相关回归案例分析

合集下载

相关和回归的有趣案例

相关和回归的有趣案例

相关和回归的有趣案例
相关和回归是统计学中的重要概念,用于探索变量之间的关系。

以下是一些有趣的相关和回归案例:
1. 身高和体重:这是一个常见的相关和回归的例子。

一般来说,身高和体重之间存在正相关关系,即身高越高的人通常体重也越重。

通过回归分析,我们可以更精确地预测一个人的体重,给定其身高。

2. 考试分数和努力学习:这是一个典型的线性回归的例子。

一般来说,考试分数和努力学习之间存在正相关关系,即努力学习的人通常考试分数也更高。

通过回归分析,我们可以预测一个人在考试中的表现,给定其努力学习的程度。

3. 股票价格和通货膨胀:股票价格和通货膨胀之间可能存在一定的关系。

当通货膨胀率上升时,股票价格可能会下跌,因为通货膨胀可能导致消费者购买力下降,从而降低对商品和服务的消费需求,进而影响公司的盈利和股票价格。

4. 气候变化和冰川融化:气候变化和冰川融化之间存在相关性。

全球气候变暖可能导致冰川融化,因为温度升高会导致冰川融化。

通过分析气候变化和冰川融化的数据,我们可以更好地了解全球气候变化的趋势和影响。

5. 广告投入和销售额:广告投入和销售额之间可能存在一定的关系。

一般来说,广告投入越多,销售额也可能越高。

通过回归分析,我们可以预测销售额,给定广告投入的金额。

这些案例表明,相关和回归分析可以帮助我们更好地理解数据之间的关系,并为预测、决策提供有用的信息。

统计学案例——相关回归分析报告

统计学案例——相关回归分析报告

统计学案例——相关回归分析报告《统计学》案例——相关回归分析案例⼀质量控制中的简单线性回归分析1、问题的提出某⽯油炼⼚的催化装置通过⾼温及催化剂对原料的作⽤进⾏反应,⽣成各种产品,其中液化⽓⽤途⼴泛、易于储存运输,所以,提⾼液化⽓收率,降低不凝⽓体产量,成为提⾼经济效益的关键问题。

通过因果分析图和排列图的观察,发现回流温度是影响液化⽓收率的主要原因,因此,只有确定⼆者之间的相关关系,寻找适当的回流温度,才能达到提⾼液化⽓收率的⽬的。

经认真分析仔细研究,确定了在保持原有轻油收率的前提下,液化⽓收率⽐去年同期增长1个百分点的⽬标,即达到12.24%的液化⽓收率。

2、数据的收集⽬标值确定之后,我们收集了某年某季度的回流温度与液化⽓收率的30组数据(如上表),进⾏简单直线回归分析。

3.⽅法的确⽴设线性回归模型为εββ++=x y 10,估计回归⽅程为x b b y10?+= 将数据输⼊计算机,输出散点图可见,液化⽓收率y 具有随着回流温度x的提⾼⽽降低的趋势。

因此,建⽴描述y 与x 之间关系的模型时,⾸选直线型是合理的。

从线性回归的计算结果,可以知道回归系数的最⼩⼆乘估计值b 0=21.263和b 1=-0.229,于是最⼩⼆乘直线为x y229.0263.21?-= 这就表明,回流温度每增加1℃,估计液化⽓收率将减少0.229%。

