第27章-相似-全章导学案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版第27章 相似导学案

27.1图形的相似(第1课时)

【学习目标】

1. 经历探究图形的形状、大小,图形的边、角之间的关系,掌握相似多边形的定义以及相似比,并能根据定义判断两个多边形是否是相似多边形.

2. 掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似. 3.能根据相似比进行有关计算. 【自学指导】第一节 1.相似三角形的定义及记法

三角对应相等,三边对应成比例的两个三角形叫做相似三角形.如△ABC 与△DEF 相似,记作△ABC ∽△DEF 。

注意:其中对应顶点要写在对应位置,如A 与D , B 与E ,C 与F 相对应.AB ∶DE 等于相似比. 2.想一想

如果△ABC ∽△DEF ,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?

3.议一议

(1)两个全等三角形一定相似吗?为什么?

(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么? (3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么? 归纳:

【典例分析】

例1:有一块呈三角形形状的草坪,其中一边的长是20m ,在这个草坪的图纸上,这条边长5cm ,其他两边的长都是3.5cm ,求该草坪其他两边的实际长度.(14m )

F E

D

C

B

A

例2:如图,已知△ABC∽△ADE,AE=50cm,EC=30cm,BC=70cm,

∠BAC=45°,∠ACB=40°,求(1)∠AED和∠ADE的度数;(2)DE

的长.

5.想一想:在例2的条件下,图中有哪些线段成比例?

练习:等腰直角三角形ABC与等腰直角三角形A´B´C´相似,相似比为3∶1,已知斜边AB =5cm,求△A´B´C´斜边A´B´上的高.

(第2课时)

【自学指导】第二节

1、相似多边形的定义:

两个多边形大小不等,但各角,各边这样的两个相似多边形叫做相似多边形。

注意:与相似三角形的定义的不同点。

2、叫做相似比。

3、判断:

(1)各角都对应相等的两个多边形是相似多边形。()

(2)各边对应成比例的两个多边形是相似多边形。()

思考:要判断两个相似多边形相似需要满足的条件。

4、观察下列图形,它们之间是否相似?

5、判断:

(1)所有的正三角形都相似。 ( ) (2)所有正方形都相似。 ( ) (3)所有正五边形都相似。 ( ) (4)所有正多边形都相似。 ( ) 思考:所有的正n 边形都相似吗?

【巩固训练】

1、 已知菱形ABCD 与菱形A ′B ′C ′D ′,若使菱形ABCD ∽菱形A ′B ′C ′D ′,可添加一个条件

2、 如图,一个长3米,宽1.5米的矩形黑板,其外围的木质边匡宽75厘米。边框内外边缘

所成的矩形相似吗?为什么?

3、 四边形ABCD ∽四边形A ′B ′C ′D ′,∠A ′=75°,∠B =85°,∠D ′=118°,AD =18, A ′D ′=8, A ′B ′=12.

求∠C ′的度数和AB 的长度。

【达标测试】

如上图,已知四边形ABCD

∽四边形A ′B ′C ′D ′,∠A =70°,∠B ′=60°, ∠D =125° ,AD =7, A ′D ′=4.2,BC =8,求∠C 的度数和B ′C ′的长度。

C ′

D ′

C

A B A ′ B ′

D

在相似多边形中,对应对角线的比与相似比有何关系?怎样证明?

27.2相似三角形(第3课时)

【学习目标】

1、掌握相似三角形的判定方法,理解相似三角形的性质,

2、能对三角形的性质与判定进行简单的运用 【自学指导】判定 1、相似三角形的判定方法

⑴、平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似. ⑵、三边对应成比例,两三角形相似.

⑶、两边对应成比例且夹角相等,两三角形相似. ⑷、两角对应相等,两三角形相似。 【尝试练习】

⑴、如图,△ABC 与△ADE 都是等腰三角形,AD =AE ,AB =AC ,∠DAB =∠CAE 。

求证:△ABC ∽△ADE 。

⑵、如图ABCD 是正方形,E 是CD 上一点,F 是BC 延长线上一点,且CE =CF ,BE 延长线交DF 于G 。求证:△BGF ∽△DGE 。

Rt 斜边BA上的点,点E为AC的中点,分别延长ED和CB交⑶、如图已知点D为ABC

于F。

求证:△CDF∽△DBF。

⑷、如图△ABC中,∠C,∠B的平分线相交于O,过O作AO的垂线与边AB、AC分别交

于D、E,

求证:△BDO∽△BOC∽△OEC。

⑸、如图AD为△ABC的∠A的平分线,由D向∠C的外角平分线作垂线与AC的延长线交于F点,由D作∠B的平分线的垂线与AB交于E,

求证:△ADE∽△AFD。

反思:两个直角三角形要相似,除了一个直角外,还需要那些条件就可以。

【思维拓展】:

要做两个形状相同的三角形框架,其中一个三角形框架的三边的长分别为4、5、6,另一个三角形的一边长为2,怎样选料可使这两个三角形相似?

(第4课时)

【自学指导】性质

1、两个三角形已知相似,可推出:

⑴、相似三角形对应边、对应中线,对应高线、对应角平分线的比等于相似比 ⑵、相似三角形周长的比等于相似比 ⑶、相似三角形面积的比等于相似比的平方 【尝试练习】 1、如图,在和

中,,

的周长是

24,面积是48,求的周长和面积. 解:在和中,

,相似比为2

1. 的周长为

122421

=⨯,的面积是1248)2

1(2

=⨯.

建议:记住上面的解题格式,规范你的步骤。

2、如图,已知中,,

,点

上,

(与点不重合),点在

上.

当的面积与四边形的面积相等时,求的长.

(1)(2)当的周长与四边形

的周长相等时,求

长. (3)在

上是否存在点

,使

得为等腰直角三

角形?要不存在,请说明理由;若存在,请求出的长.

相关文档
最新文档