抽样分布与参数估计总结

合集下载

抽样分布与参数估计

抽样分布与参数估计

抽样分布与参数估计首先,我们来了解什么是抽样分布。

在统计学中,抽样分布是指从总体中多次抽样得到的样本统计量的分布。

假设我们的总体是指所有感兴趣的个体的集合,而样本是从总体中选取的一部分个体。

抽样分布的形状和性质取决于总体的分布和样本的大小。

通过分析抽样分布,可以得到有关总体参数的有用信息。

例如,我们想要知道一些城市成年人的平均年收入。

在实际情况下,我们无法调查每个人的收入情况,因此我们需要从总体中随机抽取一部分个体作为样本,并计算他们的平均年收入。

如果我们多次从总体中抽取样本并计算平均年收入,然后绘制这些平均值的分布图,我们就可以得到平均年收入的抽样分布。

这个抽样分布将给我们提供有关总体平均年收入的估计和推断。

接下来,我们将讨论参数估计。

参数估计是指使用样本数据来估计总体参数的过程。

总体参数是用于描述总体特征的数值,如总体平均值、总体标准差等。

通过从总体中抽取样本,并计算样本统计量,我们可以利用样本统计量来估计总体参数。

常用的参数估计方法有点估计和区间估计。

点估计是指用单个数值来估计总体参数,例如用样本均值来估计总体均值。

点估计给出了一个单一的值,但不能提供关于估计的精度的信息。

因此,我们常常使用区间估计。

区间估计是指给出一个区间,这个区间内有一定的置信水平使得总体参数落在这个区间内的概率最高。

区间估计能够向我们提供关于估计的精确程度的信息。

区间估计依赖于抽样分布的性质。

中心极限定理是制定抽样分布理论的一个重要原则。

根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将近似于正态分布。

这使得我们可以使用正态分布的性质来计算置信区间。

构建置信区间的一种常用方法是使用样本均值的标准误差。

标准误差是样本均值的标准差,它用来衡量样本均值和总体均值之间的误差。

根据正态分布的性质,当样本容量足够大时,样本均值与总体均值之间的误差可以用标准误差来估计。

通过计算标准误差并结合正态分布的性质,我们可以得到样本均值的置信区间。

抽样分布与参数估计

抽样分布与参数估计

三、t分布曲线下的面积分布规律
自由度为 的t分布曲线
t 分布曲线下 的整个面积为1, t 分布曲线下从a到b 的面积为t值分布 在此范围内的百分 比,即t值落在此 范围内的概率P。
双侧:由于t分布以0为中心对称,即 P(t≤- t, )= P(t≥ t, )= /2 于是有P(- t, ≤t≤ t, )=1-
sx
u X
X
t X =n-1
s X
u分布 t分布
二、t分布图形的特点
• 1. t分布是一簇曲线。 t分布有一个参数, 即自由度 ,与标准差的自由度一致。
• 2. t分布曲线以0为中心,左右对称; 越小, t变量值的离散程度越大,曲线越扁平。
• 3. t分布曲线较标准正态曲线要扁平些(高 峰低些,两尾部翘得高些), 逐渐增大, t分布曲线逐渐的逼近于标准正态曲线,若 =,则t分布曲线和标准正态曲线完全吻 合。
参数估计在统计方法中的地位
统计方法
描述统计
推断统计
点值估计
参数估计
假设检验
区间估计
一、基本概念
➢ 参数估计:用样本统计量来估计总体参数。
点值估计:不计抽样误差,直接用样本均数来 估计μ。
区间估计:根据抽样误差的规律,按一定的概 率估计总体均数的所在范围。统计上习惯用95% 或99%可信区间表示总体均数可能所在范围。
第一节 均数的抽样误差 第二节 t分布 第三节 总体均数可信区间的估计
一、抽样研究:从总体中随机抽取部分 观察单位构成样本,用样本信息去 推断总体特征的研究方法。
统计推断的过程
总体

