中,如何在较高的碳当量和较好的机加工性能要求的条件下获得高强度灰铸铁的熔炼技术,以及如何对材料的微量元素进行控制。

关键词:灰铸铁碳当量力学性能加工性能微量元素长城须崎铸造股份有限公司(简称CSMF)传统的灰铸铁熔炼控制方向是低碳高强度铸铁(C:2.7~3.0,Si:2.0~2.3,Mn:0.9~1.3)这样的材料虽然能够满足材料机械性能的要求,但其铸造性能、加工性能却较差,随着公司市场开发拓展,越来越多的高难度、高技术质量要求的铸造产品纳入CSMF的生产序列,特别是CSMF用工频电炉熔炼工艺取代冲天炉熔炼工艺,如何在电炉熔炼条件下获得高碳当量高强度铸铁,满足顾客的定货要求,是我们当时的一个研究课题,本文叙述了电炉熔炼的条件下高强度灰铸铁的生产技术。

1 影响材料性能的因素1.1 碳当量对材料性能的影响决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。

当碳当量(CE=C+1/3Si)较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。

这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。

在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。

当随着C、Si的量提高,会使珠光体量减少,铁素体量增加。

因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。

在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。

1.2合金元素对材料性能的影响在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高强度灰铸铁熔炼技术【摘要】本文介绍了在电炉熔炼过程中,如何在较高的碳当量和较好的机加工性能要求的条件下获得高强度灰铸铁的熔炼技术,以及如何对材料的微量元素进行控制。

关键词:灰铸铁 碳当量 力学性能 加工性能 微量元素长城须崎铸造股份有限公司(简称CSMF )传统的灰铸铁熔炼控制方向是低碳高强度铸铁(C :2.7~3.0,Si :2.0~2.3,Mn :0.9~1.3)这样的材料虽然能够满足材料机械性能的要求,但其铸造性能、加工性能却较差,随着公司市场开发拓展,越来越多的高难度、高技术质量要求的铸造产品纳入CSMF 的生产序列,特别是CSMF 用工频电炉熔炼工艺取代冲天炉熔炼工艺,如何在电炉熔炼条件下获得高碳当量高强度铸铁,满足顾客的定货要求,是我们当时的一个研究课题,本文叙述了电炉熔炼的条件下高强度灰铸铁的生产技术。

1 影响材料性能的因素1.1 碳当量对材料性能的影响决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。

当碳当量(CE=C+1/3Si )较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。

这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。

在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。

当随着C 、Si 的量提高,会使珠光体量减少,铁素体量增加。

因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。

在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。

1.2合金元素对材料性能的影响在灰铸铁中的合金元素主要是指Mn 、Cr 、Cu 、Sn 、Mo 等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。

在熔炼过程控制中,对合金的控制同样是重要的手段。

1.3炉料配比对材料的影响过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。

如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。

同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。

在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制参数。

因此炉料配比对铸铁材料的机械性能有着直接的影响,是熔炼控制的重点。

1.4微量元素对材料性能的影响以往我们在熔炼过程中只注意常规五大元素对铸铁材质的影响,而对其它一些微量元素的作用仅仅只是一个定性的认识,却很少对他们进行定量的分析讨论,近年来,由于铸造技术的进步,熔炼设备也在不断的更新,冲天炉已逐渐被电炉所代替。

电炉熔炼固然有其冲天炉不可比拟的优点,但电炉熔炼也丧失了冲天炉熔炼的一些优点,这样一些微量元素对铸铁的影响也就反映出来。

由于冲天炉内的冶金反应非常强烈,炉料是处于氧化性很强的气氛中,绝大部分都被氧化,随炉渣一起排出,只有一少部分会残留在铁水中,因此一些对铸件有不利影响的微量元素通过冲天炉的冶金过程,一般不会对铸铁形成不利影响。

