小学三年级奥数第39讲 抽屉原理附答案解析

合集下载

抽屉原理精解

抽屉原理精解

第一抽屉原理原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。

原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。

[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn 个物体,与题设不符,故不可能。

第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。

抽屉原理,又叫狄利克雷原则,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果,许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决.那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起.将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放.这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果.虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果.如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。

通过上面的分析,我们可以将上面问题中包含的基本原理写成下面的一般形式.抽屉原理(一):把多于几个的元素按任一确定的方式分成几个集合,那么一定至少有一个集合中,至少含有两个元素.应用抽屉原理来解题,首先要审题,即分清什么作为“元素”,什么作为“抽屉”;其次要根据题目的条件和结论,结合有关的数学知识,来设计抽屉,在应用抽屉原理解题时,正确地设计抽屉是解题的关键.例1 有红、黄、绿三种颜色的小球各四颗混放在一只盒子里,为了保证一次能取到两颗颜色相同的小球,一次至少要取几颗?A、3B、4C、5D、6分析:将三种不同的颜色看作三个抽屉,为了保证一次能取到两颗颜色相同的小球,即要求至少有两颗小球出自同一抽屉,因此一次至少要取4颗小球.例2 某班有30名学生,班里建立一个小书库,同学们可以任意借阅,问小书库中至少要有多少本书,才能保证至少有一个同学一次能至少借到两本书?A、28B、29C、30D、31分析:将30名同学看作30个“抽屉”,而将书看作“苹果”,根据抽屉原理,“苹果”数目要比“抽屉”数目大,才能保证至少有一个抽屉里有两个或两个以上的“苹果”,因此,小书库中至少要有31本书,才能保证至少有一位同学一次能借到两本或两本以上的图书。

小学奥数:抽屉原理(含答案)

小学奥数:抽屉原理(含答案)

小学奥数:抽屉原理(含答案)教案抽屉原理1、概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要XXX的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。

如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。

比如,我们从街上随便找来13人,便可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证实这个结论是正确的呢?只要利用抽屉原理就很简单把道理讲清楚.事实上,因为人数(13)比属相数(12)多,因而至少有两个人属相相同(在这里,把13人算作13个“苹果”,把12种属相算作12个“抽屉”)。

应用抽屉原理要注意识别“抽屉”和“苹果”,XXX的数目一定要大于抽屉的个数。

2、例题讲解例1有5个小朋友,每人都从装有许多是非围棋子的布袋中随便摸出3枚棋子.请你证实,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

例2一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?例3从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

例4从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

小学奥数--抽屉原理

小学奥数--抽屉原理

⼩学奥数--抽屉原理⼩学奥数--抽屉原理抽屉原理(⼀)解题要点:要从最不利情况考虑,准确地建⽴抽屉和确定元素的总个数(如果将5个苹果放到3个抽屉中去,那么不管怎么放,⾄少有⼀个抽屉中放的苹果不少于2个。

道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相⽭盾,因此⾄少有⼀个抽屉中放的苹果不少于2个。

同样,有5只鸽⼦飞进4个鸽笼⾥,那么⼀定有⼀个鸽笼⾄少飞进了2只鸽⼦。

以上两个简单的例⼦所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。

抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么⾄少有⼀个抽屉中的物品不少于2件。

说明这个原理是不难的。

假定这n个抽屉中,每⼀个抽屉内的物品都不到2件,那么每⼀个抽屉中的物品或者是⼀件,或者没有。

这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相⽭盾,所以前⾯假定“这n 个抽屉中,每⼀个抽屉内的物品都不到2件”不能成⽴,从⽽抽屉原理1成⽴。

从最不利原则也可以说明抽屉原理1。

为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放⼊1件物品,共放⼊n 件物品,此时再放⼊1件物品,⽆论放⼊哪个抽屉,都⾄少有1个抽屉不少于2件物品。