样本统计量

例如:样本均
值、比例
二、抽样误差:在抽样研究中,因抽样造 成的样本统计量与样本统计量、样本统计 量与总体参数的差值。

抽样分布、参数估计和假设检验

抽样分布、参数估计和假设检验

抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。

(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。

1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。

2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。

因为许多问题都使用正态曲线的方法。

这个定理适于无限总体的抽样,同样也适于有限总体的抽样。

中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。

(三)抽样分布中的几个重要概念1.随机样本。

统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。

所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。

从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。

3.标准误。

样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。

根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。

教育与心理统计学 第四章 抽样理论与参数估计考研笔记-精品

教育与心理统计学  第四章 抽样理论与参数估计考研笔记-精品

第四章抽样理论与参数估计第一节抽样理论的基本知识分层抽样,又叫分层随机抽样,这种抽样方法是按照总体已有的某些特征,承认总体中已有的差异,按差异将总体分为几个不同的部分,每一部分称为一个层,在每一个层中实行简单随机抽样。

它充分利用了总体的已知信息,因而是一种非常适用的抽样方法,其样本代表性及推论的精确性一般优于简单随机抽样。

分层的原则是层与层之间的变异越大越好,各层内的变异要小。

试述分层抽样的原则和方法?分层抽样是按照总体上已有的某些特征,将总体分成几个不同部分,在分别在每一部分中随机抽样。

分层的总的原则是:各层内的变异要小,而层与层之间的变异越大越好。

在具体操作中,没有一成不变的标准,研究人员可根据研究需要依照多个分层标准,视具体情况而定。

⑷两阶段随机抽样两阶段随机抽样首先将总体分成M个部分,每一部分叫做一个"集团"(或"群"),第一步从M个集团中随机抽取m个"集团”作为第一阶段样本,第二步是分别从所选取的m个"集团”中抽取个体(g构成第二阶段样本。

一般而言,两阶段抽样相对于简单随机抽样,标准误要大些,但是,两阶段抽样简便易行,节省经草贼,因而它是大规模调查研究中常被使用的抽样方法。

例如,如果我们要了解全国城市初中二年级学生的身高,第一步我们可以从全国几百个城市中随机抽取几十个城市作为第一阶段的样本。

第二步,在第一阶段随机抽取出来的城市中再随机抽取初中二年级的学生。

(二)非旃抽样非概率抽样不是完全按随机原则选取样本,有方便抽样、判断抽样。

方便抽样是由调查人员自由、方便地选择被调查者的非随机选样。

判断抽样是通过某些条件过滤,然后选择某些被调查者参与调查的抽样法。

当采取非概率抽样的方法选取样本时,研究者要说明采用此种方取样的原因以及对研究结果可能造成的影响。

第二节抽样分布[统计量分布、基本随机变量函数的分布]总体:又称母全体、全域,指具有某种特征的一类事物的全体。

统计学 第 6 章 抽样与参数估计

统计学  第 6 章   抽样与参数估计

第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。

参数的假设检验抽样分布、参数估计、假设检验(回归分析)

参数的假设检验抽样分布、参数估计、假设检验(回归分析)

z = -3.162 < 1.64 接受原假设
5% 1.64
假设检验的基本原理
2)相伴概率 P 检验统计量观察值以及所有所有比
它更为极端的可能值出现的概率之和 双侧检验:
P = P(Z < -3.162) + P(Z > 3.162) = 0.002
左侧检验:P = P(Z < -3.162) = 0.001
1
t分布两尾 概率分位点
P(x t / 2sx x t / 2sx ) 1
参数估计 - 区间估计
正态总体方差的区间估计
(n 1)s2
2
~
2 (n 1)
2分布上尾 概率分位点
P(12
2
(n 1)s2
2
2
2)
1
P(
(n 1)s2
12 2
2
(n 1)s
2 2
2
)
1
参数估计 - 区间估计
n
Z x ~ N(0,1) 2 n
中心极限定理
➢ 无论样本所来自的总体是否服从正态分布, 只要样本足够大,样本平均数就近似服从正 态分布,样本越大,近似程度越好。
➢所需的样本含量随原总体的分布而异,但只 要样本含量 30,无论原总体是何分布,都 足以满足近似的要求。
➢设原总体的期望为,方差为 2,则样本平 均数的期望为,方差为 2 /n。
统计推断概述
抽样分布 参数估计简介 假设检验的基本原理
抽样分布的概念
样本统计量的概率分布称为抽样分布(sampling distribution)
样本是通过对总体的随机抽样获得的 样本统计量是随机变量,有一定的概率分布
简单随机样本

概率论参数估计和抽样分布

概率论参数估计和抽样分布

概率论参数估计和抽样分布
一、极大似然估计MLE
极大似然估计(MLE)是一种用来近似概率分布参数的统计学方法。

它的基本原理是根据样本来估计一组参数,使单独参数的极大似然函数最大化,即最大前提下来达到样本可能性的最大化,这种方法可以让样本观测数据的期望值吻合该参数的假设值。

