线性代数的理解-学完再看觉得自己弱爆了

合集下载

线性代数是什么

线性代数是什么
a 11 x 1 + a 12 x 2 + " + a 1 n x n = b 1 a x + a x + " + a 21 1 22 2 2n x n = b 2 " " " " " " " " " " " " a m 1 x 1 + a m 2 x 2 + " + a mn x n = b m
4
解的线性方程组; 3. 确定方程组 (determinate system): 有惟 一解的线性方程组; 4. 不定方程组(indeterminate system):有多 于一解的线性方程组. 值得注意的是,每一个不定线性方程组有 无穷多个解.这与次数超过 1 的方程组形成 鲜明对照. 在 m=n 时, 线性方程组(1)是确定的 ⇔ 系 数行列式非零 . 在这种情况下 , 方程组的惟一 解可按 Cramer 法则(Cramer rule,1750)求 出. 当系数行列式等于零或 m≠n 时,上述方 法失效.这时,要确定线性方程组的类型,须使 用关于矩阵的核心概念-秩(Frobenius,1877). 一个矩阵的秩表达了其所代表的线性方程组 所含独立方程的个数 ( 或使用线性代数的术 语,该矩阵的线性无关的行或列的最大个数). 矩阵的线性无关的行的最大个数称为矩阵的 行秩 ; 矩阵的线性无关的列的最大个数称为 矩阵的列秩. 关于矩阵的秩有下述结论:
10
于 n-r,其中 n 是未知量的个数,而 r 是方程组 矩阵 A 的秩.如果 r<n,那么子空间 U 是非零 的 , 且它的基亦称为线性方程组 (2) 的基本解 组或基本解系 . 由此产生一系列研究矩阵的 巧妙且高效的方法 , 其中最简洁易懂且常考 者为: (1) 设 A,B 均为 n 阶矩阵,AB=0,则 r(A)+r(B)≤n. (2) r(ATA)=r(A); (3) 设 A 是 n 阶矩阵,则 r(An+1)=r(An). 其中包含的 ” 智慧 ” 乃是线性方程组 ( 特 别是齐次方程组)矩阵与线性空间之”三位一 体 ”, 代数与几何之融会贯通 .(2) 与 (3) 的证明 的关键在于认识到线性方程组 ATAx=0 与 Ax=0 同解以及 An+1x=0 与 Anx=0 同解.对前 者而言,Ax=0 的解显然是 ATAx=0 的解;反之, 若 y 是 ATAx=0 的 解 , 则 ATAy=0, 于 是 yTATAy=0;从而(Ay)T(Ay)=0,此即向量 Ay 的 长等于 0,ok.对于后者,由于 A=0 或 A 可逆 时结论显然成立,故可设 A 的秩介于 1 与 n1 之间,于是 A,A2,…,An 这 n 个矩阵必有两个 秩 相 等 , 设 为 As,At, 其 中 s<t. 这

线性代数的基本概念与性质

线性代数的基本概念与性质

线性代数的基本概念与性质线性代数是数学中的一个重要分支,研究的是向量空间和线性映射之间的关系。

它是许多其他数学分支和应用领域的基础,如计算机科学、物理学、经济学等。

本文将介绍线性代数的基本概念和一些重要性质,并探讨其在现实生活和学术研究中的应用。

一、向量空间向量是线性代数的基本概念之一,它可以简单地理解为具有大小和方向的量。

向量空间是一种包含向量的集合,它满足一定的性质。

一个向量空间必须包含零向量,且对于任意向量v和w,和v+w以及数乘kv仍然属于向量空间。

向量空间还需要满足加法的结合律、交换律和数乘的分配律。

二、矩阵与线性映射矩阵是由数值按照一定规则排列成的矩形的数组。

矩阵可以用于表示线性映射,线性映射是一种将向量从一个向量空间映射到另一个向量空间的运算。

矩阵乘法是线性代数中的重要操作,它可以用于将线性映射的复合表示为矩阵相乘的形式。

三、基和维数在向量空间中,基是一组线性无关的向量,任何一个向量都可以用基向量的线性组合表示。

维数是表示向量空间中的基向量的个数,它是一个向量空间的重要性质。

对于有限维向量空间,任意两个基的维数是相同的,这个维数被称为向量空间的维数。

四、线性相关性与线性无关性在向量空间中,如果存在一组非零向量的线性组合等于零向量,则这组向量是线性相关的。

相反,如果不存在这样的线性组合,则这组向量是线性无关的。

线性无关性是判断向量组和矩阵的重要性质,它决定了矩阵的秩和解的存在性。

五、特征值和特征向量矩阵的特征值和特征向量是线性代数中的另一个重要概念。

对于一个n阶方阵A,如果存在一个非零向量v,使得Av=λv,那么λ被称为A的特征值,v被称为对应于特征值λ的特征向量。

特征值和特征向量可以帮助我们理解矩阵的性质和行为,它们在数值计算、物理仿真等领域有广泛应用。

六、应用领域线性代数作为一门基础学科,广泛应用于各个学术研究和实际应用领域。

在计算机科学中,线性代数用于图形学、机器学习等领域;在物理学中,线性代数用于描述物理系统的量子力学性质;在经济学中,线性代数用于解决经济模型和最优化问题。

线性代数学习总结

线性代数学习总结

线性代数学习总结篇一:线性代数学习心得怎样学好线性代数?感觉概念好多,非常讨厌。

满意答案:线性代数的主要内容是研究代数学中线性关系的经典理论。

由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下,可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。

尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。

线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易.一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。

线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。

线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。

线性代数学习心得体会

线性代数学习心得体会

线性代数学习心得体会篇一:学习线性代数的心得体会学习线性代数的心得体会线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。