这就说明了抽屉原理1。

例1 某幼⼉园有367名1996年出⽣的⼩朋友,是否有⽣⽇相同的⼩朋友,分析与解:1996年是闰年,这年应有366天。

把366天看作366个抽屉,将367名⼩朋友看作367个物品。

这样,把367个物品放进366个抽屉⾥,⾄少有⼀个抽屉⾥不⽌放⼀个物品。

因此⾄少有2名⼩朋友的⽣⽇相同。

例2在任意的四个⾃然数中,是否其中必有两个数,它们的差能被3整除, 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。

我们将余数的这三种情形看成是三个“抽屉”。

⼀个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”⾥。

小学奥数抽屉原理

小学奥数抽屉原理

抽屉原理知识框架一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、 抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.例题精讲一、直接用公式进行解题(1)求结论【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【考点】抽屉原理 【难度】1星 【题型】解答【解析】 6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯÷=,1126511定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】将5名学生看作5个苹果将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉由抽屉原理,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的作业【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】一年最多有366天,可看做366个抽屉,730个学生看做730个苹果.因为7303661364÷=,所以,至少有1+1=2(个)学生的生日是同一天【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

小学三年级奥数第39讲 抽屉原理(含答案分析)

小学三年级奥数第39讲 抽屉原理(含答案分析)

第39讲抽屉原理一、专题简析:把12个苹果放到11个抽屉中去,那么,至少有一个抽屉中放有两个苹果,这个事实的正确性是非常明显的。

把它进一步推广,就可以得到数学里重要的抽屉原理。

用抽屉原理解决问题,小朋友一定要注意哪些是“抽屉”,哪些是“苹果”,并且要应用所学的数学知识制造抽屉,巧妙地加以应用,这样看上去十分复杂,甚至无从下手的题目才能顺利地解答。

二、精讲精练例1:敬老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同?练习一1、学校图书室买来许多故事书、科技书和连环画,每个同学任意选两本。

那么,至少应有几个同学,才能保证有两个或两个以上同学所选的书相同?2、布袋中有红、黄、橙三种颜色的木块若干块,每个小朋友任意摸两块木块。

那么,至少有多少个小朋友,才能保证有两个或两个以上小朋友所选的木块相同?例2 :幼儿园大班有41个小朋友,老师至少拿几件玩具随便分给大家,才能保证至少有一个小朋友能得两件玩具?练习二1、小明家有5口人,小明妈妈至少要买几个苹果分给大家,才能保证至少有一人能得两个苹果?2、某学校共有15个班级,体育室至少要买几个排球分给各班,才能保证至少有一个班能得两个排球?例3:盒子里混装着5个白色球和4个红色球,要想保证一次能拿出两个同颜色的球,至少要拿出多少个球?练习三1、箱子里装着6个苹果和8个梨,要保证一次能拿出两个同样的水果,至少要拿出多少个水果?2、书箱里混装着3本故事书和5本科技书,要保证一次能拿出两本同样的书,至少要拿出多少本书?例4:一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只,才能保证每种颜色至少有一只?练习四1、抽屉里放着红、绿、黄三种颜色的球各3只,一次至少摸出多少只才能保证每种颜色至少有一只?2、书箱里放着4本故事书,3本连环画,2本文艺书。

一次至少取出多少本书,才能保证每种书至少有一本?例5:三(2)班有50个同学,在学雷锋活动中,每人单独做了些好事,他们共做好事155件。

三年级奥数(40讲)《举一反三》第39讲 抽屉原理

三年级奥数(40讲)《举一反三》第39讲 抽屉原理

第39讲抽屉原理一、专题简析:把12个苹果放到11个抽屉中去,那么,至少有一个抽屉中放有两个苹果,这个事实的正确性是非常明显的。

把它进一步推广,就可以得到数学里重要的抽屉原理。

用抽屉原理解决问题,小朋友一定要注意哪些是“抽屉”,哪些是“苹果”,并且要应用所学的数学知识制造抽屉,巧妙地加以应用,这样看上去十分复杂,甚至无从下手的题目才能顺利地解答。

