系数非线性常微分方程的特解表达式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万方数据
万方数据
万方数据
万方数据
三类常系数非线性常微分方程的特解表达式
作者:陈友朋, 钱明忠, 黄娟娟
作者单位:江苏省盐城师范学院数学科学学院,江苏盐城,224051
刊名:
高等数学研究
英文刊名:STUDIES IN COLLEGE MATHEMATICS
年,卷(期):2009,12(4)
被引用次数:0次
1.张建梅.孙志田.崔宁关于y″+py'+qy=Aeαx的特解[期刊论文]-高等数学研究 2005(03)
2.曾菊华.胡小英关于常系数线性微分方程的特解表达式[期刊论文]-高等数学研究 2006(04)
3.Π Э 艾利斯哥尔兹.南开大学数学系编译中队.崔士英微分方程 1959
1.期刊论文刘琳琳非齐次常系数常微分方程特解形式的一个推导-喀什师范学院学报2002,23(3)
考虑n阶非齐次常系数线性常微分方程y(n)+Pn-1y(n-1)+…+p1y1+poy=f(x),当它的右端项f(x)=eλχPm(x)时,给出它的特解形式的推导.
2.期刊论文张学凌.王志伟求一类常微分方程特解的程序化方法-天中学刊2008,23(5)
通过对常微分方程常规解法的进一步探讨,推导出一类三阶常系数非齐次线性微分方程求特解的统一表达式,并通过C++语言编程,利用计算机直接输出结果,提高了求解的速度和准确性.
3.期刊论文沈彻明.SHEN Che-ming求非齐次高阶常系数线性常微分方程的特解的一般公式-数学的实践与认识2000,30(4)
本文提出了高阶常系数线性常微分方程的第二类特征代数方程,并利用它获得了求非齐次方程的特解的一般公式.
4.期刊论文赵苏串一类常系数非齐次常微分方程的特解的求法-上海大学学报(自然科学版)1999,5(6)
讨论了形如u+αu=f(x),u(4)+αu.+βu=f(x),其中f(x)=(sinωx)2k或(cosωx)2k(k∈Z+),ω≠0ε,α,β均为常数的特解的求法.
5.期刊论文龚东山.刘岳巍.贾筱景.GONG Dong-shan.LIU Yue-wei.JIA Xiao-jing计算一类常微分方程特解的新方法-河北北方学院学报(自然科学版)2008,24(6)
目的 计算高阶常微分方程特解的方法有待定系数法、常数变易法、拉普拉斯变换法、积分法等,它们的计算工作量一般较大,为弥补上述方法的不足,有必要探究另一种简便实用的新方法--特征函数法.方法 先定义该类高阶常微分方程的对应齐次方程的特征函数,再利用特征函数的导数,可得到非齐次项为特殊函数情形时方程的一个特解.结果 只需求出特征方程的根,就可得到该类高阶常微分方程的一个特解.结论 利用特征函数法可以得到一类常微分方程的一个特解,该方法使用简单,所得特解形式直观.
6.期刊论文龚东山.刘岳巍.牛富俊.GONG Dong-shan.LIU Yue-wei.NIU Fu-jun特征函数在高阶常微分方程特解计算中的应用-吉林师范大学学报(自然科学版)2008,29(4)
通过借助特征函数的导数,得到了非齐次项为特殊函数情形的一类高阶常微分方程的一个特解的一种新的计算方法.运用该方法,还得到了非齐次项为常见情形时方程的一个特解.
7.期刊论文陈新一一类二阶常微分方程的特解 -高等数学研究2010,13(1)
研究一类二阶实常系数非齐次微分方程y″+py′+q=(a0+a1x)eαxsinβx的解法,应用叠加原理和Euler公式,将其化为二阶线性非齐次方程,并利用对应的特征方程给出了这一类方程特解的一般公式,简化这一类微分方程的求解过程.
8.期刊论文张学凌二阶非齐次线性常微分方程特解的算法模型-许昌学院学报2003,22(2)
用迭代算法求二阶非齐次线性常微分方程y"+py'+qy=pn(x)eax=(AnXn+…+Aixi+…+Ao)eax的特解是一种新的尝试,借助C++BUILDER编译器成功地实现了该算法,较圆满地解决了此类微分方程求特解时实际计算上的问题.
9.期刊论文王欣欣.郑秉文用微分算子求常微分方程特解的注记-吉林师范大学学报(自然科学版)2003,24(3)
本文给出常系数线性微分方程最简特解的定义,论证了常系数线性微分方程最简特解的形式,同时给出了用微分算子求常系数线性微分方程最简特解的方法.
10.期刊论文陈新一.唐文玲.CHEN Xin-yi.TANG Wen-ling一类三阶常微分方程的特解公式-甘肃联合大学学报(自然科学版)2007,21(1)
利用比较系数法,推导出三阶常系数微分方程y"'+py"+qy'+ry=(a0+a1x+a2x2)eλx的特解的一般公式.利用这个公式可直接得到此类微分方程的特解.
本文链接:/Periodical_gdsxyj200904014.aspx
授权使用:中共汕尾市委党校(zgsw),授权号:0494467a-5728-47be-9cc4-9dcf0154b484
下载时间:2010年8月11日