2013-2014上数学期末试卷

合集下载

2013-2014学年上学期小学数学第三册期末试卷

2013-2014学年上学期小学数学第三册期末试卷

2013-2014学年上学期小学数学第三册期末试卷一、看谁都算对。

(16分)70-4= 7+56= 4×9= 20+39= 95-8= 6×4= 8×8= 16+80= 9+11= 3×8= 41-2= 9×6= 50-8= 5×7= 73+7= 7×6= 38-5= 9×5= 15-4= 0×0= 4×8= 7×4= 8×5= 2×6= 63-23= 9×8= 80-40= 47-6= 8×4= 1+90= 82-7= 7×8= 7×3= 5×6= 7×5= 5×8= 5×5= 45+50= 56-30= 76-24= 4×7= 70-40= 8×3= 9×7= 3×9= 3+26= 9×2= 12+6= 7×7= 1×1= 6×9= 89-30= 6×7= 59-9= 18+5= 6+30= 8×6= 95-8= 4×6= 9×3= 9×9= 2+2= 7×9= 65+8= 71-8= 3×7= 5+43= 9×4= 5+3= 6+8= 55+9= 4×4= 40-16= 6×5= 9×0= 4×3= 5×9= 72-9= 6×3= 34+20=二、我会填。

(22分)1、()九六十三七()四十九()()三十六()三十二九()四十五()()二十四(4分)2、一个因数是7,另一个因数是6,积是(),写成乘法算式是(),口诀是()。

(3分)3、两个因数都是4,积是();4个5相加,和是()。

2013-2014学年北京市丰台区九年级(上)期末数学练习试卷

2013-2014学年北京市丰台区九年级(上)期末数学练习试卷

2013-2014学年北京市丰台区九年级(上)期末数学练习试卷一、选择题(本题共36分,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的.1.(4分)已知3x=4y(xy≠0),则下列比例式成立的是( )A.=B.=C.=D.=2.(4分)如图,在△ABC中,D、E分别是AB、AC边上的点,且DE∥BC,如果DE:BC=3:5,那么AE:AC的值为( )A.3:2B.2:3C.2:5D.3:53.(4分)已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是( )A.相交B.相切C.相离D.不确定4.(4分)一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是( )A.B.C.D.5.(4分)在小正方形组成的网格图中,直角三角形的位置如图所示,则sinα的值为( )A.B.C.D.6.(4分)当x>0时,函数y=﹣的图象在( )A.第四象限B.第三象限C.第二象限D.第一象限7.(4分)如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB的长是( )A.4B.6C.8D.108.(4分)如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y= x2﹣2x,其对称轴与两段抛物线所围成的阴影部分的面积为( )A.2B.4C.8D.169.(4分)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC 运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )A.AE=6cmB.sin∠EBC=C.当0<t≤10时,y=t2D.当t=12s时,△PBQ是等腰三角形二.填空题(本题共20分,每小题4分)10.(4分)两个相似三角形的面积比是5:9,则它们的周长比是 .11.(4分)在Rt△ABC中,∠C=90°,如果tanA=,那么∠A= °.12.(4分)已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为 cm2.13.(4分)一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是 .14.(4分)如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1,A3A4=4OA1,….那么A2B2= ,A n B n= .(n为正整数)三、解答题(本题共19分,第15题4分,第16题5分,第17题5分,第18题5分)15.(4分)计算:3tan30°﹣2cos45°+2sin60°.16.(5分)已知二次函数y=x2+2x﹣1.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出图象与x轴的交点坐标.17.(5分)如图,在⊙O中,C、D为⊙O上两点,AB是⊙O的直径,已知∠AOC=130°,AB=2.求:(1)的长;(2)∠D的度数.18.(5分)如图,在△ABC中,∠C=90°,sinA=,D为AC上一点,∠BDC=45°,DC=6,求AB的长.四、解答题(本题共17分,第19题5分,第20题6分,第21题6分)19.(5分)如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.20.(6分)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.21.(6分)已知:如图,△ABC是⊙O的内接三角形,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF交BC于G,求证:AB2=BG•BC.五.解答题(本题共28分,第22题6分,第23题7分,第24题7分,第25题8分)22.(6分)如图,一艘海轮位于灯塔P的南偏东60°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东45°方向上的B 处.(参考数据:≈1.414,≈1.732,≈2.449)(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔190海里的点O处.圆形暗礁区域的半径为50海里,进入这个区域,就有触礁的危险.请判断海轮到达B处是否有触礁的危险,并说明理由.23.(7分)如图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图).(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.24.(7分)已知直线y=kx﹣3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,△PQA是直角三角形;(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D坐标;若不存在,请说明理由.25.(8分)已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E,F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF,AE,AE交BD于点G.(1)如图1,求证:∠EAF=∠ABD;(2)如图2,当AB=AD时,M是线段AG上一点,连接BM,ED,MF,MF的延长线交ED于点N,∠MBF=∠BAF,AF=AD,试探究FM和FN之间的数量关系,并证明你的结论.2013-2014学年北京市丰台区九年级(上)期末数学练习试卷参考答案与试题解析一、选择题(本题共36分,每小题4分)下列各题均有四个选项,其中只有一个是符合题意的.1.(4分)已知3x=4y(xy≠0),则下列比例式成立的是( )A.=B.=C.=D.=【分析】根据两內项之积等于两外项之积对各选项进行计算,然后利用排除法求解.【解答】解:A、由=得,xy=12,故本选项错误;B、由=得,3x=4y,故本选项正确;C、由=得,4x=3y,故本选项错误;D、由=得,4x=3y,故本选项错误.故选:B.【点评】本题考查了比例的性质,熟记两內项之积等于两外项之积是解题的关键.2.(4分)如图,在△ABC中,D、E分别是AB、AC边上的点,且DE∥BC,如果DE:BC=3:5,那么AE:AC的值为( )A.3:2B.2:3C.2:5D.3:5【分析】由DE∥BC,根据平行于三角形一边的直线截其它两边所得的三角形与原三角形相似得到△ADE∽△ABC,再根据相似三角形对应边的比相等得到AE:AC的值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AE:AC,∵DE:BC=3:5,∴AE:AC的值为3:5,故选:D.【点评】本题考查了相似三角形的判定与性质:平行于三角形一边的直线截其它两边所得的三角形与原三角形相似;相似三角形对应边的比相等.3.(4分)已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是( )A.相交B.相切C.相离D.不确定【分析】根据直线和圆的位置关系的内容判断即可.【解答】解:∴⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,∴3.5<4,∴直线l与⊙O的位置关系是相交,故选:A.【点评】本题考查了直线和圆的位置关系的应用,注意:已知⊙O的半径为r,如果圆心O到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r时,直线和圆相交.4.(4分)一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是( )A.B.C.D.【分析】由一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,即共有6种等可能的结果,投掷这个骰子一次,则向上一面的数字不小于3的有4种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,即共有6种等可能的结果,投掷这个骰子一次,则向上一面的数字不小于3的有4种情况,∴向上一面的数字不小于3的概率是:=.故选:C.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.(4分)在小正方形组成的网格图中,直角三角形的位置如图所示,则sinα的值为( )A.B.C.D.【分析】根据勾股定理求得三角形的斜边长,然后利用三角函数的定义即可求解.【解答】解:斜边长是:=,则sinα==.故选:D.【点评】本题考查了勾股定理以及三角函数,理解三角函数的定义是关键.6.(4分)当x>0时,函数y=﹣的图象在( )A.第四象限B.第三象限C.第二象限D.第一象限【分析】先根据反比例函数的性质判断出反比例函数的图象所在的象限,再求出x>0时,函数的图象所在的象限即可.【解答】解:∵反比例函数中,k=﹣5<0,∴此函数的图象位于二、四象限,∵x>0,∴当x>0时函数的图象位于第四象限.故选:A.【点评】本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线;当k<0时,双曲线的两支分别位于第二、第四象限.7.(4分)如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若CE=2,则AB的长是( )A.4B.6C.8D.10【分析】由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.【解答】解:如右图,连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,AE==4,∴AB=2AE=8,故选:C.【点评】本题考查了垂径定理、勾股定理,解题的关键是利用勾股定理先求出AE.8.(4分)如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y= x2﹣2x,其对称轴与两段抛物线所围成的阴影部分的面积为( )A.2B.4C.8D.16【分析】根据抛物线解析式计算出y=的顶点坐标,过点C作CA⊥y轴于点A,根据抛物线的对称性可知阴影部分的面积等于矩形ACBO的面积,然后求解即可.【解答】解:过点C作CA⊥y,∵抛物线y==(x2﹣4x)=(x2﹣4x+4)﹣2=(x﹣2)2﹣2,∴顶点坐标为C(2,﹣2),对称轴与两段抛物线所围成的阴影部分的面积为:2×2=4,故选:B.【点评】本题考查了二次函数的问题,根据二次函数的性质求出平移后的抛物线的对称轴的解析式,并对阴影部分的面积进行转换是解题的关键.9.(4分)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC 运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )A.AE=6cmB.sin∠EBC=C.当0<t≤10时,y=t2D.当t=12s时,△PBQ是等腰三角形【分析】由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;(2)在ED段,y=40是定值,持续时间4s,则ED=4;(3)在DC段,y持续减小直至为0,y是t的一次函数.【解答】解:(1)结论A正确.理由如下:分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm;(2)结论B正确.理由如下:如答图1所示,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,S△BEC=40=BC•EF=×10×EF,∴EF=8,∴sin∠EBC===;(3)结论C正确.理由如下:如答图2所示,过点P作PG⊥BQ于点G,∵BQ=BP=t,∴y=S△BPQ=BQ•PG=BQ•BP•sin∠EBC=t•t•=t2.(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.此时AN=8,ND=2,由勾股定理求得:NB=,NC=,∵BC=10,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.【点评】本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.二.填空题(本题共20分,每小题4分)10.(4分)两个相似三角形的面积比是5:9,则它们的周长比是 :3 .【分析】根据相似三角形面积的比等于相似比的平方求出相似比,再根据相似三角形的周长的比等于相似比解答.【解答】解:∵两个相似三角形的面积比是5:9,∴它们的相似比是:3,∴它们的周长比是:3.故答案为::3.【点评】本题考查了相似三角形的性质,熟记性质并求出两三角形的相似比是解题的关键.11.(4分)在Rt△ABC中,∠C=90°,如果tanA=,那么∠A= 60 °.【分析】根据∠C=90°,tanA=,可求得∠A的度数.【解答】解:在Rt△ABC中,∵tanA=,∴∠A=60°.故答案为:60.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.12.(4分)已知扇形的圆心角为120°,半径为3cm,则这个扇形的面积为 3π cm2.【分析】根据扇形的面积公式即可求解.【解答】解:扇形的面积==3πcm2.故答案是:3π.【点评】本题主要考查了扇形的面积公式,正确理解公式是解题关键.13.(4分)一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是 .【分析】根据题意列出表格得出所有等可能的情况数,找出颜色不同的情况数,即可求出所求的概率.【解答】解:列表如下:白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(红,红)所有等可能的情况有9种,其中两次摸出棋子颜色不同的情况有5种,则P(颜色不同)=.故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1,A2A3=3OA1,A3A4=4OA1,….那么A2B2= 6 ,A n B n= n(n+1) .(n为正整数)【分析】根据OA1=1,求出A1A2、A2A3、A3A4的值,推出A n A n﹣1的值,根据平行线分线段成比例定理得出=,代入求出A2B2=6=2×(2+1),A3B3=12=3×(3+1),A4B4=20=4(4+1),推出A n B n=n(n+1)即可.【解答】解:∵OA1=1,∴A1A2=2×1=2,A2A3=3×1=3,A3A4=4,…A n﹣2A n﹣1=n﹣1,A n﹣1A n=n,∵A1B1∥A2B2∥A3B3∥A4B4∥…,∴=,∴=,∴A2B2=6=2×(2+1),A3B3=12=3×(3+1),A4B4=20=4(4+1),…,∴A n B n=n(n+1),故答案为:6,n(n+1).【点评】本题考查了平行线分线段成比例定理的应用,解此题的关键是根据求出的结果得出规律,题型较好,但是有一定的难度.三、解答题(本题共19分,第15题4分,第16题5分,第17题5分,第18题5分)15.(4分)计算:3tan30°﹣2cos45°+2sin60°.【分析】本题可根据特殊的三角函数值解出tan30°、cos45°、sin60°的值,再代入原式中即可.【解答】解:原式=,=,=.【点评】本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.16.(5分)已知二次函数y=x2+2x﹣1.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出图象与x轴的交点坐标.【分析】(1)配方后直接写出顶点坐标即可;(2)确定对称轴后根据其开口方向确定其增减性即可;(3)令y=0后求得x的值后即可确定与x轴的交点坐标;【解答】解:(1)y=x2+2x﹣1=(x+1)2﹣2,∴顶点坐标为:(﹣1,﹣2);(2)∵y=x2+2x﹣1=(x+1)2﹣2的对称轴为:x=﹣1,开口向上,∴当x>﹣1时,y随x的增大而增大;(3)令y=x2+2x﹣1=0,解得:x=﹣1﹣或x=﹣1+,∴图象与x轴的交点坐标为(﹣1﹣,0),(﹣1+,0).【点评】本题考查了二次函数的性质,解题的关键是了解抛物线的有关性质.17.(5分)如图,在⊙O中,C、D为⊙O上两点,AB是⊙O的直径,已知∠AOC=130°,AB=2.求:(1)的长;(2)∠D的度数.【分析】(1)直接利用弧长公式求出即可;(2)利用邻补角的定义以及圆周角定理得出即可.【解答】解:(1)∵∠AOC=130°,AB=2,∴===;(2)由∠AOC=130°,得∠BOC=50°,又∵∠D=∠BOC,∴∠D=×50°=25°.【点评】此题主要考查了弧长公式以及圆周角定理,熟练记忆弧长公式是解题关键.18.(5分)如图,在△ABC中,∠C=90°,sinA=,D为AC上一点,∠BDC=45°,DC=6,求AB的长.【分析】由已知得△BDC为等腰直角三角形,所以CD=BC=6,又因为已知∠A 的正弦值,即可求出AB的长.【解答】解:∵∠C=90°,∠BDC=45°∴BC=CD=6又∵sinA=∴AB=6÷=15.【点评】直角三角形知识的牢固掌握和三角函数的灵活运用.四、解答题(本题共17分,第19题5分,第20题6分,第21题6分)19.(5分)如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.【分析】根据PA,PB分别是⊙O的切线得到PA⊥OA,PB⊥OB,在四边形AOBP中根据内角和定理,就可以求出∠P的度数.【解答】解:连接OB,∴∠AOB=2∠ACB,∵∠ACB=70°,∴∠AOB=140°;∵PA,PB分别是⊙O的切线,∴PA⊥OA,PB⊥OB,即∠PAO=∠PBO=90°,∵四边形AOBP的内角和为360°,∴∠P=360°﹣(90°+90°+140°)=40°.【点评】本题主要考查了切线的性质,切线垂直于过切点的半径.20.(6分)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.【分析】(1)将A点代入一次函数解析式求出m的值,然后将A点坐标代入反比例函数解析式,求出k的值即可得出反比例函数的表达式;(2)结合函数图象即可判断y1和y2的大小.【解答】解:(1)将A的坐标代入y1=x+1,得:m+1=2,解得:m=1,故点A坐标为(1,2),将点A的坐标代入:,得:2=,解得:k=2,则反比例函数的表达式y2=;(2)结合函数图象可得:当0<x<1时,y1<y2;当x=1时,y1=y2;当x>1时,y1>y2.【点评】本题考查了反比例函数与一次函数的交点问题,解答本题注意数形结合思想的运用,数形结合是数学解题中经常用到的,同学们注意熟练掌握.21.(6分)已知:如图,△ABC是⊙O的内接三角形,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF交BC于G,求证:AB2=BG•BC.【分析】因为直径所对的圆周角是直角,所以作辅助线:连接AD;利用同角的余角相等,可得∠BAG=∠D,又由同弧所对的圆周角相等,可得∠C=∠D,证得∠C=∠BAG,又因为∠ABG是公共角,即可证得△ABG∽△CBA;由相似三角形的对应边成比例,即可证得AB2=BG•BC.【解答】解:连接AD,∵BD是⊙O的直径,∴∠BAD=90°,∴∠BAF+∠DAF=90°,∵AF⊥BD,∴∠D+∠DAF=90°,∴∠BAG=∠D,∵∠C=∠D,∴∠C=∠BAG,∵∠ABG=∠ABC,∴△ABG∽△CBA,∴AB:CB=BG:AB,∴AB2=BG•BC.【点评】此题考查了相似三角形的判定与性质与圆的性质.解此题的关键是掌握辅助线的作法,在圆中,构造直径所对的角是直角是常见辅助线,同学们应注意掌握.五.解答题(本题共28分,第22题6分,第23题7分,第24题7分,第25题8分)22.(6分)如图,一艘海轮位于灯塔P的南偏东60°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东45°方向上的B 处.(参考数据:≈1.414,≈1.732,≈2.449)(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔190海里的点O处.圆形暗礁区域的半径为50海里,进入这个区域,就有触礁的危险.请判断海轮到达B处是否有触礁的危险,并说明理由.【分析】(1)首先作PC⊥AB于C,利用∠CPA=90°﹣45°=45°,进而利用锐角三角函数关系得出PC的长,即可得出答案;(2)首先求出OB的长,进而得出OB>50,即可得出答案.【解答】解:(1)如图,作PC⊥AB于点C,在Rt△PAC中,∠PCA=90°,∠CPA=90°﹣60°=30°,∴PC=PA•cos30=100×=50,在Rt△PCB中,∠PCB=90°,∠PBC=90°﹣45°=45°,∴PB=PC=50≈122.5,∴B处距离P有122.5海里.(2)没有危险.理由如下:OB=OP﹣PB=190﹣50,(190﹣50)﹣50=140﹣50>0即OB>50,∴无危险【点评】此题主要考查了解直角三角形的应用,利用数形结合以及锐角三角函数关系得出线段PC的长是解题关键.23.(7分)如图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图).(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.【分析】(1)由图形可知这是一条抛物线,根据图形也可以知道抛物线的顶点坐标为(5,5),与y轴交点坐标是(0,1),设出抛物线的解析式将两点代入可得抛物线方程;(2)第二题中要求灯的距离,只需要把纵坐标为4代入,求出x,然后两者相减,就是他们的距离.【解答】解:(1)抛物线的顶点坐标为(5,5),与y轴交点坐标是(0,1)(2分)设抛物线的解析式是y=a(x﹣5)2+5(3分)把(0,1)代入y=a(x﹣5)2+5得a=﹣(5分)∴y=﹣(x﹣5)2+5(0≤x≤10);(6分)(2)由已知得两景观灯的纵坐标都是4(7分)∴4=﹣(x﹣5)2+5∴(x﹣5)2=1∴x1=,x2=(9分)∴两景观灯间的距离为﹣=5米.(10分)【点评】此题考查对抛物线等二次函数的应用,从图中可以看出的坐标是解题的关键.24.(7分)已知直线y=kx﹣3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,△PQA是直角三角形;(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D坐标;若不存在,请说明理由.【分析】(1)将A点坐标代入直线的解析式中,即可求得k的值,从而确定该直线的解析式;将A、C的坐标代入抛物线的解析式中,可求得m、n的值,从而确定抛物线的解析式.(2)根据(1)得到的抛物线解析式,可求得点B的坐标,根据P、Q的运动速度,可用t表示出BP、CQ的长,进而可得到AQ、AP的长,然后分三种情况讨论:①∠APQ=90°,此时PQ∥OC,可得到△APQ∽△AOC,根据相似三角形所得比例线段即可求得t的值;②∠AQP=90°,亦可证得△APQ∽△ACO,同①的方法可求得此时t的值;③∠PAQ=90°,显然这种情况是不成立的.(3)过D作y轴的平行线,交直线AC于F,设出点D的横坐标,根据抛物线和直线AC的解析式可表示出D、F的纵坐标,进而可求得DF的长,以DF 为底,A点横坐标的绝对值为高即可得到△ADC的面积表达式(或由△ADF、△CDF的面积和求得),由此可求出关于△ADC的面积和D点横坐标的函数关系,根据函数的性质即可求得△ADC的面积最大值及对应的D点坐标.【解答】解:(1)∵直线y=kx﹣3过点A(4,0),∴0=4k﹣3,解得k=.∴直线的解析式为y=x﹣3.(1分)由直线y=x﹣3与y轴交于点C,可知C(0,﹣3).∵抛物线经过点A(4,0)和点C,∴,解得m=.∴抛物线解析式为.(2分)(2)对于抛物线,令y=0,则,解得x1=1,x2=4.∴B(1,0).∴AB=3,AO=4,OC=3,AC=5,AP=3﹣t,AQ=5﹣2t.①若∠Q1P1A=90°,则P1Q1∥OC(如图1),∴△AP1Q1∽△AOC.∴,∴,解得t=;(3分)②若∠P2Q2A=90°,∵∠P2AQ2=∠OAC,∴△AP2Q2∽△ACO.∴,∴解得t=;(4分)③若∠QAP=90°,此种情况不存在.(5分)综上所述,当t的值为或时,△PQA是直角三角形.(3)答:存在.过点D作DF⊥x轴,垂足为E,交AC于点F(如图2).∴S△ADF=DF•AE,S△CDF=DF•OE.∴S△ACD=S△ADF+S△CDF=DF•AE+DF•OE=DF×(AE+OE)=×(DE+EF)×4=×()×4=.(6分)∴S△ACD=(0<x<4).又∵0<2<4且二次项系数,∴当x=2时,S△ACD的面积最大.而当x=2时,y=.∴满足条件的D点坐标为D(2,).(7分)【点评】此题考查了用待定系数法确定函数解析式的方法、直角三角形的判定、相似三角形的判定和性质、图形面积的求法等知识,(3)题中,将图形面积的最大(小)值问题转化为二次函数的最值问题是此类题常用的解法.25.(8分)已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E,F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF,AE,AE交BD于点G.(1)如图1,求证:∠EAF=∠ABD;(2)如图2,当AB=AD时,M是线段AG上一点,连接BM,ED,MF,MF的延长线交ED于点N,∠MBF=∠BAF,AF=AD,试探究FM和FN之间的数量关系,并证明你的结论.【分析】(1)如图1,连接FE、FC,构建全等三角形△ABF≌△CBF(SAS),则易证∠BAF=∠2,FA=FC;根据垂直平分线的性质、等量代换可知FE=FA,∠1=∠BAF,则∠5=∠6.然后由四边形内角和是360°、三角形内角和定理求得∠5+∠6=∠3+∠4,则∠5=∠4,即∠EAF=∠ABD;(2)FM=FN.理由如下:由△AFG∽△BFA,易得∠AGF=∠BAF,所以结合已知条件和图形得到∠MBG=∠BMG.易证△AGF∽△DGA,则对应边成比例:==.即==.设GF=2a(a>0),AG=3a,则GD=a,FD=a;利用平行线(BE∥AD)截线段成比例易得=,则==.设EG=2k(k>0),所以BG=MG=3k.如图2,过点F作FQ∥ED交AE于点Q.则===,又由FQ∥ED,易证得==,所以FM=FN.【解答】(1)证明:如图1,连接FE、FC.∵点F在线段EC的垂直平分线上,∴FE=FC,∴∠1=∠2.∵△ABD和△CBD关于直线BD对称(点A的对称点是点C),∴AB=CB,∠4=∠3,∵在△ABF与△CBF中,,∴△ABF≌△CBF(SAS),∴∠BAF=∠2,FA=FC,∴FE=FA,∠1=∠BAF,∴∠5=∠6.∵∠1+∠BEF=180°,∴∠BAF+∠BEF=180°∵∠BAF+∠BEF+∠AFE+∠ABE=360°,∴∠AFE+∠ABE=180°.又∵∠AFE+∠5+∠6=180°,∴∠5+∠6=∠3+∠4,∴∠5=∠4,即∠EAF=∠ABD;(2)FM=FN.理由如下:如图2,由(1)知,∠EAF=∠ABD.又∵∠AFB=∠GFA,∴△AFG∽△BFA,∴∠AGF=∠BAF.又∵∠MBF=∠BAF,∴∠MBF=∠AGF.∵∠AGF=∠MBG+∠BMG,∴∠MBG=∠BMG,∴BG=MG.∵AB=AD,∴∠ADB=∠ABD=∠EAF.又∵∠FGA=∠AGD,∴△AGF∽△DGA,∴==.∵AF=AD,∴==.设GF=2a(a>0),AG=3a,∴GD=a,∴FD=a∵∠CBD=∠ABD,∠ABD=∠ADB,∴∠CBD=∠ADB,∴BE∥AD,∴=,∴==.设EG=2k(k>0),∴BG=MG=3k.如图2,过点F作FQ∥ED交AE于点Q.则===,∴GQ=QE,∴GQ=EG=k,MQ=3k+k=k.∵FQ∥ED,∴==,∴FM=FN.第31页(共31页)【点评】本题综合考查了相似三角形的判定与性质,平行线分线段成比例,三角形内角和定理以及四边形内角和是360度等知识点.难度较大,综合性较强.。