”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。

我自己对线性代数的应用了解的也不多。

但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。

在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。

我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。

线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。

那么,就应该在第二天有线代课时晚上睡得早一点。

如果你觉得上课跟不上老师的思路那么请预习。

这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。

当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。

一定要重视上课听讲,不能使线代的学习退化为自学。

上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。

上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。

上完课后不少同学喜欢把上课的内容看一遍再做作业。

实际上应该先试着做题,不会时看书后或做完后看书。

这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。

线性代数的学习方法和心得体会

线性代数的学习方法和心得体会

线性代数的学习方法和心得体会一、学习方法今天先谈谈对线形空间和矩阵的几个核心概念的理解.这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。

但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。

首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间.线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。

赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间.总之,空间有很多种。

你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。

这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的.我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点.仔细想想我们就会知道,这个三维的空间:1。

由很多(实际上是无穷多个)位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4。

这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动,认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。

事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。

你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。

因此只要知道,“空间"是容纳运动的一个对象集合,而变换则规定了对应空间的运动。

线性代数总结知识点

线性代数总结知识点

线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。

它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。

以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。

- 向量加法:两个向量对应分量相加得到新的向量。

- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。

- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。

- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。

2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。

- 矩阵加法和减法:对应元素相加或相减。

- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。

- 矩阵的转置:将矩阵的行变成列,列变成行。

- 单位矩阵:对角线上全是1,其余位置全是0的方阵。

- 零矩阵:所有元素都是0的矩阵。

3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。

- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。

4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。

- 子空间:向量空间的子集,它自身也是一个向量空间。

- 维数:向量空间的基(一组线性无关向量)的大小。

- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。

5. 线性变换- 定义:保持向量加法和标量乘法的函数。

- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。

6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。

- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。

线性代数原理

线性代数原理

线性代数原理关于线性代数,很多人觉得它的学习是比较困难的。

我们今天就来了解一下线性代数的基本原理吧。

那么我们先来了解一下什么是线性代数。

首先线性代数是数学当中的一个重要的分支,他主要是研究线性空间之间的线性映射,包括有向线性空间和无向线性空间,线性变换以及矩阵运算。

它广泛应用于信息论、控制论、系统论和不少学科的理论研究中,可以说它的影响遍及所有的数学分支。

1。

设a是n维欧氏空间V的线性变换,用a×a表示,则称线性变换a是n维欧氏空间V的一个线性函数。

记为h(x,y)=h(x,y)表示。

如果它是惟一的,那么称为线性函数,简称函数。

线性代数就是在变换空间上研究函数的定义域、值域、单值性、奇偶性、增减性、以及它们的各种运算规律等等的一门学科。

2。

对于一个n×n矩阵A,称A是n维欧氏空间V上的一个n×n 矩阵,记作mA;则称n维欧氏空间V上的线性变换mA是n×n矩阵A 的n×n矩阵;当且仅当A可逆。

3。

设V是n维欧氏空间, M是V的一个线性变换。

若M与V同胚,即M的每一个n×n矩阵都是V的n×n矩阵,则称M是n维欧氏空间V的一个同胚,并记为I(V)或(M, n维欧氏空间V)。

(M, n维欧氏空间V),则称M是n维欧氏空间V的一个基。

然后用一句话说明:4。

设k∈E, a, b∈V, M,若a×b→v×c→vb×d→c×d→ab,则称a是v×c×d的第i个元素, b是a×c的第j个元素,且a×b →v×c→vb×d→c×d→ab∈E, a, b∈V,记作d(a, b)=a×b。

如果d(a, b)=0,则称(a, b)是v×c×d的对角矩阵。

设E, F为非空集合,若E, F上的二元线性函数的图形在E中,则称它们是v ×c×d的对偶变换。

线性代数学习心得

线性代数学习心得

线性代数是一门抽象的数学课程,但是它在实际科学中的应用性也是不可替代的.经过将近两个月对线性代数的学习,我从中获得应用科学中常用矩阵、线性方程组等理论及其有关基本知识.首先,我们学习了行列式,在线性代数中,行列式是一个基本工具,它在数学学科乃至自然科学的许多领域都有广泛的应用.行列式的一些基本性质如:1.行列式与它的转置行列式相等.2.若行列式中有两行(列)完全相同,则此行列式为零等等一些方便实用的性质.通过这一章的学习,我了解到,在一些复杂的问题面前使用行列式来进行解答就显得更加方便容易,且我明白了行列式本身是一个算式.其次,我们学习了矩阵,矩阵是数学中的一个重要内容,也是解决许多...p25/矩阵中有几类特殊类型的矩阵,例如:行矩阵,列矩阵,单位矩阵等等.在对矩阵的学习中我还学会了矩阵的运算,矩阵的运算是...p29/.但是,矩阵的运算要和常数的运算分别开来,不能混淆,尤其是在矩阵的乘法运算中,矩阵是不满足乘法交换律的.并且在矩阵中,矩阵的转置也可看做是一种运算.不仅如此,我还学习了逆矩阵,其中,判断矩阵的可逆的充分必要条件是p39.而可逆矩阵又被称为非奇异方阵,反之则被称为奇异方阵.为了方便,矩阵又可被分块,称为分块矩阵.而后我们又深一步的探索了矩阵的秩,懂得了用初等变换来得到矩阵的秩.再次,我们学习了向量组及其线性相关性.向量组即为若干个同维数的列(行)向量所组成的集合.在对向量组的线性相关性的学习中学会了如何判断线性相关与否.一个实用的方法就是:向量组所构成的矩阵的秩小于向量的个数,则这些向量线性相关,反之则不相关.由此引出了一个极大无关组这一定义.之后又推广到三维单位向量组中探索向量空间的基与维数.然后,我们学习了线性方程组,线性方程组是指...p87/.在这一章的学习中,结合了矩阵的运用,由此在我看来这一章的学习是相较于其他较为困难的.在探索中,学习到方程组的解的个数可以由它形成的矩阵的秩来判断,其中利用到了增广矩阵和系数矩阵.为了进一步的求解方程组,我们利用了矩阵的一系列变换来获得方程组的全部解,在学习中我发现很容易和矩阵的其他知识混淆,需要特别注意.最后,我们学习了相似矩阵与二次型,在学习中主要讨论了...p119/.从中我明白了什么是范数以及向量的内积.并且还掌握了施密特正交化法.还学会了如何判断矩阵是否为正交矩阵.又对于矩阵的特征值进行了探索.之后又对矩阵如何对角化展开了学习.我认为这一章的学习是最为困难的,其中的知识点非常多并且繁杂容易混淆.学习了将近两个月的线性代数,我学到了许多实用方便的数学知识,也了解到线性代数作为一门数学基础课程的重要性.纵使它知识枯燥且抽象,但我也勤奋好学又倔强.。