这种估计方法的优点是简单易行,它不需要指定模型的具体参数,而且参数的估计结果可以很容易地进行验证和分析。

它的缺点是需要多次计算,收敛速度慢,容易受噪声影响,而且模型假设受到限制,可能会有明显的偏离。

二、贝叶斯估计BE
贝叶斯估计(BE)是指在概率论估计中,采用以贝叶斯概率论的原理来估计模型参数的一种方法。

该方法将未知状态作为随机变量,根据贝叶斯公式及赋予先验分布,以最大后验概率的原则估计模型参数。

贝叶斯估计具有优点是可以用来估计模型参数的概率分布,而不仅仅是估计其期望值,可以将主观经验纳入参数估计过程中,也可以迅速得到模型参数的分布。

抽样分布与参数估计

抽样分布与参数估计

f
n
X
x
2
f
x
0.79
f
n

x
~
N


,
2
n

比较及结论:1. 样本均值的均值(数学期望) 等于总体均值
2. 样本均值的方.差等于总体方差的1/n
样本均值的抽样分布
(数学期望与方差)
1. 样本均值的数学期望
E(X )
2. 样本均值的方差
第一个
第二个观察值
观察值
1
•2
•3
•4
1
1,1
•1,2
1,3
•1,4
2
•2,1
2,2
2,3
2,4
3
•3,1
3,2
3,3
3,4
4
•4,1
4,2
4,3
4,4
.
样本均值的抽样分布
(例题分析)
计算出各样本的均值,如下表。并给出样本均 值的抽样分布
•16个样本的均值(x)
第一个
第二个观察值
观察值 •1 •2 •3 •4
2
x
2π 2
f (x)
f(x) = 随机变量 X 的频数
= 正态随机变量X的均值
= 正态随机变量X的方差
= 3.1415926; e = 2.71828
x = 随机变量的取值 (- < x < )
x ~ N, 2
x
.
正态分布的概率
b
f(x)
P(a x b) a f (x)dx ?
E(P)
2. 样本比例的方差
– 重复抽样

统计学(李荣平)2014-5

统计学(李荣平)2014-5

P{t>tα(n)}= h(t;n)dt
t (n)
的数tα(n)为t(n)分布的上α分为点。 例:查表求:t0.05(8), t0.95(8)
o
t (n)
第一节 抽样分布
(三)F 分布
设 U ~ 2(n1 ),V ~ 2(n2 ), 且设 U,V 独立,则称随机变量
F U / n1 V / n2
保证质量,规定σ≤0.6mm时,认为生产过程处于良好控制
状态。为此,每隔一定时间抽取20个零件作为一个样本,并
计算样本方差S2。若P{S2≥c } ≤0.01(此时σ=0.6mm),
则认为生产过程失去控制,必须停产检查,问:
(1)C为何值时,S2≥c的概率才小于或等于0.01? (2)若取得的一个样本的标准差S=0.84,生产过程是
第五章 抽样分布与参数估计

第一节 抽样分布
要 内
第二节 参数点估计

第三节 区间估计
第一节 抽样分布
一、随机样本
总体与个体:试验全部可能的观测值叫总体;试验的 每一个观测值叫个体。
样本容量与样本个数:样本中包含的单位数叫样本容 量;从一个总体中可能抽取多少个样本叫样本个数。
总体容量:总体中所包含的个体数。 有限总体和无限总体:总体容量可数的称有限总体, 不可数的称无限总体。 重置抽样(重复抽样)和无重置抽样(不重复抽样)
X
1 n
n i 1
Xi
为样本均值;称统计量
S 2
1 n1
n i1
(Xi
X )2
为 样本方差 ,称统计量 S
S2
1n
( X X ) 2 为样本标准差 ;统计量
n 1 i1 i