2013-2014学年上学期期末考试(含答案)八年级数学

2013-2014学年上学期期末考试(含答案)八年级数学

八年级(上)数学期末测试题第1卷(选择题)一、选择题(本题20小题,每小题3分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并把答题卡上对应题目的正确答案标号涂黑)1.下列各组数中不能作为直角三角形的三条边长的是( )A.6,8,10B.9,12, 15C.1.5,2,3D.7,24, 252.一三,27t,等,o,0.23 2233 2233 2233…中,有理数的个数是( ) A.l B.2 C.3 D.43.下列扑克牌中,绕着某一点旋转1800后可以与原来的完全重合的是( )4.点P(-5,6)关于原点对称的点的坐标是( )A.(-5, -6)B.(5,6)C.(6,.5)D.(5,.6)5.估算24的算术平方根在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间中,一次函数的有( )A.4个B.3个C.2个D.l个7.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A.平均数 B.力口权平均数 C.中位数 D.众数8.-次函数y= -x-l不经过的象限是( )A.t第一象限 B.第二象限 C.第三象限 D.第四象限A. 20 B.15 C.10 D.510.w边形ABCD中,AC、BD相交于点D,能判别这个四边形是正方形的条件是( )11.点彳的坐标为(6,3),D为原点,将OA绕点0按顺时针方向旋转90度得到OA1,则点A1的坐标为 ( )么.(3.-6) B.(-3,6) C.(一3,.6) D.(3,6)12.下列说法正确的有____个.( )①有两个底角相等的梯形是等腰梯形②有两边相等的梯形是等腰梯形③有两条对角线相等的梯形是等腰梯形④等腰梯形上下底中点连线把梯形分成面积相等的两部分A.l个 B.2个 C.3个 n 4个13.如果直线y=3x+6 y=2x-4交点坐标为(a,b),的解( )14.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输为 15,那么与实际平均数的差为( )A.3B..3C.j 0.5D.3.515.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )么.六边形 B.八边形 C.十二边形D.十六边形16.如图,在四边形ABCD中,动点P从点A开始沿A→_B→C→D的路径匀速前进到D为止。

淮南市2013-2014(上)九年级数学期末试卷(含答案)

淮南市2013-2014(上)九年级数学期末试卷(含答案)