二、精讲精练例1:敬老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同?练习一1、学校图书室买来许多故事书、科技书和连环画,每个同学任意选两本。

那么,至少应有几个同学,才能保证有两个或两个以上同学所选的书相同?2、布袋中有红、黄、橙三种颜色的木块若干块,每个小朋友任意摸两块木块。

那么,至少有多少个小朋友,才能保证有两个或两个以上小朋友所选的木块相同?例2:幼儿园大班有41个小朋友,老师至少拿几件玩具随便分给大家,才能保证至少有一个小朋友能得两件玩具?练习二1、小明家有5口人,小明妈妈至少要买几个苹果分给大家,才能保证至少有一人能得两个苹果?2、某学校共有15个班级,体育室至少要买几个排球分给各班,才能保证至少有一个班能得两个排球?例3:盒子里混装着5个白色球和4个红色球,要想保证一次能拿出两个同颜色的球,至少要拿出多少个球?练习三1、箱子里装着6个苹果和8个梨,要保证一次能拿出两个同样的水果,至少要拿出多少个水果?2、书箱里混装着3本故事书和5本科技书,要保证一次能拿出两本同样的书,至少要拿出多少本书?例4:一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只,才能保证每种颜色至少有一只?练习四1、抽屉里放着红、绿、黄三种颜色的球各3只,一次至少摸出多少只才能保证每种颜色至少有一只?2、书箱里放着4本故事书,3本连环画,2本文艺书。