在冲天炉的熔炼过程中,焦炭中的氮和空气中的氮气(N2)在高温下,一部分分解会以原子的形式溶入铁水中,使得铁水中的氮含量相对很高。

据统计自电炉投产以来,由于铅含量高造成的废品和因含铅量太高无法调整而报废的铁水不下百吨,而因含氮量不足造成的不合格品数量也相当高,给公司造成很大的经济损失。

在我们多年的电炉熔炼经验和理论基础上,我认为在电炉熔炼过程中重点微量元素主要有N、Pb、Ti,这些元素对灰铸铁的影响主要有以下几方面:铅当铁水中的铅含量较高时(>20PPm),尤其是与较高的含氢量相互作用,在厚大断面的铸件很容易形成魏氏石墨,这是因为树脂砂的保温性能好,铁水在铸型中冷却较慢,(对厚大断面这种倾向更为明显,)铁水处于液态保温时间较长,由于铅和氢的作用使铁水凝固比较接近于平衡状态下的凝固条件。

当这类铸件凝固完毕,继续冷却时,奥氏体中的碳要析出,成为固态下的二次石墨。

在正常情况下,二次石墨仅使共晶石墨片增厚,这对力学性能不会产生很大影响。

但含氮和氢量高时,会使奥氏体同一定晶面上石墨表面能降低,使二次石墨沿着奥氏体一定晶面长大,伸入金属基体中,在显微镜下观察,在片状石墨片的侧面长出许多象毛刺一样的小石墨片,俗称石墨长毛,这就是魏氏石墨及形成原因。

在铸铁中的铝能促使铁液吸氢,而增加其氢含量,因此铝对魏氏石墨的形成,也有间接的影响。

当铸铁中出现魏氏石墨时,对其力学性能影响很大,尤其是强度、硬度,严重时可降低50%左右。

魏氏石墨有以下金相特征:1)在100倍的显微照片上,粗大的石墨片上附着许多刺状小石墨片,即为魏氏石墨。

2)同共晶片状石墨关系是相互连接的。

3)常温下成为魏氏石墨网络延伸入基体中,就成为基体脆弱面,会显著降低灰铸铁的力学性能。

但从断面看,断裂裂纹仍是沿共晶片状石墨扩展的。

如图1所示:图1 魏氏石墨×100氮适量的氮能促进石墨形核,稳定珠光体,改善灰铸铁组织,提高灰铸铁的性能。

氮对灰铸铁的影响主要有两方面,一是对石墨形态的影响,另一方面是对基体组织的影响。

氮对石墨形态的作用是一个非常复杂的过程。

主要表现在:石墨表面吸附层的影响和共晶团尺寸大小的影响。

由于氮在石墨中几乎不溶解,因此,在共晶凝固过程中氮不断吸附在石墨生长的前沿和石墨两侧,导致石墨在析出过程中,其周围浓度增高,尤其在石墨伸向铁水中的尖端时,影响液—固界面上的石墨生长。

氮在共晶生长过程中石墨片尖端和两侧氮的浓度分布存在明显的差别。

由于氮原子在石墨表面上的吸附层能够阻碍碳原子向石墨表面的扩散。

石墨前沿的氮浓度比两侧高时,石墨长度方向的生长速度降低,相比之下,侧向生长就变得容易些,其结果使石墨变短、变粗。

同时由于石墨生长过程中总会存在缺陷,氮原子的一部分被吸附在缺陷位置而不能扩散,将会在石墨长大的前沿上局部非对称倾斜晶界,其余部分仍按原方向长大,从而石墨产生分枝,石墨分枝的增加,是石墨变短的另一个原因。

这样以来,由于石墨组织的细化,减小了其对基体组织的割裂作用,有利于铸铁性能的提高。

氮对基体组织的影响作用,一是由于它是珠光体稳定元素,氮含量的增加,使铸铁共析转变温度降低。

因此,当灰铸铁中含有一定量的氮时,能使共析转变过冷度增加,从而细化珠光体。

另一方面是由于氮的原子半径比碳和铁都小,可以作为间隙原子固溶于铁素体和渗碳体中,使其晶格产生畸变。

由于上述两方面的原因,氮能对基体产生强化作用。

虽然氮可以提高灰铸铁的性能,但是,当其超过一定量时,会产生氮气孔和显微裂纹如图2所示,所以对氮的控制应是在一定范围内的控制。

一般为70—120PPm,当超过180PPm时铸铁的性能将会急剧下降。

图2 氮气孔Ti在铸铁中是属于一种有害元素,究其原因是钛与氮的亲和力较强,当灰铸铁中的钛含量较高时无益于氮的强化作用,首先与氮形成TiN化合物,这就减少了固溶于铸铁中的自由氮,事实上正是由于这种自由氮对灰铸铁起着固溶强化的作用。