淮南市2013~2014学年度第一学期期终教学质量检测九年级数学试卷一. 选择题(每小题3分,共30分) 1.下列根式中,不是..最简二次根式的是( ) A B .6 C .8 D . 102.下列事件是不确定事件的是A . 守株待兔B . 水中捞月C.风吹草动 D .瓮中捉鳖3.用配方法解方程2250x x --=时,原方程应变形为( )A .()216x += B .()229x -= C .()229x += D .()216x -=4.在平面直角坐标系xOy 中,已知点A (2,3),若将OA 绕原点O 逆时针旋转90°得到OA ', 则点A '的坐标为( )A .(-2,3)B .(-3, 2)C .(2, -3)D .(3, -2)5.从编号为1到10的10张卡片中任取1张,所得编号是3的倍数的概率为( )A .110B .210 C .310 D .156.如图,O ⊙是ABC △的外接圆,已知50ABO ∠=°,则ACB ∠的大小为( )A .40°B .30°C .45°D .50°7.抛物线22x y -=经过平移得到2245y x x =---,平移方法是( )A .向左平移1个单位,再向上平移3个单位B .向左平移1个单位,再向下平移3个单位C .向右平移1个单位,再向上平移3个单位D .向右平移1个单位,再向下平移3个单位8.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次 降价后为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( ) A . 2289(1)256x -= B . 2256(1)289x -= C . 2289(12)256x -= D . 2256(12)289x -= 9.如图所示,实线部分是半径为9cm 的两条等弧组成的游泳池,若 每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( ) A .π12cm B .π18cm C .π20cm D .π24cmC第6题图 第9题图10.已知二次函数c bx ax y ++=2的图象如图,①0abc > ②b a c <+ ③420a b c ++> ④23c b < ⑤()a b m am b +>+(m ≠1)其中结论正确的有( ) A .③④ B .③⑤ C .③④⑤ D .②③④⑤二.填空题(每小题3分,共24分) 11. 函数xxy -=1中,自变量x 的取值范围是________. 12.若抛物线92+-=bx x y 的顶点在x 轴上,则b 的值为____________.13.已知一个圆锥的母线长为2cm ,它的侧面展开图恰好是一个半圆,则这个圆锥的侧面积2cm (用含π的式子表示).14.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . 15. 从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是____________. 16.将正方形ABCD 中的△ABP 绕点B 顺时针旋转能与△CBP′重合, 若BP=4,则PP′= .17.如图所示,小方格都是边长为1的正方形,则以格点为圆心,半径 为1和2的两种弧围成的“叶状”阴影图案的面积为 .18.有一个二次函数的图象,三位学生分别说出了它的一些特点,甲:对称轴为直线4=x ,乙:与x 轴两交点的横坐标都是整数,丙:与y 轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请写出满足上述全部特点的一个二次函数的解析式_____________. 三.解答题(本大题共有5题,满分46分) 19.(每小题6分,共12分) (1)计算:(3+ (2)解方程:2210x -+=第16题图第17题图第10题图20.(本题8分)在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,ABC △的顶点均在格点上,点P 的坐标为(10)-,,请按要求画图与作答(1)把ABC △绕点P 旋转180°得A B C '''△. (2)把ABC △向右平移7个单位得A B C ''''''△.(3)A B C '''△与A B C ''''''△是否成中心对称,若是, 找出对称中心P ',并写出其坐标.21.(本题8分) 已知关于x 的一元二次方程x 2 + 2(k -1)x + k 2-1 = 0有两个不相等的实数根. (1)求实数k 的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.22.(本题8分)某教室的开关控制板上有四个外形完全相同的开关,其中两个分别控制A 、B 两盏电灯,另两个分别控制C 、D 两个吊扇. 已知电灯、吊扇均正常,且处于不工作状态,开关与电灯、电扇的对应关系未知.(1)若四个开关均正常,则任意按下一个开关,正好一盏灯亮的概率是多少?(2)若其中一个控制电灯的开关坏了(不知是哪一个),则任意按下两个开关,正好一盏灯亮和 一个扇转的概率是多少?请用树状图法或列表法加以说明.23.(本题10分)学校计划用地面砖铺设教学楼前矩形广场的地面ABCD ,已知矩形广场地面的长为 100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形 的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.(1)要使铺白色地面砖的面积为5200平方米,则矩形广场四角的小正方形的边长为多少米? (2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元.当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?淮南市2013—2014学年第一学期九年级数学期末质量检测评分标准11.1≤x 且0≠x 12.6± 13.π2 14.6或10或12 15.3116.24 17.42-π 18.178712+-=x x y (答案不唯一)三.解答题(本大题共有5题,满分46分) 19.(1) 解:原式=232682+- …………………………………3分 = …………………………………5分 =24 ………………………………………6分解:A B CD=21.(1)△= [ 2(k —1)] -4(k -1) …………………………………1分= 4k 2-8k + 4-4k 2 + 4 =-8k + 8.…………………………………2分 ∵ 原方程有两个不相等的实数根,∴ -8k + 8>0,解得 k <1,即实数k 的取值范围是 k <1.…4分 (2)假设0是方程的一个根,则代入得 02 + 2(k -1)· 0 + k 2-1 = 0,解得 k =-1 或 k = 1(舍去).即当 k =-1时,0就为原方程的一个根.…………………………6分 此时,原方程变为 x 2-4x = 0,解得 x 1 = 0,x 2 = 4,所以它的另一个根是4. …………………………………8分 22.23.解:(1)设矩形广场四角的小正方形的边长为x 米,根据题意,得:()()2410028025200x x x +--= ……………………………………………… 3分解之,得:123510.x x ==,经检验,123510x x ==,均适合题意.……………4分所以,要使铺白色地面砖的面积为5200平方米,则矩形广场四角的小正方形的边长为35米或10米. …………………………………………………………5分 (2)设铺矩形广场地面的总费用为y 元,广场四角的小正方形的边长为x 米,则,()()()()2304100280220210022802y x x x x x x x ⎡⎤=⨯+--+⨯-+-⎡⎤⎣⎦⎣⎦ 配方得,()28022.5199500y x =-+ ……………………………………………8分 当22.5x =时,y 的值最小,最小值为199500.所以,当矩形广场四角的小正方形的边长为22.5米时,所铺广场地面的总费用最少,最少费用为199500元. ……………………………………………………………10分。

2013-2014学年上学期期末考试高一 数学试卷

2013-2014学年上学期期末考试高一 数学试卷

2013-2014学年上学期期末考试高一数学试卷 2014.1一 选择题(本大题共12小题,每小题5分,共60分)1过点(1,0)且与直线220x y --=平行的直线方程是( )A.210x y --=B. 210x y -+=C.220x y +-=D.210x y +-= 2经过两点(3,9)、(-1,1)的直线在x 轴上的截距为A B C D .23.“直线m y x m l -=++2)1(:1和1624:2-=+my x l 互相平行”的充要条件是“m 的值为( )”A.1或2-B. 2-C. 4一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为( )A .π2 C .π3 D .π4 5若直线a ∥平面α,直线b ∥平面α,则a 与b 的位置关系是( )A .平行B .相交C .异面D .以上都有可能6若直线l 与平面α不平行,则下列结论正确的是( )A .α内的所有直线都与直线l 异面B .α内不存在与l 平行的直线C .α内的直线与l 都相交D .直线l 与平面α有公共点7给出下列命题:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确命题的个数有( )A .4个B .1个C .2个D .3个8 圆221x y +=和圆22-6y 50x y ++=的位置关系是( )A.外切 B .内切 C .外离 D .内含9设A ,B 为直线y x =与圆221x y +=的两个交点,则|AB|=( )10.若直线k 4+2y x k =+与曲线有两个交点,则k 的取值范围是( )A.[)1,+∞B. (]-,-1∞C. 11将圆x 2+y 2-2x-4y+1=0平分的直线是A. x+y-1=0B. x+y+3=0C. x-y+1=0D. x-y+3=012.圆C :x 2+y 2+2x +4y -3=0上到直线:x +y +1=0( )A.1个 B.2个 C.3个 D.4个 二 填空题(本大题共4小题,每小题5分,共20分)13经过圆22(3)(5)36x y ++-=的圆心,并且与直线220x y +-=垂直的直线方程为___ 14过两圆922=+y x 和8)3()4(22=+++y x 的交点的直线方程15圆x 2+y 2-2x -2y +1=0上的动点Q 到直线3x +4y +8=0距离的最小值为 . 16点A (3,5)作圆C :1)3()2(22=-+-y x 的切线,则切线的方程为三 解答题(本大题共6小题,共70分)17(10分)已知,圆C :012822=+-+y y x ,直线:02=++a y ax . (1) 当a 为何值时,直线与圆C 相切;(2) 当直线与圆C相交于A、B.18(12分)如图,已知三角形的顶点为A(2, 4),B(0,-2),C(-2,3),求:(Ⅰ)AB边上的中线CM所在直线的一般方程;(Ⅱ)求△ABC的面积.20(12分).如图,正三棱柱中,点是的中点.(Ⅰ)求证: 平面;AB CDA 1B 1C 111BCC B AD ⊥BC D 111ABC A B C -(Ⅱ)求证:平面.1AB D 1AC21(12分).圆过点A (1,-2),B (-1,4),求(1)周长最小的圆的方程;(2)圆心在直线2x -y -4=0上的圆的方程.22(12分)已知圆C 过点P(1,1),且与圆M :2(2)x ++2(2)y +=2r 关于直线x +y +2=0对称.(1)求圆C 的方程;(2)直线l过点Q(1,0.5),截圆C所得的弦长为2,求直线l的方程;(3)过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.。

2013-2014七上期末数学试题

2013-2014七上期末数学试题

2013-2014学年度上学期期末考试七年级数学试题注意事项:1.本试题共8页,考试时间90分钟,分值120分,卷面纳入等级评价. 2.答题前将姓名、考号、座号填写清楚.3.规范书写,卷面整洁,答题一律用蓝黑钢笔,作图用铅笔. 一.选择题(每小题3分,共36分)请将唯一正确答案的代号填在下列表格内. 1.-2014的相反数是 A .12014-B .12014C .2014-D . 20142.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是A .68109.⨯元 B . 68108.⨯元 C . 68107.⨯元 D . 68106.⨯元 3.下列方程为一元一次方程的是A .30y +=B .23x y +=C .22x x = D .21=+y y(第4题图)(第7题图)4.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于 A .圆柱体 B .球体 C .圆 D .圆锥体 5. 在算式4-()35-中的“()”所在位置,填入下列哪种运算符号,计算出来的值最大A .+ B.- C .× D. ÷6.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是 A .a b +>0 B .ab >0 C .11a b -<0 D .11a b+>0 7.如图,小明在正方体盒子的每个面上都写了一个字,其平面展开图如图所示,那么在该正方体盒子的表面,与“祝”相对的面上所写的字应是A .新B .年C .快D .乐 8. 下列运算中,正确的是A .4m -m =3 B.-(m -n )=m +nC.D. abc c ab 532=+9.若2x =是方程82x ax -=的解,则a 的值为 A. 1 B. 2 C. -1 D. -210.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为A .69°B .111°C .141°D .159°11.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28(第10题图)(第6题图)(第12题图1)(第12题图2)A B1- 5元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是 A .(1+50%)x ×80%=x -28 B .(1+50%)x ×80%=x +28 C .(1+50%x )×80%=x -28 D .(1+50%x )×80%=x +2812.如图,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B = 30°,∠C = 100°,如图则下列说法正确的是 A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远二.填空题(每小题3分,共18分)请将正确的答案填在横线上.13. 7--=__________.14.一个角的补角是3635',这个角是 .15.写出一个一元一次方程,同时满足两个条件:①使它的解为12-;②未知数的系数为正整数.该方程 为_______________.16.把一副三角板按如图所示拼在一起,则∠ABC 等于____________. 17.如图,A 、B 两点对应的数分别为-1、5,点P 是数轴上的一动点,若PA =2PB ,则点P 对应的数为____________.18.如图,是用火柴棒拼成的图形,则第n 个图形需 根火柴棒.(1) (2) (3)(4)三.解答题(本大题共7小题,共56分)19. (本题共两小题,第(1)小题5分,第(2)小题6分,共11分)(1)计算 :(-1)3-14×[2-(-3)2](2)解方程:3122413--=+y y20. (本小题满分7分)一个角的余角比这个角的21少30°,请你计算出这个角的大小.21. (本小题满分8分)先化简,再求值: ()2223232x y x y xy x y xy ⎡⎤⎢⎥⎣⎦----,其中1-=x ,2-=y .22. (本小题满分9分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.A E DB F C(第22题图)23. (本小题满分9分)已知如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.求:∠COE的度数.24.(本小题满分12分)李明家要修建一个长方形养鸡场,养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王建议李明用它来围成一个长比宽多5米的鸡场,小华建议李明用它来围成一个长比宽多2米的鸡场,你认为谁的建议符合实际?按照他的建议,鸡场的面积是多少?。