一次至少取出多少本书,才能保证每种书至少有一本?例5:三(2)班有50个同学,在学雷锋活动中,每人单独做了些好事,他们共做好事155件。

三年级奥数之抽屉原理

三年级奥数之抽屉原理

三年级奥数之抽屉原理抽屉原理是一种非常有用的数学方法,它可以帮助我们解决许多实际问题。

在三年级奥数中,抽屉原理是一个非常重要的知识点,它涉及到组合数学的基础知识。

抽屉原理的基本思想是将多个元素放入几个抽屉中,如果每个抽屉中至少有一个元素,那么就可以通过抽屉原理得出一些有用的结论。

在三年级奥数中,我们通常使用抽屉原理来解决一些比较简单的问题,例如将一些物品放入几个盒子中,或者将一些数字放入几个分组中。

下面是一个简单的例子,它说明了如何使用抽屉原理来解决实际问题:假设我们有4个小朋友和3个苹果,我们想知道是否每个小朋友至少可以得到一个苹果。

我们可以使用抽屉原理来解决这个问题,我们将3个苹果放入3个抽屉中,每个抽屉中至少有一个苹果。

然后我们可以将4个小朋友放入这3个抽屉中,每个小朋友至少可以获得一个苹果。

因此,我们可以得出每个小朋友至少可以得到一个苹果。

这个例子说明了如何使用抽屉原理来解决实际问题,它也帮助我们理解了抽屉原理的基本思想。

在三年级奥数中,我们还会学习一些更复杂的组合数学问题,例如鸽巢原理、背包问题等等。

这些问题的解决方法都涉及到抽屉原理的基础知识,因此学习抽屉原理是非常重要的。

抽屉原理是一种非常有用的数学方法,它可以帮助我们解决许多实际问题。

在三年级奥数中,学习抽屉原理可以帮助我们更好地理解组合数学的基础知识,并且可以让我们更好地解决实际问题。

在四年级的奥数课程中,我们学习了一个非常重要的原理——抽屉原理。

抽屉原理是一种基本的计数原理,它能帮助我们理解和解决各种数学问题。

抽屉原理的内容是这样的:如果有n个抽屉和n+1个物品,那么至少有一个抽屉中包含两个或以上的物品。

这个原理可以用于解决各种问题,尤其是当我们需要找出某种可能的组合或分类时。

例如,如果我们有5本书和4个抽屉,我们可以将书放入抽屉中。

根据抽屉原理,至少有一个抽屉中包含两本书。

现在,如果我们有5个苹果和4个抽屉,那么我们可以将每个苹果放入一个抽屉中,这样每个抽屉中只有一个苹果。

小学奥数抽屉原理题型及答案解析

小学奥数抽屉原理题型及答案解析

小学奥数抽屉原理题型及答案解析一、抽屉原理解释抽屉原理,也被称为鸽巢原理,是组合数学中的一个重要原理。

这个原理的基本含义是:如果n+1个物体被放到n个抽屉里,那么至少有一个抽屉中会放有2个或更多的物体。

这个原理可以用来解决很多看似复杂的问题。

原理解释:假设有3个抽屉和4个苹果,我们要把这4个苹果放进3个抽屉里。

无论我们怎么放,总会有至少一个抽屉里放了2个或更多的苹果。

这是因为每个抽屉最多只能放1个苹果的话,3个抽屉只能放3个苹果,但我们有4个苹果,所以至少有一个抽屉里会有2个苹果。

同样的,如果有n个抽屉和n+1个物体,无论我们怎么分配这些物体到抽屉里,至少会有一个抽屉里会有2个或更多的物体。

二、抽屉原理应用举例属相问题:中国有12个属相,如果问任意37个人中,至少有几个人属相相同?我们可以把12个属相看作12个抽屉,37个人看作37个物体。

根据抽屉原理,至少有一个抽屉里有4个或更多的物体,也就是说,至少有4个人的属相是相同的。

自然数问题:在任意的100个自然数中,是否可以找到一些数(可以是一个数),它们的和能被100整除?这个问题也可以通过抽屉原理来解决。

如果我们把这100个自然数对100取余,那么余数只能是0到99之间的数,也就是有100个“抽屉”。

根据抽屉原理,至少有一个“抽屉”里有多于一个的数,这两个数的差就是100的倍数,因此它们的和也能被100整除。

三、抽屉原理解题思路和方法首先,需要理解抽屉原理的基本含义,即如果把n+1个物体放在n个抽屉里,那么至少有一个抽屉中至少放有2个物体。

这是解题的基础。

其次,在解题过程中,需要找出隐藏的抽屉数和物体数,并将问题转化为抽屉问题。

这通常需要对问题进行仔细分析,找出其中的规律和特点。

接下来,可以利用平均分的方法来确定每个抽屉中的物体数。

如果物体数不能被抽屉数整除,那么至少有一个抽屉中的物体数会多于平均值。

这有助于确定至少有多少个物体是相同或满足某种条件的。

小学三年级奥数第39讲 抽屉原理(含答案分析)

小学三年级奥数第39讲 抽屉原理(含答案分析)

第39讲抽屉原理一、专题简析:把12个苹果放到11个抽屉中去,那么,至少有一个抽屉中放有两个苹果,这个事实的正确性是非常明显的。

把它进一步推广,就可以得到数学里重要的抽屉原理。

用抽屉原理解决问题,小朋友一定要注意哪些是“抽屉”,哪些是“苹果”,并且要应用所学的数学知识制造抽屉,巧妙地加以应用,这样看上去十分复杂,甚至无从下手的题目才能顺利地解答。

二、精讲精练例1:敬老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同?练习一1、学校图书室买来许多故事书、科技书和连环画,每个同学任意选两本。