线性代数知识点简单总结

线性代数知识点简单总结

线性代数知识点简单总结线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。

以下是线性代数的一些核心知识点的简单总结:1. 向量与空间- 向量:可以视为空间中的点或箭头,具有大小和方向,可以进行加法和数乘运算。

- 零向量:所有向量加法的单位元,加任何向量结果不变。

- 单位向量:长度为1的向量。

- 向量空间:一组向量的集合,其中任意向量的线性组合仍然在这个集合中。

- 子空间:向量空间的子集,自身也是一个向量空间。

- 维数:向量空间的基的大小,表示为n维空间。

2. 矩阵与线性变换- 矩阵:一个由数字排列成的矩形阵列,可以表示线性变换。

- 行向量与列向量:矩阵中的行和列可以被视为行向量或列向量。

- 线性变换:保持向量加法和数乘的函数,可以用矩阵来表示。

- 单位矩阵:对角线为1,其他为0的方阵,与任何矩阵相乘结果不变。

- 转置:将矩阵的行变成列,列变成行的操作。

3. 线性方程组- 齐次线性方程组:形如Ax=0的方程组,其中A是矩阵,x是未知向量。

- 非齐次线性方程组:形如Ax=b的方程组,b不是零向量。

- 行列式:方阵的一个标量值,可以表示矩阵表示的线性变换对空间体积的缩放因子。

- 克拉默法则:使用行列式解线性方程组的方法,适用于小规模且系数矩阵行列式非零的情况。

4. 特征值与特征向量- 特征值:一个标量λ,使得存在非零向量x满足Ax=λx。

- 特征向量:与特征值对应的非零向量x。

- 特征多项式:用于求解特征值的多项式,定义为det(A-λI)=0。

- 对角化:将矩阵表示为特征向量和特征值的组合。

5. 内积与正交性- 内积(点积):两个向量的函数,满足Schwarz不等式。

- 正交:两个向量的内积为零,表示它们在空间中垂直。

- 正交基:一组向量,任意两个向量都正交。

- 正交补:对于一个向量空间的子集,所有与该子集中所有向量正交的向量组成的集合。

6. 奇异值分解- 奇异值分解(SVD):将任意矩阵分解为三个特殊矩阵的乘积,即A=UΣV*。

学习线性代数期末总结

学习线性代数期末总结

学习线性代数期末总结线性代数是数学中的一门重要学科,它研究向量空间及其上的线性变换和线性方程组,对于计算机科学、物理学、工程学等多个领域都有广泛的应用。

在过去的一个学期中,我学习了线性代数的基本概念、定理和方法,并通过习题和实例的练习,逐渐掌握了线性代数的基本知识和解题技巧。

在本篇总结中,我将回顾学习线性代数的整个过程,并总结出一些重要的学习心得和经验。

在学习线性代数的过程中,我首先学习了向量的概念和运算。

向量是线性代数中最基本的概念之一,它可以表示多个数的组合,具有大小和方向。

学习向量时,我重点掌握了向量的加法、减法和数量乘法等运算法则,并学会了求向量的模长、夹角和投影等常用计算方法。

此外,我还学习了向量的线性相关性和线性无关性,它们在解决线性方程组和矩阵的问题时起到了重要的作用。

接着,我学习了矩阵的概念和运算。

矩阵是线性代数中另一个重要的概念,它可以表示多个数按照一定规则排列成的矩形数表。

矩阵的加法、减法和数量乘法分别对应向量的加法、减法和数量乘法,这样使得矩阵能够模拟很多实际问题。

在学习矩阵的过程中,我重点掌握了矩阵相等、矩阵乘法和逆矩阵等概念和性质,并学会了通过矩阵的运算来解决线性方程组的问题。

此外,我还学习了矩阵的转置、行列式和特征值等重要概念,并通过习题的练习加深了对它们的理解。

接下来,我学习了线性变换的概念和性质。

线性变换是将一个向量空间映射到另一个向量空间的变换,它是线性代数中的一个核心概念。

在学习线性变换的过程中,我重点掌握了线性变换的定义、线性变换矩阵和标准基变换矩阵等基本概念,并学会了通过线性变换来解决向量的旋转、投影和放缩等问题。

此外,我还学习了线性变换的复合、逆变换、核和像等重要性质,并通过实例的分析和计算来加深了对线性变换的理解。

最后,我学习了线性方程组的概念和求解方法。

线性方程组是线性代数中最基本和最重要的问题之一,它广泛应用于科学、工程和经济等领域。

在学习线性方程组的过程中,我首先学习了线性方程组的解的概念和性质,明确了解的存在唯一性和解的结构。

浅谈学习线性代数的心得体会

浅谈学习线性代数的心得体会

沈阳药科大学选修课结课论文沈阳药科大学浅谈学习线性代数的心得体会学校:沈阳药科大学姓名:***学号:********专业:药物制剂年级:2010级班级:03班一、内容摘要线性代数是一门较抽象的数学课程,但是线性代数除了其抽象之外还具有另外一个重要的特点:“实用性”,由于计算机的飞速发展和广泛应用,线性代数已成为越来越多的科技工作者必不可少的数学工具。