(3)残差分析为了判别简单线性模型的假定是否有效,作出残差图,进⾏残差分析。

从图中可以看到,残差基本在-0.5—+0.5左右,说明建⽴回归模型所依赖的假定是恰当的。

误差项的估计值s=0.388。

(4)回归模型检验 a.显著性检验在90%的显著⽔平下,进⾏t 检验,拒绝域为︱t ︱=︱b 1/ s b1︱>t α/2=1.7011。

由输出数据可以找到b 1和s b1,t=b 1/ s b1=-0.229/0.022=-10.313,于是拒绝原假设,说明液化⽓收率与回流温度之间存在线性关系。

回归分析数据案例

回归分析数据案例

回归分析数据案例回归分析是一种用来研究变量之间关系的统计方法,在实际情况中有很多可以应用回归分析的案例。

下面以一个销售数据案例为例,详细介绍回归分析的应用。

某电商公司想要分析广告费用与销售额之间的关系,以便确定是否需要增加广告投入来提高销售额。

公司收集了一年的数据,包括每月的广告费用和销售额。

公司使用回归分析来研究广告费用和销售额之间的关系。

首先,需要确定自变量和因变量。

在这个案例中,广告费用是自变量,销售额是因变量。

然后,利用回归模型拟合数据,得到回归方程。

假设回归方程为:销售额= β0+ β1 * 广告费用其中,β0 是截距,表示在广告费用为 0 时的销售额;β1 是斜率,表示每单位广告费用对销售额的影响。

通过计算回归方程的参数,可以得到具体的值。

接下来,用实际数据计算回归方程的参数。

假设公司收集了一年的数据,总共 12 个月的广告费用和销售额。

通过回归分析软件,可以计算得到β0 和β1 的估计值。

假设计算结果为β0= 1000,表示当广告费用为 0 时,销售额约为 1000;β1 = 2,表示每多投入 1 单位的广告费用,销售额约增加 2。

通过计算回归方程的参数,可以预测未来的销售额。

假设公司计划增加下个月的广告费用为 5000,可以利用回归方程计算出销售额的预测值。

根据回归方程:销售额 = 1000 + 2 * 5000 = 11000预测出下个月的销售额为 11000。

公司还可以利用回归方程来评估广告费用对销售额的影响。

根据回归方程的斜率β1,可以计算出每单位广告费用对销售额的影响。

在这个案例中,β1=2,说明每多投入 1 单位的广告费用,销售额平均增加 2。

通过回归分析,公司可以了解广告费用和销售额之间的关系,判断是否需要增加广告投入来提高销售额。

如果回归方程的斜率显著大于 0,说明广告费用对销售额有显著的正向影响,公司可以考虑增加广告投入。

如果回归方程的斜率接近 0 或者小于 0,说明广告费用对销售额的影响较小或者负面,公司就需要重新评估广告策略。

回归分析案例数据

回归分析案例数据

回归分析案例数据回归分析是一种常用的统计方法,用于研究自变量和因变量之间的关系。

在实际应用中,回归分析常常用来预测因变量的值,或者解释自变量对于因变量的影响程度。

本文将介绍一个回归分析案例,并使用相关数据进行分析和解释。

案例背景和问题描述:假设你是一家电子商务公司的数据分析员,你的公司销售各种产品,包括电子设备、家居用品等。

为了提高销售额,公司希望了解广告投入和销售额之间的关系。

为了解决这个问题,你收集了一年中各个季度的广告投入和销售额的数据,并准备进行回归分析。

数据收集和处理:作为数据分析员,你首先需要收集和处理数据。

你可以从公司财务部门获取广告投入和销售额的数据。

将数据整理为表格形式,以便进行分析。

这里我们使用示例数据,如下所示:季度广告投入(万元)销售额(万元)--------------------------------------------------1 10 302 12 353 8 284 15 40回归分析:数据整理完毕之后,你可以使用回归分析方法来分析广告投入和销售额的关系。

在本案例中,广告投入是自变量,销售额是因变量。

你可以使用统计软件或者编程语言进行回归分析,计算回归方程的系数和相关统计指标。

回归方程可以用来预测销售额,同时也可以解释广告投入对销售额的影响程度。

在本案例中,使用最小二乘法进行回归分析,你可以得到以下结果:回归方程:销售额 = 3.5 + 2 * 广告投入R方值:0.92解释回归方程:根据回归方程的结果,可以得出以下几点解释:1. 回归方程的截距项是3.5,表示即使没有广告投入,销售额也可以达到3.5万元。

这可能是由于公司已经积累了一定的品牌影响力,客户会主动购买产品。

2. 回归方程中广告投入的系数是2,表示每增加1万元的广告投入,销售额将增加2万元。

这说明广告投入对于销售额有显著的正向影响。

3. R方值为0.92,表示回归方程可以解释销售额变异的92%。

相关分析回归分析案例

相关分析回归分析案例

相关分析
概念
种类
线性相关
变量之间关系
函数关系
相关关系
因果关系
互为因果关系
共变关系
确定性依存关系
随机性依存关系
种类
一元相关
多元相关
负 相 关
正 相 关
线性相关
曲线相关
x
y
正 相 关
x
y
负 相 关
x
y
曲线相关
x
y
不 相 关
Hale Waihona Puke 线性相关相关系数测定两变量是否线性相关?
定义式:
(2)D.W检验 D.W检验用于检验残差序列的自相关性。自相关性会影响模型参数估计值不具有最优性,使区间估计和预测区间的精度较低。J.Durbin和 G.S.Watson 于1951年提出的一种序列自相关的方法。简称DW检验。DW检验目前是检验自相关性的最常用方法,但它只适用于检验一阶自相关性。一般只需考察计算得到的DW值落入的区间,以确定模型自相关状态。判别准则 若0≤D.W ≤d,序列存在正相关; 若d< D.W <4- d ,序列无自相关; 若4-dL < D.W ≤4,序列存在负相关
3·相关分析测定相关程度和方向,回归分析用回归模型进行预测和控制。
y与x之间是一种相关关系,即当自变量x变化时,因变量y大体按某规律变化,两者之间的关系不能直观地看出来,需要用统计学的办法加以确定,回归分析就是研究随机现象中变量间关系的一种数理统计方法,相关关系存在着某种程度的不确定性。 身高与体重;矿物中A组分含量与B组分含量间的关系;分析化学制备标准工作曲线,浓度与吸光度间的关系。 求回归方程的方法,通常是用最小二乘法,其基本思想就是从并不完全成一条直线的各点中用数理统计的方法找出一条直线,使各数据点到该直线的距离的总和相对其他任何线来说最小,即各点到回归线的差分和为最小,简称最小二乘法。