那么,至少应有几个同学,才能保证有两个或两个以上同学所选的书相同?2、布袋中有红、黄、橙三种颜色的木块若干块,每个小朋友任意摸两块木块。

那么,至少有多少个小朋友,才能保证有两个或两个以上小朋友所选的木块相同?例2 :幼儿园大班有41个小朋友,老师至少拿几件玩具随便分给大家,才能保证至少有一个小朋友能得两件玩具?练习二1、小明家有5口人,小明妈妈至少要买几个苹果分给大家,才能保证至少有一人能得两个苹果?2、某学校共有15个班级,体育室至少要买几个排球分给各班,才能保证至少有一个班能得两个排球?例3:盒子里混装着5个白色球和4个红色球,要想保证一次能拿出两个同颜色的球,至少要拿出多少个球?练习三1、箱子里装着6个苹果和8个梨,要保证一次能拿出两个同样的水果,至少要拿出多少个水果?2、书箱里混装着3本故事书和5本科技书,要保证一次能拿出两本同样的书,至少要拿出多少本书?例4:一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只,才能保证每种颜色至少有一只?练习四1、抽屉里放着红、绿、黄三种颜色的球各3只,一次至少摸出多少只才能保证每种颜色至少有一只?2、书箱里放着4本故事书,3本连环画,2本文艺书。

一次至少取出多少本书,才能保证每种书至少有一本?例5:三(2)班有50个同学,在学雷锋活动中,每人单独做了些好事,他们共做好事155件。

小学抽屉原理公式

小学抽屉原理公式

小学奥数抽屉原理公式及经典例题解答分析第一抽屉原理原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。

证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。

原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。

证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。

原理1 、2 、3都是第一抽屉原理的表述。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

第二抽屉原理把(mn——1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。

例:①k=[n/m]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

抽屉原理经典例题:1、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有______人。

答案:30-(10-1)=30-9,=21(人)。

答:男生至少有21人。

2、一副扑克牌有54张,至少抽取______张扑克牌,方能使其中至少有两张牌有相同的点数。

(大小鬼不相同)答案:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数。

小学三年级奥数:抽屉原理讲解

小学三年级奥数:抽屉原理讲解

小学三年级奥数:抽屉原理讲解(一)基本概念(1)将多于n件物品任意放到n个抽屉里,那么中欧少有一个抽屉中的物品件数不少于2个。

(2)将多于m*n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1.抽屉原理解题的关键是营造“最不利情况”。

(二)例题与解析1、在一个口袋里有10个黑球,6个白球,4个红球,至少取出几个球才能保证其中有白球?( )A 14B 15C 17 D18解析:最不利的情况是:前面取球的时候都没有白球。

也就是将问题转化成为“至多取多少个球仍能满足其中没有白球”。

很显然,前面至多可以取10个黑球+4个红球=14个球。

然后第15个球就必然能取到白球。

因此选B.2、有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒?( )A 3B 4C 5D 6解析:营造最不利情况:前面取的珠子都没有相同颜色的。

直到取到相同颜色的为止。

也就是把问题转化为:至多摸出几粒,仍能满足“至多1粒颜色相同”不难看出,摸出红、黄、蓝、白珠子各一粒以后,再摸一粒,就有重色了。

因此,选C.3、一个袋内有100个球,其中有红球28个,绿球20个,黄球12个,蓝球20个,白球10个,黑球10个,现在从袋中任意摸球出来,如果要使摸出的球中,至少有15个球的颜色相同,问至少要摸出几个球才能保证满足上述要求?()A 78B 77C 75D 68解析:最不利条件:前面取的球都没有达到15个球颜色相同的状况。

也就是:黄球,白球,黑球全部都取完了(这些同颜色的都在15个球以下,全部取完也不会有15个球颜色相同),一共是12+10+10=32个球然后红球,绿球,蓝球各取14个。