第6章抽样分布与参数估计

第6章抽样分布与参数估计

抽样分布反映了依据样本计算出来的统计量数值的概率分布,这是科 学地进行统计推断的基础。例如,在大样本场合,由中心极限定理有样 本均值趋于正态分布。
★ 讨论题 为什么说抽样分布是抽样理论研究的对象,解释三种分布之 间的联系。
/3:22
《统计学教程》
第6章 抽样分布与参数估计
6.1 抽样分布
6.1.4 样本均值的抽样分布 1.大样本场合下的样本均值抽样分布
总体(Population)是指所研究的事物及其现象的全体,由该事物及 其现象的全部个体组成。
个体(Item Unit)是指构成总体的元素。 总体容量(Population Size)是指构成总体的全部个体的数量。
样本(Sample)是指从总体抽取的若干个体构成的集合。 抽样(Sampling)是指按照具体的抽样方法和抽样设计,从总体中抽 取若干个体的过程。 样本容量(Sample size)是指构成样本的全部个体的数量。
ln i mPnnA
PA
1
(6.1)
贝努利定理表明事件发生的频率依概率收敛于事件发生的概率。从而 以严格的数学形式表述了频率的稳定性特征,即n当很大时,事件发生 的频率与概率之间出现较大的偏差的可能性很小。由此,在n充分大的 场合,可以用事件发生的频率来替代事件的概率。
/3:22
《统计学教程》
第6章 抽样分布与参数估计
在反复抽取容量相同的独立同分布样本条件下,所得到的样本均值的 概率分布称为样本均值的抽样分布。在样本容量充分大的情况下,即大 样本场合,样本均值依据中心极限定理趋于正态分布。
所谓独立同分布样本为从无限总体中随机抽取的等概样本,或从有限 总体中以放回方式,随机抽取的等概样本。
所谓大样本是指能够满足中心极限定理要求,使样本均值趋于正态分 布的样本容量。在统计实践中一般称样本容量大于30即为大样本这只是 一个粗略的经验数值。

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计最全版

(抽样检验)抽样与参数估计最全版(抽样检验)抽样与参数估计抽样和参数估计推断统计:利⽤样本统计量对总体某些性质或数量特征进⾏推断。

从数据得到对现实世界的结论的过程就叫做统计推断(statisticalinference)。

这个调查例⼦是估计总体参数(某种意见的⽐例)的壹个过程。

估计(estimation)是统计推断的重要内容之壹。

统计推断的另壹个主要内容是本章第⼆节要介绍的假设检验(hypothesistesting)。

因此本节内容就是由样本数据对总体参数进⾏估计,即:学习⽬标:了解抽样和抽样分布的基本概念理解抽样分布和总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体⽐例和总体⽅差的区间估计第⼀节抽样和抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取壹部分元素(单位)进⾏调查,且根据样本数据所提供的信息来推断总体的数量特征。

总体(Population):调查研究的事物或现象的全体参数个体(Itemunit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Samplesize):样本中所含个体的数量壹般将样本单位数不少于三⼗个的样本称为⼤样本,样本单位数不到三⼗个的样本称为⼩样本。

壹、抽样⽅法及抽样分布1、抽样⽅法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每壹个样本都有相同的机会(概率)被抽中。

注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,⼜可分为重复抽样和不重复抽样。

⽽且,根据抽样中是否排序,所能抽到的样本个数往往不同。

②、分层抽样:总体分成不同的“层”(类),然后在每壹层内进⾏抽样③、整群抽样:将壹组被调查者(群)作为壹个抽样单位④、等距抽样:在样本框中每隔壹定距离抽选壹个被调查者(2)⾮概率抽样:不是完全按随机原则选取样本①、⾮随机抽样:由调查⼈员⾃由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择壹群特定数⽬、满⾜特定条件的被调查者2、抽样分布壹般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(samplingdistribution)。

统计学复习(抽样分布、参数估计、假设检验)

统计学复习(抽样分布、参数估计、假设检验)