2013-2014学年上学期期末考试高三数学试卷

2013-2014学年上学期期末考试高三数学试卷

2013-2014学年上学期期末考试高三数学试卷班级: 姓名: 得分:一、选择题(每题5分,共60分,每小题只有一个正确答案)1、已知集合A={1,2,3,4},集合B={1,3,5},则A ∩B=( )A 、{2}B 、{1,3}C 、{2,4,5}D 、{1,2,3,4,5}2、函数 )A 、{}12x x x 3或B 、{}12x x #C 、{}12x x x 3或D 、{}12x x x3或 3、等比数列{n a }的各项均为正数,且48=4,=64a a ,这个等比数列的公比q 等于()A 、12 B 、 C 、2 D 、44下列运算正确的是( )A 、236=x x xB 、-2=-6xC 、()235=x xD 、04=15、某几何体的三视图如下所示,则该几何体是( )A 、圆柱B 、圆锥C 、三棱柱D 、三棱锥6、当输入a 的值为1,b 的值为-3时,右边程序运行的结果是( )A 、1 INPUT a, bB 、-2 a=a+bC 、-3 PRINT aD 、2 END7、函数=2sin (2-)6y x p的最小正周期是( )A 、4pB 、2pC 、pD 、12p8、设直线经过点O(0,2),且与圆22+=1x y 相切,则的斜率是( )A 、±1B 、12± C 、3± D 、±9、已知向量=(2,1),=(3,),a b l 且,a b ^ 则l =( )A 、—6B 、6C 、32D 、—3210、在△ABC 中,若a=7,b=3,c=8,则△ABC 的面积是( )A 、12B 、212C 、28 D、11、两条直线3x+2y+a=0与2x-3y+1=0的位置关系是( )A 、平行B 、垂直C 、相交但不垂直D 、与a 的值有关12、已知a >0, b >0,a+b=2,则14=+y a b 的最小值是( ) A 、72 B 、4 C 、92D 、5 二、填空题(每小题5分,共20分)13、某单位有老年人28人,中年人有54人,青年人81人,为调查身体健康状况,需要从中抽取一个容量为36的样本 ,用分层抽样方法分别从老年人、中年人、青年人中各取__——人,__________人,____________人。

2013-2014学年上学期期末考试初二数学试卷(含答案)

2013-2014学年上学期期末考试初二数学试卷(含答案)

2013-2014学年上学期期末考试初二数学试卷友情提示:本试卷分为“试题”和“答题卡”两部分,请把答案写在答题卡的相应位置。

一、精心选一选(本大题共8小题,每小题2分,共16分) 1. 在实数032-,|-2|中,最小的是( ). A .32-B .C .0D .|-2|2. 下列计算正确的是( )(A )32x x x =⋅ (B )2x x x =+(C )532)(x x =(D )236x x x =÷3. 4的平方根是( )A. 2B. ± 2C. 16D. ±164. 当分式21+-x x 的值为0时,x 的值是( ) (A )0 (B )1 (C )-1 (D )-25. 一次函数23y x =-的图象不经过...( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限6. 已知2111=-b a ,则ba ab-的值是( ) A.21 B.-21C.2D.-2 7.两直线1:,12:21+=-=x y l x y l 的交点坐标为( )A .(—2,3)B .(2,—3)C .(—2,—3)D .(2,3)8. 某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为( )二、细心填一填(本大题共8小题,每小题2分,共16分)9. (4ab 3-8a 2b 2)÷4ab= .10. 分解因式:322363x x y xy -+= .B .C .D .11. 关于x 的分式方程1131=-+-xx m 有增根,则该分式方程的增根是 . 12. 一个等腰三角形的一个内角为60°,则该等腰三角形的另外两个内角的度数分别是 。

13.如图,将∆ABC 沿直线AB 向右平移后到达∆BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为 .14.如图所示,已知在三角形纸片ABC 中,∠ A=30°,∠BCA=90°,在AC 上取一点E ,使得,以BE 为折痕把三角形ABC 折叠,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为 .15.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点P (a ,2),则关于x 的不等式1x +≥mx n +的解集为 .第13题图 第14题图 第15题图16.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .三、耐心做一做(本大题共9小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分6分) 计算:()()2201113132π-⎛⎫-+-⨯- ⎪⎝⎭.18.(本小题满分6分)请先化简)211(342--⋅--a a a ,再从a=2、a=3、a=--3中选取一个你喜欢的数代入求值.19.(本小题满分7分)定义新运算“⊕”如下:当a ≥b 时,a ⊕b=ab+b,当a<b 时,a ⊕b=ab-a ;若(2x-1)⊕(x+2)=0,求x 的值。

2013-2014上学期七年数学期末统测及参考答案(广东潮州市潮安区)

2013-2014上学期七年数学期末统测及参考答案(广东潮州市潮安区)

2013—2014学年度第一学期期末教学质量检查七年级数学科试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种解法供参考,如果考生的解法与参考答案不同,可比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题共10小题,每小题3分,共30分。

1.A 2.D 3.C 4.A 5.D6.C 7.B 8.D 9.A 10.B二、填空题:本大题共6小题,每小题4分,共24分。

11.-1 12.35 13.31 14.4,3 15.两点之间,线段最短 16. 园三、解答题(一):本大题共3小题,每小题5分,共15分。

17.解:原式=()6304316-÷+⎪⎭⎫ ⎝⎛-⨯ ……………… 1分 =)5(12-+- ……………… 3分=17- ……………… 5分18. 解:∵5632+-=x x A ,6722-+=x x B∴ B A 32- )()(6723563222-+-+-=x x x x182161012622+--+-=x x x x ……………… 4分2833+-=x ……………… 5分19. 去分母得,)(5246+=--x x x ……………… 1分 去括号得,10246+=--x x x ……………… 2分移项得,6102-4+=-x x x ……………… 3分合并同类项得,5-x ……………… 4分系数化为1得,=x ……………… 5分四、解答题(二):本大题共3小题,每小题8分,共24分。

20. 解:如图所示:说明:(1)连接BC ……………… 2分(2)画射线AB ……………… 4分(3)确定D 点 ……………… 8分21.解:(1)作图如下:……………… 2分(2)∵ D 是AC 的中点,2=DC∴ 42==DC AC ……………… 3分∵ BC AB 3=,AC BC AB =+ ∴ 44==+BC BC AB ……………… 5分∴ 1=BC ……………………… 6分则 cm BC AB 33==. ……………… 8分32-=-m x 21=-+m 解得:6=m ; ……………(4分)(2)由6=m 解得方程432+-=-x m x 的解为4131621=+=+⨯=x …………(6分) 解得方程x m =-2的解为462-=-=x . ………………………(8分)五、解答题(三):本大题共3小题,每小题9分,共27分。

2013-2014学年上学期期末考试高一数学试题及答案

2013-2014学年上学期期末考试高一数学试题及答案

2013-2014学年上学期期末考试一年级《数学》试卷一、选择题(每小题3分,共30分)1、若集合{0}A x x =<,集合{1}B x x =<,则集合A 与集合B 的关系是( ) ) A 、A B = B 、B A ⊆ C 、A B ⊆ D 、B A ∈2、设集合},{b a A =, },{c b B =, },{c a C =, 则)(C B A 等于 ( ) A 、},,{c b a B 、}{a C 、∅ D 、},{b a3、0ab >是0,0a b >>的( )A 、充分条件B 、必要条件C 、充要条件D 、无法确定4、若不等式20x x c ++<的解集是{|43}x x -<<, 则c 的值等于 ( ) A 、12 B 、11 C 、-12 D 、-115、函数3()log f x x =的定义域是( )A 、(0,)+∞B 、[0,)+∞C 、(0,2)D 、R6、函数14)(2+-=x x x f 的最小值是 ( ) A 、3 B 、1 C 、-1 D 、 -37、设函数1()()2xx f x e e -=+, 则()f x 是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既是奇函数又是偶函数 8、若函数()(1)f x a x b =++在R 上是减函数,则 ( ) A 、1a >- B 、1a <- C 、0b < D 、0b >9、若32a >a 的取值范围为 ( ) A 、0a >B 、01a <<C 、1a >D 、无法确定10、指数函数3x y = 的图像不经过的点是 ( )A 、(1,3)B 、(0,1)C 、1(2D 、(2,9)-二、填空题(每小题3分,共24分)1、满足条件{0,1,2}M ∅⊆⊆的集合共有 个。

2、已知集合{(,)5}A x y x y =+=,{(,)1},B x y x y =-=-则A B = 。

2013-2014学年八年级上数学期末试题及答案

2013-2014学年八年级上数学期末试题及答案

2013-2014学年(上)期末教学质量测评试题八年级数学注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2.在作答前,考生务必将自己的姓名,准考证号及座位号涂写在答题卡规定的地方.3.选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1.下列语句中,是命题的是A .延长线段AB 到C B .垂线段最短 C .过点O 作直线a ∥bD .锐角都相等吗2.下列关于5的说法中,错误..的是 A .5是无理数 B .2<5<3 C .5的平方根是5 D .2552-=-3.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这A .25.6,26B .26,25.5C .26,26D .25.5,25.54.如图所示,AB ⊥EF 于B ,CD ⊥EF 于D ,∠1=∠F =30°,则与∠FCD 相等的角有A .1个B .2个C .3个D .4个5.将平面直角坐标系内某图形上各个点的横坐标都乘以1-,纵坐标不变,所得图形与原图形的关系是 A. 关于x 轴对称 B. 关于y 轴对称C. 关于原点对称D. 沿x 轴向下平移1个单位长度6.若正整数a ,b ,c 是直角三角形三边,则下列各组数一定还是直角三角形三边的是 A .a+1,b+1,c+1 B .a 2,b 2,c 2 C .2a ,2b ,2cD .a -1,b -1,c -17.一次函数y =-2x +2的图象是A .BC .D .8.已知点A (-3,y 1)和B (-2,y 2)都在直线y = 121--x 上,则y 1,y 2的大小关系是 A .y 1>y 2 B .y 1<y 2 C .y 1=y 2 D .大小不确定9.已知一个两位数,它的十位上的数字x 比个位上的数字y 大1.若颠倒个位与十位数字 的位置,得到的新数比原数小9,求这两个数所列的方程组正确的是A.1()()9x y x y y x -=⎧⎨+++=⎩, B.1109x y x y y x =+⎧⎨+=++⎩,C.110109x y x y y x =+⎧⎨+=+-⎩, D.110109x y x y y x =+⎧⎨+=++⎩10.一名考生步行前往考场,10分钟走了总路程的41,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了A. 20分钟 B . 22分钟 C . 24分钟 D . 26分钟二、填空题(每小题3分,共l 5分) 11.已知32=x ,则x =_______.12.如图,数轴上的点A 所表示的数为x ,则x 2—10的立方根为______.13.如图,点O 是三角形两条角平分线的交点,若∠BOC =110°,则∠A = . 14.直线13+=x y 向左平移2个单位长度后所得到的直线的解析式是 .15.已知24x y =⎧⎨=⎩是方程组73228x y x y -=⎧⎨+=⎩的解,那么由这两个方程得到的一次函数y =_________和y =_________的图象的交点坐标是 .三、解答题(本大题共5个小题,共55分) 16.(每小题5分,共20分) (1)计算: 32-512+618(2))21(3)解方程组:⎩⎨⎧=-=+421y x y x ②① (4)解方程组:132(1)6x y x y ⎧+=⎪⎨⎪+-=⎩17.(本小题满分8分)如图所示,已知∠AED=∠C ,∠3=∠B ,请写出∠1与∠2的数量关系,并A对结论进行证明.18.(本小题满分8分)如图所示,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),△OAB 是直角三角形吗?借助于网格进行计算,证明你的结论.19.(本小题满分8分) 下表是某地2012年2月与2013年2月8天同期的每日最高气温,根据表(1)2012年2月气温的极差是 ,2013年2月气温的极差是 .由此可见, 年2月同期气温变化较大.(2)2012年2月的平均气温是,2013年2月的平均气温是. (3)2012年2月的气温方差是 , 2013年2月的气温方差是 ,由此可见, 年2月气温较稳. 20.(本小题满分11分)如图,在平面直角坐标系xOy 中,直线l 经过(0,4)A 和(2,0)B 两点. (1)求直线l 的解析式及原点到直线l 的距离; (2)C 、D 两点的坐标分别为(4,2)C 、(,0)D m ,且⊿ABO ≌⊿OCD 则m 的值为 ;(直接写出结论) (3)若直线l 向下平移n 个单位后经过(2)中的点D ,求n 的值.B 卷(共50分)一、填空题(每小题4分,共20分) 21.若32-=x ,则122+-x x = .22.三元一次方程组⎪⎩⎪⎨⎧===++4:5:2:3:111z y x y z y x 的解是 .23.在锐角三角形ABC 中,BC =23,∠ABC =45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM +MN 最小值是 . 24.一个一次函数图象与直线y=54x+954平行,•与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-20),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有 个. 25.如图,已知直线l :x y 3=,过点M (2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,…;按此作法继续下去,则点M 6的坐标为__________. 二、解答题(本大题共有3个小题,共30分)26.(本小题满分8分)为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x 小时,该月可得(即下月他可获得)的总费用为y 元,则y (元)和x (小时)之间的函数图象如图所示.(1)根据图象,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的? (2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?27.(本小题满分10分)如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 绕点B 逆时针旋转60°得到线段BO ′.(1)求点O 与O ′的距离; (2)证明:∠AOB =150°;(3)求四边形AOBO ′的面积. (4)直接写出△AOC 与△AOB 的面积和为________.28.(本小题满分12分)如图1所示,直线AB 交x 轴于点A (4,0),交y 轴于点B (0,-4),(1)如图,若C 的坐标为(-1,0),且AH ⊥BC 于点H ,AH 交OB 于点P ,试求点P 的坐标; (2)在(1)的条件下,如图2,连接OH ,求证:∠OHP =45°;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连结MD ,过点D 作DN ⊥DM交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子S △BDM -S △ADN 的值是否发生改变,如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.2013-2014学年(上)期末教学质量测评试题八年级数学参考答案及评分标准一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求。