14*3=42个。

依然没有15个球颜色相同。

然后再取任意一个球,就能达到至少有15个球的颜色相同了因此一共有32+42+1=75个球。

选C4、从一副完整的扑克牌中,至少抽出多少张牌,才能保证至少有6张牌的花色相同。

小学奥数 抽屉原理.解析版

小学奥数 抽屉原理.解析版

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.(一)、直接利用公式进行解题 (1)求结论【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【考点】抽屉原理 【难度】1星 【题型】解答知识精讲知识点拨教学目标抽屉原理【解析】6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,÷=,1126511+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】在8个鱼缸里面,每个鱼缸放一条,就是8条金鱼;还剩下的一条,任意放在这8个鱼缸其中的任意一个中,这样至少有一个鱼缸里面会放有两条金鱼.【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】将5名学生看作5个苹果将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉由抽屉原理,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的作业【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.【答案】从题目可以看出,这道题显然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】属相共12个,把12个属相作为12个“抽屉”,13个同学按照自己的属相选择相应的“抽屉”,根据抽屉原理,一定有一个“抽屉”中有两个或两个以上同学,也就是说至少有两个同学属相一样【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】一年最多有366天,把366天看作366个“抽屉”,将367名学生看作367个“苹果”.这样,把367个苹果放进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有2名同学的生日相同【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】五种颜色最多只能涂5个不同颜色的面,因为正方体有6个面,还有一个面要选择这五种颜色中的任意一种来涂,不管这个面涂成哪种颜色,都会和前面有一个面颜色相同,这样就有两个面会被涂上相同的颜色.也可以把五种颜色作为5个“抽屉”,六个面作为六个物品,当把六个面随意放入五个抽屉时,根据抽屉原理,一定有一个抽屉中有两个或两个以上的面,也就是至少会有两个面涂色相同【巩固】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【考点】抽屉原理【难度】1星【题型】解答【解析】略.【答案】方法一:情况一:这三个小朋友,可能全部是男,那么必有两个小朋友都是男孩的说法是正确的;情况二:这三个小朋友,可能全部是女,那么必有两个小朋友都是女孩的说法是正确的;情况三:这三个小朋友,可能其中1男2女那么必有两个小朋友都是女孩说法是正确的;情况四:这三个小朋友,可能其中2男1女,那么必有两个小朋友都是男孩的说法是正确的.所以,三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩的说法是正确的;方法二:三个小朋友只有两种性别,所以至少有两个人的性别是相同的,所以必有两个小朋友都是男孩或者都是女孩【巩固】试说明400人中至少有两个人的生日相同.【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】将一年中的366天或365天视为366个或365个抽屉,400个人看作400个苹果,从最极端的情况考虑,即每个抽屉都放一个苹果,还有35个或34个苹果必然要放到有一个苹果的抽屉里,所以至少有一个抽屉有至少两个苹果,即至少有两人的生日相同【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【考点】抽屉原理【难度】2星【题型】解答【解析】略.【答案】一年最多有366天,可看做366个抽屉,730个学生看做730个苹果.因为7303661364÷=,所以,至少有1+1=2(个)学生的生日是同一天【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

小学奥数-抽屉原理(教师版)

小学奥数-抽屉原理(教师版)

抽屉原理如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。

如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。

如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。

这些简单内的例子就是数学中的“抽屉原理”。

抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。

这样n个抽屉中所放物品的总数就不会超过n件。

这与有多于n个物品的假设相矛盾。

说明抽屉原理1成立。

抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+l。

假定这n个抽屉中,每一个抽屉中的物品都不到(m+l)件,即每个抽屉里的物品不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件。

这与多于m×n件物品的假设相矛盾。

说明原来的假设不成立。

所以抽屉原理2成立。

运用抽屉原理解题的关键是选好“抽屉”,而构造“抽屉”的方法多种多样,会因题而异。

运用原理1还是原理2要看题目的问题和哪一个更直观。

抽屉原理2实际上是抽屉原理1的变形。

【例1】★某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?【解析】平年一年有365天,闰年一年有366天。

把天数看做抽屉,共366个抽屉。

把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。

【小试牛刀】某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?【解析】1992年共有366天,把它看成是366个抽屉,把370个人放入366个抽屉中,至少有一个抽屉里有两个人,因此其中至少有2个学生的生日是同一天的。

【例2】★某班学生去买语文书、数学书、外语书。

买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?【解析】首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第39讲抽屉原理
一、专题简析:
把12个苹果放到11个抽屉中去,那么,至少有一个抽屉中放有两个苹果,这个事实的正确性是非常明显的。