因此钛含量的高低间接的影响着灰铸铁的性能。

2 熔炼控制技术2.1 材料化学成分的选择通过上述分析,对化学成分的控制是熔炼技术中非常重要的,它是熔炼控制的基础。

所以合理的化学成分,是保证材料性能的基础。

通常对于高强度铸铁(抗拉强度≥300N/mm2)的成分控制主要有等。

C、Si、Mn、P、S、Cu、Cr、Pb、N表1 GB牌号化学成分%C Si Mn P S Cu Cr Pb N3.0~3.3 1.5~1.9 0.6~0.9<0.06 <0.10.4~0.8 <0.12<20ppm 70~120ppm2.2炉料配比的确定表2 炉料配比%生铁废钢回炉铁5~2050~70 其余2.3微量元素的控制技术实际过程控制中,根据对炉料的分析,确认铅的来源主要是废钢,所以对原材料中铅的控制主要是要对废钢中Pb夹物的控制,通常铅含量控制在15ppm以下。

如果当原铁水中含铅量>20ppm时,在进行孕育处理时进行特殊变质处理。

由于Ti主要来源于生铁,所以对Ti的控制主要是控制生铁,这样一方面是在采购时要对生铁中的Ti含量提出严格要求,通常要求生铁含钛量为:Ti<0.8%,另一方面是要根据生铁的含钛量及时调整使用量。

主要来源于增碳材料和废钢中,因此对N的控制主要是控制增碳材料和废钢,但是正象上面所述过低过高对灰铸铁的性能都有不利的一面,因此对N的含量控制范围一般为:70~120ppm,但是N的含量还要和Ti含量有一个合理的匹配,通常N与Ti的关系为:N:Ti=1:3.42即0.01%的Ti可吸收30PPm的氮,生产时一般建议氮量为:N=0.006~0.01+Ti/3.42。

图3为在灰铸铁中钛与氮的关系。

图3 氮与钛的关系2.4熔炼工艺的控制技术1)孕育技术孕育处理目的在于促进石墨化,降低白口倾向,降低端面敏感性;控制石墨形态,消除过冷石墨;适当增加共晶团数和促进细片状珠光体的形成,从而达到改善铸铁的强度性能和其它性能的目的。

在实际过程控制中,需要控制的参数如下:表3 孕育处理参数孕育剂种类粒度加入量孕育方式孕育温度孕育有效时间75Si-Fe3~5 0.3~0.6 二极孕育1420~1460℃10分钟铁液温度对孕育的影响及控制铁液温度对孕育的影响显著。

在一定的范围内提高铁液的过热温度并保持一定时间,可以使铁液中残存着未溶的石墨质点,完全溶入铁液中,以消除生铁的遗传影响,充分发挥孕育剂的孕育作用,提高铁水受孕育能力。

过程控制中,对过热温度提高到1500~1520℃,对孕育处理温度控制在1420~1450℃。

孕育剂的粒度是孕育剂状况的重要指标,对孕育效果有很大影响。

粒度过细,易于分散或被氧化进入溶渣而失去作用,粒度太大,孕育剂熔化或溶解不尽,不仅不能充分发挥孕育作用,反而会造成偏析、硬点、过冷石墨等缺陷。

因而对孕育剂的粒度尽量控制在2~5mm。

保证孕育效果。

过程控制中孕育工艺主要在孕育槽孕育,这样对一包浇注的铸件,基本可以在孕育衰退前浇注结束。

但对于比较大的件和双浇包浇注的件,不能满足要求。

因而采用了晚期孕育方法:即在浇注铸件之前,在浇包中进行浮硅孕育(孕育量为0.1%),这样减小了或不存在孕育衰退,提高了孕育效果。

相关文档
最新文档