最新人教A版必修二 多面体的结构特征 学案
多面体结构结构特征教案
多面体结构结构特征教案教案标题:多面体结构特征教案教案目标:1. 理解多面体的定义和基本特征。
2. 辨认和描述不同种类的多面体。
3. 掌握计算多面体的面数、边数和顶点数的方法。
4. 发展学生的空间思维和几何推理能力。
教案步骤:引入活动:1. 利用实物或图片展示不同种类的多面体,引起学生对多面体的兴趣。
2. 引导学生观察多面体的特征,例如面的形状、边的长度和顶点的数量。
探究活动:3. 将学生分成小组,每组分配一个多面体的模型或图片。
4. 要求学生仔细观察多面体的结构特征,并记录下来。
5. 引导学生讨论多面体的面数、边数和顶点数之间的关系。
6. 引导学生发现和总结计算多面体面数、边数和顶点数的方法。
知识总结:7. 教师对学生的观察和讨论进行总结,强调多面体的定义和基本特征。
8. 教师提供示范和解释计算多面体面数、边数和顶点数的方法。
巩固练习:9. 学生个别或小组完成练习题,计算给定多面体的面数、边数和顶点数。
10. 学生互相交流和讨论答案,并进行纠错。
拓展应用:11. 学生在小组中设计一个新的多面体,并计算其面数、边数和顶点数。
12. 学生展示他们设计的多面体,并解释其结构特征。
评价反馈:13. 教师对学生的练习和表现进行评价,并提供反馈和指导。
14. 学生对教学过程和自己的学习进行反思。
教学资源:1. 实物多面体模型或图片。
2. 多面体的定义和基本特征的PPT或教材资料。
3. 练习题和答案。
教学扩展:1. 引导学生研究不同种类的多面体的特征和性质,例如正多面体、凸多面体和凹多面体。
2. 引导学生探究多面体的投影和展开图。
3. 引导学生应用多面体的结构特征解决实际问题,例如建筑设计和工程规划。
教学提示:1. 鼓励学生积极参与观察、讨论和计算,培养他们的合作和沟通能力。
2. 鼓励学生提出问题和思考,促进他们的探究和发现能力。
3. 根据学生的实际水平和兴趣,适当调整教学内容和难度。
高中数学人教A版必修2讲学案第一章 1.1 空间几何体的结构
③错误.由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的三棱锥中有====.满足底面△为等边三角形.三个侧面△,△,△都是等腰三角形,但长度不一定,三个侧面不一定全等.
[答案]()()
判断棱锥、棱台形状的个方法
()举反例法:
.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
()棱柱的侧面都是平行四边形()
()有一个面是多边形,其余各面都是三角形的几何体叫棱锥()
()用一个平面去截棱锥,底面和截面之间的部分叫棱台()
答案:()√()×()×
.有两个面平行的多面体不可能是()
.棱柱.棱锥
.棱台.以上都错
解析:选 棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.
如图可记作:棱锥
底面(底):多边形面
侧面:有公共顶点的各个三角形面
侧棱:相邻侧面的公共边
顶点:各侧面的公共顶点
棱台
用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台
如图可记作:棱台
¡ä¡ä¡ä¡ä
上底面:原棱锥的截面
下底面:原棱锥的底面
侧面:其余各面
侧棱:相邻侧面的公共边
顶点:侧面与上(下)底面的公共顶点
②每一个面都不会是三角形;
③两底面平行,并且各侧棱也平行;
④棱柱的侧棱总与底面垂直.
其中正确说法的序号是.
解析:①错误,棱柱的底面不一定是平行四边形;
②错误,棱柱的底面可以是三角形;
③正确,由棱柱的定义易知;
④错误,棱柱的侧棱可能与底面垂直,也可能不与底面垂直.所以说法正确的序号是③.
答案:③
高一数学人教版A版必修二课件:1.1.1 多面体的结构特征
规律与方法
1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义 判断几何体的形状. 2.各种棱柱之间的关系 (1)棱柱的分类
棱柱
(2)常见的几种四棱柱之间的转化关系
3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
名称
底面
侧面
侧棱
平行且全等的
斜棱柱
平行四边形 平行且相等
思考 观察下面两组物体,你能说出各组物体的共同点吗?
答案 几何体的表面由若干个平面多边形围成.
答案
答案 几何体的表面由平面图形绕其所在平面内的一条定直线旋转而成.
答案
1.空间几何体的定义及分类 (1)定义:如果只考虑物体的 形状 和 大小 ,而不考虑其他因素,那么 由这些物体抽象出来的空间图形 叫做空间几何体. (2)分类:常见的空间几何体有 多面体 与 旋转体 两类. 2.多面体与旋转体
高效学习模型-内外脑模型
2
内脑-思考内化
思 维 导 图 &超 级 记 忆 法 &费 曼 学 习 法
1
外脑-体系优化
知 识 体 系 &笔 记 体 系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆规律
记忆前
选择记忆的黄金时段 前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
这些面所围成的几何体是棱锥 B.棱柱的底面一定是平行四边形 C.棱锥的底面一定是三角形 D.棱柱的侧棱都相等,侧面都是全等的平行四边形
答案
3.下列说法错误的是( D ) A.多面体至少有四个面 B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形 C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 解析 由于三棱柱的侧面为平行四边形,故选项D错.
立体几何全部教案(人教A版高中数学必修②教案)
立体几何全部教案(人教A版高中数学必修②教案)第一章:空间几何体的结构特征1.1 教学目标了解柱体、锥体、球体的定义及性质。
掌握空间几何体的结构特征,如表面积、体积等。
1.2 教学内容柱体、锥体、球体的定义及性质。
空间几何体的结构特征的计算方法。
1.3 教学步骤1. 引入新课,讲解柱体、锥体、球体的定义及性质。
3. 讲解空间几何体的结构特征的计算方法,如表面积、体积等。
1.4 课堂练习完成课本练习题,巩固所学知识。
1.5 课后作业完成课后作业,加深对空间几何体的结构特征的理解。
第二章:点、线、面的位置关系2.1 教学目标了解点、线、面的位置关系,如平行、垂直等。
掌握点、线、面的位置关系的判定方法。
2.2 教学内容点、线、面的位置关系的定义及判定方法。
2.3 教学步骤1. 引入新课,讲解点、线、面的位置关系的定义及判定方法。
2.4 课堂练习完成课本练习题,巩固所学知识。
2.5 课后作业完成课后作业,加深对点、线、面的位置关系的理解。
第三章:空间角的计算3.1 教学目标了解空间角的定义及性质。
掌握空间角的计算方法。
3.2 教学内容空间角的定义及性质。
空间角的计算方法。
3.3 教学步骤1. 引入新课,讲解空间角的定义及性质。
3.4 课堂练习完成课本练习题,巩固所学知识。
3.5 课后作业完成课后作业,加深对空间角的计算的理解。
第四章:空间向量的应用4.1 教学目标了解空间向量的定义及性质。
掌握空间向量的应用方法。
空间向量的定义及性质。
空间向量的应用方法。
4.3 教学步骤1. 引入新课,讲解空间向量的定义及性质。
4.4 课堂练习完成课本练习题,巩固所学知识。
4.5 课后作业完成课后作业,加深对空间向量的应用的理解。
第五章:立体几何中的综合问题5.1 教学目标培养学生解决立体几何综合问题的能力。
5.2 教学内容立体几何中的综合问题的解题策略。
5.3 教学步骤1. 引入新课,讲解立体几何中的综合问题的解题策略。
新课标人教A版必修2教案(全)
(一)、新课导入:
1.讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?
2.引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。”对于我们所学几何体,常用三视图和直观图来画在纸上.
三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.用途:工程建设、机械制造、日常生活.
⑤讨论:根据以上的三视图,如何逆向得到几何体的形状.
(试变化以上的三视图,说出相应几何体的摆放)
3.教学简单组合体的三视图:
①画出教材P16图(2)、(3)、(4)的三视图.
②从教材P16思考中三视图,说出几何体.
4.练习:
①画出正四棱锥的三视图.
4 画出右图所示几何体的三视图.
③右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.
擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)。
③出示例1用斜二测画法画水平放置的正六边形.
(师生共练,注意取点、变与不变→小结:画法步骤)
④练习:用斜二测画法画水平放置的正五边形.
⑤讨论:水平放置的圆如何画?(正等测画法;椭圆模板)
2.教学空间图形的斜二测画法:
①讨论:如何用斜二测画法画空间图形?
③试画出:棱柱、棱锥、棱台、圆台的三视图.(
④讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
高中数学第一章1-1第1课时多面体的结构特征课件新人教A版必修
研一研·问题探究、课堂更高效
例1 试判断下列说法是否正确:
(1)棱柱中互相平行的两个面叫做棱柱的底面; (2)棱柱的侧棱都相等,侧面是平行四边形.
解 (1)错误.如正六棱柱中相对侧面互相平行.
(2)正确.由棱柱的定义可知,棱柱的侧棱互相平行且相等,且 各侧面都是平行四边形. 小结 概念辨析题常用方法: (1)利用常见几何体举反例; (2)从底面
答
棱柱、棱锥分别具有一些什么几何性质?
棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平
行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多 边形. 棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其 相似比等于顶点到截面距离与高的比的平方.