掌握线性代数的基本概念、基本理论与基本方法,为解决工科各专业的实际问题,为进一步学习相关课程及扩大数学知识都将奠定必要的数学基础。

在初步学习了高等数学这门课程后,里面涉及了一些线性代数的求解方法,听老师说,某些题目用线性代数的方法求解更容易,但是由于我们还未系统的学习这门课程,老师也是一带而过,并未深讲。

致使我对线性代数这门学科有了浓厚的兴趣,在首先简单了解了这门学科的背景后,发现线性代数是一门丰富多彩充满未知的科学,在看到学校开设了这门课程的选修课后,我义无反顾的叫我们全寝室的人都选修了这门奇妙的课程。

学习线性代数的初步感受就是它的概念多,推理论证多,基本理论与结论多,线性代数在内容上,思想方法上及论证方法上都与“高等数学”有所区别。

它具有较强的逻辑性和抽象性,一开始就要高度重视。

它又与中学所学的代数有一定的联系,所以有些内容并不是完全陌生的。

我相信只要我每节每章地,一步一个脚印的弄懂、弄通,记住有关的概念和结论,并通过反复的应用(练习)来掌握它,循序渐进掌握这门课程是容易的。

关键词:数学线性代数背景应用计算方法感受二、绪论2.1 线性代数的发展史由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。

直到十八世纪末,线性代数的领域还只限于平面与空间。

十九世纪上半叶才完成了到n维向量空间的过渡,矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。

1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。

托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中。

对线性代数的理解

对线性代数的理解

对线性代数的理解,以及线性代数在生活,工作中的重要用途最初感觉线性代数是为了解多元方程组的。

但后来碰到过一些题,我感到线性代数的作用还是很大的。

在经济的统计学和计量经济学中,线性代数的矩阵和行列式应用也是有一些的,无非是几个变量之间的关系,是否存在多重共线性啦等等。

一些历史数据之间的关系也可以用线性代数的矩阵来表示,也就是说可以通过一定的规律用矩阵关系式来算出几个有相互关系的变量在不同时期的数值。

我想线性代数应该还有其他很多的作用吧,先写出这几点来线性代数起源于对二维和三维直角坐标系的研究。

在这里,一个向量是一个有方向的线段,由长度和方向同时表示。

这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。

这就是实数向量空间的第一个例子。

现代线性代数已经扩展到研究任意或无限维空间。

一个维数为 n 的向量空间叫做 n 维空间。

在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。

尽管许多人不容易想象 n 维空间中的向量,这样的向量(即 n 元组)用来表示数据非常有效。

由于作为 n 元组,向量是 n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。

比如,在经济学中可以使用 8 维向量来表示 8 个国家的国民生产总值(GNP)。

当所有国家的顺序排定之后,比如 (中国, 美国, 英国, 法国, 德国, 西班牙, 印度, 澳大利亚),可以使用向量 (v1, v2, v3, v4, v5, v6, v7, v8) 显示这些国家某一年各自的 GNP。

这里,每个国家的 GNP 都在各自的位置上。

作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。

一些显著的例子有:不可逆线性映射或矩阵的群,向量空间的线性映射的环。

线性代数也在数学分析中扮演重要角色,特别在向量分析中描述高阶导数,研究张量积和可交换映射等领域。

向量空间是在域上定义的,比如实数域或复数域。

对线性代数的认识800字

对线性代数的认识800字

对线性代数的认识800字开始学习线代时,便感觉到线代不同于高等数学的地方,在于它几乎从一开始就是一个全新的概念。

其研究的范围通常都不是我们能想象到的二维空间,而是. 上升到n维空间,并且在线性代数的学习过程中,我们几乎都是跟一些新的概念,新的定理打交道,因此理解和记忆起来有相当大的困难,常常是花很久的时间还是理解不了。

因此需要课前预习,上课紧跟老师讲解,下课练习课后习题以助更好的理解掌握。

线性代数主要研究三种对象:矩阵、方程组和向量。

这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。

因此,学习线性代数时应能够熟练地从一种理论的叙述转移到另一种中去。

如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性。

由此可见,掌握矩阵、方程组和向量的内在联系+分重要。

线代的概念多,比如对于矩阵,有对角矩阵、伴随矩阵、逆矩阵、相似矩阵等。

运算法则多,比如求逆矩阵,求矩阵的秩,求向量组的秩,求基础解系,求非齐次线性方程组的通解等。

内容相互纵横交错,在学到后面的知识点时常常出现需要和前面的知识点的应用,但经常记不起来,就需要不断地复习前面的知识点。

要能够做到当题干给出一个信息时必须能够想到该信息等价的其他信息,比如告诉你一个矩阵是非奇异矩阵,它包含的信息有:首先明确它是一个n阶方阵,它的秩是n,它便是满秩矩阵,它所对应的n阶行列式不等于零,那么n个n维向量便线性无关,还有这个方阵是可逆方阵,并且可以想到它的转置矩阵也是可逆的。