(完整word版)2013-2014学年山西省太原市九年级(上)期末数学试卷_4ea0bd45877d4b29bb6f78e67ff4475d

(完整word版)2013-2014学年山西省太原市九年级(上)期末数学试卷_4ea0bd45877d4b29bb6f78e67ff4475d

2013-2014学年山西省太原市九年级(上)期末数学试卷一、选择题(共12小题,每小题2分,满分24分)1.(2分)用配方法解一元二次方程x2﹣8x=9时,应当在方程的两边同时加上()A.16 B.﹣16 C.4 D.﹣42.(2分)下列四个点中,在反比例函数y=﹣的图象上的是()A.(2,4)B.(4,﹣4)C.(﹣8,1)D.(﹣1,﹣8)3.(2分)如图,路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长 B.越短C.一样长D.随时间变化而变化4.(2分)某农场去年的粮食总产量为1500吨,设该农场有耕地x亩,平均亩产量为y吨,则y与x之间的函数图象大致是()A.B.C.D.5.(2分)如图,已知∠ABC,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC的平分线BP.他这样做的依据是()A.在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.测量垂直平分线上的点到这条线段的距离相等6.(2分)将一个长方形截去一部分(一个四棱锥),得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.7.(2分)小颖在学习“花边有多宽”时,对一元二次方程(8﹣2x)(5﹣2x)=18的根做了如A.0 B.1 C.2 D.38.(2分)如图,已知A点是反比例函数y=(k>0)的图象上的一点,AB⊥y轴于B,点P是x轴上任意一点,若△ABP的面积为3,则k的值为()A.3 B.﹣3 C.6 D.﹣69.(2分)某种商品零售价经过两次降价后,现在的价格为原价的81%,若设两次平均降价的百分率为x,则x满足的方程为()A.1﹣x=81% B.1﹣2x=81% C.1﹣x2=81% D.(1﹣x)2=81%10.(2分)布袋中有红、黄、蓝三个小球,它们除颜色外都相同,从袋中随机取出一个小球后再放回袋中,重复两次,这样取出的球的顺序依次是“红﹣黄”的概率是()A.B.C.D.11.(2分)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF 是菱形.根据两人的作法可判断()A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确 D.甲、乙均错误12.(2分)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=3,D为BC的中点,动点E,F分别在AB,AC上,分别过点EG∥AD∥FH,交BC于点G、H,若EF∥BC,则EF+EG+FH 的值为()A. B. C.2D.2二、填空题(共6小题,每小题3分,满分18分)13.(3分)一个不透明的盒子里有红、黄、白小球共80个,它们除颜色外均相同.小文将这些小球摇匀后,随机摸出一个记下颜色,再把它放回盒中,不断重复,多次实验后他发现摸到红色、黄色小球的频率依次为在30%和40%,由此可估计盒中大约有白球个.14.(3分)若点A(1,y1),B(2,y2)都在反比例函数y=(k<0)的图象上,则y1y2.15.(3分)如图,过▱ABCD的顶点C作CE⊥AB,交BA的延长线于点E,若∠EAD=50°,则∠BCE的度数为°.16.(3分)一个几何体的三种视图(俯视图为菱形)及相关数据如图,则该几何体的为cm2.17.(3分)如图,在正方形ABCD的对角线上取点E,使得∠BAE=15°,连接AE,CE,延长CE到F,使得BF=BC,连接BF,则∠F的度数等于°.18.(3分)如图,AD是△ABC的边BC上的高,现给出下列条件:①∠BAD=∠ACD;②∠BAD=∠CAD;③BD=CD;④AB+BD=AC+CD,若添加这些条件中的某一个就能推出△ABC是等腰三角形,这个条件可以是(把所有正确答案的序号都填写在横线上,多写或少写都不得分)三、解答题(共8小题,满分58分)19.(8分)解方程:(1)x2﹣6x+4=0;(2)(x﹣3)2+2(x﹣3)=0.20.(4分)某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD 的影子刚好不落在广告墙PQ上,(1)你在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=6米,CB=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.21.(5分)如图,要建一个面积为100平方米的长方形菜园,菜园的一边靠墙,另外三边用木栏潍城,设与墙平行的边长为x米,与墙垂直的边长为y米.(1)y与x之间的函数关系式为;y是x的函数;(2)当与墙平行的一边长16米时,与墙垂直的一边的长为多少米?现有木栏25米,够用吗?(3)若墙长25米可全部利用,则与墙垂直的一边长y的取值范围是.22.(8分)星期天,小刚去太原长风商务区参观,由于仅有一天的时间,他计划从科技馆、美术馆、博物馆、山西大剧院四处中任选两处进行参观,请用画树状图或列表的方法求表示小刚恰好参观科技馆和美术馆的概率(提示:为书写方便,解答时可以用K表示“科技馆”,用M表示“美术馆”用B表示“博物馆”,用S表示“山西大剧院”)23.(7分)如图,已知BD是▱ABCD的一条对角线,P,Q是对角线BD上两点,且BP=DQ,求证:AP∥CQ.24.(8分)文具店试营业中,某种笔袋平均每天可销售30个,每个盈利10元,为促销,文具店决定降价销售,经调查发现,笔袋单价每降低1元,平均每天可多售出2个,设每个笔袋降价x元,请解决下面问题:(1)降价后该文具店此种笔袋的日销售量为个,每个笔袋盈利元:(用含x的代数式表示)(2)若上述条件不变,每个笔袋降价多少元时,文具店销售笔袋的日盈利额为252元?25.(8分)如图1,在△ABC中,点D、E分别是边AC、AB的中点,BD与CE交于点O.点F、G分别是线段BO、CO的中点.(1)求证:四边形DEFG是平行四边形;(2)如图2,若AO=BC,求证:四边形DEFG是菱形;(3)若AB=AC,且AO=BC=6,直接写出四边形DEFG的面积.26.(10分)如图,矩形OABC的顶点B在第一象限,其它顶点坐标分别为O(0,0),A(1,0),C(0,2),反比例函数y=(k>0)的图象与直线AB交于点E,与直线BC交于点F,连接OE、OF、EF.(1)若点E与点F重合于点B,则k的值为;(2)若点E是AB的中点,则k=.S△OEF;(3)若k<2,且S△CEF=2S△BEF,求点E的坐标;(4)在y轴上是否存在点M,使得以点M、E、F为顶点的三角形与△BEF全等?若存在,直接写出此时点E的坐标;若不存在.说明理由.2013-2014学年山西省太原市九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分)1.(2分)(2015秋•丹东期末)用配方法解一元二次方程x2﹣8x=9时,应当在方程的两边同时加上()A.16 B.﹣16 C.4 D.﹣4【解答】解:用配方法解一元二次方程x2﹣8x=9时,应当在方程的两边同时加上16,变形为x2﹣8x+16=25.故选A2.(2分)(2013秋•太原期末)下列四个点中,在反比例函数y=﹣的图象上的是()A.(2,4)B.(4,﹣4)C.(﹣8,1)D.(﹣1,﹣8)【解答】解:A、当x=2时,y=﹣=﹣4≠4,故本选项错误;B、当x=4时,y=﹣=﹣2≠﹣4,故本选项错误;C、当x=﹣8时,y=﹣=1,故本选项正确;D、当x=﹣1时,y=﹣=8,故本选项错误.故选C.3.(2分)(2013秋•太原期末)如图,路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长 B.越短C.一样长D.随时间变化而变化【解答】解:由图易得AB<CD,那么离路灯越近,它的影子越短,故选:B.4.(2分)(2013秋•太原期末)某农场去年的粮食总产量为1500吨,设该农场有耕地x亩,平均亩产量为y吨,则y与x之间的函数图象大致是()A.B.C.D.【解答】解:∵xy=1500∴y=(x>0,y>0)故选B.5.(2分)(2013秋•太原期末)如图,已知∠ABC,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC的平分线BP.他这样做的依据是()A.在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.测量垂直平分线上的点到这条线段的距离相等【解答】解:∵∠M=∠N=90°,BM=BN,∴BP平分∠DPE,∴∠DBP=∠EBP,∵DP∥BC,PE∥BD,∴∠DPB=∠PBE,∠EPB=∠DBP,∴∠DBP=∠EBC,即在一个角的内部,到角的两边距离相等的点在角的平分线上,故选A.6.(2分)(2013秋•太原期末)将一个长方形截去一部分(一个四棱锥),得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.【解答】解:左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条对角线,对角线是由左下角都右上角的线,故选D.7.(2分)(2013秋•太原期末)小颖在学习“花边有多宽”时,对一元二次方程(8﹣2x)(5A.0 B.1 C.2 D.3【解答】解:∵x=1时,(8﹣2x)(5﹣2x)的值为18,∴一元二次方程(8﹣2x)(5﹣2x)=18的一个根为1.故选B.8.(2分)(2013秋•太原期末)如图,已知A点是反比例函数y=(k>0)的图象上的一点,AB⊥y轴于B,点P是x轴上任意一点,若△ABP的面积为3,则k的值为()A.3 B.﹣3 C.6 D.﹣6【解答】解:连结OA,如图,∵AB⊥y轴,即AB∥x轴,∴S△OAB=S△PAB=3,∵S△OAB=×|k|,∴|k|=3,而k>0,∴k=6.故选C.9.(2分)(2013秋•太原期末)某种商品零售价经过两次降价后,现在的价格为原价的81%,若设两次平均降价的百分率为x,则x满足的方程为()A.1﹣x=81% B.1﹣2x=81% C.1﹣x2=81% D.(1﹣x)2=81%【解答】解:设平均每次降价率为x,根据题意得(1﹣x)2=81%.故选:D.10.(2分)(2013秋•太原期末)布袋中有红、黄、蓝三个小球,它们除颜色外都相同,从袋中随机取出一个小球后再放回袋中,重复两次,这样取出的球的顺序依次是“红﹣黄”的概率是()A.B.C.D.则P=.故选A.11.(2分)(2013•防城港)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF 是菱形.根据两人的作法可判断()A.甲正确,乙错误B.乙正确,甲错误C.甲、乙均正确 D.甲、乙均错误【解答】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACN,∵MN是AC的垂直平分线,∴AO=CO,在△AOM和△CON中,∴△AOM≌△CON(ASA),∴MO=NO,∴四边形ANCM是平行四边形,∵AC⊥MN,∴四边形ANCM是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.12.(2分)(2013秋•太原期末)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=3,D为BC的中点,动点E,F分别在AB,AC上,分别过点EG∥AD∥FH,交BC于点G、H,若EF∥BC,则EF+EG+FH的值为()A. B. C.2D.2【解答】解:∵∠BAC=90°,AB=2,AC=3,∴BC==,∵∠BAC=90°,D为BC的中点,∴DA=DB=DC,∴∠B=∠DAB,∠C=∠DAC,∵EF∥BC,EG∥AD∥FH,∴∠BEG=∠DAB,∠CFH=∠DAC,EF=GH,∴∠B=∠BEG,∠C=∠CFH,∴BG=EG,FH=HC,∴EF+EG+FH=GH+BG+HC=BC=.故选B.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2013秋•太原期末)一个不透明的盒子里有红、黄、白小球共80个,它们除颜色外均相同.小文将这些小球摇匀后,随机摸出一个记下颜色,再把它放回盒中,不断重复,多次实验后他发现摸到红色、黄色小球的频率依次为在30%和40%,由此可估计盒中大约有白球24个.【解答】解:80×(1﹣30%﹣40%)=80×30%=24(个).答:盒中大约有白球24个.故答案为:24.14.(3分)(2013秋•太原期末)若点A(1,y1),B(2,y2)都在反比例函数y=(k<0)的图象上,则y1<y2.【解答】解:∵反比例函数y=(k<0),∴在图象的每一支上,y随x的增大而增大,∵2>1,∴y2>y1,故答案为:<.15.(3分)(2013秋•太原期末)如图,过▱ABCD的顶点C作CE⊥AB,交BA的延长线于点E,若∠EAD=50°,则∠BCE的度数为40°.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B=∠EAD=50°,∵CE⊥AB,∴∠E=90°,∴∠BCE=90°﹣∠B=40°.故答案为:40.16.(3分)(2013秋•太原期末)一个几何体的三种视图(俯视图为菱形)及相关数据如图,则该几何体的为200cm2.【解答】解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为8cm,6cm.所以该棱柱的底面边长为5,所以棱柱的侧面积=5×4×10=200(cm3).故答案为:200.17.(3分)(2013秋•太原期末)如图,在正方形ABCD的对角线上取点E,使得∠BAE=15°,连接AE,CE,延长CE到F,使得BF=BC,连接BF,则∠F的度数等于15°.【解答】解:在正方形ABCD中,AB=BC,∠ABE=∠CBE,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴∠BCE=∠BAE=15°,∵BF=BC,∴∠F=∠BCE=15°.故答案为:15.18.(3分)(2013秋•太原期末)如图,AD是△ABC的边BC上的高,现给出下列条件:①∠BAD=∠ACD;②∠BAD=∠CAD;③BD=CD;④AB+BD=AC+CD,若添加这些条件中的某一个就能推出△ABC是等腰三角形,这个条件可以是②③④(把所有正确答案的序号都填写在横线上,多写或少写都不得分)【解答】解:①无法判定;②当∠BAD=∠CAD时,∵AD是∠BAC的平分线,且AD是BC边上的高;则△ABD≌△ACD,∴△BAC是等腰三角形;③∵AD⊥BC,BD=CD,∴AD是BC的垂直平分线,∴△ABC是等腰三角形;④延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;∵AB+BD=CD+AC,∴DE=DF,又∵AD⊥BC;∴△AEF是等腰三角形;∴∠E=∠F;∵AB=BE,∴∠ABC=2∠E;同理,得∠ACB=2∠F;∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形.故答案为:②③④.三、解答题(共8小题,满分58分)19.(8分)(2013秋•太原期末)解方程:(1)x2﹣6x+4=0;(2)(x﹣3)2+2(x﹣3)=0.【解答】解:(1)这里a=1,b=﹣6,c=4,∵△=36﹣16=20,∴x==3±;(2)分解因式得:(x﹣3)(x﹣3+2)=0,可得x﹣3=0或x﹣3+2=0,解得:x1=3,x2=1.20.(4分)(2014秋•龙口市期末)某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上,(1)你在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若AB=6米,CB=3米,CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.【解答】解:(1)如图所示:(2)设木杆AB的影长BF为x米,由题意,得=,解得x=8.答:木杆AB的影长是8米.21.(5分)(2013秋•太原期末)如图,要建一个面积为100平方米的长方形菜园,菜园的一边靠墙,另外三边用木栏潍城,设与墙平行的边长为x米,与墙垂直的边长为y米.(1)y与x之间的函数关系式为y=(x>0);y是x的反比例函数;(2)当与墙平行的一边长16米时,与墙垂直的一边的长为多少米?现有木栏25米,够用吗?(3)若墙长25米可全部利用,则与墙垂直的一边长y的取值范围是y≥4.【解答】解;(1)∵要建一个面积为100平方米的长方形菜园,设与墙平行的边长为x米,与墙垂直的边长为y米,∴xy=100,∴y=(x>0),y是x的反比例函数;故答案为:y=(x>0),反比例;(2)把x=16代入y=中,得y==,∴与墙垂直的一边长为m,16+×2=28.5(m)>25m,答:现有木栏25米,不够用;(3)y=,∵0<x≤25,∴y≥4.故答案为:y≥4.22.(8分)(2013秋•太原期末)星期天,小刚去太原长风商务区参观,由于仅有一天的时间,他计划从科技馆、美术馆、博物馆、山西大剧院四处中任选两处进行参观,请用画树状图或列表的方法求表示小刚恰好参观科技馆和美术馆的概率(提示:为书写方便,解答时可以用K表示“科技馆”,用M表示“美术馆”用B表示“博物馆”,用S表示“山西大剧院”)∴小刚恰好参观科技馆和美术馆的概率为:=.23.(7分)(2013秋•太原期末)如图,已知BD是▱ABCD的一条对角线,P,Q是对角线BD上两点,且BP=DQ,求证:AP∥CQ.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABP=∠CDQ,在△ABP和△CDQ中,,∴△ABP≌△CDQ(SAS),∴∠ABP=∠CQD,∴∠APD=∠CQB,∴AP∥CQ.24.(8分)(2013秋•太原期末)文具店试营业中,某种笔袋平均每天可销售30个,每个盈利10元,为促销,文具店决定降价销售,经调查发现,笔袋单价每降低1元,平均每天可多售出2个,设每个笔袋降价x元,请解决下面问题:(1)降价后该文具店此种笔袋的日销售量为30+2x个,每个笔袋盈利10﹣x元:(用含x的代数式表示)(2)若上述条件不变,每个笔袋降价多少元时,文具店销售笔袋的日盈利额为252元?【解答】解:(1)降价1元,可多售出2件,降价x元,可多售出2x件,日销售为:30+2x,盈利的钱数=10﹣x,故答案为30+2x;50﹣x;(2)由题意得:(10﹣x)(30+2x)=252解得:x1=3,x2=﹣8(不合题意,舍去)∴x=3,答:每个笔袋降价3元时,日盈利可达252元.25.(8分)(2013秋•太原期末)如图1,在△ABC中,点D、E分别是边AC、AB的中点,BD与CE交于点O.点F、G分别是线段BO、CO的中点.(1)求证:四边形DEFG是平行四边形;(2)如图2,若AO=BC,求证:四边形DEFG是菱形;(3)若AB=AC,且AO=BC=6,直接写出四边形DEFG的面积.【解答】证明:(1)如图1点D、E分别是边AC、AB的中点,∴DE是△ABC的中位线,∴ED∥BC,且ED=BC.同理,FG是△OBC的中位线,∴FG∥BC且FG=BC,∴ED∥FG且ED=FG,∴四边形DEFG是平行四边形.(2)∵点E、F分别是AB、OB的中点,∴EF是△ABO的中位线,∴EF=OA.由(1)知,FG=BC.∵OA=BC,∴EF=FG.又由(1)知,四边形DEFG是平行四边形,∴▱DEFG是菱形;(3)如图2,∵E、F、G、D分别是AB、BO、CO、AC中点,∴AO∥EF∥DG,∴当AB=AC时,∴AO⊥BC,∵四边形DEFG是平行四边形,∴EF⊥FG;∴此时四边形DEFG是矩形.∴S四边形DEFG=FG•EF=×6××6=9.26.(10分)(2013秋•太原期末)如图,矩形OABC的顶点B在第一象限,其它顶点坐标分别为O(0,0),A(1,0),C(0,2),反比例函数y=(k>0)的图象与直线AB交于点E,与直线BC交于点F,连接OE、OF、EF.(1)若点E与点F重合于点B,则k的值为2;(2)若点E是AB的中点,则k=1.S△OEF;(3)若k<2,且S△CEF=2S△BEF,求点E的坐标;(4)在y轴上是否存在点M,使得以点M、E、F为顶点的三角形与△BEF全等?若存在,直接写出此时点E的坐标;若不存在.说明理由.【解答】解:(1)∵O(0,0),A(1,0),C(0,2),而四边形ABCO为矩形,∴B点坐标为(1,2),∴点E与点F重合于点B,k=1×2=2;(2)∵点E是AB的中点,∴E点坐标为(1,1),∴k=1×1=1,把y=2代入y=得=2,解得x=,∴F点坐标为(,2),∴S△OEF=S矩形ABCO﹣S△AOE﹣S△OCF﹣S△BEF=1×2﹣﹣﹣××=;故答案为2;1,;(3)∵k<2,且S△CEF=2S△BEF,∴CF=2BF,∴F点坐标为(,2),∴k=×2=,∴反比例函数解析式为y=,把x=1代入得y=,∴E点坐标为(1,);(4)作EH⊥y轴于H,如图,设E点坐标为(1,k),则F(,2),当k<2时,∵△MFE≌△BFE,∴MF=BF=1﹣,ME=BE=2﹣k,∠FME=90°,∴Rt△CFM∽Rt△HME,∴MF:ME=CF:MH,∴MH==k,在Rt△MHE中,HE=1,∴HE2+MH2=ME2,∴12+k2=(2﹣k)2,解得k=,∴E点坐标为(1,);当k>2时,如图,∵△MFE≌△BEF,∴MF=BE=k﹣2,ME=BF=﹣1,∠FME=90°,∴Rt△CFM∽Rt△HME,∴MF:ME=CF:MH,∴MH==k,在Rt△MHM中,HE=1,∴HE2+MH2=ME2,∴12+(k)2=(﹣1)2,解得k1=,k2=0(舍去),∴E点坐标为(1,),∴点E的坐标为(1,)或(1,).参与本试卷答题和审题的老师有:sks;ZJX;gbl210;sjzx;zjx111;caicl;gsls;73zzx;HLing;sd2011;zcx;星期八;dbz1018(排名不分先后)菁优网2016年11月24日第21页(共21页)。