研一研·问题探究、课堂更高效
探究点四 问题 1 棱台的结构特征 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间
多边形的形状、侧面形状及它们之间的位置关系、侧棱与底面的位 置关系等角度紧扣定义进行判断.
研一研·问题探究、课堂更高效
跟踪训练 1 根据下列关于空间几何体的描述,说出几何体名称: (1)由 6 个平行四边形围成的几何体. (2)由 7 个面围成,其中一个面是六边形,其余 6 个面是有一个公共 顶点的三角形. 解 (1)这是一个上、下底面是平行四边形,四个侧面也是平行四边 形的四棱柱.
面叫做棱台的侧面,相邻侧面的公共边叫做棱台的侧棱,侧面与底 面的公共顶点叫做棱台的顶点.
研一研·问题探究、课堂更高效
问题 3
答
根据三棱锥、四棱锥、五棱锥……的定义,如何定义三棱
台、四棱台、五棱台……?如何用字母表示棱台?
由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、 四棱台、五棱台……;与棱柱的表示一样棱台也用上、下底面的各 顶点的字母表示.
2021新教材高中数学第八章8.1第1课时多面体教学用书教案新人教A版必修第二册
必备知识·探新知
知识点1空间几何体
1.概念:如果只考虑物体的__形状__和__大小__,而不考虑其他因素,那么由这些物体抽象出来的__空间图形__叫做空间几何体.
2.多面体与旋转体
(1)多面体:由若干个__平面多边形__围成的几何体叫做多面体(如图),围成多面体的各个多边形叫做多面体的__面__;相邻两个面的__公共边__叫做多面体的棱;棱与棱的__公共点__叫做多面体的顶点.
(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱.
(4)平行六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四边形.
(5)长方体:底面是矩形的直棱柱叫做长方体.
(6)正方体:棱长都相等的长方体叫做正方体.
2.棱锥
定义
一般地,有一个面是__多边形__,其余各面都是__有一个公共顶点__的三角形,由这些面所围成的多面体叫做棱锥
(3)围成一个多面体至少要有四个面.
(4)规定:在多面体中,不在同一面上的两个顶点的连线叫做多面体的对角线,不在同一面上的两条侧棱称为多面体的不相邻侧棱,侧棱和底面多边形的边统称为棱.
(5)一个多面体是由几个面围成,那么这个多面体称为几面体.
知识点2几种常见的多面体
1.棱柱
定义
一般地,有两个面互相__平行__,其余各面都是__四边形__,并且每__相邻__两个四边形的公共边都互相__平行__,由这些面所围成的__多面体__叫做棱柱
关键能力·攻重难
题型探究
题型一 棱柱的结构特征
典例1下列关于棱柱的说法:
(1)所有的面都是平行四边形;
(2)每一个面都不会是三角形;
高中数学新人教版A版精品教案《空间几何体的结构》
必修二空间几何体的结构(教学设计)一、目标认知学习目标:1.知识与技能1通过实物操作,增强直观感知2能根据几何结构特征对空间物体进行分类3会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征4会表示有关于几何体以及柱、锥、台的分类2.过程与方法1通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征2观察、讨论、归纳、概括所学的知识3.情感态度与价值观1感受空间几何体存在于现实生活周围,增强学习的积极性,同时提高观察能力2培养空间想象能力和抽象括能力重点:通过空间实物及模型,概括出柱、锥、台、球的结构特征难点:对柱、锥、台、球结构特征的概括和理解二、知识要点梳理知识点一:棱柱的结构特征1、定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱.侧面与底的公共顶点叫做棱柱的顶点.棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线.过不相邻的两条侧棱所形成的面叫做棱柱的对角面.2、棱柱的分类:底面是三角形、四边形、五边形、……的棱柱分别叫做三棱柱、四棱柱、五棱柱……3、棱柱的表示方法:①用表示底面的各顶点的字母表示棱柱,如下图,四棱柱、五棱柱、六棱柱可分别表示为、、;②用棱柱的对角线表示棱柱,如上图,四棱柱可以表示为棱柱或棱柱等;五棱柱可表示为棱柱、棱柱等;六棱柱可表示为棱柱、棱柱、棱柱等.4、棱柱的性质:棱柱的侧棱相互平行知识点二:棱锥的结构特征1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形面叫做棱锥的底面.有公共顶点的各个三角形叫做棱锥的侧面.各侧面的公共顶点叫做棱锥的顶点.相邻侧面的公共边叫做棱锥的侧棱;2、棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥……;3、棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥;知识点三:圆柱的结构特征1、定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴.垂直于轴的边旋转而成的曲面叫做圆柱的底面.平行于轴的边旋转而成的曲面叫做圆柱的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线.2、圆柱的表示方法:用表示它的轴的字母表示,如圆柱知识点四:圆锥的结构特征1、定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥.旋转轴叫做圆锥的轴.垂直于轴的边旋转而成的曲面叫做圆锥的底面.不垂直于轴的边旋转而成的曲面叫做圆锥的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆锥的母线.2、圆锥的表示方法:用表示它的轴的字母表示,如圆锥.知识点五:棱台和圆台的结构特征1、定义:用一个平行于棱锥圆锥底面的平面去截棱锥圆锥,底面和截面之间的部分叫做棱台圆台;原棱锥圆锥的底面和截面分别叫做棱台圆台的下底面和上底面;原棱锥圆锥的侧面被截去后剩余的曲面叫做棱台圆台的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;原圆锥的母线被平面截去后剩余的部分叫做圆台的母线;棱台的侧面与底面的公共顶点叫做棱台的顶点;圆台可以看做由直角梯形绕直角边旋转而成,因此旋转的轴叫做圆台的轴2、棱台的表示方法:用各顶点表示,如四棱台;3、圆台的表示方法:用表示轴的字母表示,如圆台;注:圆台可以看做由圆锥截得,也可以看做是由直角梯形绕其直角边旋转而成知识点六:球的结构特征1、定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球半圆的半径叫做球的半径半圆的圆心叫做球心半圆的直径叫做球的直径2、球的表示方法:用表示球心的字母表示,如球O知识点七:特殊的棱柱、棱锥、棱台特殊的棱柱:侧棱不垂直于底面的棱柱称为斜棱柱;垂直于底面的棱柱称为直棱柱;底面是正多边形的直棱柱是正棱柱;底面是矩形的直棱柱叫做长方体;棱长都相等的长方体叫做正方体;特殊的棱锥:如果棱锥的底面是正多边形,且各侧面是全等的等腰三角形,那么这样的棱锥称为正棱锥;侧棱长等于底面边长的正三棱锥又称为正四面体;特殊的棱台:由正棱锥截得的棱台叫做正棱台;注:简单几何体的分类如下表:知识点八:简单组合体的结构特征1、组合体的基本形式:①由简单几何体拼接而成的简单组合体;②由简单几何体截去或挖去一部分而成的几何体;2、常见的组合体有三种:①多面体与多面体的组合;②多面体与旋转体的组合;③旋转体与旋转体的组合三、规律方法指导:1.根据几何体特征的描述判断几何体形状1根据几何体的结构特点判断几何体的类型,首先要熟练掌握各类几何体的概念,把握好各类几何体的性质,其次要有一定的空间想象能力.2圆柱、圆锥、圆台可以看做是分别以矩形的一边、直角三角形的一直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而成的曲面所围成的几何体.其轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题一般要作出轴截面.2.几何体中的计算问题几何体的有关计算中要注意下列方法与技巧:1在正棱锥中,要掌握正棱锥的高、侧面、等腰三角形中的斜高及高与侧棱所构成的两个直角三角形,有关证明及运算往往与两者相关.2正四棱台中要掌握其对角面与侧面两个等腰梯形中关于上、下底及梯形高的计算,有关问题往往要转化到这两个等腰梯形中.另外要能够将正四棱台、正三棱台中的高与其斜高、侧棱在合适的平面图形中联系起来.3研究圆柱、圆锥、圆台等问题的主要方法是研究它们的轴截面,这是因为在轴截面中,易找到所需有关元素之间的位置、数量关系.4圆柱、圆锥、圆台的侧面展开是把立体几何问题转化为平面几何问题处理的重要手段之一.5圆台问题有时需要还原为圆锥问题来解决.6关于球的问题中的计算,常作球的一个大圆,化"球"为"圆",应用平面几何的有关知识解决;关于球与多面体的切接问题,要恰当地选取截面,化"空间"为平面.经典例题透析:类型一:概念判断1、如果两个面互相平行,其余各面均为四边形的几何体一定是棱柱.这种说法是否正确?如果正确说明理由;如果不正确,举出反例.思路点拨:判断一个几何体是哪几种几何体,一定要紧扣住柱、锥、台、球的结构特征,注意定义中的特殊字眼棱柱的结构特征有三方面:有两个面互相平行;其余各面是平行四边形;这些平行四边形中,相邻两个面的公共边都互相平行当一个几何体同时满足这三方面的结构特征时,这个几何体才是棱柱解析:不正确.