把它进一步推广,就可以得到数学里重要的抽屉原理。

用抽屉原理解决问题,小朋友一定要注意哪些是“抽屉”,哪些是“苹果”,并且要应用所学的数学知识制造抽屉,巧妙地加以应用,这样看上去十分复杂,甚至无从下手的题目才能顺利地解答。

二、精讲精练
例1:敬老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同?
练习一
1、学校图书室买来许多故事书、科技书和连环画,每个同学任意选两本。

那么,至少应有几个同学,才能保证有两个或两个以上同学所选的书相同?
2、布袋中有红、黄、橙三种颜色的木块若干块,每个小朋友任意摸两块木块。

那么,至少有多少个小朋友,才能保证有两个或两个以上小朋友所选的木块相同?
例2 :幼儿园大班有41个小朋友,老师至少拿几件玩具随便分给大家,才能保证至少有一个小朋友能得两件玩具?
练习二
1、小明家有5口人,小明妈妈至少要买几个苹果分给大家,才能保证至少有一人能得两个苹果?
2、某学校共有15个班级,体育室至少要买几个排球分给各班,才能保证至少有一个班能得两个排球?
例3:盒子里混装着5个白色球和4个红色球,要想保证一次能拿出两个同颜色的球,至少要拿出多少个球?
练习三
1、箱子里装着6个苹果和8个梨,要保证一次能拿出两个同样的水果,至少要拿出多少个水果?
2、书箱里混装着3本故事书和5本科技书,要保证一次能拿出两本同样的书,至少要拿出多少本书?
例4:一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只,才能保证每种颜色至少有一只?
练习四
1、抽屉里放着红、绿、黄三种颜色的球各3只,一次至少摸出多少只才能保证每种颜色至少有一只?
2、书箱里放着4本故事书,3本连环画,2本文艺书。

一次至少取出多少本书,才能保证每种书至少有一本?
例5:三(2)班有50个同学,在学雷锋活动中,每人单独做了些好事,他们共做好事155件。

问:是否有人单独做了4件或4件以上的好事?
练习五
1、幼儿园小班共有30个小朋友,他们每人自己都有一些玩具,他们共有玩具92件。

问:是否有人单独有4件或4件以上玩具?
2、童星幼儿园有6个班,他们在植树节中每班都种了一些树,他们共种了14棵树,问:是否有班级种了3棵或3棵以上的树?
三、课后作业
1、一个袋子里有红、黄、橙、紫四种颜色的小球,每人任意摸三个球,那么至少有几人才能保证有两个或两个以上的人所选的小球相同?
2、某校有370名1992年出生的学生,那么,至少有几个学生的生日是同一天?
3、书箱里混装着3本故事书和5本科技书,要保证一次一定能拿出2本故事书,至少要拿出多少本书?
4、盒子里放有3枝绿铅笔,3枝红铅笔和5枝蓝铅笔,如果闭上眼睛摸一次,必须摸几枝才能保证至少有1枝蓝铅笔?
5、明明、华华、颖颖三人各有一些铅笔,他们共有铅笔14枝。

问:是否有人有5枝或5枝以上的铅笔?
第三十九周抽屉原理答案解析
专题简析:
把12个苹果放到11个抽屉中去,那么,至少有一个抽屉中放有两个苹果,这个事实的正确性是非常明显的。

把它进一步推广,就可以得到数学里重要的抽屉原理。

用抽屉原理解决问题,小朋友一定要注意哪些是“抽屉”,哪些是“苹果”,并且要应用所学的数学知识制造抽屉,巧妙地加以应用,这样看上去十分复杂,甚至无从下手的题目才能顺利地解答。

例题1 敬老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同?
思路导航:根据抽屉原理,要保证必有两个或两个以上的苹果放在同
一抽屉中,苹果总数至少要比抽屉数多1。

这里,我们可以马敬老院老人人数看作抽屉原理中的苹果数,关键是看抽屉数了。

因为三种水果任选两个的搭配有:苹果——苹果;苹果——橘子;苹果——梨;橘子——橘子;橘子——梨;梨——梨共6种,所以,既然有6个抽屉,必须至少有7个苹果才能保证两个或两个以上的苹果放在同一抽屉里,即至少要7位老人。