正是因为线性代数各知识点之间有着千丝万缕的联系,线性代数题的综合性与灵活性较大。

因此课本的课后习题要多加练习。

万变不离其宗,把握套路,老师也不会太为难我们,基本是在课后题上变形。

数学之路或艰辛,或顺利,四时之景或不同,而乐亦无穷也。

数学之乐,得之心而寓之学也。

祝大家都能找到适合自己的学习方法,在数学的探索中体味乐趣!。

线性代数相关概念的几何意义理解

线性代数相关概念的几何意义理解

线性代数相关概念的⼏何意义理解线性代数意义:线性代数存在的意义:将现实⽣活的事物⽤计算机来识别并可以进⾏相应的处理。

现实⽣活中我们常常可以通过⼈脑来识别别各种事物,但是如何⽤计算机来表⽰这些事物呢?⽐⽅说红⾊,⼈眼直接判断它是红⾊,将其让计算机表⽰的话就要转化成计算机语⾔——RGB向量。

那如果要对颜⾊进⾏⼀下转换,加深或改变颜⾊的话怎么⽤计算机来表⽰呢?此时线性代数的作⽤就体现出来了,向量加法,数乘等。

线性代数主要内容:1、向量2、矩阵3、⽅程组(⽅程组是向量和矩阵的⼀个应⽤,所以和向量、矩阵都相关。

)N维空间:⼀个点(标量)存在于零维空间,⼀条线(向量)——⼀维空间,⼀个⾯(矩阵)——⼆维空间,⼀个物体(三维张量)——三维空间,⼀个物体加上时间维(四维张量)——四维空间……意思⼀样的⼏个概念:①⾏列式不为0②满秩③线性⽆关④两个向量可以形成⼀个平⾯或两个向量不平⾏⑤齐次⽅程组只有零解⑥⾮齐次⽅程组有唯⼀解这⼏个概念都在阐述:在向量空间中两个向量并不平⾏可以形成平⾯,针对矩阵来说就是矩阵⾥⼏个⾏向量或列向量是线性⽆关的,不存在多余的⼀个,此时它的⾏列式不等于0且满秩。

标量:记住⼀个概念:在向量空间中,标量(数字)的⼀个重要作⽤就是缩放拉伸向量。

向量:(1)是什么物理上:⼀个箭头,起点为坐标系的原点,如:作⽤⼒可以⽤⼀个向量来表⽰,⼀个⽅向为Y=X,⼤⼩为根号2的⼒⽤向量表⽰为【1,1】。

数学(计算机)上:⼀个有序的数字列表,如:⼀部电影多个评分2,3,5,4,也可以⽤向量来表⽰【2,3,5,4】向量是可以存在于多维空间当中的,不仅仅是⼀维空间,⽐⽅说:⼀个评分序列【2,3,5,4】这是在⼀维空间中还要理解⼀个概念就是向量是可以存在于多维空间当中的的,⼀个苹果的重量1g、价格1¥,向量表⽰【1,1】,这就存在于⼆维空间中的向量了。

(2)怎么⽤:①向量的加法:点的运动,⽅向改变。

⽐⽅说从原点出发,先沿v⾛再沿着w⾛是等于直接从原点沿着v+w⽅向⾛,两者终点⼀致。

线性代数的心得体会(优秀5篇)

线性代数的心得体会(优秀5篇)

线性代数的心得体会(优秀5篇)线性代数的心得体会篇1线性代数是一门研究线性方程组、向量空间、矩阵等概念的数学分支,它是现代数学的基础,同时也在科学、工程、计算机科学等领域中有广泛应用。

在我学习线性代数的过程当中,我不仅收获了知识,更深入地理解了数学的本质和它在各个领域的重要性。

首先,线性代数的学习过程让我深刻地理解了数学符号和公式的力量。

线性代数中的符号和公式虽然简洁,但却具有强大的表达能力。

通过这些符号和公式,我们可以准确地描述和解决问题,从而更好地理解数学的本质。

其次,线性代数的学习过程也让我体验到了数学思维的乐趣。

在学习过程中,我逐渐养成了用数学思维去解决问题的习惯。

通过抽象、归纳、推理等数学思维方法,我能够更准确地理解问题,并找到有效的解决方法。

再者,我了解到线性代数在各个领域的应用价值。

在科学、工程、计算机科学等领域中,线性代数是必不可少的数学工具。

通过学习线性代数,我能够更好地理解实际问题,找到合适的解决方法,并在实际应用中取得成功。

最后,我认为在学习线性代数的过程中,要注重理解和应用。

只有真正理解了线性代数的概念和公式,才能在实际问题中灵活应用。

此外,我们还需要注重练习,通过大量的习题训练,提高自己的解题能力。

总之,学习线性代数是一个不断积累知识和提高自己的过程。

在这个过程中,我收获了知识、提高了解决问题的能力,也更好地理解了数学的本质和它在各个领域的重要性。

我相信,通过不断的学习和探索,我会在数学领域中取得更大的进步。

线性代数的心得体会篇2线性代数是一门非常重要的数学分支,它为解决许多实际问题提供了有力的工具。

在这篇*中,我将分享我的心得体会,包括学习线性代数的过程、对我产生影响的关键点和所学到的教训。

1.学习背景和过程我开始学习线性代数的原因是我对计算机科学和数据科学感兴趣。

在我开始接触线性代数之前,我学习了大量的基础数学知识,如微积分、线性方程组、几何学等。

这些知识为理解线性代数提供了坚实的基础。

线性代数的教学反思

线性代数的教学反思

线性代数的教学反思•相关推荐线性代数的教学反思【摘要】由于线性代数中的基本概念和性质较多且较抽象、知识连贯性较强,致使大多学生感到学习较困难,学习兴趣下降。

为了摆脱枯燥乏味的学习,提高学生的学习积极性,本文给出了在实际教学中的五个注重。

【关键词】建构趣味性概念图【Abstract】Due to the basic concepts and properties in linear algebra are more abstract,and the knowledge consistency is very strong, resulting in the majority of students feel it difficult to learn and lose interest in learning. In order to get rid of the tedious learning,enhance the enthusiasm of students, this paper gives five focus on practical teaching.【Key Words】linear algebra; teaching引言线性代数课程是全国高等院校开设的一门重要的基础课程,它不仅是学生学习后续课程的基础而且在生活中具有较强的实用性。