如图所示的几何体是由两个底面相等的四棱柱组合而成,它有两个面互相平行,其余各面都是平行四边形,但是显然它不是棱柱.举一反三:【变式1】如果一个面是多边形,其余各面都是三角形的几何体一定是棱锥.这种说法是否正确?如果正确说明理由;如果不正确,举出反例.解析:不正确.如图所示的几何体由两个底面相等的四棱锥组合而成,它有一个面是四边形,其余各面都是三角形,但是该几何体不是棱锥.2、描述下列几何体的结构特征,并说出它的名称1由7个面围成,其中两个面是互相平行且全等的五边形,其它面都是全等的矩形;2如图,一个圆环面绕着过圆心的直线旋转解析:1特征:侧面都是全等的矩形,底面是五边形,几何体为正五棱柱;2由两个同心的大球和小球,大球里去掉小球后剩下的部分类型二:基本计算3、若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高解析:底面正三角形中,边长为3,高为,中心到顶点距离为,则棱锥的高为4、用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm,求圆台的母线长解析:设圆台的母线为,截得圆台的上、下底面半径分别为r,4r根据相似三角形的性质得,,解得所以,圆台的母线长为总结升华:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质与底面全等或相似,同时结合旋转体中的轴截面经过轴的截面的几何性质,利用相似三角形中的相似比,构设相关几何变量的方程组而解得5、圆锥底面半径为1cm,高为,其中有一个内接正方体,求这个内接正方体的棱长解析:过圆锥的顶点S和正方体底面的一条对角线CD作圆锥的截面,得圆锥的轴截面SEF,正方体对角面,如图所示设正方体棱长为,则作SO⊥EF于O,则,OE=1,∵△ECC1∽△EOS,∴,即∴,即内接正方体棱长为总结升华:此题也可以利用△SCD∽△SEF而求两个几何体相接、相切的问题,关键在于发现一些截面之间的图形关系常常是通过分析几个轴截面组合的平面图形中的一些相似,利用相似比列出方程而求注意截面图形中各线段长度的计算学习成果测评基础达标1:1.一个棱柱是正四棱柱的条件是A底面是正方形,有两个侧面是矩形B底面是正方形,有两个侧面垂直于底面C底面是菱形,且有一个顶点处的三条棱两两垂直D每个侧面都是全等矩形的四棱柱2.下列说法中正确的是A以直角三角形的一边为轴旋转所得的旋转体是圆锥B以直角梯形的一腰为轴旋转所得的旋转体是圆台C圆柱、圆锥、圆台的底面都是圆D圆锥侧面展开图为扇形、这个扇形所在圆的半径等于圆锥的底面圆的半径3.下列说法错误的是A若棱柱的底面边长相等,则它的各个侧面的面积相等B九棱柱有9条侧棱,9个侧面,侧面为平行四边形C六角螺帽、三棱镜都是棱柱D三棱柱的侧面为三角形4.用一个平面去截正方体,所得的截面不可能是A六边形 B菱形 C梯形 D直角三角形5.下列说法正确的是A平行于圆锥某一母线的截面是等腰三角形B平行于圆台某一母线的截面是等腰梯形C过圆锥顶点的截面是等腰三角形D过圆台上底面中心的截面是等腰梯形6.设圆锥母线长为,高为,过圆锥的两条母线作一个截面,则截面面积的最大值为________7.若长方体的三个面的面积分别是,则此长方体的对角线长为________基础达标2:1.右图的几何体是由下面哪个平面图形旋转得到的2.下列几何体的轴截面一定是圆面的是A.圆柱B.圆锥 C.球 D.圆台3.把直角三角形绕斜边旋转一周,所得的几何体是A.圆锥B.圆柱 C.圆台 D.由两个底面贴近的圆锥组成的组合体4.圆锥的底面半径为r,高为h,在此圆锥内有一个内接正方体,则此正方体的棱长为A.B.C.D.5.将一个半径为R的木球削成尽可能大的正方体,则正方体的体积是________6.三棱柱的底面为正三角形,侧面是全等的矩形,内有一个内切球,已知球的半径为R,则这个三棱柱的底面边长为________能力提升:1.长方体的全面积为11,十二条棱的长度之和为24,求这个长方体的一条对角线长2.如图所示,长方体1这个长方体是棱柱吗?如果是,是几棱柱?为什么?2用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示如果不是,说明理由3.正四棱锥棱锥底面是正方形,侧面都是全等等腰三角形有一个内接正方体,,高为h,求内接正方体的棱长4.一个四棱台的上、下底面均为正方形,且面积分别为、,侧面是全等的等腰梯形,棱台的高为h,求此棱台的侧棱长和斜高侧面等腰梯形的高答案与解析:基础达标1:;6;7基础达标2:5; 6基础达标3:; 6.球、圆柱、圆锥能力提升:1.解:设长方体的长、宽、高分别为a、b、c,则,而对角线长2.解:1是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面都是全等的四边形,其余各面都是矩形,且四条侧棱互相平行,符合棱柱定义2截面BCNM的上方部分是三棱柱,下方部分是四棱柱3.解:作截面,利用相似三角形知识,设正方体的棱长为,则,解得4.解:上、下底面正方形的边长为、,此棱台对角面、过两相对斜高的截面都是等腰梯形,则侧棱长为;斜高为。
高中数学人教A版(新教材)第二册优质学案:8.1第一课时多面体
第八章立体几何初步『数学文化』——了解数学文化的发展与应用祖暅与祖暅原理祖暅祖暅『ɡènɡ』,又名祖暅之,字景烁,是我国南北朝时期的数学家、科学家祖冲之的儿子.祖暅在求球体积时,使用了一个原理:“幂势既同,则积不容异”,“幂”是截面积,“势”是立体的高,意思是两个同高的立体,如在等高处的截面积恒相等,则体积相等.更详细点说就是,界于两个平行平面之间的两个立体,被任一平行于这两个平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.上述原理在中国被称为祖暅原理.『读图探新』——发现现象背后的知识观察下面的图片,这些图片你都不陌生吧.小到精巧的家居装饰,大到宏伟的庞大建筑;从远古的金字塔,到现代的国家大剧院、埃菲尔铁塔,设计师、建筑师们匠心独具,为我们留下了精美绝伦的建筑物,每当看到这些建筑物都会给人以震撼的美.问题:那么设计师是如何设计这些建筑物的呢?应用到哪些数学知识呢? 链接:事实上,对于这些装饰物、建筑物,我们都可以抽象为数学中的占有一定空间,具有一定形状的立体几何图形,这是我们本章要学习的重点内容.8.1 基本立体图形 第一课时 多面体新知探究观察下列图片:问题 (1)图①②③中的物体的形状有何特点?(2)图④⑤⑥⑦中的物体的形状与①②③中的物体的形状有何不同?(3)图④⑤⑥⑦中的物体是否可以看作平面图形绕某定直线旋转而成?提示(1)由若干个平面多边形围成.(2)④⑤⑥的表面是由平面与曲面围成的,⑦的表面是由曲面围成的,而①②③的表面全是由平面围成的.(3)可以.1.空间几何体我们研究空间几何体就是研究其形状和大小名称定义空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体一条平面曲线(包括直线)绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体,这条定直线叫做旋转体的轴2.多面体棱柱上底面扩大到和下底面全等上底面缩小棱台上底面缩小为一个点顶点扩大到和下底面相似棱锥多面体定义图形及表示相关概念特殊情形棱柱有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面记作:棱柱ABCDEF-A′B′C′D′E′F′底面(底):两个互相平行的面侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与底直棱柱:侧棱垂直于底面的棱柱斜棱柱:侧棱不垂直于底面的棱柱正棱柱:底面是记作:棱锥S-ABCD记作:棱台ABCD-A′B′C′D′拓展深化『微判断』1.棱柱的底面互相平行.(√)2.棱柱的各个侧面都是平行四边形.(√)3.有一个面是多边形,其余各面都是三角形的几何体叫棱锥.(×)4.长方体是四棱柱,直四棱柱是长方体.(×)提示 3.有一个面是多边形,其余各面都是有公共顶点的三角形,由这些面所围成的多面体才叫棱锥;4.上、下底面为矩形的直四棱柱才是长方体.『微训练』1.下面多面体中,是棱柱的有()A.1个B.2个C.3个D.4个『解析』根据棱柱的定义进行判定知,这4个多面体都是棱柱.『答案』 D2.下列说法中正确的是()A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形『解析』棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错. 『答案』 A『微思考』1.面数最少的多面体是什么?提示围成一个多面体至少要四个面,所以面数最少的多面体是四面体,如三棱锥就是四面体.2.把棱台的各侧棱延长,交于一点吗?提示因为棱台是由棱锥截得的,所以棱台中各侧棱延长后必相交于一点,否则不是棱台.题型一棱柱的结构特征『例1』下列说法正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形『解析』选项A,B都不正确,反例如图所示.选项C也不正确,上、下底面是全等的菱形,各侧面是全等的正方形的四棱柱不是正方体.根据棱柱的定义知选项D正确.『答案』 D规律方法 1.棱柱结构特征的辨析方法(1)扣定义:判定一个几何体是否为棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.2.棱柱概念的推广(1)斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.(2)直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱.(4)平行六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四边形.