两个样本均值之差的抽样分布 (1)如: ) 抽样
X1 − N(µ1,σ12 ), X2 − N(µ2 ,σ2 ),
2
则 x1 − x2 ) ~ N(µ1 − µ2 , (
σ12 σ22
n1 + n2
)
抽样
σ12 N1 − n1 σ22 N2 − n2 (x1 − x2 ) ~ N[(µ1 − µ2 , ( )+ ( )] n1 N1 −1 n2 N2 −1
对于无限总体, 对于无限总体, 一个估计 如果对任意 量如能完 ε>ˆ 0 满足条件 全地包含 LimP(|θn −θ |≥ ε ) = 0 未知参数 n→∞ 信息, 信息,即 则称 θˆ 是 θ 为充分量 的一致估计。 的一致估计。
点估计
常用的求点估计量的方法
用样本的数字特征 1.数字特征法: 1.数字特征法:当样本容量增大时 ,用样本的数字特征 数字特征法 去估计总体的数字特征。 去估计总体的数字特征。 例如,我们可以用样本平均数(或成数 和样本方差来估 例如,我们可以用样本平均数 或成数)和样本方差来估 或成数 计总体的均值(或比率 和方差。 或比率)和方差 计总体的均值 或比率 和方差。
样本均值的抽样分布(简称均值的分布) 样本均值的抽样分布(简称均值的分布) 抽样
均值µ=∑Xi/N 均值
均值 X = Σxi
n
样本均值是样本的函数, 故样本均值是一个统计量, 样本均值是样本的函数, 故样本均值是一个统计量, 统计量 统计量是一个随机变量 随机变量, 统计量是一个随机变量, 样本均值的概率分布称为 样本均值的抽样分布。 样本均值的抽样分布。
2
n
总体均值 (µ) )
X ± tα
2
( n −1 )

第5章抽样分布与参数估计

第5章抽样分布与参数估计

第5章抽样分布与参数估计在统计学中,抽样分布与参数估计是重要的概念。

抽样分布是指从总体中随机抽取样本,计算样本统计量,然后将这些统计量进行分布的过程。

参数估计是通过样本数据对总体参数进行估计的方法。

首先,我们来了解抽样分布。

在统计学中,我们通常很难直接获得总体数据,因为总体数据往往很大,难以收集。

因此,我们采用抽样的方式来获取样本数据,并通过样本数据来推断总体特征。

抽样分布是指在重复抽取样本的过程中得到的统计量的分布。

抽样分布的中心趋于总体参数,而抽样分布的形状可以通过中心极限定理进行描述。

中心极限定理认为,当样本数量足够大时,样本均值的抽样分布近似服从正态分布,且均值等于总体均值。

这对于统计推断和参数估计具有重要意义。

其次,我们来了解参数估计的概念及其方法。

参数估计是指根据样本数据对总体参数进行估计的统计方法。

常见的参数包括总体均值、总体方差等。

参数估计可以分为点估计和区间估计两种方法。

点估计是指通过样本数据计算得到的单个数值来估计总体参数。

常用的点估计方法包括最大似然估计和矩估计。

最大似然估计是基于样本的观测值选择使得观测值出现的概率最大的参数值作为估计值的方法。

矩估计是通过样本矩与总体矩的对应关系来估计总体参数的方法。

区间估计是指对总体参数给出一个区间估计值,该区间包含了真实参数值的概率。

常用的区间估计方法包括置信区间估计和预测区间估计。

置信区间估计是通过样本数据计算得到的一个区间,可以包含真实参数值的概率。

置信区间的置信水平是指在多次重复抽样中,这个区间包含了真实参数值的概率。

预测区间估计是在给定自变量取值的情况下,通过样本数据对应的因变量的取值的一个区间估计。

总之,抽样分布与参数估计是统计学中重要的概念和方法。

通过抽样分布可以了解样本统计量的分布情况,而参数估计可以通过样本数据对总体参数进行估计。

这些概念和方法对于数据分析和决策具有重要的实际应用价值。

统计学第四章抽样与参数估计

统计学第四章抽样与参数估计

疗效评价
通过参数估计和假设检验等方法,评价药物 的疗效和安全性。
案例三:工业生产过程质量控制
抽样检验计划制定
根据产品特性和质量要求,制定合适的抽样 检验计划。
不合格品控制
对不合格品进行统计分析和处理,找出原因 并采取措施加以改进。
过程能力分析
收集生产过程中的质量数据,进行过程能力 分析和参数估计。
抽样作用
通过样本信息推断总体特征,为决策提供依据。
抽样方法分类
随机抽样
按照随机原则从总体中抽取样本,每个个体 被抽中的概率相等。
系统抽样
按照某种规则从总体中抽取样本,如每隔一 定距离或时间抽取一个样本。
分层抽样
将总体分成若干层,然后从各层中随机抽取 样本。
整群抽样
将总体分成若干群,然后随机抽取若干群作 为样本。
05
案例分析:实际场景下抽样 与参数估计问题探讨
案例一:市场调查中消费者满意度测评
01
抽样方法选择
根据市场调查的目的和预算,选 择合适的抽样方法,如简单随机 抽样、分层抽样或整群抽样。
03
数据收集与处理
设计调查问卷,收集消费者满意 度数据,并进行数据清洗和整理