练习一
1,学校图书室买来许多故事书、科技书和连环画,每个同学任意选两本。

那么,至少应有几个同学,才能保证有两个或两个以上同学所选的书相同?
2,布袋中有红、黄、橙三种颜色的木块若干块,每个小朋友任意摸两块木块。

那么,至少有多少个小朋友,才能保证有两个或两个以上小朋友所选的木块相同?
3,一个袋子里有红、黄、橙、紫四种颜色的小球,每人任意摸三个球,那么至少有几人才能保证有两个或两个以上的人所选的小球相同?
例题2 幼儿园大班有41个小朋友,老师至少拿几件玩具随便分给大家,才能保证至少有一个小朋友能得两件玩具?
思路导航:41个小朋友相当于41个抽屉,玩具的件数相当于苹果。

根据抽屉原理,玩具的件数应比41多1,所以至少要拿42件玩具。

练习二
1,小明家有5口人,小明妈妈至少要买几个苹果分给大家,才能保证至少有一人能得两个苹果?
2,某学校共有15个班级,体育室至少要买几个排球分给各班,才能保证至少有一个班能得两个排球?
3,某校有370名1992年出生的学生,那么,至少有几个学生的生日是同一天?
例题3 盒子里混装着5个白色球和4个红色球,要想保证一次能拿出两个同颜色的球,至少要拿出多少个球?
思路导航:如果每次拿2个球会有三种情况:(1)一个白球,一个红球;(2)两个白球;(3)两个红球。

不能保证一次能拿出两个同颜色的球。

如果每次拿3个球会有四种情况:(1)一个白球,两个红球;(2)一个红球,两个白球;(3)三个白球;(4)三个红球。

这样每次都能保证拿出两个同颜色的球,所以至少要拿出3个球。

练习三
1,箱子里装着6个苹果和8个梨,要保证一次能拿出两个同样的水果,至少要拿出多少个水果?
2,书箱里混装着3本故事书和5本科技书,要保证一次能拿出两本同样的书,至少要拿出多少本书?
3,书箱里混装着3本故事书和5本科技书,要保证一次一定能拿出2本故事书,至少要拿出多少本书?
例题4 一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只,才能保证每种颜色至少有一只?
思路导航:我们从最不利的情况着手,如果先取5只全是红的,那么只了再取5只;如果5只又全是黄的,这时,再取1只一定是蓝的了,这样取5×2+1=11只才能保证每种颜色至少有1只。

练习四
1,抽屉里放着红、绿、黄三种颜色的球各3只,一次至少摸出多少只才能保证每种颜色至少有一只?
2,书箱里放着4本故事书,3本连环画,2本文艺书。

一次至少取出
多少本书,才能保证每种书至少有一本?
3,盒子里放有3枝绿铅笔,3枝红铅笔和5枝蓝铅笔,如果闭上眼睛摸一次,必须摸几枝才能保证至少有1枝蓝铅笔?
例题5 三(2)班有50个同学,在学雷锋活动中,每人单独做了些好事,他们共做好事155件。

问:是否有人单独做了4件或4件以上的好事?
思路导航:根据条件可知:三(2)班有50个同学,假如每个同学做3件好事,那就做了3×50=150件好事,而他们做的好事是155件,就多做了155-150=5件,所以完全可能有一个同学做了4件或4件以上好事。

练习五
1,幼儿园小班共有30个小朋友,他们每人自己都有一些玩具,他们共有玩具92件。

问:是否有人单独有4件或4件以上玩具?
2,童星幼儿园有6个班,他们在植树节中每班都种了一些树,他们共种了14棵树,问:是否有班级种了3棵或3棵以上的树?
3,明明、华华、颖颖三人各有一些铅笔,他们共有铅笔14枝。

问:是否有人有5枝或5枝以上的铅笔?。

相关文档
最新文档