(5)长方体:底面是矩形的直棱柱叫做长方体.(6)正方体:棱长都相等的长方体叫做正方体.『训练1』下列命题中,正确的是()A.棱柱中所有的侧棱都相交于一点B.棱柱的每一个面都不会是三角形C.棱柱的所有面都是平行四边形D.棱柱的侧棱相等,侧面是平行四边形『解析』A选项不符合棱柱的侧棱平行的特点;对于B选项,棱柱的底面可以是三角形;对于C选项,棱柱的底面不一定是平行四边形;D选项说明了棱柱的特点,故选D.『答案』 D题型二棱锥、棱台的结构特征『例2』(1)下列三种叙述,正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个(2)下列说法中,正确的是()①棱锥的各个侧面都是三角形;②四面体的任何一个面都可以作为棱锥的底面;③棱锥的侧棱平行.A.①B.①②C.②D.③『解析』(1)①中的平面不一定平行于底面,故①错误;②③可用反例去检验,如图所示,侧棱延长线不能相交于一点,故②③错.故选A.(2)由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;四面体就是由四个三角形面所围成的几何体,因此四面体的任何一个面都可以作为棱锥的底面,故②正确;棱锥的侧棱交于一点,故③错误.『答案』(1)A(2)B规律方法判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义,举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:『训练2』下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.『解析』①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两部分都是棱锥.『答案』①②题型三空间几何体的平面展开图『例3』(1)画出如图所示的几何体的平面展开图(画出其中一种即可).(2)长方体ABCD-A1B1C1D1中,AB=4,BC=3,BB1=5,一只蚂蚁从点A出发沿表面爬行到点C1,求蚂蚁爬行的最短路线长.解(1)平面展开图如图所示:(2)沿长方体的一条棱剪开,使A和C1展在同一平面上,求线段AC1的长即可,有如图所示的三种剪法:①若将C1D1剪开,使面AB1与面A1C1共面,可求得AC1=42+(5+3)2=80=4 5.②若将AD剪开,使面AC与面BC1共面,可求得AC1=32+(5+4)2=90=310.③若将CC1剪开,使面BC1与面AB1共面,可求得AC1=(4+3)2+52=74. 相比较可得蚂蚁爬行的最短路线长为74.规律方法(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.(3)求从几何体的表面上一点,沿几何体表面运动到另一点,所走过的最短距离,常将几何体沿某条棱剪开,使两点展在一个平面上,转化为求平面上两点间的最短距离问题.『训练3』如图是三个几何体的侧面展开图,请问各是什么几何体?解①为五棱柱;②为五棱锥;③为三棱台.一、素养落地1.通过棱柱、棱锥、棱台的定义和空间结构特征的学习,重点培养数学抽象素养及提升直观想象素养.2.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.3.棱柱、棱台、棱锥关系图二、素养训练1.下列说法错误的是()A.多面体至少有四个面B.六棱柱有6条侧棱,6个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形『解析』由于三棱柱的侧面为平行四边形,故选项D错.『答案』 D2.下列说法正确的是________(填序号).①底面是正多边形的棱锥为正棱锥;②各侧棱都相等的棱锥为正棱锥;③各侧面都是等腰三角形的棱锥为正棱锥;④各侧面都是全等的等腰三角形的棱锥是正棱锥;⑤底面是正多边形且各侧面全等的棱锥为正棱锥.『解析』由正棱锥的定义可知,①②③均不正确;而④不能保证这些全等的等腰三角形的腰长都作为侧棱长,故不正确;只有⑤符合正棱锥的定义,故正确. 『答案』⑤3.下列几何体中,________是棱柱,________是棱锥,______是棱台(填序号).『解析』结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台.『答案』①③④⑥⑤4.对棱柱而言,下列说法正确的序号是________.①棱柱中任意两个侧面都不可能互相平行;②所有的棱长都相等;③棱柱中至少有两个面的形状完全相同;④相邻两个面的交线叫做侧棱.『解析』①错误,棱柱的侧面也可能有平行的面(如正方体);②错误,因为侧棱与底面上的棱长不一定相等;③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,棱柱中至少有两个面的形状完全相同;④错误,因为底面和侧面的交线不是侧棱.『答案』③5.判断如图所示的多面体是不是棱台?解判断棱台的标准:一是共点,即各侧棱延长线要交于一点.二是平行,即上、下两个底面要平行.据此可知:图(1)中多面体的侧棱延长线不相交于同一点,故不是棱台;图(2)中多面体不是由棱锥截得的,侧棱延长线不相交于同一点,故不是棱台;图(3)中多面体截面与底面不平行,故不是棱台.。
高中数学 第一章 空间几何体学案 新人教A版必修2 学案
§1.1.1 棱柱、棱锥、棱台的结构特征学习目标:1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 理解多面体的有关概念;4. 会用语言概述棱柱、棱锥、棱台的结构特征.学习过程:一、课前准备(预习教材P2~ P4,找出疑惑之处)引入:小学和初中我们学过平面上的一些几何图形如直线、三角形、长方形、圆等等,现实生活中,我们周围还存在着很多不是平面上而是“空间”中的物体,它们占据着空间的一部分,比如粉笔盒、足球、易拉罐等.如果只考虑这些物体的形状和小,那么由这些物体抽象出来的空间图形叫做空间大几何体.它们具有千姿百态的形状,有着不同的几何特征,现在就让我们来研究它们吧! 二、新课导学※探索新知探究1:多面体的相关概念问题:观察下面的物体,注意它们每个面的特点,以及面与面之间的关系.你能说出它们相同点吗?新知1:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,如面ABCD;相邻两个面的公共边叫多面体的棱,如棱AB;棱与棱的公共点叫多面体的顶点,如顶点A.具体如下图所示:探究2:旋转体的相关概念问题:仔细观察下列物体的相同点是什么?新知2:由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫旋转体的轴.如下图的旋转体:探究3.棱柱的结构特征问题:你能归纳下列图形共同的几何特征吗? 新知3:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱(prism). 棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(两底面之间的距离叫棱柱的高)AA1D1 C1B1DCB试试 1:你能指出探究 3 中的几何体它们各自的底、侧面、侧棱和顶点吗?你能试着按照某种标准将探究 3 中的棱柱分类吗?新知 4:①按底面多边形的边数来分,底面是三角形、四边形、五边形…的棱柱分别叫做三棱柱、四棱柱、五棱柱…②按照侧棱是否和底面垂直,棱柱可分为斜棱柱(不垂直)和直棱柱(垂直).试试 2: 探究 3 中有几个直棱柱?几个斜棱柱?棱柱怎么表示呢?新知 5:我们用表示底面各顶点的字母表示棱柱,如图(1)中这个棱柱表示为棱柱1111D C B A ABCD -探究 4:棱锥的结构特征问题:探究 1 中的埃及金字塔是人类建筑的奇迹之一,它具有什么样的几何特征呢? 新知 6:有一个面是多边形,其余各个面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.顶点到底面的距离叫做棱锥的高;棱锥也可以按照底面的边数分为三棱锥(四面体)、四棱锥…等等,棱锥可以用顶点和底面各顶点的字母表示,如下图中的棱锥 S - ABCD .探究 5:棱台的结构特征问题:假设用一把大刀能把金字塔的上部分平行地切掉,则切掉的部分是什么形状?剩余的部分呢? 新知 7:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的侧面,相邻侧面的公共边叫侧棱,侧面与两底面的公共点叫顶点 .两底面间的距离叫棱台的高 .棱台可以用上、下底面的字母表示,分类类似于棱锥. 试试 3:请在下图中标出棱台的底面、侧面、侧棱、顶点,并指出其类型和用字母表示出来. 反思: 根据结构特征,从变化的角度想一想,棱柱、棱台、棱锥三者之间有什么关系? ※ 典型例题 例 由棱柱的定义你能得到棱柱下列的几何性质吗? ①侧棱都相等,侧面都是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形.仿照棱柱,棱锥、棱台有哪些几何性质呢? 三、总结提升 ※ 学习小结 1. 多面体、旋转体的有关概念;2. 棱柱、棱锥、棱台的结构特征及简单的几S C AB D何性质.※知识拓展1. 平行六面体:底面是平行四边形的四棱柱;2. 正棱柱:底面是正多边形的直棱柱3. 正棱锥:底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥4. 正棱台:由正棱锥截得的棱台叫做正棱台※当堂检测(时量:5 分钟满分:10 分)1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成()A.棱锥B.棱柱C.平面D.