回归分析中的案例分析解读

回归分析中的案例分析解读

回归分析是统计学中一种重要的分析方法,它用于探讨自变量和因变量之间的关系。

在实际应用中,回归分析可以帮助我们理解变量之间的相互影响,预测未来的趋势,以及解释一些现象背后的原因。

本文将通过几个实际案例,来解读回归分析在现实生活中的应用。

首先,我们来看一个销售数据的案例。

某公司想要了解广告投入对产品销量的影响,于是收集了一段时间内的广告投入和产品销量数据。

通过回归分析,他们得出了一个线性方程,表明广告投入对产品销量有显著的正向影响。

这个结论使得公司更加确定了增加广告投入的决策,并且在后续的实施中也取得了预期的销售增长。

接下来,我们来看一个医疗数据的案例。

一家医院想要探讨患者的年龄、性别、体重指数等因素对疾病治疗效果的影响。

通过回归分析,他们发现年龄和体重指数与治疗效果呈显著的负相关,而性别对治疗效果影响不显著。

这个研究结果为医院提供了重要的临床指导,使得医生们在治疗过程中更加关注患者的年龄和体重指数,以提高治疗效果。

除此之外,回归分析还可以应用在金融领域。

一家投资机构想要了解各种因素对股票价格的影响,于是收集了大量的股票市场数据。

通过回归分析,他们发现了一些关键的影响因素,比如市场指数、行业风险等,这些因素对股票价格都有一定的影响。

这些结论为投资机构提供了重要的决策参考,使得他们在投资过程中能够更加准确地评估风险和收益。

此外,回归分析还可以用于市场调研。

一家公司想要了解产品价格对销量的影响,于是进行了一次调研。

通过回归分析,他们发现产品价格与销量呈负相关关系,即产品价格越高,销量越低。

这个结论使得公司意识到自己的产品定价策略可能存在问题,于是他们调整了产品价格,并且在后续销售中取得了更好的效果。

总的来说,回归分析在实际生活中有着广泛的应用。

通过对一些案例的解读,我们可以看到回归分析在不同领域中的作用,比如市场营销、医疗、金融等。

通过回归分析,我们可以更加深入地了解变量之间的关系,从而为决策提供科学的依据。

回归分析实验案例数据

回归分析实验案例数据

回归分析实验案例数据引言:回归分析是一种常用的统计方法,用于探索一个或多个自变量对一个因变量的影响程度。

在实际应用中,回归分析有很多种,例如简单线性回归、多元线性回归、逻辑回归等。

本文将介绍一个回归分析实验案例,并分析其中的数据。

案例背景:一家汽车制造公司对汽车的油耗进行研究。

他们收集了一些汽车的相关数据,并希望通过回归分析来探究这些数据之间的关系。

数据收集:为了进行回归分析,他们收集了以下数据:1. 汽车型号:不同汽车型号的标识符。

2. 汽车价格:每辆汽车的价格,单位为美元。

3. 汽车速度:以每小时英里的速度来衡量。

4. 引擎大小:汽车引擎的容量大小,以升为单位。

5. 油耗:每加仑汽油行驶的英里数。

数据分析:通过对收集的数据进行回归分析,可以得出以下结论:1. 汽车价格与汽车引擎大小之间存在正相关关系。

即引擎越大,汽车价格越高。

2. 汽车速度与油耗之间呈现负相关。

即速度越高,油耗越大。

3. 汽车引擎大小与油耗之间存在正相关关系。

即引擎越大,油耗越大。

结论:基于以上分析结果,可以得出以下结论:1. 汽车价格受到引擎大小的影响,即引擎越大,汽车价格越高。

这一结论可以帮助汽车制造公司在制定价格策略时做出合理的决策。

2. 汽车速度与油耗之间呈现负相关。

这一结论可以帮助消费者在购买汽车时考虑速度对油耗的影响,从而选择更经济的汽车。

3. 汽车引擎大小与油耗之间存在正相关关系。

这一结论可以帮助汽车制造公司在设计引擎时考虑油耗因素,从而提高汽车的燃油效率。

总结:回归分析是一种有效的统计方法,可以用于探索数据间的关系。

通过对汽车制造公司收集的数据进行回归分析,我们发现了汽车价格、速度和引擎大小与油耗之间的关系。

这些分析结果对汽车制造公司制定价格策略、消费者购车以及提高燃油效率都具有重要的指导意义。

回归分析中的案例分析解读(Ⅲ)

回归分析中的案例分析解读(Ⅲ)

回归分析是一种统计学方法,用于研究自变量和因变量之间的关系。

它可以帮助我们理解和预测变量之间的关联性,对于数据分析和预测具有重要的作用。

在实际应用中,回归分析可以帮助我们解决许多实际问题,比如市场营销、经济预测、医疗研究等领域。

在本文中,我将通过一些案例分析来解读回归分析在实际问题中的应用。

案例一:市场营销假设我们是一家电商平台,我们希望了解用户购买行为与广告投放之间的关系。

我们收集了每位用户的购买金额作为因变量,广告投放金额作为自变量,以及其他可能影响购买行为的因素,比如用户年龄、性别、地理位置等作为控制变量。

通过回归分析,我们可以建立一个模型来预测用户购买金额与广告投放之间的关系。

通过这个模型,我们可以确定投放多少广告才能最大化用户购买金额,以及哪些因素对购买行为有显著的影响。

案例二:经济预测假设我们是一家投资公司,我们希望预测股票价格与宏观经济指标之间的关系。

我们收集了股票价格作为因变量,以及国内生产总值(GDP)、失业率、通货膨胀率等宏观经济指标作为自变量。

通过回归分析,我们可以建立一个模型来预测股票价格与宏观经济指标之间的关系。

通过这个模型,我们可以了解哪些经济指标对股票价格有显著的影响,从而更好地进行投资决策。

案例三:医疗研究假设我们是一家医药公司,我们希望了解药物剂量与治疗效果之间的关系。

我们收集了药物剂量作为自变量,治疗效果作为因变量,以及患者的年龄、性别、疾病严重程度等因素作为控制变量。

通过回归分析,我们可以建立一个模型来预测药物剂量与治疗效果之间的关系。

通过这个模型,我们可以确定最佳的药物剂量,从而更好地指导临床实践。

通过以上案例分析,我们可以看到回归分析在实际问题中的广泛应用。

它不仅可以帮助我们理解变量之间的关系,还可以帮助我们预测未来趋势和制定决策。

当然,回归分析也有一些局限性,比如对数据的假设要求较高,需要充分考虑自变量和因变量之间的因果关系等。

因此,在实际应用中,我们需要结合具体情况,慎重选择合适的回归模型,并进行充分的检验和验证。

回归分析案例资料

回归分析案例资料

回归分析案例现收集到若干年粮食产量以及受灾面积、农作物总播种面积、乡村从业人员、农用化肥施用折纯量等数据,利用多元线性回归分析,分析影响粮食产量的主要因素。

一、相关分析(相关矩阵)setwd("D:/Rdata")data<-read.csv(file=file.choose(),head=T)colnames(data)<-c("Y","X1","X2","X3","X4")dataX<-cor(data)Xpairs(data)结果显示分析X1与Y的相关系数较小,X2、X3、X4与Y的相关系数较大。

X3、X4可能存在较强的相关性。

二、多重共线性诊断kappa(X,,exact=T)结果显示K值<100说明共线性很小,K值在100到1000之间说明中等强度,K>1000存在严重共线性。

此处K=580.8733,说明存在多重共线性。

三、线性回归attach(data)lm.sol<-lm(Y~X1+X2+X3+X4)summary(lm.sol)结果显示分析F统计量的P-value<0.05,故线性回归显著。

X1、X3的系数显著,其他系数均不显著,2R为0.9023。

这很可能出现多重共线性。

综合kappa检验,确定是多重共线性引起的。

可用逐步回归法修正该模型。

lm.step<-step(lm.sol)summary(lm.step)结果显示分析删掉了X2、X4两个变量,F统计量的P-value<0.05,线性关系同样显著,常数项,X1、X3系数均显著。