但是由于我校学生数学基础较差、数学思维能力较弱,因此大多学生普遍反映线性代数课程枯燥无趣、计算繁琐,毫无实际意义。

要想改变现状,提高学生的兴趣,学好线性代数这门课程,笔者通过教学实践和反思,认为在线性代数的教学中应注意以下五点。

1.注重在原有知识上建构新知识要让学生明确,他们所要学习的知识内容是和他们自身息息相关的。

最基本的方法就是让学生意识到将要学习的知识内容与他们过去的经验或已经掌握的知识相关,充分利用他们已有的概念、知识来解释建构新概念、新知识。

线性代数的基本概念

线性代数的基本概念

线性代数的基本概念线性代数是数学的一个重要分支,研究向量空间和线性变换等代数结构及其应用。

在许多领域,如物理学、计算机科学、经济学等,线性代数都扮演着重要的角色。

本文将介绍线性代数的基本概念,包括向量、矩阵、线性变换和特征值等内容。

1. 向量向量是线性代数中的基本概念之一。

向量可以表示具有大小和方向的量,常用于描述力、速度和位移等物理量。

在数学上,向量通常用一组有序数列来表示,如 (x1, x2, ..., xn)。

向量具有加法和数乘的运算规则。

向量加法指的是将两个向量的对应分量相加,数乘是将向量的每个分量乘以一个数。

这些运算满足交换律、结合律和分配律等性质。

2. 矩阵矩阵是由一组数排成的矩形阵列。

矩阵的大小由行数和列数决定。

例如,一个 m×n 的矩阵有 m 行 n 列。

矩阵可以表示线性方程组,用于求解多个变量之间的关系。

通过矩阵的运算,可以进行加法、数乘和乘法等操作。

矩阵乘法是将一个矩阵的每一行与另一个矩阵的每一列进行对应元素相乘,并将结果相加得到新矩阵的元素。

3. 线性变换线性变换是指一个向量空间到另一个向量空间的映射,保持向量加法和数乘运算。

线性变换可以用矩阵来表示。

设有一个线性变换 T,向量 v 和矩阵 A,则有 T(v) = Av,其中 A 是线性变换的矩阵表示。

线性变换具有许多重要的性质,如保持零向量不变、保持向量长度比例不变等。

线性变换还可以进行复合和逆运算,这样可以构成一个线性变换的代数结构。

4. 特征值和特征向量特征值和特征向量是线性代数中重要的概念,常用于描述线性变换的性质。

对于一个线性变换 T,若存在一个非零向量 v 和一个实数λ,使得T(v) = λv,则λ 是 T 的特征值,v 是对应的特征向量。

特征值和特征向量可以帮助我们理解线性变换对向量空间的影响。

特征值表示了变换的缩放比例,特征向量表示了在变换中不变的方向。

通过求解特征值和特征向量,可以对线性变换进行分析和应用。

对线性代数的认识

对线性代数的认识

对线性代数的认识线性代数是数学的一个分支,它与数论、微积分、代数及几何有密切的联系,大量的实际应用也广泛地开发和利用了线性代数的技术。

线性代数的主要内容有:矩阵、向量和线性方程组。

一般来说,线性代数的重点在于研究线性空间和向量空间中的线性变换关系,研究矩阵分析、矩阵函数以及其它相关主题,同时还可以用于研究几何形状和表示形式。

首先,线性代数研究线性空间中的线性变换。

它以一组标准基向量作为基础,研究向量空间中基向量之间的关系,以此来分析更复杂向量之间的关系,包括向量之间的和、积、内积等;这样可以理解线性变换前后向量的变化和其对应的矩阵变换的原理。

矩阵乘法的定义就是通过坐标变换的概念将两个线性变换有机地结合起来,从而得到一个新的线性变换,即矩阵乘法;而线性代数中又贯穿着矩阵乘法的概念,所以掌握矩阵乘法的基本概念是学习线性代数的重要组成部分。

然后,线性代数通过对线性变换的分析来研究方程的解法。

比如,当多元函数的控制变量只有一个时,它的结果就是一个线性方程,而线性方程的解可以通过矩阵的合理乘法来实现,而乘法的方式也可以被延伸用于多元函数的求解;而当出现多个控制变量时,就可以利用多元函数变换的概念将其抽象为线性方程,并用同样的方式来求解多元线性方程,这也是线性代数研究的内容所在。

此外,线性代数可以用来研究向量空间和线形子空间。

首先,在线性变换的基础上,可以研究向量空间的基空间概念、向量空间的维度概念以及向量空间的复数数量概念;然后再进一步,研究向量空间下的线形子空间,比如它们之间的子空间关系、主子空间以及铷空间概念等等,这些都可以利用线性代数方法来解释。