长方体2. 棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3. 已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则()A.A ⊆B ⊆ C ⊆ D ⊆ F ⊆ EB.A ⊆C ⊆B ⊆ F ⊆ D ⊆ EC.C ⊆ A ⊆ B ⊆ D ⊆ F ⊆ ED.它们之间不都存在包含关系4. 长方体三条棱长分别是AA' =1 AB =2,AD = 4,则从A点出发,沿长方体的表面到C′的最短矩离是_____________.5. 若棱台的上、下底面积分别是25 和81,高为4,则截得这棱台的原棱锥的高为___________.课后作业1.一个棱柱是正四棱柱的条件是().A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱2.下列说法中正确的是().A. 以直角三角形的一边为轴旋转所得的旋转体是圆锥B. 以直角梯形的一腰为轴旋转所得的旋转体是圆台C. 圆柱、圆锥、圆台的底面都是圆D. 圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径3.下列说法错误的是().A. 若棱柱的底面边长相等,则它的各个侧面的面积相等B. 九棱柱有9条侧棱,9个侧面,侧面为平行四边形C. 六角螺帽、三棱镜都是棱柱D. 三棱柱的侧面为三角形4.用一个平面去截正方体,所得的截面不可能是().A. 六边形B. 菱形C. 梯形D. 直角三角形5.下列说法正确的是().A. 平行于圆锥某一母线的截面是等腰三角形B. 平行于圆台某一母线的截面是等腰梯形C. 过圆锥顶点的截面是等腰三角形D. 过圆台上底面中心的截面是等腰梯形6.设圆锥母线长为l,高为2l,过圆锥的两条母线作一个截面,则截面面积的最大值为.7.若长方体的三个面的面积分别为62cm,32cm,22cm,则此长方体的对角线长为.8.在边长a为正方形ABCD 中,E、F分别为AB、BC 的中点,现在沿DE、DF 及EF 把△ADE、CDF 和△BEF 折起,使A、B、C 三点重合,重合后的点记为P .问折起后的图形是个什么几何体?它每个面的面积是多少?§1.1.2 圆柱、圆锥、圆台、球及简单组合体的结构特征学习目标:1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 能概述圆柱、圆锥、圆台台体、球的结构特征;4. 能描述一些简单组合体的结构.学习过程:一、课前准备(预习教材P5~ P7,找出疑惑之处)复习:①______________________________多面体,______________ __ 叫旋转体.②棱柱的几何性质:_______是对应边平行的全等多边形,侧面都是________,侧棱____且____,平行于底面的截面是与_____全等的多边形;棱锥的几何性质:侧面都是______,平行于底面的截面与底面_____,其相似比等于____________.引入:上节我们讨论了多面体的结构特征,今天我们来探究旋转体的结构特征. 二、新课导学※探索新知探究1:圆柱的结构特征问题:观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?圆柱用表示新知1;以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做圆柱(circular cylinder),旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线,如图所示:圆柱用表示它的轴的字母表示,图中的圆柱可表示为OO .圆柱和棱柱统称为柱体.探究2:圆锥的结构特征问题:下图的实物是一个圆锥,与圆柱一样也是平面图形旋转而成的. 仿照圆柱的有关定义,你能定义什么是圆锥以及圆锥的轴、底面、侧面、母线吗?试在旁边的图中标出来.新知2:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫圆锥.圆锥也用表示它的轴的字母表示.棱锥与圆锥统称为锥体.探究3:圆台的结构特征问题:下图中的物体叫做圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?新知3;直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustum of a cone).用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分也是圆台. 圆台和圆柱、圆锥一样,也有轴、底面、侧面、母线,请你在上图中标出它们并把圆台用字母表示出来. 棱台与圆台统称为台体. 反思:结合结构特征,从变化的角度思考,圆台、圆柱、圆锥三者之间有什么关系?探究4:球的结构特征问题:球也是旋转体,怎么得到的?新知4:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solid sphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表示球心的字母O表示,如球O .探究5:简单组合体的结构特征问题:矿泉水塑料瓶由哪些几何体构成?灯管呢?新知5:由具有柱、锥、台、球等简单几何体组合而成的几何体叫简单组合体.现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.典型例题例将下列几何体按结构特征分类填空:⑴集装箱⑵运油车的油罐⑶排球⑷羽毛球⑸魔方⑹金字塔⑺三棱镜⑻滤纸卷成的漏斗⑼量筒⑽量杯⑾地球⑿一桶方便面⒀一个四棱锥形的建筑物被飓风挂走了一个顶,剩下的上底面与地面平行;①棱柱结构特征的有________________________;②棱锥结构特征的有________________________;③圆柱结构特征的有________________________;④圆锥结构特征的有________________________;⑤棱台结构特征的有________________________;⑥圆台结构特征的有________________________;⑦球的结构特征的有________________________;⑧简单组合体______________________________三、总结提升※学习小结1. 圆柱、圆锥、圆台、球的几何特征及有关概念;2. 简单组合体的结构特征.※知识拓展圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角形. 当堂检测(时量:5 分钟满分:10 分)1.Rt∆ABC三边长分别为3、4、5,绕着其中一边旋转得到圆锥,对所有可能描述不对的是()A.是底面半径3 的圆锥B.是底面半径为4 的圆锥C.是底面半径5 的圆锥D.是母线长为5 的圆锥2. 下列命题中正确的是().A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线3. 一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为______4. 用一个平面截半径为25cm 的球,截面面积是49π2c m cm2 ,则球心到截面的距离为多少?1.右图的几何体是由下面哪个平面图形旋转得到的().A. B.C. D. 2.下列几何体的轴截面一定是圆面的是().A. 圆柱B. 圆锥C. 球D. 圆台3.把直角三角形绕斜边旋转一周,所得的几何体是().A. 圆锥B.圆柱C. 圆台D.由两个底面贴近的圆锥组成的组合体4.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是().A.0 B.6C.快D.乐5.圆锥的底面半径为r,高为h,在此圆锥内有一个内接正方体,则此正方体的棱长为() A. rh r h + B. 2rh r h + C. 222rh h r + D.2rh h r + 6.三棱柱的底面为正三角形,侧面是全等的矩形,内有一个内切球,已知球的半径为R ,则这个三棱柱的底面边长为 . 7.(07年安徽.理15)在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 (写出所有正确结论的编号..).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体. ※能力提高 8.正四棱锥(棱锥底面是正方形,侧面都是全等等腰三角形)有一个内接正方体,它的顶点分别在正四棱锥的底面内和侧棱上. 若棱锥的底面边长为a ,高为h ,求内接正方体的棱长. 9.一个四棱台的上、下底面均为正方形,且面积分别为1S 、2S ,侧面是全等的等腰梯形,棱台的高为h ,求此棱台的侧棱长和斜高(侧面等腰梯形的高). 10.如右图,图①是正方体木块,把它截去一块,可能得到的几何体有②、③、④、⑤的木块. (1)我们知道,正方体木块有8个顶点,12条棱,6个面,请你将图②、③、④、⑤的木块的顶点数、棱数、面数填入下表:图号 顶点数 棱数 面数① 8 12 6② ③ ④⑤ (2)观察你填出的表格,归纳出上述各种木块的顶点数V 、棱数E 、面数F 之间的关系.(3)看图⑥中正方体的切法,请验证你所得的数量关系是否正确?§1.2.1 中心投影与平行投影 §1.2.2 空间几何体的三视图 教学目标:1. 了解中心投影与平行投影的区别; 2. 能画出简单空间图形的三视图;3. 