2R=0.8966,略微有所降低。

综合来看,模型拟合较合适。

四、异方差检验library(lmtest)bptest(lm.step)结果显示分析p-value=0.1442>0.05 所以可以认为不具有异方差性,即残差是同方差的。

回归分析中的案例分析解读(十)

回归分析中的案例分析解读(十)

回归分析是统计学中一种重要的分析方法,用于探究自变量和因变量之间的关系。

在实际应用中,回归分析常常用于预测、解释和控制变量。

本文将通过几个实际案例,对回归分析进行深入解读和分析。

案例一:销售数据分析某电商平台想要分析不同广告投放对销售额的影响,他们收集了一段时间内的广告投放数据和销售额数据。

为了进行分析,他们利用回归分析建立了一个模型,以广告费用作为自变量,销售额作为因变量。

通过回归分析,他们发现广告费用与销售额之间存在着显著的正相关关系,即广告费用的增加会带动销售额的增加。

通过该分析,电商平台可以更好地制定广告投放策略,优化营销预算,提高销售效益。

案例二:医疗数据分析一家医疗机构收集了一组患者的基本信息、生活习惯以及健康指标等数据,希望通过回归分析来探究生活习惯对健康指标的影响。

他们建立了一个回归模型,以吸烟、饮酒、饮食习惯等自变量,健康指标作为因变量。

通过回归分析,他们发现吸烟和饮酒对健康指标有负向影响,而良好的饮食习惯与健康指标呈正相关关系。

这些发现可以帮助医疗机构更好地进行健康干预和宣教,促进患者的健康改善。

案例三:金融数据分析一家金融机构收集了一段时间内的股票价格、市场指数等数据,希望通过回归分析来探究市场指数对股票价格的影响。

他们建立了一个回归模型,以市场指数作为自变量,股票价格作为因变量。

通过回归分析,他们发现市场指数与股票价格存在着较强的正相关关系,即市场指数的波动会对股票价格产生显著影响。

这些结果可以帮助金融机构更好地进行投资策略的制定和风险控制。

通过以上案例分析,我们可以看到回归分析在不同领域的应用。

回归分析不仅可以帮助人们理解变量之间的关系,还可以用于预测和控制变量。

在实际应用中,我们需要注意回归分析的假设条件、模型选择和结果解释等问题,以确保分析的准确性和可靠性。

在回归分析中,我们需要注意变量选择、模型拟合度和结果解释等问题。

另外,回归分析也有一些局限性,比如无法确定因果关系、对异常值敏感等问题。

回归分析数据案例

回归分析数据案例

回归分析数据案例回归分析是一种常用的统计方法,用于探究变量之间的关系。

在实际应用中,回归分析可以帮助我们理解和预测变量之间的相互影响,为决策提供依据。

下面,我们通过一个实际的数据案例来介绍回归分析的应用。

案例背景:某公司想要了解员工的工作满意度与工作绩效之间的关系,以便更好地管理和激励员工。

为了达到这个目的,他们进行了一项调查,收集了员工的工作满意度得分和工作绩效得分。

数据收集:在这个案例中,我们收集了100名员工的工作满意度得分和工作绩效得分。

工作满意度得分是基于员工对工作的满意程度进行评分,分数范围为1-10分;工作绩效得分是基于员工在工作中的表现进行评分,分数范围为1-100分。

数据分析:为了探究工作满意度与工作绩效之间的关系,我们进行了回归分析。

首先,我们绘制了工作满意度得分和工作绩效得分的散点图,发现两者呈现一定的线性关系。

接下来,我们利用回归分析模型进行了拟合,得到了回归方程,Y = 0.8X + 20。

这个回归方程告诉我们,工作满意度每提高1分,工作绩效就会提高0.8分。

结论:通过回归分析,我们发现员工的工作满意度与工作绩效之间存在一定的正向关系,即工作满意度提高,工作绩效也会相应提高。

这为公司提供了重要的管理启示,他们可以通过提升员工的工作满意度来促进工作绩效的提升,从而实现组织的发展目标。

总结:回归分析是一种强大的工具,可以帮助我们理解变量之间的关系,为决策提供支持。

在实际应用中,我们需要收集准确的数据,进行严谨的分析,才能得出可靠的结论。

希望本文的案例分析能够帮助大家更好地理解回归分析的应用,为实际问题的解决提供参考。

通过以上案例分析,我们可以看到回归分析在实际工作中的应用价值。

希望这个案例能够帮助大家更好地理解回归分析的概念和方法,为实际问题的解决提供参考。

同时也提醒大家在进行回归分析时,要注意数据的准确性和分析方法的严谨性,才能得出可靠的结论。

感谢大家的阅读!。

案例一(回归分析)

案例一(回归分析)
模型一:关于 y(地区生产总值)和 x2(工业总产值)做回归分析得到 表二 方差分析表
方差来源 平方和 自由度 均方 F 值 p 值
回归分析 1
2805999928059999478.4294 3.26E-21
残差
33
1935458 58650.24
总计
34
29995457
表三 回归模型系数表
Coefficients 标准误差 t Stat P-value
研究思路
本案例拟运用逐步回归方法建立回归模型。在实际问题中, 人们总是希望从 对因变量 y 有影响的诸多变量中选择一些变量作为自变量, 应用多元回归分析 的方法建立“最优”回归方程以便对因变量进行预报或控制。所谓“最优”回归 方程, 主要是指希望在回归方程中包含所有对因变量 y 影响显著的自变量而不 包含对 y 影响不显著的自变量的回归方程。逐步回归分析正是根据这种原则提出 来的一种回归分析方法。它的主要思路是在考虑的全部自变量中按其对 y 的作用 大小, 显著程度大小或者说贡献大小, 由大到小地逐个引入回归方程, 而对那 些对 y 作用不显著的变量可能始终不被引人回归方程。另外, 己被引人回归方程 的变量在引入新变量后也可能失去重要性, 而需要从回归方程中剔除出去。引人 一个变量或者从回归方程中剔除一个变量都称为逐步回归的一步, 每一步都要 进行 F 检验, 以保证在引人新变量前回归方程中只含有对 y 影响显著的变量, 而 不显著的变量已被剔除。逐步回归分析的实施过程是每一步都要对已引入回归方 程的变量计算其偏回归平方和, 然后选一个偏回归平方和最小的变量, 在预先 给定的 F 水平下进行显著性检验, 如果显著则该变量不必从回归方程中剔除, 这时方程中其它的几个变量也都不需要剔除(因为其它的几个变量的偏回归平方 和都大于最小的一个更不需要剔除)。相反, 如果不显著, 则该变量要剔除, 然 后按偏回归平方和由小到大地依次对方程中其它变量进行 F 检验。将对 y 影响不 显著的变量全部剔除, 保留的都是显著的。接着再对未引人回归方程中的变量分 别计算其偏回归平方和, 并选其中偏回归平方和最大的一个变量, 同样在给定 F 水平下作显著性检验, 如果显著则将该变量引入回归方程, 这一过程一直继