2013-2014学年高一上学期期末数学试题_Word版含答案

2013-2014学年高一上学期期末数学试题_Word版含答案

2013-2014学年度第一学期高一级期末考试一.选择题(每小题5分,共50分,每小题只有一个选项是正确的) 1. 已知集合M ={x|x <3},N ={x |122x>},则M ∩N 等于( ) A ∅B {x |0<x <3}C {x |-1<x <3}D {x |1<x <3}2. 已知三条不重合的直线m 、n 、l 两个不重合的平面βα,,有下列命题 ①若αα//,,//m n n m 则⊂; ②若βαβα//,//,则且m l m l ⊥⊥; ③若βαββαα//,//,//,,则n m n m ⊂⊂;④若αββαβα⊥⊥⊂=⊥n m n n m 则,,,, ;其中正确的命题个数是( )A .1B .2C .3D .4 3. 如图,一个简单空间几何体的三视图中,其正视图与侧视图都是边长 为2的正三角形,俯视图轮廓为正方形,则其侧面积是( ) A .4. 函数()23xf x x =+的零点所在的一个区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,25. 如图,在正方体ABCD-A 1B 1C 1D 1中,异面直线A 1B 和AD 1所成角的大小是( ) A. 30° B. 45° C.90° D.60°6. 已知函()()21,1,log ,1.a a x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为( ) A . ()1,2B . ()2,3C . (]2,3D . ()2,+∞7. 如图在正三棱锥A-BCD 中,E 、F 分别是AB 、BC 的中点,EF ⊥DE ,且BC =1,则正三棱锥A-BCD的体积是 ( )243D. 123C. 242B. 122.A8. 函数y =log 2(1-x )的图象是( )俯视图正视图 侧视图9. 已知)(x f 是定义在R 上的函数,且)2()(+=x f x f 恒成立,当)0,2(-∈x 时,2)(x x f =,则当[]3,2∈x 时,函数)(x f 的解析式为 ( )A .42-x B .42+x C .2)4(+x D . 2)4(-x10. 已知)91(log 2)(3≤≤+=x x x f ,则函数[])()(22x f x f y +=的最大值为( )A .6B .13C .22D .33二.填空题(每小题5分,共20分)11. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .12. 已知函数()()223f x x m x =+++是偶函数,则=m .13. 已知直二面角βα--l ,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足, 若AB=2,AC=BD=1则C,D 两点间的距离是_______14. 若函数2()log (2)(0,1)a f x x x a a =+>≠在区间102⎛⎫ ⎪⎝⎭,恒有()0f x >,则()f x 的单调递增区间是三.解答题(本大题共6小题,共80分。

2013-2014学年上学期期末考试高二数学试卷(理)

2013-2014学年上学期期末考试高二数学试卷(理)

2013-2014学年上学期期末考试高二数学试卷(理)注意事项:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点(3,1,4)A -,则点A 关于原点的对称点的坐标为( )A .(1,3,4)--B .(4,1,3)--C .(3,1,4)--D .(4,1,3)-2.已知命题:“若x ≥0,y ≥0,则xy ≥0”,则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数为( )A .1个B .2个C .3个D .4个 3. “0ab >”是“方程221ax by +=表示椭圆”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既不充分也不必要条件4.与命题“若a M ∈,则b M ∉”等价的命题是( )A .若a M ∉,则b M ∉B .若b M ∉,则a M ∈C .若a M ∉,则b M ∈D .若b M ∈,则a M ∉5. 已知空间四边形ABCD 中,,,OA a OB b OC c === ,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN = ( )A .121232a b c -+B .211322a b c -++C .111222a b c +- D .221332a b c +- 6.设α、β、γ为两两不重合的平面,c 、m 、n 为两两不重合的直线,给出下列四个命题: ①如果α⊥γ,β⊥γ,则α∥β; ②如果m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③如果α∥β,c ⊂α,则c ∥β; ④如果α∩β=c ,β∩γ=m ,γ∩α=n ,c ∥γ,则m ∥n .其中真命题个数是( )A .1个B .2个C .3个D .4个7.将两个顶点在抛物线22(0)y px p =>上,另一顶点是此抛物线焦点的正三角形数记为则()A .n=0B .n=1C . n=2D .n 38.设F 1,F 2是双曲线22221x y a b-= (a >0,b >0)的左、右两个焦点,若双曲线右支上存在一点P ,使22()0OP OF F P +∙= (O 为坐标原点),且|PF 1|PF 2|,则双曲线的离心率为( )A. B.1 D. 1+9.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰十角三角形。

2013-2014学年上学期期末考试初二数学试卷

2013-2014学年上学期期末考试初二数学试卷

AC2013-2014学年上学期期末考试初二数学试卷(考试时间:90分钟,满分:120分) 2014年1月一、选择题(每小题3分,共30分)1. 下列各式中,正确的是 ( )A .623y y y =⋅B .633a )a (=C .632x )x (-=-D .842m )m (=--2. 实数2-,0.3,17,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5 3.16的平方根是( )A .4B .±4C .2D .±24. 已知正比例函数)0k (kx y ≠= 的函数值随x 的增大而增大,则一次函数k x y +=的图象大致是()5.下列图案中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个6. 把多项式322x x x -+分解因式结果正确的是( )A .2(2)x x x - B .2(2)x x - C .(1)(1)x x x +- D .2(1)x x - 7. 如图,ΔABC 中,AB=AC ,AD 是角平分线,BE=CF , 则 下列说法正确的有几个( )(1)AD 平分∠EDF ;(2)△EBD ≌△FCD ;(3)BD=CD ; (4)AD ⊥BC .A.1个B.2个C.3个D.4个 8. 如图,AC=DC ,∠1=∠2,添加下面一个条件不能使 △ABC ≌△DEC 的是( )A .BC=ECB .∠A=∠DC .DE=ABD .∠DEC=∠ABC9. 如图,在矩形ABCD 中,AB =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致是( )。

10. 如图,等边△DEF 的顶点分别在等边△ABC 的各边上,且 DE ⊥BC 于E ,若AB=1,则DB 的长为( ). A .1B .31C .32D .43二、填空题(每小题3分,共30分)11. 计算:=⋅-)43()8(2b a ab 。