能识别三视图所表示的空间几何体;一、课前准备 (预习教材 P 11~ P 14,找出疑惑之处)复习 1:圆柱、圆锥、圆台、球分别是_______绕着 ________、_______绕着___________、_______绕着__________、_______绕着_______旋转得到的 复习 2:简单组合体构成的方式:___________和__________________二、新课导学 ※ 探索新知探究 1:中心投影和平行投影的有关概念 正视图 侧视图问题:中午在太阳的直射下,地上会有我们的影子,晚上我们走在路灯旁身后也会留下长长的影子,你知道这是什么现象吗?为什么影子有长有短?新知1:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影. 其中光线叫投影线,留下物体影子的屏幕叫投影面. 光由一点向外散射形成的投影叫做中心投影,中心投影的投影线交于一点.在一束平行光照射下形成的投影叫做平行投影,平行投影的投影线是平行的.在平行投影中,投影线正对着投影面时叫正投影,,否则叫斜投影思考:中午太阳的直射是什么投影?路灯、蜡烛的照射是什么投影?试试:在下图中,分别作出圆在中心投影和平行投影中正投影的影子结论:中心投影其投影的大小随物体与投影中心间距离的变化而变化;平行投影其投影的大小与这个平面图形的形状和大小是完全相同探究2:柱、锥、台、球的三视图问题:我们学过的几何体(柱、锥、台、球),为了研究的需要,常常要在纸上把它们表示出来,该怎么画呢?能否用平行投影的方法呢? 新知2:为了能较好把握几何体的形状和大小,通常对几何体作三个角度的正投影.一种是光线从几何体的前面向后面正投影得到投影图,这种投影图叫几何体的正视图;一种是光线从几何体的左面向右面正投影得到投影图,这种投影图叫几何体的侧视图;第三种是光线从几何体的上面向下面正投影得到投影图,这种投影图叫几何体的俯视图.几何体的正视图、侧视图和俯视图称为几何体的三视图.一般地,侧视图在正视图的右边,俯视图在正视图的下边.三视图中,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示. 下图是一个长方体的三视图.思考:仔细观察上图长方体和下图圆柱的三视图,你能得出同一几何体的三视图在形状、大小方面的关系吗?能归纳三视图的画法吗?小结:1.正视图反映物体的长度和高度,俯视图反映的是长度和宽度,侧视图反映的是宽度和高度;2.正视图和俯视图高度相同,俯视图和正视图长度相同,侧视图和俯视图宽度相同;3.三视图的画法规则:①正视图、侧视图齐高,正视图、俯视图长对正,俯视图、侧视图宽相等,即“长对正”、“高俯视图平齐”、“宽相等”;②正、侧、俯三个视图之间必须互相对齐,不能错位。
高中数学 棱柱、棱锥、棱台的教案 新人教A版必修2
棱柱、棱锥、棱台结构特征一、内容与内容解析内容:棱柱、棱锥、棱台的结构特征。
内容解释:本节课内容有些是学生熟悉的,如长方体;本课要解决棱柱、棱锥、棱台的结构特征问题,从思想方法看,主要涉及类比、转化的思想方法,学习用联系观点看问题,建立棱柱、棱锥、棱台之间的联系。
二、教学目标在棱柱、棱锥、棱台概念形成过程中,培养学生观察、分析抽象概括能力及类比的思想方法,使学生理解并能归纳出棱柱、棱锥、棱台的结构特征。
三、教学的重点与难点重点:感受大量空间实物及模型,概括出棱柱、棱锥、棱台的结构特征。
难点:如何让学生概括棱柱、棱锥、棱台的结构特征。
四教法分析在教学中,不仅要使学生“知其然〞而且要使学生“知其所以然〞,我们在以师生既为主体,又为客体的原那么下,展现获取知识和方法的思维过程。
基于本节课的特点,应着重采用类比联想、研究探讨、直观想象、启发诱导、建立模型、学会应用、发展潜能、形成能力、提高素质。
由于本节课安排在立体几何学习的早期,正是进一步培养学生形成空间观念和提高学生逻辑思维能力的最正确时机,因此,在教学中,一方面通过电教手段,把某些概念,性质或知识关键点制成了投影片,既节省时间,又增加其直观性和趣味性,起到事半功倍的作用;另一方面,让学生体会知识发生、发展的过程及其规律,从而提高学生分析和解决实际问题的能力。
五、教学过程设计(一)创设情境,揭示课题引言:经典的建筑给人以美的享受,你想知道其中的奥秘吗?今天我们就来探索这些美的根源,首先我们来欣赏一段影视资料,通过这段影视资料,我们知道这些建筑占据着空间的一部分,如果我们只考虑这些物体的形状与大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形叫空间几何体,本节我们主要从结构特征方面来认识几种基本空间几何体。
设计意图:展示经典建筑图形及欣赏从各个角度看金字塔的影视资料都为本节的学习作铺垫,让学生体会教学与生活联系紧密,激起学生学习兴趣。
〔二〕新课讲授1.提问新知问题1:观察下面3个几何体具有怎样的特点?教师:对于多面体这个概念我们并不陌生,下面我们来看有关多面体的几个知识。
人教课标版高中数学必修2《多面体与旋转体概念、棱柱》教学设计
1.1 空间几何体的结构1.1.1 多面体与旋转体概念、棱柱一、教学目标(一)核心素养通过这节课学习,了解多面体与旋转体的概念、了解棱柱的定义.能够描述现实生活中简单物体的结构,学会建立几何模型研究空间图形,培养数学建模的思想.(二)学习目标1.了解多面体的顶点,棱,表面,对角面的定义.2.结合定义,会判断一个几何体是否为棱柱.3.知道直棱柱,正棱柱,平行六面体的定义.(三)学习重点1.准确理解棱柱的定义.2.棱柱的分类.3.棱柱的表示方法.(四)学习难点1.判断某个几何体是否为棱柱.2.正确区分棱柱的体对角线和面对角线,棱柱的侧面和底面,棱柱的高和侧棱.3.对旋转体的直观理解.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第2,3页,观察课本P2图1.1-1的物体,这些图片中的物体具有什么样的几何结构特征?你能对它们进行分类吗?填空:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等.2.预习自测(1)下列几何体是棱柱的有()A.5个B.4个C.3个D.2个【答案】D.【知识点】棱柱的结构特征【解题过程】由棱柱的定义可知,棱柱中,有两个面互相平行,则可以排除②⑤,又棱柱中,有两个互相平行的底面,其余各面都是四边形,则可以排除④⑥.【思路点拨】由棱柱定义来判断(2)三棱柱共有()个顶点A.4B.5C.6D.7【答案】C.【知识点】棱柱的结构特征【解题过程】n棱柱的顶点个数为2n个,故选C.【思路点拨】熟悉棱柱的定义.(3)四棱柱有()个表面A.5B.6 C.7D.8【答案】B.【知识点】四棱柱的定义【解题过程】四棱柱有上下两个底面和四个侧面,故选B.【思路点拨】棱柱有多少个表面,可以先找两个底面,再数其侧面个数即可.(二)课堂设计1.知识回顾2.问题探究探究一归纳提炼出多面体与旋转体,棱柱的定义★●活动①归纳提炼概念请同学们观察课本P2图1.1-1的物体,学生观察思考,发现上图中的物体大体可分为两大类.其中(2),(5),(7),(9),(13),(14),(15),(16)具有相同的特点:组成几何体的每个面都是平面图形,并且都是平面多边形;(1),(3),(4),(6),(8),(10),(11),(12)具有相同的特点:组成它们的面不全是平面图形.想一想,我们应该给上述两大类几何体取个什么名称才好呢?学生各抒己见,然后老师归纳总结.第一类:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.按围成多面体的面数,多面体分为:四面体、五面体、六面体、……我们后面即将学习的棱柱、棱锥、棱台均是多面体.思考:一个多面体最少有个面答案:4第二类:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.圆柱、圆锥、圆台、球均是旋转体.【设计意图】从生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程.●活动②深入挖掘概念与其他多面体相比,图片中的多面体(5)、(7)、(9)具有什么样的共同特征?让学生积极思考,积极发言,为引出棱柱的概念做准备.教师总结:共同特点:有两个面平行,其余的面都是平行四边形.像这样的几何体我们称为棱柱.师生共同完成棱柱的定义:两个平面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体称为棱柱.在棱柱中,两个互相平行的面叫做棱柱的底面;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.表示法:用表示底面各顶点的字母表示棱柱.分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱……【设计意图】通过对多面体内涵与外延的理解,引出本节课重点:棱柱的定义.探究二通过点、面、线等要素对棱柱进行直观分析●活动①认识棱柱的顶点,底面,侧面,侧棱,对角线等结合棱柱的定义,请学生看下图后回答问题.让学生分别指出这些几何图形是几棱柱,它们有几个顶点,有几个表面,它有几条侧棱,有几个对角面,有几条体对角线,有几条面对角线.教师阐述棱柱的表示方法:用表示底面的各顶点的字母表示棱柱,如上图,四棱柱、五棱柱、六棱柱可分别表示为、、;【设计意图】通过直观图形,加深对棱柱概念的理解.●活动②对概念的反面理解思考:有两个面平行,其余各面都是平行四边形的几何体是不是棱柱?教师变更棱柱的定义,让学生判断正误,进一步加深对棱柱定义的理解答:不一定是棱柱.可举反例.如下图几何体有两个面平行,其余各面都是平行四边形,但它不是棱柱.【设计意图】从反面加深对棱柱的认识.探究三棱柱的其他探讨★●活动①棱柱的另一种分类方式按照侧棱是否和底面垂直,棱柱可分为斜棱柱和直棱柱.侧棱和底面垂直的棱柱叫做直棱柱.直棱柱的每个侧面都是矩形.侧棱和底面不垂直的棱柱叫做斜棱柱.请学生思考回答,下图中有几个直棱柱?答案:有两个直棱柱.老师补充两个概念,为以后的教学做铺垫.平行六面体:底面是平行四边形的四棱柱.正棱柱:底面是正多边形的直棱柱.