回归分析案例

回归分析案例

回归分析案例回归分析是一种常用的统计方法,用于研究变量之间的关系。

在实际应用中,回归分析可以帮助我们探索变量之间的相关关系,预测未来的趋势以及做出决策。

下面我们将通过一个实际案例来介绍回归分析的应用。

假设我们是某电商公司的数据分析师,现在我们想了解用户的购买行为与广告宣传的关系,希望通过回归分析来预测广告宣传对用户购买金额的影响。

首先,我们收集了过去一年的数据,包括每个用户的购买金额以及公司在相应时间段内的广告宣传投入。

我们将购买金额作为因变量(Y),广告宣传投入作为自变量(X),并进行数据整理和处理。

接下来,我们将进行回归分析。

根据收集到的数据,我们可以使用最小二乘法进行回归分析。

我们假设购买金额与广告宣传投入之间存在线性关系,即Y = β0 + β1X + ε,其中Y表示购买金额,X表示广告宣传投入,β0和β1表示回归系数,ε表示误差项。

通过回归分析,我们可以得到回归模型的估计结果。

估计结果中,回归系数β1表示单位广告宣传投入对购买金额的影响情况,β0则表示在广告宣传投入为0的情况下的购买金额。

假设回归分析的结果为:β0 = 1000,β1 = 2。

根据这个结果,我们可以得出以下结论:在其他条件不变的情况下,每单位广告宣传投入会使购买金额增加2单位。

同时,当广告宣传投入为0的时候,购买金额约为1000单位。

接下来,我们可以根据回归模型的估计结果进行预测。

例如,如果我们将广告宣传投入增加100单位,根据回归模型的估计结果,预测购买金额将增加200单位。

这样的预测结果可以帮助公司进行广告投放决策,并制定更具针对性的广告宣传策略。

除此之外,回归分析还可以帮助我们进行模型的诊断和评估。

例如,我们可以通过残差分析来检验回归模型的拟合优度和模型的适用性。

我们还可以进行假设检验,验证回归系数的显著性程度。

总之,回归分析是一种重要的统计分析方法,广泛应用于各个领域。

通过回归分析,我们可以探究变量之间的关系,预测未来的趋势以及做出决策。

案例五(回归分析)

案例五(回归分析)

4 3 2 2 3 3 4 3 3 5 3 4 5 2 6 4 2 5 5 4 2 2 3 5 4 2 3 3 3 5 2
20.08 15.58 6.68 8.18 17.68 17.4 21.78 16.9 18.97 19.69 20.98 19.59 22.4 14.3 23.6 22.4 18.6 22.4 23.6 21.2 13.15 11 11.3 22.4 18.2 15.1 10.2 12.3 13.21 20.3 14.51
4
可以看出, x1 和 x4 (0.9479) 、 x2 和 x3 (0.7811)之间高度相关。 为此,我们引入岭回归方法来克服多重共线性的影响。即引入岭估计
ˆ (k ) = (X ′X + k ⋅ I )−1 X ′y β
其中 k 称为岭参数。上述岭估计中主要工作是确定岭参数 k ,我们将通过岭迹分 析来找出岭参数 k 。对全部的5个自变量做岭迹分析,岭迹图见图1。可以看出, 岭迹比较混乱。
ˆ = ( X ′X )−1 X ′y β
1 x11 y1 1 x y 21 2 其中 y = ,X = M M M yn 1 x n1 x12 x 22 M xn2
ˆ β L x1 p 0 ˆ L x2 p β ˆ= 1 。 ,β M M L x np β ˆ p
3
由此得到如下模型
ˆ = −906.7488 + 0.7379 x1 + 639.9670 x2 + 129.9216 x3 + 2.5077 x4 + 48.5950 x5 y
( −0.07 )
( 4.70 )
( 2.99 )

回归分析中的案例分析解读(Ⅱ)

回归分析中的案例分析解读(Ⅱ)