初中2013-2014学年八年级上期末考试数学试卷及答案

初中2013-2014学年八年级上期末考试数学试卷及答案

四川省初中2013-2014学年上学期期末考试八年级数学试卷说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 请将第Ⅰ卷的正确选项用2B 铅笔填涂在机读答题卡上;第Ⅱ卷用蓝、黑色的钢笔或签字笔解答在试卷上,其中的解答题都应按要求写出必要的解答过程.2. 本试卷满分为100分,答题时间为120分钟.3. 不使用计算器解题.第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1. 下列等式成立的是 A. 229)3)(3(y x y x y x -=-+ B. 222)(b a b a +=+C. 1)1)(2(2-+=-+x x x xD. 222)(b a b a -=-2. 下面的五边形、正方形等图形是轴对称图形,且对称轴条数最多的是3. 若一个多边形的外角和与它的内角和相等,则这个多边形是A. 三角形B. 五边形C. 四边形D. 六边形4. 如图,在△ABC 中,AB=AC ,D 是BC 的中点,下列结论不正确的是 A. AD ⊥BC B. ∠B=∠CC. AB=2BDD. AD 平分∠BAC5. 下列等式成立的是 A.9)3(2-=--B. 91)3(2=--C. 14212)(a a=-D. 42221)(b a b a -=----6. 如图,是三条直线表示三条相互交叉的公路,现要建一个中转站,要求它到三条公路的距离相等,则 可供选择的地址有 A. 一处 B. 两处C. 三处D. 四处7. 如图,若△ABC ≌△AEF ,则对于结论:⑴AC=AF; ⑵∠FAB=∠EAB ;⑶ EF=BC; ⑷∠EAB=∠FAC. 其中正确的个数是A. 一个B. 2个C. 3个D. 4个8. 已知a 、b 、c 是三角形的三边,则代数式a 2-2ab +b 2-c 2的值A. 不能确定B. 大于0C. 等于0D. 小于09. 若xy=x -y ≠0,则分式y1-x 1= A.xy1B. y -xC. 1D. -110. 如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE=2,当EF+CF 取 最小值时,则∠ECF 的度数为A. 30°B. 22.5°C. 15°D. 45°11. 关于x 的方程112=-+x ax 的解是正数,则a 的取值范围是 A. a >-1B. a <-1且a ≠-2C. a <-1D. a >-1且a ≠012. 如图,△MNP 中,∠P =60°,MN =NP ,MQ ⊥PN 于Q ,延长MN 至G ,取NG=NQ. 若△MNP 的周长为12,MQ=a ,则△MGQ 的周长为 A. 6+2a B. 8+aC. 6+aD. 8+2a中江县初中2013年秋季八年级期末考试数 学 试 题第Ⅱ卷总分表第Ⅱ卷 非选择题(64分)二、填空题(本大题共8个小题,每小题3分,满分24分)只要求填写最后结果.13. 计算:32)2(a -= .14. 当x = 时,分式112+-x x 的值为0.15. 化简:x 1-11-x = . 16. 如图,已知AB =AE ,∠BAD =∠CAE ,要使△ABC ≌△AED ,还需添加一个条件,这个条件可以是 . 17. 如图,在△ABC 中,AB =AC ,∠BAC =120°,D 是BC 的中点,DE ⊥AC. 则AB : AE = . 18. 如图,AB ∥CD ,AO 平分∠BAC ,CO 平分∠ACD ,OE ⊥AC 于点E ,且OE =2. 则AB 与CD 间的距离 为 .19. 已知点M( 2a +1,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是 . 20. 已知a ≠0,S 1=3a ,S 2=13S ,S 3=23S ,…… S 2013=20123S ,则S 2013=. 三、解答题(满分16分)21.(1)计算:2202)21()12(----+;(2)化简:)12(12mmm m m m --÷-+;(3)先化简,再求值:122)12143(22+-+÷---+x x x x x x ,其中x 是不等式组⎩⎨⎧++15<2x >04x 的整数解;(4)已知,21111--+=++n n m m ,且m -n +2≠0 ,试求 mn -m +n 的值.四、解答题(本大题共2个题,其中第22题5分,第23题6分,满分11分)22. 解分式方程:xxx --=+-32431.23. 我市某校为了创建书香校园,去年购进一批图书. 经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.今年文学书和科普书的单价和去年相比保持不变. 该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后最多还能购进多少本科普书?五、解答题(本大题满分6分)24. 如图,在△ABC中,∠BAC=110°,点E、G分别是AB、AC的中点,DE⊥AB交BC于D,FG⊥AC交BC于F,连接AD、AF. 试求∠DAF的度数.六、几何证明题(本大题满分7分)25. 如图,AB =AC ,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 与CD 相交于点O. ⑴求证:AD =AE ;⑵试猜想:OA 与BC 的位置关系,并加以证明.数学试题参考答案及评分标准一、选择题(本大题共12个小题,每小题3分,满分36分)二、填空题(本大题共8个小题,每小题3分,满分24分) 13. -8a 614. 115. )1(1--x x 或x x --21或21x x -16. 不唯一,如AC=AD 或∠C =∠D 或∠B =∠E (答对一个就给3分)17. 4 : 118. 419. 21-<a <2320. 3a三、解答题(本大题满分16分)21.(每小题4分)计算:(1)2202)21()12(----+ 解原式=1-41-41(注:每项1分) …………………………3分 =21. …………………………………………………………4分 (2)化简:)12(12mmm m m m --÷-+ 解:原式=mm m m m m ---÷-+11)1(2………………………………………………2分=)1(11)1(m m mm m m +-⨯-+-………………………………………………3分=-1. ………………………………………………………………………4分 (3)先化简再求122)12143(22+-+÷---+x x x x x x ,其中x 是不等式组⎩⎨⎧++15<2x >04x 的整数解; 解:原式=[]2)1()1)(1()1(2)1)(1(432+-⋅-++--++x x x x x x x x ……………………1分 =2)1()1)(1(22+-⋅-++x x x x x =11+-x x . …………………………………2分 不等式组⎩⎨⎧++1 5<2x >04x 的解集为-4<x <-2,其整数解为x =-3. …3分当x =-3时,原式=11+-x x =1313+---=2. ……………………………4分 (4)已知,21111--+=++n n m m ,且m -n +2≠0 ,试求 mn -m +n 的值. 解:由已知得:m -n +2=11-n -11+m =)1)(1(2-++-n m n m , …………………2分 ∵m -n +2≠0, ∴1=11-+-n m mn , ……………………………………………………………3分∴ mn -m +n -1=1,∴mn -m +n =2. ………………………………………………………………………4分 四、解答题(本大题共2个题,其中第22题5分,第23题6分,满分11分) 22. 解分式方程:x xx --=+-32431 解:32431--=+-x x x , ………………………………………………………2分 1+4(x -3)=x -2,∴ x =3. ………………………………………………………………………………3分检验:当x =3时,x -3=0. ∴x =3不是原方程的解,∴原方程无实数解. …5分 23. 解:设去年文学书的单价为x 元,则科普书的单价为(x +4)元. 由题意得方程:412000+x =x8000, ……………………………………………2分 解之得: x =8, ………………………………………………………………3分 经检验, x =8是原方程的解,且符合题意. ∴x +4=12,∴去年购进的文学书和科普书的单价分别为8元和12元. ……………………4分 设购进文学书550本后,最多还能购进y 本科普书.由题意得:550×8+12y ≤10000, ………………………………………………5分 ∴y ≤466.66667.由题意,y 取最大整数,∴y =466.答:购进文学书550本后最多还能购进466 本科普书. ………………………6分 五、解答题(本大题满分6分)24. 解:在△ABC 中,∵∠BAC =110°,∴∠B +∠C =180°-110°=70°. ……1分 ∵E 、G 分别是AB 、AC 的中点,又DE ⊥AB ,FG ⊥AC ,∴AD =BD ,AF =CF , ……………………3分 ∴∠BAD =∠B ,∠CAF =∠C , …………4分 ∴∠DAF =∠BAC -(∠BAD +∠CAF)=∠BAC -(∠B +∠C)=110°-70°=40°. ……………………6分注:解法不唯一,参照给分。

2013-2014学年江苏扬州中学树人学校七年级上学期期末考试数学试卷(含详细答案)

2013-2014学年江苏扬州中学树人学校七年级上学期期末考试数学试卷(含详细答案)

2013-2014学年江苏扬州中学树人学校七年级上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.2的相反数是( )A .2B .-2C .12D .12- 【答案】B【详解】2的相反数是-2.故选:B.2.江苏省的面积约为102 6002km ,这个数据用科学记数法表示正确的是( ) A .410.2610⨯B .41.02610⨯C .51.02610⨯D .61.02610⨯ 【答案】C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于102600有6位,所以可以确定n=6-1=5.【详解】解:102 600=1.026×105.故选C .【点睛】此题考查科学记数法表示较大的数的方法,准确确定n 值是关键. 3.实数、在数轴上的位置如图所示,则化简a b a -+的结果为A .B .C .D .【答案】D【详解】试题分析:由绝对值可以看出:a <0,b >0,|a|<|b|∴|a -b|+a=-(a -b)+a=-a+b+a=b .故选D .考点:绝对值.4.已知点在线段上,下列条件中不能确定点C 是线段AB 中点的是( ) A .AC BC =B .2AB AC = C .AC BC AB +=D .12BC AB = 【答案】C5.如图,OD∴AB于O,OC∴OE,图中与∴AOC互补的角有A.1个B.2个C.3个D.4个【答案】B【详解】试题分析:根据题意可得:∴∴∴AOC+∴BOC=180°,∴∴BOC与∴AOC互补.∴∴OD∴AB,OC∴OE,∴∴EOD+∴DOC=∴BOC+∴DOC=90°,∴∴EOD=∴BOC,∴∴AOC+∴EOD=180°,∴∴EOD与∴AOC互补.故图中与∴AOC互补的角有2个.故选B.考点:补角与余角.6.下图所示几何体的主视图是(▲ )A.B.C.D.【答案】A【详解】根据实物的形状和主视图的概念判断即可.解答:解:图中几何体的主视图如选项A所示.故选A.7.下列方程中,解为x=2的方程是()A.3x﹣2=3B.4﹣2(x﹣1)=1C.﹣x+6=2x D.110 2x+=8.如下数表是由从1开始的连续自然数组成,则自然数2014所在的行数是A.第45行B.第46行C.第47行D.第48行【答案】A【详解】试题分析:由数列知第n行第一个数为(n-1)2+1,第n行最后一个数为n2,而:1937<2014<2025即(45-1)2<2014<452所以:n=45.故选A.考点:数字变化规律.二、填空题9.有理数–3的绝对值是___.【答案】3.【详解】试题分析:根据绝对值的定义进行解答即可.试题解析:有理数-3的绝对值为3.考点:绝对值.10.单项式-5a 2b 3的次数是_____. 【答案】5.【详解】试题分析:根据单项式次数的定义直接进行解答.试题解析:单项式-5a 2b 3的次数是5.考点:单项式.11.如果a ,b 互为相反数,x ,y 互为倒数,则()20132014a b xy +-的值是_____. 【答案】-2014.【详解】试题分析:根据互为相反数的两个数的和可得a+b=0,互为倒数的两个数的积等于1可得xy=1,然后代入代数式进行计算即可得解.试题解析:∴a 、b 互为相反数,∴a+b=0,∴x 、y 互为倒数,∴xy=1,∴2013(a+b )-2014xy=0-2014×1=-2014.考点:1.代数式求值;2.相反数;3.倒数.12.一个角是5433︒',则这个角的补角与余角的差为____°.【答案】90°【详解】试题分析:先求出这个角的补角,再求出这个角的余角,再计算它们的差即可 试题解析:∴这个角的补角等于:180°-54°33′=125°27′,这个角的余角:90°-54°33′=35°27′,∴125°27′-35°27′=90°.考点:余角与补角.13.若x 2+2x 的值是8,则4x 2﹣5+8x 的值是_____.【答案】27【分析】原式结合变形后,将已知等式代入计算即可求出值.【详解】解:∴x 2+2x=8,∴原式=4(x 2+2x )﹣5=32﹣5=27.故答案为:27.【点睛】本题考查代数式求值,利用整体代入思想解题是关键.14.一个平面上有三个点A 、B 、C ,过其中的任意两个点作直线,一共可以作______条直线. 【答案】3或1##1或3【详解】试题分析:分三点共线和不共线两种情况作出图形即可得解.试题解析:点A 、B 、C 三点共线时可以连成1条,三点不共线时可以连成3条, 所以,可以连成3条或1条.考点:直线、射线、线段.15.某书店把一本新书按标价的八折出售,仍可获利20%,若该书的进价为20元,则标价为___________元. 【答案】30【分析】设每本书的标价为x 元,根据八折出售可获利20%,可得出方程:80%x -20=20×20%,解出即可.【详解】解:设每本书的标价为x 元,由题意得:80%x -20=20×20%,解得:x=30.即每本书的标价为30元.故答案为:30.16.下列三个判断:∴两点之间,线段最短.∴过一点有且只有一条直线与已知直线垂直.∴过一点有且只有一条直线与已知直线平行.其中判断正确的是__________.(填序号)【答案】∴∴.【详解】试题分析:根据线段的性质、平行线公理以及垂线公理得∴两点之间,线段最短.∴过一点有且只有一条直线与已知直线垂直正确,∴过一点有且只有一条直线与已知直线平行错误.试题解析:根据以上分析知∴∴∴正确.考点:1.线段的性质;2.平行线公理;3.垂线公理.17.设一列数、、、…、2014a 中任意三个相邻的数之和都是30,已知a 3=3x ,a 200=15,9994a x =-,那么a 2014=______.【答案】12【详解】解:由任意三个相邻数之和都是30可知:a 1+a 2+a 3=30,a 2+a 3+a 4=30,a 3+a 4+a 5=30,…,an +an +1+an +2=30,可以推出:a 1=a 4=a 7=…=a 3n +1,a 2=a 5=a 8=…=a 3n +2,a 3=a 6=a 9=…=a 3n , 所以a 999=a 3,a 200=a 2,则3x =4-x .x =1.a 3=3.a 1=30-3-15=12,因此a 2014=a 1=12.故答案为:12.18.在连续整数1,2,3,…,2014这2014个数的每个数前任意添加“+”或“-”,其代数和的绝对值的最小值是_______.【答案】1.【详解】试题分析:在2014个自然数1,2,3,…,2013,2014的每一个数的前面任意添加“+”或“-”,则其代数和一定是奇数.试题解析:根据试题分析知:在连续整数1,2,3,•••…2014这2014个数的每个数前任意添加 “+"或“-”,其代数和的绝对值的最小值是1.考点:有理数的加减混合运算.三、解答题19.(1)543669⎛⎫-⨯- ⎪⎝⎭(2)()()()()215325⎡⎤-⨯-÷-+⨯-⎣⎦(3)23(4)()30(6)4-⨯-+÷- (4)【答案】(1)-14;(2)-5;(3)-17;(4)-4.20.化简求值(1) ()()3232a b b a -++(2)()()323233m n m n ---(3)()()2222243;ab b a b a b ⎡⎤--+--⎣⎦其中a=2,b=-3.【答案】(1)5a+b ;(2) -3n ;(3) 4ab -5b 2; (4)-69.【详解】试题分析:(1)去括号,合并同类项即可;(2)根据乘法对加法的分配律把括号去掉后,再合并同类项即可求解;(1)先去掉小括号,再去掉中括号后,进行合并同类项,再把a 、b 的值代入化简后的式子即可求值.试题解析:(1)原式=3a-2b+3b+2a=5a+b;(2)原式=6m-9n-6m+6n=-3n;(3)原式=4ab-3b2-(a2+b2-a2+b2)=4ab-3b2-a2-b2+a2-b2=4ab-5b2当a=2,b=-3时,原式=4×2×(-3)-5×(-3)2=-24-45=-69.考点:整式的化简求值.21.解方程(1);(2);(3)1231. 23x x+--=(4)2105试题解析:(1)∴22.作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)从正面看到该几何体的形状图如图所示,请在下面方格纸中分别画出从左面,上面看到该几何体的形状图【答案】(1)11;(2)图形见解析.【分析】(1)根据如图所示即可得出图中小正方体的个数;(2)读图可得,左视图有2列,每列小正方形数目分别为2,2;俯视图有4列,每行小正方形数目分别为2,2,1,1.【详解】解:(1)2×5+1=11(块).即图中有11块小正方体,故答案为11;(2)如图所示;左视图,俯视图分别如下图:【点睛】此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.如图,直线AB CD EF 、、相交于点O .(1)BOE ∠的对顶角是_______.图中共有对顶角 对.(2)若AOC ∠:2:3AOE ∠=,130EOD ∠=︒ , 求BOC ∠的度数.24.列方程解应用题:甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.那么甲班原有多少人?【答案】52.【详解】试题分析:设甲班原有人数是x 人,根据甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等可列出方程.试题解析:设甲班原有人数是x 人,(98-x )+3=x -3.解得:x=52.答:甲班原有52人.考点:由实际问题抽象出一元一次方程.25.在一条数轴上有A 、B 两点,点A 表示数4-,点B 表示数6.点P 是该数轴上的一个动点(不与A 、B 重合)表示数x .点M 、N 分别是线段AP 、BP 的中点.(1)如果点P 在线段AB 上,则点M 表示的数是 , 则点N 表示的数是 (用含x 的代数式表示).并计算线段MN的长.(2)如果点P在点B右侧,请你计算线段MN的长.(3)如果点P在点A左侧,则线段MN的长度会改变吗?如果改变,请说明理由;如果不变,请直接写出结果.26.小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数(单位:公里)如下:设小明12:00时看到的两位数的个位数字为x.(1)小明12:00时看到的两位数的十位数字为.(用x表示)(2)小明13:00时看到的两位数为;14:30时看到的两位数为;(用x表示,需要化简).(3) 你能帮助小明求出摩托车的速度吗?试试看.27.一个长方体水箱,从里面量长25厘米,宽20厘米,深30厘米,水箱里已经盛有深为a 厘米的水.现在往水箱里放进一个棱长10厘米的正方体实心铁块(铁块底面紧贴水箱底部).(1)如果28a ≥,则现在的水深为 cm .(2)如果现在的水深恰好和铁块高度相等,那么a 是多少?(3)当028a <<时,现在的水深为多少厘米?(用含a 的代数式表示,直接写出答案)。