【设计意图】对直棱柱和正棱柱有直观印象,为后面的学习做铺垫.●活动②巩固基础,检查反馈例1 以下那种几何体属于多面体?()A.球B.圆柱C.圆锥D.四面体【知识点】多面体与旋转体的定义.【数学思想】【解题过程】选项A,B,C均为旋转体,故答案为D.【思路点拨】直接套用定义.【答案】D.例2 下列说法中正确的是()A.棱柱的两个互相平行的平面一定是棱柱的底面B.棱柱中所有的棱长都相等C.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形D.棱柱的面中,至少有两个面互相平行【知识点】棱柱的定义.【数学思想】【解题过程】棱柱的侧面也可能互相平行,比如正方体,故A错误.棱柱的棱长未必全部相等,比如一般的长方体,故B错误.棱柱的底面可以是任意多边形,故C错误.棱柱的上下底面一定互相平行,故D正确.【思路点拨】正确理解棱柱的定义.【答案】D.同类训练在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行【知识点】棱柱的定义.【数学思想】【解题过程】四棱柱的相对表面可以互相平行,故A错误.棱柱的侧棱和底面的边可以相交,故B错误.棱柱的底面可以是三角形,故C错误.由棱柱的定义可知D正确.【思路点拨】正确理解棱柱的定义.【答案】D.【设计意图】巩固棱柱的概念.●活动③强化提升、灵活应用例3 如下图,已知长方体ABCD-A1B1C1D1,过BC和AD分别作一个平面交底面A1B1C1D1于EF,PQ,则长方体被分成的三个几何体中,棱柱的个数是______.【知识点】棱柱的直观认识.【数学思想】空间想象. 【解题过程】由棱柱的定义可得有3个.分别为:三棱柱DQ D AP A 11-,三棱柱CF C BE B 11-,四棱柱DCFQ ABEP -【思路点拨】逐一分析. 【答案】3个.3.课堂总结知识梳理(1)由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.按围成多面体的面数,多面体分为:四面体、五面体、六面体、……(2)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.(3)两个平面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体称为棱柱.在棱柱中,两个互相平行的面叫做棱柱的底面;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(4)按底面多边形的边数分为三棱柱、四棱柱、五棱柱……(5)按照侧棱是否和底面垂直,棱柱可分为斜棱柱和直棱柱.(6)底面是平行四边形的四棱柱叫平行六面体.(7)底面是正多边形的直棱柱叫正棱柱.重难点归纳:棱柱定义的三个核心要素(1)两个平面互相平行.(2)其余各面都是四边形.(3)每相邻两个四边形的公共边都互相平行.(三)课后作业基础型 自主突破1.下列说法错误的是( )A .多面体至少有四个面B .九棱柱有9条侧棱,9个侧面,侧面为平行四边形C .长方体、正方体都是棱柱D .三棱柱的侧面为三角形【知识点】多面体和棱柱的概念.【数学思想】 【解题过程】多面体中四面体的面最少,有四个,故A 正确.由棱柱定义知道B ,C 正确.棱柱的侧面均为平行四边形,故D 错误.【思路点拨】准确理解棱柱定义.【答案】D . 2.已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则( )A .E F D CB A ⊆⊆⊆⊆⊆B . E D F BC A ⊆⊆⊆⊆⊆ C .E FD B A C ⊆⊆⊆⊆⊆D .它们之间不都存在包含关系【知识点】特殊棱柱的关系.【数学思想】【解题过程】根据它们的定义分析即可.【思路点拨】仔细区分各种特殊棱柱.【答案】B . 3.一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成( ).A .棱锥B .棱柱C .平面D .长方体【知识点】棱柱定义.【数学思想】运动变化的思想 【解题过程】首先排除A ,C注意到题目说“不平行于矩形所在平面”,排除D.选择B【思路点拨】正确理解题目讲述的运动过程.【答案】B.4.右图中的几何体是由哪个平面图形旋转得到的()A.B.C.D.【知识点】旋转体的定义.【数学思想】运动变化的思想【解题过程】三角形旋转产生圆锥,直角梯形旋转产生圆柱,选择A.【思路点拨】熟悉简单平面图形旋转后产生的几何体.【答案】A.5.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()条A.20 B.15 C.12 D.10【知识点】棱柱对角线的定义.【数学思想】枚举.【解题过程】正五棱柱任意不相邻的两条侧棱可确定一个平面,每个平面可得到正五棱柱的两条对角线,五个平面共可得到10条对角线,故选D.【思路点拨】正确理解对角线的含义.【答案】D.6.如下图所示,一个圆环绕着同一个平面内过圆心的直线旋转180°,想象并说出它形成的几何体的结构特征.【知识点】旋转体的定义.【数学思想】运动变化的思想 【解题过程】圆在转动过程中产生球,圆环转动过程中产生一个大球和一个小球,故本题形成的几何体为一个中间空心的球体.【思路点拨】想象出圆转动产生球的过程. 【答案】一个大球内部挖去一个同球心且半径较小的球.能力型 师生共研7.如下图,正方形ABCD 中,E ,F 分别为CD ,BC 的中点,沿AE ,AF ,EF 将其折成一个多面体,则此多面体共有 条棱.【知识点】多面体展开图.【数学思想】【解题过程】此多面体由四个面构成,故为四面体,它有六条棱.【思路点拨】想象出该多面体的形状. 【答案】6.8.在下图所示的三棱柱ABC -111C B A 中,请连接三条线,把它分成三部分,使每一部分都是一个四面体.【知识点】四面体的概念.【数学思想】【解题过程】如下图,连接A 1B ,BC 1,A 1C ,则三棱柱ABC -A 1B 1C 1被分成三部分,形成三个三棱锥,分别是A 1-ABC ,A 1-BB 1C 1,A 1-BCC 1.【思路点拨】不断尝试构造符合题意的分割方式.【答案】如图.探究型多维突破9.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,沿该正方体的一些棱将正方体剪开,外面朝上展平,得到下面的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下【知识点】柱体展开图.【数学思想】运动变化.【解题过程】将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.故选B.【思路点拨】发挥空间想象能力将正方体还原.【答案】B.10.已知一个长方体共顶点的三个面的面积分别是2、3、6,这个长方体的对角线长是________【知识点】长方体对角线长度公式.【数学思想】方程思想.【解题过程】设该长方体的长宽高分别为z,,由已知可得:yx,2=xy ;3=yz ;6=xz ,解得3,1,2===z y x对角线6222=++=z y x d .【思路点拨】设未知数,用它们表示已知条件. 【答案】6.自助餐1.棱柱至少有( )个表面.A .3个B .4个C .5个D .6个【知识点】棱柱定义.【数学思想】【解题过程】三棱柱表面最少,有五个表面.【思路点拨】考察极端情形.【答案】C . 2.给出下列命题,其中正确的个数为( ).(1)直线绕定直线旋转形成柱面;(2)曲线平移一定形成曲面;(3)直角三角形绕它的一条边旋转形成一个圆锥;(4)半圆绕定直线旋转形成球.A .0个B .1个C .2个D .3个【知识点】旋转体定义.【数学思想】 【解题过程】(1)可能形成锥面;(2)可能形成平面;(3)绕斜边旋转形成两个圆锥;(4)半圆未必绕直径旋转;故全部错误.【思路点拨】尽量寻找反例. 【答案】A .3.正方体有 个对角面.【知识点】正方体的性质.【数学思想】枚举法【解题过程】逐一考察知正方体有六个对角面. 【思路点拨】枚举时制定一个分类标准,做到不重不漏.对于棱柱,不相邻的两条侧棱确定的面叫做对角面.正方体是特殊棱柱.【答案】6.4.下列判断正确的是________ (填序号).(1)直平行六面体是长方体;(2)正四棱柱是长方体;(3)各个侧面都是矩形的四棱柱是长方体;(4)底面是矩形的四棱柱是长方体.【知识点】特殊柱体的定义.【数学思想】【解题过程】(1)底面可能是菱形;(2)正确;(3)底面可能是三角形;(4)可能是斜四棱柱,故只有(2)正确.【思路点拨】弄清各种特殊棱柱的定义.【答案】(2).5.下图是边长为1 m的正方体,有一蜘蛛潜伏在A处,B处有一小虫被蜘蛛网粘住,请制作出实物模型,将正方体剪开,描述蜘蛛爬行的最短路线.【知识点】柱体展开图.【数学思想】分类讨论【解题过程】爬行路线如下图(1)—(6)所示:分别展开,算出直线距离.可知AB 间的最短距离为A 、B 两点间的线段的长51222=+.【思路点拨】平面内,两点间线段最短. 【答案】5.6.一个棱柱有10个顶点,所有的侧棱长的和为60 cm ,求每条侧棱的长度.【知识点】棱柱的顶点和侧棱定义.【数学思想】 【解题过程】n 棱柱有2n 个顶点,由于此棱柱有10个顶点,那么此棱柱为五棱柱,又因棱柱的侧棱都相等,五条侧棱长的和为60 cm ,可知每条侧棱长为12 cm .【思路点拨】设未知数,列方程求解. 【答案】12 cm .。
高中数学 1.1.1空间几何体的结构特征教学设计 新人教A
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
三、典例分析
例1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)
例2.棱柱的何两个平面都可以作为棱柱的底面吗?