回归分析是统计学中一种常用的分析方法,它可以用来研究变量之间的相互关系。

在实际应用中,回归分析通常被用来预测一个变量的值,或者研究不同变量之间的因果关系。

在本文中,我们将通过几个实际案例来解读回归分析的应用,以及如何正确地理解和解释回归分析的结果。

案例一:销售量与广告投入的关系假设我们想要研究公司的销售量与广告投入之间的关系。

我们收集了过去一年的销售数据以及每个月的广告投入情况,然后进行了回归分析。

结果显示广告投入与销售量之间有显著的正相关关系,即广告投入的增加会导致销售量的增加。

但是在解释结果时,我们需要注意到回归分析只能表明两个变量之间的相关性,而不能证明因果关系。

因此,我们不能简单地说是广告投入导致了销售量的增加,可能还有其他因素的影响。

案例二:工资水平与工作经验的关系另一个常见的案例是研究工资水平与工作经验之间的关系。

我们收集了一组员工的工资水平和工作经验数据,进行了回归分析。

结果显示工资水平与工作经验之间存在着正相关关系,即工作经验的增加会导致工资水平的增加。

但是在解释结果时,我们需要考虑到可能存在其他影响工资水平的因素,比如教育水平、职位等级等。

因此,在进行回归分析时,需要尽可能地控制其他可能的影响因素,以确保结果的可靠性。

案例三:股票价格与市场指数的关系最后一个案例是研究股票价格与市场指数之间的关系。

我们收集了一组股票的价格数据以及市场指数的数据,进行了回归分析。

结果显示股票价格与市场指数之间存在着正相关关系,即市场指数的增加会导致股票价格的增加。

在解释结果时,我们需要注意到股票价格受到多种因素的影响,比如公司业绩、行业发展等。

因此,我们不能简单地认为市场指数的增加就会导致股票价格的增加,还需要综合考虑其他可能的影响因素。

综上所述,回归分析是一种强大的工具,可以用来研究变量之间的关系。

但是在进行回归分析时,需要注意到结果只能表明相关性,不能证明因果关系。

因此,在解释和应用回归分析的结果时,需要谨慎思考,综合考虑可能的影响因素,以确保结果的可靠性。

统计学案例——相关回归分析

统计学案例——相关回归分析

《统计学》案例——相关回归分析案例一质量控制中的简单线性回归分析1、问题的提出某石油炼厂的催化装置通过高温及催化剂对原料的作用进行反应,生成各种产品,其中液化气用途广泛、易于储存运输,所以,提高液化气收率,降低不凝气体产量,成为提高经济效益的关键问题。

通过因果分析图和排列图的观察,发现回流温度是影响液化气收率的主要原因,因此,只有确定二者之间的相关关系,寻找适当的回流温度,才能达到提高液化气收率的目的。

经认真分析仔细研究,确定了在保持原有轻油收率的前提下,液化气收率比去年同期增长1个百分点的目标,即达到12.24%的液化气收率。

2、数据的收集序号回流温度(℃)液化气收率(%)序号回流温度(℃)液化气收率(%)1 2 3 4 5 6 7 8 9 10 11 12 13 14 1536 39 43 43 39 38 43 44 37 40 34 39 40 41 4413.1 12.8 11.3 11.4 12.3 12.5 11.1 10.8 13.1 11.9 13.6 12.2 12.2 11.8 11.116 17 18 19 20 21 22 23 24 25 26 27 28 29 3042 43 46 44 42 41 45 40 46 47 45 38 39 44 4512.3 11.9 10.9 10.4 11.5 12.5 11.1 11.1 11.1 10.8 10.5 12.1 12.5 11.5 10.9目标值确定之后,我们收集了某年某季度的回流温度和液化气收率的30组数据(如上表),进行简单直线回归分析。

3.方法的确立设线性回归模型为εββ++=x y 10,估计回归方程为x b b y10ˆ+= 将数据输入计算机,输出散点图可见,液化气收率y 具有随着回流温度x 的提高而降低的趋势。

因此,建立描述y 和x 之间关系的模型时,首选直线型是合理的。

从线性回归的计算结果,可以知道回归系数的最小二乘估计值b 0=21.263和b 1=-0.229,于是最小二乘直线为x y229.0263.21ˆ-= 这就表明,回流温度每增加1℃,估计液化气收率将减少0.229%。

回归分析案例

回归分析案例

身高 0.75 0.85 0.95 1.08 1.12 1.16 1.35 1.51 1.55 1.6 1.63 1.67 1.71 1.78 1.85 体重 101215172022354148505154596675Matlab 实现:h=[0.75 0.85 0.95 1.08 1.12 1.16 1.35 1.51 1.55 1.6 1.63 1.67 1.71 1.78 1.85]; m=[10 12 15 17 20 22 35 41 48 50 51 54 59 66 75]; plot(x,y,'*')可令:adh m =,求系数可用p=polyfit(x,y,n), 其中h x m y ln ,ln ==,n=1,结果:p=[2.3,2.823]由此得d=16.8,a=2.3,即有经验公式:3..28.16h m =。

也直接利用Matlab 统计工具箱中的命令regress 求解,使用格式:[b,bint,r,rint,stats]=regress(y,x,alpha) alpha 为置信水平,r 为残差向量βˆx y -,stats 为回归模型的检验统计量,有3个值,第一个是回归方程的决定系数2R ,第二个是F 统计量值,第三个是与F 统计量对应的概率值p 。

上例可如下操作:y=log(m)';x=[ones(length(y),1),log(h)'];[b,bint,r,rint,stat]=regress(y,x)b =2.82282.3000 stat =1 1024 0.0000残差分析:rcoplot(r,rint)----------------------------------------------------------------------------------------------------------------------------------例2:施肥效果分析(1992建模赛题)磷肥施用量 0244973 98 147 196 245 294 342 土豆产量 33.46 32.47 36.06 37.96 41.04 40.09 41.26 42.17 40.36 42.73 磷肥施用量 0244973 98 147 196 245 294 342 土豆产量33.46 34.76 36.0637.9641.0440.0941.2642.1740.3642.73氮肥施用量 0244973 98 147 196 245 294 342 土豆产量33.46 34.76 36.0637.9641.0440.0941.2642.1740.3642.73对于磷肥-----土豆:可选择函数xbea y -+=1 或威布尔函数 0,≥-=-x Be A y cx对于氮肥-----土豆:可选择函数0,2210≥++=x x b x b b y2)模型的参数估计:可如下操作:x=[0 34 67 101 135 202 259 336 404 471]';y=[15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75]';X=[ones(length(y),1),x,x.^2];[b,bint,r,rint,stat]=regress(y,X)b =14.74160.1971-0.0003stat =0.9863 251.7971 0.0000 即20003.01971.07416.14x x y -+=拟合曲线图:3) 显著性检验: (仅以氮肥-----土豆模型为例说明)A):回归方程的显著性检验:检验的概率p=0,说明方程是高度显著的.B):回归系数的的显著性检验:对1β: 0:110=βH 检验统计量 =T 对2β: 0:220=βH检验统计量 =T -1004341.84343142都有 8945.1)7(05.0=>t T ,所以,均应拒绝原假设,认为系数)2,1(=i i β显著地不为0.4)残差诊断:标准化残差图如下12345678910标准化残差基本上均匀分布于-2至2之间,可以认为模型拟合是合理的.------------------------------------------------------------------------------------------------------------------------------ 案例:牙膏的销售量某牙膏制造企业要求销售部门根据市场调查,找出公司生产的牙膏销售量与销售价格、广告投入等之间的关系,从而预测出在不同价格和广告费用下的销售量。