2013-2014学年第一学期期末七年级数学试卷(含参考答案)

2013-2014学年第一学期期末七年级数学试卷(含参考答案)

2121-23132-+=-x x2013—2014学年第一学期期末考试七年级数学试卷一、选择题(每小题3分,共30分) 1、-3的绝对值等于( )A 、-3B 、3C 、±3D 、小于3 2、与-2ab 是同类项的为( )A 、-2acB 、2ab 2C 、abD 、-2abc 3、下面运算正确的是( )A 、3ab+3ac=6abcB 、4a 2b-4b 2a=0C 、2x 2+7x 2=9x 4D 、3y 2-2y 2=y 2 4、下列四个式子中,是方程的是( )A 、1+2+3+4=10B 、2x-3C 、2x=1D 、︱2-3︱=1 5、如下图,下列图形全部属于柱体的是( )6、已知方程x 2k-1+k=0是关于x 的一元一次方程,则方程的解等于( ) A 、-1 B 、1 C 、 D 、7、如图,一副三角板(直角项点重合)摆放在桌面上, 若∠AOD=150°,则∠BOC 等于( ) A 、30° B 、45° C 、50° D 、60°8、下面是解方程的部步骤:①由7x=4x-3,变形得7x-4x=3;②由 , 变形得2(2-x)=1+3(x-3);③由2(2x-1)-3(x-3)=1,变形得4x-2-3x-9=1; ④由2(x+1)=7+x ,变形得x=5。

其中变形正确的个数是( ) A 、0个 B 、1个 C 、2个 D 、3个9、如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有16个三角形,则需要 ( )根火柴棍。

A 、30根 B 、31根 C 、32根 D 、33根10、整式mx+2n 的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值,则关6432+-x x 6342+-x x ()5324---⨯+-()()()()1012312243---÷-+-⨯-()x x 5234=--6831122+-+=--x x x 于x 的方程-mx-2n=4的解为( ) A 、-1 B 、-2 C 、0 D 、为其它的值 二、填空题(每小题3分,共18分)11、写出满足下列条件的一个一元一次方程:①未知数的系数是-1;②方程和解是3,这样 的方程可以是:12、王老师每晚19:00都要看央视的“新闻联播”节目,这一时刻钟面上时针与分针的夹角是 度13、若多项式 的值为9,则多项式 的值为 14、已知线段AB=10cm ,直线AB 上一点C ,且BC=4cm ,M 是线段BC 的中点,则AM 的长是 Cm .15、按下图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是16、某商场推出了一促销活动:一次购物少于100元的不优惠;超过100元(含100元)的按9折付款。

2013-2014学年上学期期末考试九年级数学试卷

2013-2014学年上学期期末考试九年级数学试卷

2013-2014学年上学期期末考试九年级数学试卷(考试时间120分钟,满分120分)一、单项选择题(每小题2分,共12分)1.方程x(x-1)=0的解是()A. x=0B. x=1C. x=0或x=-1D. x=0或x=12.下列等式一定成立的是()a b-C.D. a b+3.下列各图中,是中心对称图形的是图()4.已知两圆的半径分别为3cm和5cm,如果它们的圆心距是8cm,那么这两个圆的位置关系是()A.内切B.相交C.外切D.外离5.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠C的度数为()A. 32°B. 42°C.28°D.58°6. 一个袋子中装有5个红球3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到红球的概率为()A.12B.19C.85D.23二、填空题(每小题3分,共24分)7.若121+x有意义,则x的取值范围是8.如图,圆形转盘中有A,B,C三个扇形区域,转动圆盘后,指针停止在任何位置的可能性都相同(若指针停在分界线上,则重新转动圆盘),则转动圆盘一次,指针停在B区域的概率是9.如图,将⊙O沿着弦AB翻折,劣弧恰好经过圆心O,若⊙O的半径3题初三数学①为4,则弦AB 的长度等于10. 如图,⊿ABC 中,D ,E 分别是AB ,AC 上的点(DE BC),请你添加一个条 件 ,使⊿ADE 与⊿ABC 相似.11.如图,△ABC 为等边三角形,D 是△ABC 内一点,且AD =3,将△ABD 绕点A 旋转到△ACE 的位置,连接DE ,则DE 的长为12.用两个全等的含30︒角的直角三角形制作如图A 、B 所示的两种卡片, 两种卡片中扇形的半径均为2, 且扇形所在圆的圆心分别为长直角边的中点和30︒角的顶点, 按先A 后B 的顺序交替摆放A 、B 两种卡片得到右图所示的图案. 若摆放这个图案共用两种卡片12张,则这个图案中阴影部分的面积之和为13.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D E 、,量出半径5cm OC =,弦8cm DE =,则直尺的宽度14.观察下列各式:311+413=,514513=+……,请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________________ 三、解答题(每小题5分,共20分)15.先化简,再求值:xx x 1x 2-46932+ (其中x=2)16.在生活中需测量一些球(如足球、篮球……)的直径,某校研究性学习小组, 通过实验发现下面的测量方法:如图,将球放在水平的桌面上,在阳光的斜射下,得到球的影子AB,设光线DA 、CB 分别与球相切于点E 、F, 则EF 即为球的直径, 若测12题A 学校年班姓名13题10题得AB 的长为44cm,∠ABC=30°,请你计算出球的直径.17.如图,在平面直角坐标系中,点A B C P ,,,的坐标分别为 (0,2),(3,2), (2,3),(1,1)(1)请在图中画出A B C '''△,使得A B C '''△与ABC △关于点P 成中心对称; (2)直接写出(1)中A B C '''△的三个顶点坐标.18.已知二次函数),0(2≠+=a c ax y 当x=1时,解析式.四、解答题(每小题7分,共28分)19.如图,AC 为⊙O 的直径,B 为AC 延长线上的一点,BD 交⊙O 于点D ,∠BAD=∠B=30°(1) 求证:BD 是⊙O 的切线; (2)AB=3CB 吗?请说明理由.20.美化环境,改善人们的居住环境已成为城市建设的一项重要内容.松原市近几年通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息,回答下列问题:2009年的绿地面积为 公顷,比2008年增加了 公顷.在2009年,2010年,2011年这三年中绿地面积增加最多的是 年.17题19题(2)为了满足城市发展的需要,计划到2013年使城区绿地面积达到84.7公顷,试求这两年(2011-2013)绿地面积的年平均增长率.21.水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱) 之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?学校年班姓名22.不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.五、解答题(每小题8分,共16分) 23.已知,二次函数的解析式3221++-=x x y (1)这个二次函数的顶点坐标(2)这个二次函数图象与x 轴的交点坐标 (3)当x _____时,1y 随x 的增大而增大;(4)如图,若直线)0(2≠+=a b ax y 的图象与该二次函数图象交于A (21-,m ), B (2,n )两点,结合图象直接写出当x 取何值时21y y >?24.图(1)是油田高中存放学生自行车的车棚示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形,图(2)是车棚顶部截面的示意图,所在圆的圆心为O.车棚顶部是用一种帆布覆盖的,求覆盖棚顶帆布的面积(不考虑接缝等因素,计算结果保留π)。

2013-2014学年高一(上)期末数学试卷(解析版)

2013-2014学年高一(上)期末数学试卷(解析版)

2013-2014学年高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共7个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)利用斜二侧画法画水平放置的平面图形的直观图,得到下列结论,其中正确的是,解得:正方体的棱长为=3即为球的直径,所以半径为)5.(5分)已知圆与圆相交,则与圆7.(5分)已知圆锥的底面半径为1,且它的侧面展开图是一个半圆,则这个圆锥的体积为B,圆锥的高为:π××22B=,二、填空题:本大题共6个小题,每小题5分,共30分.请把答案填在答题卷对应题号后的横线上.9.(5分)若球的表面积为36π,则该球的体积等于36π.所以球的体积为:10.(5分)如图,直四棱柱ABCD﹣A 1B1C1D1的底面是边长为1的正方形,侧棱长,则异面直线A1B1与BD1的夹角大小等于.,故答案是11.(5分)与圆(x﹣1)2+(y﹣2)2=4关于y轴对称的圆的方程为(x+1)2+(y﹣2)2=4.12.(5分)已知点A,B到平面α的距离分别为4cm和6cm,当线段AB与平面α相交时,线段AB的中点M到α平面的距离等于1.,∴===中,EOF=13.(5分)无论m为何值,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0恒过一定点P,则点P 的坐标为(3,1).,求得定点,14.(5分)直线y=k(x﹣1)与以A(3,2)、B(2,3)为端点的线段有公共点,则k的取值范围是[1,3].=1=315.(5分)若圆柱的侧面展开图是边长为4的正方形,则它的体积等于.R=V=SH=.故答案为:三、解答题:本大题共6小题,共35分,解答应写出文字说明,证明过程或演算步骤. 16.(11分)如图示,给出的是某几何体的三视图,其中正视图与侧视图都是边长为2的正三角形,俯视图为半径等于1的圆.试求这个几何体的侧面积与体积.,代入圆锥的体积公式和表面积公式,可得答案.的圆锥..17.(12分)已知直线l1:ax+3y+1=0,l2:x+(a﹣2)y+a=0.(1)若l1⊥l2,求实数a的值;(2)当l1∥l2时,求直线l1与l2之间的距离.;时,有故它们之间的距离为18.(12分)如图示,AB是圆柱的母线,BD是圆柱底面圆的直径,C是底面圆周上一点,E是AC中点,且AB=BC=2,∠CBD=45°.(1)求证:CD⊥面ABC;(2)求直线BD与面ACD所成角的大小.BE=19.(13分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=CC1=a,E是A1C1的中点,F是AB中点.(1)求证:EF∥面BB1C1C;(2)求直线EF与直线CC1所成角的正切值;(3)设二面角E﹣AB﹣C的平面角为θ,求tanθ的值.FEG==..20.(13分)已知⊙C经过点A(2,4)、B(3,5)两点,且圆心C在直线2x﹣y﹣2=0上.(1)求⊙C的方程;(2)若直线y=kx+3与⊙C总有公共点,求实数k的取值范围.由.21.(14分)(2008•湖南)在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ(其中sinθ=,0°<θ<90°)且与点A相距10海里的位置C.(I)求该船的行驶速度(单位:海里/小时);(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.=AB=40AC=10,=.所以船的行驶速度为..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档