最后,线性代数常用于研究几何形状。

线性代数感悟

线性代数感悟

线性代数感悟
线性代数是解决数学问题的重要手段,它可以描述和分析问题之间的联系,处理复杂的数学结构。

学习线性代数时,我发现什么是线性代数的本质,是自变量和因变量之间的关系,让它们变得清晰易懂。

但这些变量之间的关系又如何发挥作用呢?我们必须要深入了解矩阵、向量空间、变换和其他基本概念。

根据我的理解,线性代数的最重要的概念是空间,它可以定义多维空间中向量,并让这些向量可以组合成向量空间。

这样,可以通过运用线性代数的方法,将问题转换为求解空间中所有变量的关系,从而可以根据实际情况建立模型,使问题的解决变得更加容易。

另外,线性代数作为复杂数学结构的分析方法,还可以很好地看到一切数据之间的联系。

它是一种由矩阵的加减乘除构成的数学操作,可以通过矩阵来编码这些联系,从而使数学问题的求解转化为解矩阵方程的求解问题,从而更加简单快捷。

线性代数也给我们提供了一个更为宏大的视角,可以深入分析不同现实生活中隐藏的联系,使得一切状况尽量更易解释。

例如,在经济、科学和工程等方面,线性代数都可以帮助我们更好地理解问题,有效开发技术。

总的来说,学习线性代数,我感受到的是层层推理的极致技能。

线性代数可以帮助我们梳理深入事物内部的复杂关系,搭建抽象空间,用简单的数学模型,解决复杂而模糊不清的问题,使得解决问题变得更加容易,这是学习线性代数的最大感悟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数的理解学完再看觉得自己弱爆了对了解矩阵、线性变换的本质有太大帮助如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。

”,然而“按照现行的国际标准,线性代数是通过公理化来表述的,它是第二代数学模型,这就带来了教学上的困难。

”* 矩阵究竟是什么东西?向量可以被认为是具有n个相互独立的性质(维度)的对象的表示,矩阵又是什么呢?我们如果认为矩阵是一组列(行)向量组成的新的复合向量的展开式,那么为什么这种展开式具有如此广泛的应用?特别是,为什么偏偏二维的展开式如此有用?如果矩阵中每一个元素又是一个向量,那么我们再展开一次,变成三维的立方阵,是不是更有用?* 矩阵的乘法规则究竟为什么这样规定?为什么这样一种怪异的乘法规则却能够在实践中发挥如此巨大的功效?很多看上去似乎是完全不相关的问题,最后竟然都归结到矩阵的乘法,这难道不是很奇妙的事情?难道在矩阵乘法那看上去莫名其妙的规则下面,包含着世界的某些本质规律?如果是的话,这些本质规律是什么?* 行列式究竟是一个什么东西?为什么会有如此怪异的计算规则?行列式与其对应方阵本质上是什么关系?为什么只有方阵才有对应的行列式,而一般矩阵就没有(不要觉得这个问题很蠢,如果必要,针对m x n矩阵定义行列式不是做不到的,之所以不做,是因为没有这个必要,但是为什么没有这个必要)?而且,行列式的计算规则,看上去跟矩阵的任何计算规则都没有直观的联系,为什么又在很多方面决定了矩阵的性质?难道这一切仅是巧合?* 矩阵为什么可以分块计算?分块计算这件事情看上去是那么随意,为什么竟是可行的?* 对于矩阵转置运算AT,有(AB)T = BTAT,对于矩阵求逆运算A-1,有(AB)-1 = B-1A-1。

两个看上去完全没有什么关系的运算,为什么有着类似的性质?这仅仅是巧合吗?* 为什么说P-1AP得到的矩阵与A矩阵“相似”?这里的“相似”是什么意思?* 特征值和特征向量的本质是什么?它们定义就让人很惊讶,因为Ax =λx,一个诺大的矩阵的效应,竟然不过相当于一个小小的数λ,确实有点奇妙。

但何至于用“特征”甚至“本征”来界定?它们刻划的究竟是什么?今天先谈谈对线形空间和矩阵的几个核心概念的理解。

这些东西大部分是凭着自己的理解写出来的,基本上不抄书,可能有错误的地方,希望能够被指出。

但我希望做到直觉,也就是说能把数学背后说的实质问题说出来。

首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。

线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。

赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。

总之,空间有很多种。

你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。

这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。

我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。

仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动,上面的这些性质中,最最关键的是第4条。

第1、2条只能说是空间的基础,不算是空间特有的性质,凡是讨论数学问题,都得有一个集合,大多数还得在这个集合上定义一些结构(关系),并不是说有了这些就算是空间。

而第3条太特殊,其他的空间不需要具备,更不是关键的性质。

只有第4条是空间的本质,也就是说,容纳运动是空间的本质特征。

认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。

事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。

你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。

因此只要知道,“空间”是容纳运动的一个对象集合,而变换则规定了对应空间的运动。

下面我们来看看线性空间。

线性空间的定义任何一本书上都有,但是既然我们承认线性空间是个空间,那么有两个最基本的问题必须首先得到解决,那就是:1. 空间是一个对象集合,线性空间也是空间,所以也是一个对象集合。

那么线性空间是什么样的对象的集合?或者说,线性空间中的对象有什么共同点吗?2. 线性空间中的运动如何表述的?也就是,线性变换是如何表示的?我们先来回答第一个问题,回答这个问题的时候其实是不用拐弯抹角的,可以直截了当的给出答案。