02
样本量确定
综合考虑调查的精度要求、总体 规模、抽样误差等因素,合理确
运用统计学方法进行假设检验和参数估计,验证研究假 设的可靠性。
THANKS
定样本量。
04
参数估计
运用统计学方法,对消费者满意 度进行参数估计,如计算满意度
均值、标准差等。
案例二:医学研究中药物疗效评价
试验设计
采用随机对照试验等方法,确保试验组和对 照组的可比性。
样本量计算

抽样分布与参数估计概述

抽样分布与参数估计概述

抽样分布与参数估计概述引言在统计学中,我们经常需要推断整个总体的性质,并据此进行决策或推断。

然而,由于种种原因,我们往往无法直接观察到整个总体的数据。

这时,我们通过对样本的观察和分析来进行总体的推断,这就涉及到了抽样分布和参数估计。

抽样分布抽样分布是指由相同样本大小的一系列独立随机样本所得到的统计量的分布。

在统计学中,我们通常将样本平均值、样本比例或者其他统计量作为总体参数的估计量。

而抽样分布那么将这些统计量的取值范围进行了描述。

中心极限定理中心极限定理是抽样分布的重要定理之一。

它指出,当样本容量足够大时,样本均值的抽样分布将近似于正态分布。

换言之,即使总体分布未知或不是正态分布,样本均值的抽样分布将会趋近于正态分布。

中心极限定理的意义在于,它允许我们利用正态分布的性质来对总体参数进行估计和推断。

通过对样本数据进行观察和分析,我们可以得到样本的均值和标准差,进而利用正态分布的性质来进行置信区间的构造、假设检验等。

参数估计参数估计是指利用样本数据对总体参数进行估计的过程。

常见的参数估计方法包括点估计和区间估计。

点估计点估计是通过单个统计量来估计总体参数的方法。

例如,我们可以用样本均值作为总体均值的估计值,用样本比例作为总体比例的估计值。

点估计能够给出一个具体的数值作为总体参数的估计,但是无法给出估计值的准确性。

区间估计区间估计是通过一个区间来估计总体参数的范围。

而这个区间通常使用置信区间来表示。

置信区间是指总体参数估计值在一定置信水平下的上下限范围。

常用的置信水平有95%和99%等。

置信区间的构造通常基于抽样分布的性质。

利用样本数据和抽样分布的知识,我们可以计算出参数估计值的抽样分布,并根据置信水平选择适当的临界值,从而得到置信区间。

总结抽样分布和参数估计是统计学中重要的概念和方法。

通过对样本数据的观察和分析,我们可以利用抽样分布和参数估计方法来推断总体的性质,并进行统计推断和决策。

中心极限定理告诉我们,当样本容量足够大时,样本均值的抽样分布将近似于正态分布,从而允许我们利用正态分布的性质对总体参数进行估计和推断。

应用统计学第6章 抽样分布与参数估计

应用统计学第6章 抽样分布与参数估计

μx
6. 3抽样分布
多大是足够的大?
6. 3抽样分布
例子
假设总体的平均数μ = 8 且标准差σ = 3. 假 设选中容量n = 36随机样本。
样本平均数介于7.8和8.2之间的概率是多少?
第6章 6. 3抽样分布
例子
(续)
结论:
即使总体非正态分布, 中心极限定理可以应用 (n > 30)
6.2 抽样误差
样本统计量和对应的总体参数之间的差异,称之为抽 样误差。
抽样误差的产生是由于抽样的非全面性和随机性所引 起的,是偶然性误差。
非抽样误差
抽样框误差 系统性误差 测量误差 登记误差
6. 3抽样分布
6. 3抽样分布
6.3.1 样本均值的抽样分布
6. 3抽样分布
1.样本均值的均值
样)
6. 3抽样分布
p的抽样分布
近乎正态分布分布,如果:
n 5
P( ps)
抽样分布
.3