练习:课本P8,习题1.1 A组第1题。
例3.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
四、拓展提高
棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
二、新知探究
(一)创设情景,揭示课题
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
教学设计3:第1课时 多面体的结构特征
第一章空间几何体第一节多面体的结构特征一、教学内容解析本节课是人教A版普通高中课程标准实验教科书必修二第一章第一节“空间几何体的结构特征”,是一节概念课,也是立体几何起始课。
在义务教育阶段,学生已经掌握了构成空间几何体的基本元素是点、线、面,以及线的分类和面的分类,而且理解了点动成线,线动成面,可以用运动的思想去考虑几何问题。
本节内容是对义务教育阶段的拓展和延伸,即从面成体的角度对空间几何体进行分类,抽象概括出柱、锥、台、球的结构特征,并用准确的数学语言刻画。
在义务教育阶段直观认识正方体、长方体等几何体的基础上,进一步研究了棱柱等常见几何体的结构特征,衔接了义务教育阶段“空间与图形”的内容。
本节知识也为后面学习空间几何体的三视图,以及求面积和体积问题提供了载体,为后面学习点、线、面的位置关系奠定了基础。
本节将采用直观感知、观察发现、抽象概括、思辨论证等基本方法,为进一步培养学生的空间观念,建构立体几何体系做好良好的铺垫。
渗透了特殊到一般,个性到共性,分类讨论、以及类比归纳等数学思想方法。
鉴于此,本节课的重点是:让学生在感受大量空间实物及模型的基础上,抽象概括出柱、锥、台、球的结构特征。
二、教学目标设置新课程理念强调:让学生亲身体验知识的形成过程。
根据学生现有的知识水平,让学生自己制作几何模型和搜集生活中常见的柱、锥、台、球体的实物及图片,让学生体会数学来源于生活,并初步体验从实物到空间几何体的抽象过程。
这既是对义务教育阶段几何学习的拓展和延伸,也为学生进一步学习立体几何的基础知识和基本技能,培养学生的空间想象能力打下基础,更为后面学习几何体的表面积、体积等问题打下很好的基础,也为整个立体几何的学习提供了直观认知,比如点线关系、点面关系、线线关系、线面关系和面面关系。
根据本节内容的特点以及学生已有的知识水平,制定如下的教学目标:(1)知识与技能:会用准确的语言概括出柱、锥、台、球的结构特征,并能用特征结构进行判断;(2)过程与方法:通过对实物模型的抽象概括、归纳,经历知识的构建过程,在学生自主、合作、探究的学习过程中,掌握柱、锥、台、球的结构特征.(3)情感态度与价值观:通过学生课前的准备工作,激发了学生学习数学的兴趣,体会了数学来源于生活;通过对本节课知识的学习,使学生初步建立空间观念,培养学生的空间想象能力和运用图形语言进行交流的能力,树立学好数学的信心。
高中数学 1.1空间几何体的结构特征学案新人教A版必修2
1.1空间几何体的结构【学习目标】1.认识组成我们的生活世界的各种各样的多面体和旋转体;2.认识和把握棱柱、棱锥、棱台、圆柱、圆锥、圆台、球体的几何结构特征;P页,完成下列问题:【课前学习】阅读课本7-21.空间几何体的概念:如果只考虑物体的________和________,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2. 特殊的几何体:①多面体:一般地,由若干个 ________围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的________;相邻两个面的 ___叫做多面体的棱;棱与棱的 ___叫做多面体的顶点.②旋转体:由一个平面图形绕它所在平面内的一条定直线旋转所形成的叫做旋转体,这条定直线叫做旋转体的________3. 柱、锥、台、球的结构特征(1) 棱柱的结构特征:一般地,有两个面,其余各面都是 ___,并且每相邻两个四边形的公共边都,由这些面所围成的多面体叫做棱柱.(2) 棱锥的结构特征:一般地,有一个面是 ___,其余各面都是,由这些面所围成的多面体叫做棱锥.(3) 棱台的结构特征:用一个________于棱锥底面的平面去截棱锥,之间的部分,这样的多面体叫做棱台.(4) 圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱。
叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的________;平行于轴的边旋转而成的曲面叫做圆柱的________;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的________(5).圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做________(6).圆台的结构特征:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做________ ,与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线.(7).球的结构特征:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做________,简称球.半圆的圆心叫做球的________,半圆的半径叫做球的________,半圆的直径叫做球的________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多面体的结构特征学习目标1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.知识点一空间几何体的定义、分类及相关概念思考观察下面两组物体,你能说出各组物体的共同点吗?答案(1)几何体的表面由若干个平面多边形围成.(2)几何体的表面由平面图形绕其所在平面内的一条定直线旋转而成.1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.多面体与旋转体思考观察下列多面体,有什么共同特点?答案(1)有两个面相互平行;(2)其余各面都是平行四边形;(3)每相邻两个四边形的公共边都互相平行.棱柱的定义、分类、图示及其表示思考观察下列多面体,有什么共同特点?答案(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形.棱锥的定义、分类、图形及表示思考观察下列多面体,分析其与棱锥有何区别与联系?答案(1)区别:有两个面相互平行.(2)联系:用平行于棱锥底面的平面去截棱锥,其底面和截面之间的部分即为该几何体.棱台的定义、分类、图形及表示类型一棱柱的结构特征例1 试判断下列说法是否正确:(1)棱柱中互相平行的两个面叫做棱柱的底面;(2)棱柱的侧棱都相等,侧面是平行四边形.解(1)错误.如长方体中相对侧面互相平行.(2)正确.由棱柱的定义可知,棱柱的侧棱互相平行且相等,且各侧面都是平行四边形.反思与感悟概念辨析题常用方法:(1)利用常见几何体举反例;(2)从底面多边形的形状、侧面形状及它们之间的位置关系、侧棱与底面的位置关系等角度紧扣定义进行判断.跟踪训练1 根据下列关于空间几何体的描述,说出几何体名称:(1)由6个平行四边形围成的几何体.(2)由8个面围成,其中两个面是平行且全等的六边形,其余6个面都是平行四边形.解(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)该几何体是六棱柱.类型二棱锥的结构特征例2 如图,几何体中,四边形AA1B1B为边长为3的正方形,CC1=2,CC1∥AA1,CC1∥BB1,请你判断这个几何体是棱柱吗?若是棱柱,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何体的特征.在立体图中画出截面.解(1)∵这个几何体的所有面中没有两个互相平行的面,∴这个几何体不是棱柱.(2)在四边形ABB1A1中,在AA1上取E点,使AE=2;在BB1上取F点,使BF=2;连接C1E、EF、C1F,则过C1、E、F的截面将几何体分成两部分,其中一部分是棱柱ABC—EFC1,其侧棱长为2;截去部分是一个四棱锥C1—EA1B1F,该几何体的特征为:有一个面为多边形,其余各面都是有一个公共顶点的三角形.反思与感悟认识一个几何体,要看它的结构特征,并且要结合它各面的具体形状,棱与棱之间的关系,分析它是由哪些几何体组成的组合体,并能用平面分割开.跟踪训练2 试从如图正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.解(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).类型三棱台的结构特征例3 有下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有( )A.0个 B.1个 C.2个 D.3个答案 A解析①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,故②③错.反思与感悟一个棱台的基本特征是上、下底面平行且相似,侧棱延长后交于一点,这是判断几何体是否为棱台的依据.跟踪训练3 已知四棱台的上底面、下底面分别是边长为4、8的正方形,各侧棱长均相等,且侧棱长为17,求四棱台的高.解 如图,在截面ACC 1A 1中,A 1A =CC 1=17,A 1C 1=42,AC =82,过A 1作A 1E ⊥AC 交AC 于点E .在Rt △A 1EA 中,AE =12(82-42)=22,A 1A =17,∴A 1E =A 1A 2-AE 2=172-222=3,即四棱台的高为3.1.下列说法中正确的是( ) A .棱柱的面中,至少有两个面互相平行 B .棱柱中两个互相平行的平面一定是棱柱的底面 C .棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形答案 A解析棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B 错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形.但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.下列说法中,正确的是( )A.有一个底面为多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体是棱锥B.棱柱的底面一定是平行四边形C.棱锥的底面一定是三角形D.棱柱的侧棱都相等,侧面都是全等的平行四边形答案 A3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形答案 D解析由于三棱柱的侧面为平行四边形,故选项D错.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C .棱柱与棱锥的组合体D .不能确定答案 A解析 形成的几何体前后两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,符合棱柱的定义.5.对棱柱而言,下列说法正确的序号是________.①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等.③棱柱中至少有2个面的形状完全相同.④相邻两个面的交线叫做侧棱. 答案 ①③解析 ①正确,根据棱柱的定义可知;②错误,因为侧棱与底面上棱长不一定相等;③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,棱柱中至少有两个面的形状完全相同;④错误,因为底面和侧面的交线不是侧棱.1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状. 2.各种棱柱之间的关系 (1)棱柱的分类棱柱⎩⎨⎧直棱柱⎩⎪⎨⎪⎧正棱柱一般的直棱柱斜棱柱(2)常见的几种四棱柱之间的转化关系3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:一、选择题1.下列说法正确的是( )A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱答案 D解析棱柱与棱锥的底面可以是任意多边形,A、B不正确.过棱锥的顶点的纵截面可以把棱锥分成两个棱锥,C不正确,应选D.2.具备下列条件的多面体是棱台的是( )A.两底面是相似多边形的多面体B.侧面是梯形的多面体C.两底面平行的多面体D.两底面平行,侧棱延长后交于一点的多面体答案 D解析棱台是由棱锥截得的,因此一个几何体要成为棱台应有两个条件:一是上、下底面平行;二是各侧棱延长后必须交于一点.选项C只具备一个条件,选项A、B则两条件都不具备.3.有两个面平行的多面体不可能是( )A.棱柱 B.棱锥 C.棱台 D.以上都错答案 B解析由棱锥的定义可得.4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2 B.1∶4 C.2∶1 D.4∶1解析由棱台的结构特征知,棱台上、下底面是相似多边形,面积比为对应边之比的平方,故选B.5.下图中不可能围成正方体的是( )答案 D6.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )A.20 B.15 C.12 D.10答案 D解析如图,在五棱柱ABCDE-A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共2×5=10(条).7.下列图形中,不是三棱柱的展开图的是( )二、填空题8.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm. 答案12解析因棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为605=12 cm.9.如图所示,在所有棱长为1的直三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.答案10解析将三棱柱沿AA1展开如图所示,则线段AD1即为最短路线,即AD1=AD2+DD21=10.10.在正方体上任意选择4个顶点,它们可能是如下各种几何图形的4个顶点,这些几何图形是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.答案①③④⑤解析如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD.则正确的说法是①③④⑤.11.如图,M是棱长为2 cm的正方体ABCD—A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________cm.答案13解析由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.三、解答题12.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面,EF,B′C′,BC是侧棱.截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面,A′D′,EF,BC,AD为侧棱.13.如图所示,有12个小正方体,每个正方体6个面上分别写着数字1,9,9,8,4,5,用这12个小正方体拼成一个长方体,那么图中看不见的那些小正方体的面有多少个,并求这些面上的数字和.解这12个小正方体,共有6×12=72个面,图中看得见的面共有3+4×4=19个,故图中看不见的面有72-19=53个,12个小正方体各个面的数字的和为(1+9+9+8+4+5)×12=432.而图中看得见的数字的和为131,所以看不见的那些小正方体的面上的数字的和为432-131=301.。