统计描述和相关回归分析案例

统计描述和相关回归分析案例
本案例所依托的客体是1999年上市公司年 报中的有关财务指标。
(二)案例研究的目的与任务
1. 上市公司年报财务数据统计分析的目的 2. 上市公司年报财务数据统计分析的任务 3. 上市公司年报财务数据统计分析的对象 4. 数据的初步分析——制造业上市公司行业结

三、案例设计的思路
本案例按照如下程序对数据进行处理:
计算结果表明,单位成本与产量之间,存 在着高度相关,相关系数为-0.98。由此可见,单 位成本与产量之间存在高度负相关,主要有两个 原因,一个原因是一般的规模效益:在单位成本 中包含变动成本和固定成本两个部分,分摊到每 个单位产品上的固定成本是随产量的变化而变化 的。产量多,分摊到每个单位产品上的固定成本 就少;产量少,分摊到每个单位产品上的固定成 本就多。另一个原因是贷款利息支出大,增大了 固定成本。
(二)相关和回归分析 1.制造业业绩指标之间的关系研究 2.制造业业绩指标间的回归分析
案例2 利兴铸造厂产品成本分析
利兴铸造厂近年来由于狠抓 成本管理,企业经济效益有所改 善基本扭转了亏损局面,但产品 成本依然不稳定,波动性很大, 根据下列数据分析企业成本波动 大的原因并提出解决的办法。
铸铁件产量及单位成本
小结
本案例通过观察液化气收率与回流温度的散 点图,建立二者之间的线性回归方程并进行 检验,通过检验后的回归方程,可以进行预 测和控制。控制是预测的反问题,就是如何 控制的值,使落在指定范围内,也就是给定 的变化范围求的变化范围。本案例是应用回 归方程对回流温度进行控制,为提高液化气 收率提供了科学依据。
• 成本波动很大的原因是什么呢?从表可以发 现,单位成本的波动与产量有关。上年4月成 本最高,而产量最低,今年3月成本最低,而 产量最高,去年亏损的4个月,产量普遍低。 这显然是个规模经济效益问题。

回归分析案例

回归分析案例

回归分析案例回归分析是统计学中一种重要的数据分析方法,它用于研究自变量和因变量之间的关系。

通过回归分析,我们可以了解自变量对因变量的影响程度,预测因变量的取值,并进行因果关系的推断。

在实际应用中,回归分析被广泛运用于经济学、社会学、医学、环境科学等领域,帮助研究人员解决各种实际问题。

下面,我们通过一个实际的案例来介绍回归分析的应用。

假设我们想要研究一个人的身高和体重之间的关系。

我们收集了一组数据,包括100个人的身高和体重信息。

现在,我们希望通过回归分析来探究身高和体重之间的关系。

首先,我们需要建立一个数学模型来描述身高和体重之间的关系。

在简单线性回归分析中,我们可以使用以下的数学模型来描述身高和体重之间的关系:\[体重 = β_0 + β_1 身高 + ε\]其中,体重是因变量,身高是自变量,β0和β1是回归系数,ε是误差项。

通过最小二乘法,我们可以估计出回归系数的取值,从而得到最优的拟合直线。

接下来,我们利用收集到的数据进行回归分析。

通过统计软件,我们可以得到回归系数的估计值,以及拟合直线的方程。

通过拟合直线,我们可以直观地观察身高和体重之间的关系。

同时,我们还可以利用回归方程进行预测,比如给定一个人的身高,我们可以利用回归方程来预测他的体重。

除了简单线性回归,我们还可以进行多元回归分析。

在多元回归分析中,我们可以考虑多个自变量对因变量的影响,从而更全面地了解变量之间的关系。

在实际应用中,回归分析还可以用于解决更复杂的问题,比如市场营销中的销售预测、金融领域中的股票价格预测、医学领域中的疾病风险评估等。

通过回归分析,我们可以从数据中挖掘出有用的信息,为决策提供科学依据。

总之,回归分析是一种强大的数据分析工具,它可以帮助我们了解变量之间的关系,预测未来的趋势,并进行因果关系的推断。

通过本文介绍的案例,希望读者能够对回归分析有一个初步的了解,并在实际应用中灵活运用回归分析方法,解决各种实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四次案例分析----相关回归分析
案例1 对某地的12个乡镇的饮水氟含量及中老年人群的骨关节炎患病情况作了调查,数据如下表10-12,初步发现不同乡镇的骨关节炎的患病率高低与本地区饮水的氟含量有关。

于是把氟含量视为变量X,把骨关节炎患病率视为Y,计算出Pearson积矩相关系数,得r=0.827,经检验P<0.01,据此认为骨关节炎的患病率与饮水的氟含量之间有正相关关系。

表10-12 某地12个乡镇饮水氟含量与骨关节炎患病率
序号
氟含量患病率(mg/L))(%)
1 1.20 7.5
2 0.35 8.9
3 2.50 9.0
4 3.18 12.6
5 0.75 8.2
6 5.92 15.4
7 7.97 20.3
8 2.06 10.1
9 7.05 30.3
10 5.30 24.2
11 3.52 7.5
12 1.50 10.3
讨论:(1)作者以上结论是否正确?原因是什么?
(2)线性相关分析的适用条件是什么?如何验证其适用条件?
(3)应如何进行分析?本分析方法的适用条件是什么?
案例2回顾第八章例8-3,用三种不同药物治疗慢性支气管炎,治疗结果见表10-13所示。

表10-13 三种不同药物治疗慢性支气管炎的疗效
第八章曾做过2χ检验,得232.736,0.005
p
χ=<,按0.05水准,可以认为三种药物治疗效果有效的总体概率有差别。