.2
.1
n(1 ) 5
0 0 . 2 .4 .6
p
81
μ 其中 p
π

π(1 π)
σp
n
(其中 π = 总体比例)
6. 3抽样分布
比例的Z值
使用公式将p标准化为Z值:
p
Z
σp
p (1 )
n
在判断样本中,我们得到预先选好的专家就主题 发表的意见。
6.1 抽样理由和抽样方法
样本类型:概率样本
在概率样本中, 样本中条目的选择基于已知的概率。
概率样本
简单 随机样本
系统样本
分层样本 群样本
6.1 抽样理由和抽样方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总体参数的估计区间,称为置信区间。
统计学原理
置信度
如果将构造置信区间的步骤重复多次,置信区
间中包含总体真值的次数所占的比例称为置信 水平(Confidence Level)。
也称为置信度或置信系数 (Confidence Coefficient)。
统计学原理
置信度与置信区间的关系
统计学原理
两个总体参数—比例之差
比例之差:大样本下,服从正态分布。 在估计时使用样本标准差替代。
统计学原理
两个总体的方差比
样本方差比的抽样分布为F分布 其中 第一自由度为n1-1,第二自由度为n2-1
2 s12 2 2 ~ F n1 1, n2 1 2 s2 1
统计学原理
例题:关于扑克牌的游戏
从一副扑克牌(52张)中,有放回地抽
出30张,其平均点数的分布规律如何?
如果以点数来赌胜负,什么区间的胜率
是95%?
统计学原理
统计学原理
第二节 参数估计
主要讨论总体平均数的 参数估计
统计学原理
参数估计的一般问题
参数估计:用样本统计量去估计总体的参
数。
统计学原理
计算结果
计算样本平均数:X=39.5 计算样本标准差:s=7.7736 令:总体标准差=样本标准差,计算抽样误差为
1.2956 95%置信度对应的T值为1.96 得总体平均数的置信区间为:
o 上限:39.5+1.96×1.2956=42.04 o 下限:39.5-1.96×1.2956=36.96
N=200时的抽样分布
Std. Dev = 2.23 Mean = 46.24 N = 200.00
4 .4 57 2 .0 53 0 .6 48 9 .1 44 7 .7 39 5 .3 35 4 .9 30 2 .5 26 0 .1 22
9 .6 70 7 .2 66 5 .8 61
N=100
N=200
统计学原理
对计算结果的说明
严格地说,在这个例子中,不应当根据正态分布进行估

计,而应当使用T分布进行估计。 如果使用T分布,自由度为35,95%置信度的概率度(t)是 2.03,而非1.96。计算出来的置信区间比正态分布的情 况要略大一些。 置信区间略大的原因,在于使用S替代总体标准差时,本 身也包含了一定的误差。 实践中,社会调查的样本量一般都比较大,正态分布与T 分布的差异不明显,因此可以用正态分布进行近似分析。 例如,当样本量为200时,T分布的95%概率度为1.9719, 与正态分布的1.96已经没有太大区别了。
统计学原理
一个总体参数—总体均值
正态总体,方差已知;
o 或非正态总体,大样本,方差已知。
x z ~ N (0,1) X n 置信区间: ( x z a
2
X
n
, x za
2
X
n
)
注意:Z取a/2的原因在于此时置信 区间是最小的。
统计学原理
一个总体参数—总体均值
正态总体,方差未知
袋,计算样本方差为93.21,试在95%的置信度水平下 ,估计总体的方差 假定总体方差为σ2,可知
n 1s 2 2 n 1 K ~ 2

CHIINV(0.025,24)=39.36 CHIINV(0.975,24)=12.40 由12.40<K<39.36,可得σ2的置信区间为 (56.83,180.39)
统计学原理
总体比例的区间估计
在大样本的情况下,样本比例P的抽样分布为正 态分布。可以利用正态分布进行区间估计。
统计学原理
比例估计的标准差
比例估计的情况下,如果未知总体方差,
可以用样本方差替代。严格的计算公式 应当为
n s p (1 p ) n 1
2
在实践中,经常直接使用p(1-p)作为近
o 1.样本量n>30时,样本平均数服从正态分布 o 2.样本平均数以总体平均数为期望值 o 3.样本平均数的方差为
x
2