线性空间中的任何一个对象,通过选取基和坐标的办法,都可以表达为向量的形式。

通常的向量空间我就不说了,举两个不那么平凡的例子:L1. 最高次项不大于n次的多项式的全体构成一个线性空间,也就是说,这个线性空间中的每一个对象是一个多项式。

如果我们以x0,x1,…, xn为基,那么任何一个这样的多项式都可以表达为一组n+1维向量,其中的每一个分量ai其实就是多项式中x(i-1)项的系数。

值得说明的是,基的选取有多种办法,只要所选取的那一组基线性无关就可以。

这要用到后面提到的概念了,所以这里先不说,提一下而已。

L2. 闭区间[a,b]上的n阶连续可微函数的全体,构成一个线性空间。

也就是说,这个线性空间的每一个对象是一个连续函数。

对于其中任何一个连续函数,根据魏尔斯特拉斯定理,一定可以找到最高次项不大于n的多项式函数,使之与该连续函数的差为0,也就是说,完全相等。

这样就把问题归结为L1了。

后面就不用再重复了。

所以说,向量是很厉害的,只要你找到合适的基,用向量可以表示线性空间里任何一个对象。

这里头大有文章,因为向量表面上只是一列数,但是其实由于它的有序性,所以除了这些数本身携带的信息之外,还可以在每个数的对应位置上携带信息。

为什么在程序设计中数组最简单,却又威力无穷呢?根本原因就在于此。

这是另一个问题了,这里就不说了。

下面来回答第二个问题,这个问题的回答会涉及到线性代数的一个最根本的问题。

线性空间中的运动,被称为线性变换。

也就是说,你从线性空间中的一个点运动到任意的另外一个点,都可以通过一个线性变化来完成。

那么,线性变换如何表示呢?很有意思,在线性空间中,当你选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵来描述该空间中的任何一个运动(变换)。

而使某个对象发生对应运动的方法,就是用代表那个运动的矩阵,乘以代表那个对象的向量。

简而言之,在线性空间中选定基之后,向量刻画对象,矩阵刻画对象的运动,用矩阵与向量的乘法施加运动。

是的,矩阵的本质是运动的描述。

如果以后有人问你矩阵是什么,那么你就可以响亮地告诉他,矩阵的本质是运动的描述。

可是多么有意思啊,向量本身不是也可以看成是nx 1矩阵吗?这实在是很奇妙,一个空间中的对象和运动竟然可以用相类同的方式表示。

能说这是巧合吗?如果是巧合的话,那可真是幸运的巧合!可以说,线性代数中大多数奇妙的性质,均与这个巧合有直接的关系。

接着理解矩阵。

上一篇里说“矩阵是运动的描述”,到现在为止,好像大家都还没什么意见。

但是我相信早晚会有数学系出身的网友来拍板转。

因为运动这个概念,在数学和物理里是跟微积分联系在一起的。

我们学习微积分的时候,总会有人照本宣科地告诉你,初等数学是研究常量的数学,是研究静态的数学,高等数学是变量的数学,是研究运动的数学。

大家口口相传,差不多人人都知道这句话。

但是真知道这句话说的是什么意思的人,好像也不多。

简而言之,在我们人类的经验里,运动是一个连续过程,从A点到B点,就算走得最快的光,也是需要一个时间来逐点地经过AB之间的路径,这就带来了连续性的概念。

而连续这个事情,如果不定义极限的概念,根本就解释不了。

古希腊人的数学非常强,但就是缺乏极限观念,所以解释不了运动,被芝诺的那些著名悖论(飞箭不动、飞毛腿阿喀琉斯跑不过乌龟等四个悖论)搞得死去活来。

因为这篇文章不是讲微积分的,所以我就不多说了。

有兴趣的读者可以去看看齐民友教授写的《重温微积分》。

我就是读了这本书开头的部分,才明白“高等数学是研究运动的数学”这句话的道理。

不过在我这个《理解矩阵》的文章里,“运动”的概念不是微积分中的连续性的运动,而是瞬间发生的变化。

比如这个时刻在A点,经过一个“运动”,一下子就“跃迁”到了B点,其中不需要经过A点与B点之间的任何一个点。

这样的“运动”,或者说“跃迁”,是违反我们日常的经验的。

不过了解一点量子物理常识的人,就会立刻指出,量子(例如电子)在不同的能量级轨道上跳跃,就是瞬间发生的,具有这样一种跃迁行为。

所以说,自然界中并不是没有这种运动现象,只不过宏观上我们观察不到。

但是不管怎么说,“运动”这个词用在这里,还是容易产生歧义的,说得更确切些,应该是“跃迁”。

因此这句话可以改成:“矩阵是线性空间里跃迁的描述”。

可是这样说又太物理,也就是说太具体,而不够数学,也就是说不够抽象。

因此我们最后换用一个正牌的数学术语——变换,来描述这个事情。

这样一说,大家就应该明白了,所谓变换,其实就是空间里从一个点(元素/对象)到另一个点(元素/对象)的跃迁。

比如说,拓扑变换,就是在拓扑空间里从一个点到另一个点的跃迁。

再比如说,仿射变换,就是在仿射空间里从一个点到另一个点的跃迁。

附带说一下,这个仿射空间跟向量空间是亲兄弟。

做计算机图形学的朋友都知道,尽管描述一个三维对象只需要三维向量,但所有的计算机图形学变换矩阵都是4x 4的。

说其原因,很多书上都写着“为了使用中方便”,这在我看来简直就是企图蒙混过关。

真正的原因,是因为在计算机图形学里应用的图形变换,实际上是在仿射空间而不是向量空间中进行的。

想想看,在向量空间里相一个向量平行移动以后仍是相同的那个向量,而现实世界等长的两个平行线段当然不能被认为同一个东西,所以计算机图形学的生存空间实际上是仿射空间。

而仿射变换的矩阵表示根本就是4x 4的。

又扯远了,有兴趣的读者可以去看《计算机图形学——几何工具算法详解》。

一旦我们理解了“变换”这个概念,矩阵的定义就变成:“矩阵是线性空间里的变换的描述。

”到这里为止,我们终于得到了一个看上去比较数学的定义。

不过还要多说几句。

教材上一般是这么说的,在一个线性空间V里的一个线性变换T,当选定一组基之后,就可以表示为矩阵。

相关文档
最新文档