研究者认为,既然不同药物组有不同的治疗效果,则治疗效果与不同的药物治疗方法必定有关联;其关联的程度可用列联系数来描述:
r===
0.493
讨论:
(1)该推理和计算是否正确?
(2)应当如何研究治疗效果和药物种类的关联性?
案例3现有一份170例某病患者的治疗效果资料,按年龄和疗效两种属性交叉分类,结果见表10-14.
ν=,拒绝两种属性分类相互作者进行了独立性2χ检验,得到2χ=23.582,4
r==,结论独立的零假设;进一步计算Pearson列联系数r为0.35
是疗效和年龄间存在关联性。

请问:(1)上述分析方法及结论是否正确?为什么?
(2)2χ检验的用途是什么?2χ检验用于关联性分析其适用条件是什么?
2
χ检验用于差异性检验与关联性分析基本思想的异同点是什么?
(3)双向有序资料可以进行哪些分析?
案例4某医生收集了29例二型糖尿病患者的体重指数BMI(kg/m2)和病程(年),结果见表10-16。

为探讨两变量间有无关系,对此数据计算了pearson相关系数,得到相关系数r=0.285(P=0.133),故认为两变量间无关系。

后来有人建议按照每个观测值是否大于两变量各自的均数,分别将这两个变量转化为分类变量,
即按照BMI是否大于其均数24.7分为Y1=1(<24.7)和Y1=2;
病程(年)是否大于其均数6.94分为Y2=1(<6.94)和Y2=2;
这样就把原始变量BMI和病程(年)转换成新的两个分类变量Y1和Y2,
χ==,故对Y1和Y2整理成四格表数据进行关联性检验,得到27.535(0.006)
p
此时认为两变量事实上存在高度相关。

问题:请对以上统计分析方法及结论做出评价,您认为应如何分析解释结果。

表10-16 29例二型糖尿病患者的体重指数BMI与病程
BMI Y1(BMI分类)病程(年)Y2(病程分类)
19.03114 1 15.0 2
19.03114 1 2.9 1
19.48696 1 4.0 1
20.81165 1 4.0 1
21.10727 1 4.0 1
22.85714 1 2.0 1
23.32342 1 5.0 1
23.37473 1 6.0 1
23.38869 1 3.0 1
23.80869 1 6.0 1
24.13960 1 5.0 1
24.22145 1 10.0 2
24.22145 1 3.0 1
24.33748 1 2.0 1
24.38237 1 6.0 1
24.48980 1 12.0 2
25.22137 2 2.3 1
25.71166 2 7.0 2
25.92593 2 8.0 2
26.39580 2 9.0 2
26.44628 2 7.0 2
26.98962 2 12.0 2
27.21730 2 3.0 1
27.45865 2 16.0 2
27.99036 2 10.0 2
28.40550 2 20.0 2
28.40816 2 4.0 1
28.72738 2 10.0 2
29.38776 2 3.0 1
=19.87X—463.73,通过方程预测当气温某作者经计算求得线性回归方程:y
为28时,产卵数为92个。

计算得r=0.864,R2=0.746,故这个线性回归模型中温度解释了74.6%产卵数的变化。

对以上结论请讨论:
(1)该作者的结论是否正确?原因是什么?
(2)你的计算结果是什么?
(3)如何判断拟合的回归方程何者更优?该方法的用途与意义?
(4)试比较一下作者拟合的回归方程与你拟合的回归方程何者更优?
案例6 为了探索胎儿身长与胎龄之间的关系,某研究者调查了某妇产科医院某时期140例因自然流产死亡的胎儿,测量了胎儿身长等数据;接着按胎龄分成7个组(4~10个月),计算每组胎儿身长均数(表11-6);并得到胎儿身长与胎龄之间有线性正相关的关系,相关系数为0.98,p<0.001;胎儿身长均数Y关于胎龄X的线性回归方程为ˆ9.32 4.37
=+。

结论是:胎儿身长与胎龄之间高度
Y X
相关,该回归方程可用来预测胎儿身长。

请讨论:
(1)该研究的线性相关分析结果是否准确?用线性相关分析来表达胎儿身长与胎龄之间的关系是否合理?
(2)该研究用线性回归方程来表达胎龄与胎儿身长之间的数量变化关系是否合理?若不合理,应如何做?
(3)该研究实际使用的是胎龄均数与胎儿身长均数进行的统计分析,这样做是否合理?
案例7 某研究者调查了某单位某年76例25~60岁的健康男性,检测了每人的血清胆固醇和血清甘油三酯数据,并绘制了散点图,经相关分析,得r=0.302,p<0.01,认为血清胆固醇Y与血清甘油三酯X非常显著地呈正相关,同此建立了线性回归模型:ˆ 3.8860.376.
=+得出结论可以根据回归方程
Y X
用血清甘油三酯含量推测血清胆固醇含量。

请讨论:(1)该研究用线性相关分析的检验结果来代替回归分析的检验结果是否正确?为什么?相关与回归的区别与联系?
(2)从散点图来看,该研究用线性回归方程来表达血清胆固醇与血清甘油三酯之间的数量变化关系是否合理?
(3)预测一下当血清甘油三酯含量=5.0(mmol/L)时血清胆固醇含量为多少,该预测结果是否合理?为什么?
(4)该研究建立的线性回归模型实际意义有多大?
(5)指出该研究的缺陷。

案例8 课本257页案例12-1
请讨论:
(1)多重线性回归的用途及条件是什么?
(2)变量筛选方法有哪些?自变量筛选的标准有哪些?
(3)要比较自变量对Y的贡献大小用什么指标?
(4)如何看待表12-21与表12-22结果之间的矛盾?
案例9 课本403页案例18-1
请讨论:
(1)logistic回归模型OR及偏回归系数的含义是什么?
(2)logistic回归的参数估计方法是什么?基本思想是什么?
(3)logistic回归的假设检验方法有哪些?特点是什么?
(4)研究中统计学缺陷有哪些?
案例10 课本403页案例18-2。

相关文档
最新文档