2
n
统计学原理
导入:估计样本平均数的范围
某总体方差为 100 ,平均值为 40 ,抽出一
个36个单位构成的样本,试在95%的置信 度水平下,估计样本平均数的范围。
统计学原理
评价估计量的标准
无偏性(Unbiasedness)
有效性(Efficiency)
o 估计量的标准差最小。 o 估计量的期望值等于总体参数值。
一致性(Consistency)
o 大样本获得的估计量比小样本更接近总体参 数值。
统计学原理
有放回条件下的简单随机抽样
依据:样本平均数的分布特征
统计学原理
第六章 抽样分布与参数估计
抽样分布、参数估计和 假设检验是推断统计的 三个中心内容
统计学原理
第一节 抽样分布
统计学原理
基本概念
统计量:由样本构造出来,不依赖于任
何总体参数的函数。 参数:描述总体分布状况的数。
统计学原理
抽样分布
抽样分布:统计量的分布形式 统计量的分布依赖于总体的分布,同时与抽样
x t ~ t (n 1) s n s 置信区间 : x ta 2 n
t分布以正态分布为渐近分布,一般当n大于 30时,t分布与正态分布已经十分接近,可 以使用正态分布来进行处理
统计学原理
T分布概率密度函数
统计学原理
T分布曲线
统计学原理
例题:T分布
已知某产品的使用寿命服从正态分布,现随机抽取16件,


统计学原理
第三节 常见的参数估计题型
本章为选修内容,涉及到数 理统计中较多知识,需要通 过习题来加以掌握。
统计学原理
估计中的要点
参数估计是从统计量的抽样分布入手,
利用统计量的分布特征,倒推出总体参 数的置信区间。
o 所有分布特征,都是基于统计量的抽样分布 o 总体参数是常数,统计量是随机变量。
以正态分布为例,当置信度为P时,置信
区间为[μ-tσ,μ+tσ] 其中,μ为期望值,σ为标准差。 T称为概率度,以下为对应关系
概率度(t) 概率值(p) 概率度(t) 概率值(p) 1.28 80% 1 68.27% 1.64 90% 2 95.45% 1.96 95% 3 99.73% 2.58 99%
统计学原理
F分布的密度函数
统计学原理
F分布
统计学原理
第四节 样本量的计算
统计学原理
样本量的确定
估计总体均值时样本量的确定
统计学原理
总体标准差的确定
根据以往的经验数值推算 通过试访问推算 采用序贯抽样方法 在比例估计时,使用p(1-p)的最大值替代。
2 ( x x ) i
s
n 1
统计学原理
例题:估计总体平均数
一次调查中获得了36个样本的数据如下 23 35 39 27 36 44 36 42 46 43 31 33 42 53 45 54 47 24 34 28 39 36 44 40 39 49 38 34 48 50 34 39 45 48 45 32 试在95%的置信度水平下,估计总体平均数的置信区间。
似。
统计学原理
一个总体—总体方差
当总体为正态分布时,样本方差与总体
方差之比以以下的方式服从n-1个自由的 卡方分布
(n 1) S
2

2 X
~ n 1
2
统计学原理
卡方分布的密度函数
统计学原理
卡方分布
统计学原理
例题:卡方分布
已知一批食品的重量服从正态分布,从总体中抽选25
查表,24个自由度的卡方值分别为
统计学原理
两个总体参数—均值之差
两个总体均值之差:独立样本,大样本
统计学原理
两个总体参数—均值之差
两个总体均值之差:独立样本,小样本
o 两个总体的方差未知,但相等; o 两个总体的方差未知,不相等,但样本量相 等; o 两个总体的方差未知,不相等,样本量不相 等。
统计学原理
样本均值抽样特征的推导
统计学原理
统计学原理
统计学原理
抽样标准误
在任何一项抽样中,统计量的标准差称
为抽样标准误。 在利用样本平均数估计总体平均数时, 抽样标准误即为样本平均数的标准差, 即前文中推导出来的 x
统计学原理
无放回条件下的简单随机抽样
统计学原理
无放回条件下抽样公式的简化
N=10
N=30
N=100时的抽样分布
80 70 60 50 40 30 20 10 0 22.3 27.6 32.9 38.2 43.5 48.8 54.1 59.4 64.7 70.0 72.7 25.0 30.3 35.6 40.9 46.2 51.5 56.8 62.1 67.4 Std. Dev = 3.14 Mean = 46.1 N = 200.00 0 20 40 60 80
N=30时的抽样分布
80 70 60 50 40 30 20 10 0 22.5 25.4 28.4 34.2 31.3 40.1 37.2 46.0 43.1 51.9 49.0 57.8 54.9 63.7 60.7 66.6 69.6 72.5 Std. Dev = 6.47 Mean = 46.6 N = 200.00
估计量与估计值
o 用于估计总体参数的样本统计量的名称叫估 计量; o 根据一个具体样本计算出来的估计量的数值 叫估计值。
统计学原理
点估计与区间估计
点估计是用样本统计量的某个取值直接作为总
相关文档
最新文档