2018-2019学年安徽省铜陵市义安区九年级(上)期末数学试卷
(完整word版)2018九年级上学期末考试数学试题
![(完整word版)2018九年级上学期末考试数学试题](https://img.taocdn.com/s3/m/d40f756c51e79b896902266a.png)
2018-2019九年级上学期末考试数学试题一、精心选一选(每小题3分,共36分)1、下列图形中,既是轴对称又是中心对称图形的是( )MN 上移动时,矩形PAOB 勺形状、大小随之变化,贝U AB 的长度()A 变大B 变小C 不变D 不能确定&如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点 A (- 3,0),对称轴为直线x = - 1, 下列结论:① b 2>4ac :②2a + b = 0 ; @ a + b + c>0 ;④若 B (- 5,y 1 )、C (- 1,y ) 为函数图象上的两点,贝U %<y 2 •其中正确结论是( )A ②④B ①③④C ①④D ②③9、 如图,已知AB 是O O 的直径,AD 切O O 于点A ,点C 是EB 的中点,则下列结论: ①OC/ AE ②EC = BC ③/ DAE=Z ABE ④ACLOE 其中正确的有() A 1 个B 2 个C 3 个D 4 个10、 某种药品零售价经过两次降价后的价格为降价前的 81%则平均每场降价( )A 10%B 19%C 9.5%D 20%11、 如图,I 是厶ABC 的内心,AI 的延长线和△ ABC 的外接圆相交于点 连接BI ,BD DC 下列说法中错误的一项是( ) A 线段DB 绕点D 顺时针旋转一定能与线段DC 重合 B 线段DB 绕点D 顺时针旋转一定能与线段 DI 重合 C / CAD 绕点A 顺时针旋转一定能与/ DAB 重合A B C D 32、 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同,从中任意拿出一支笔 芯,则拿出黑色笔芯的概率为2 1 2 A -B1 C-3553、 用配方法解一元二次方程X 2-6X +6 = 0时,配方后得到的方程是()A (X - 3)2=6B (X +3)2=3C (X - 3)2 =3D (X - 3)2 =-34、 抛物线y 二a (x • 1)(x —3)(a = 0)的对称轴是直线(A X = 1B 5、 如图,四边形) x = -1 C x = 3 DABCD 是O O 的内接四边形,若/第5题 6、 已知:如图,则/ BPC 的度数是( 7、 如图,四边形PAOB 是扇形OMN 勺内接矩形,顶点P 在MN ,且不与M N 重合,当P 点在 四边形 第6题 ABCD 是O O 的内接正方形,点 第8题P 是劣弧上不同于点C 的任意一点, C 75° D 90° 尸x = -3B=110°,则/ ADE 的度数为( )D线段ID绕点I顺时针旋转一定能与线段IB重合(11题)12、用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()1 3A 丄B 1C -D 、2二、细心填一填(每小题3分,共15分)13、把抛物线y = -2(x-1)2+3向右平移2个单位再向下平移5个单位,得到抛物线解析式为_____________________ 。
铜陵市2017~2018学年第一学期期末质量检测九年级数学(word版 有答案)
![铜陵市2017~2018学年第一学期期末质量检测九年级数学(word版 有答案)](https://img.taocdn.com/s3/m/ad6f0e9e19e8b8f67d1cb95a.png)
铜陵市2017~2018学年第一学期期末质量检测九年级数学试题(时间:100分钟 满分:100分)一、选择题 (本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .2.某市“桃花节”观赏人数逐年增加,据有关部门统计,2015年约为20万人次,2017年约为28.8万人次,设观赏人数年平均增长率为x ,则下列方程正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20C .20(1+x )2=28.8D .20+20(1+x )+20(1+x )2=28.83.点(﹣1,y 1),(2,y 2),(3,y 3)均在函数y=x1的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 3<y 2<y 1B .y 2<y 3<y 1C .y 1<y 3<y 2D .y 1<y 2<y 34.已知二次函数277y kx x =--的图像与x 轴没有交点,则k 的取值范围为( )A.k <74-B. k ≥74-且k ≠0 C.k >74-D. k >74- 且k ≠0 5. 《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是( ) A. 5步B. 6步C. 8步6.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( ) A .45° B .50° C .60°D .75°7.抛物线y=x 2﹣2x ﹣3的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=x 2+bx+c ,则b 、c 的值为( )A .b=2,c=2B .b=﹣3,c=2C .b=﹣2,c=﹣1D .b=2,c=﹣18.如图,A 、B 是曲线y=x3上的点,经过A 、B 两点向x 轴、y 轴作垂线段,若S 阴影=1,则S 1+S 2=( ) A .3B .4C .5D .69.如图,有一个边长为4cm 的正六边形,若要剪一张圆形纸片完全盖住这个图形,则这个圆形纸片的最小直径是( ) A .8cmB .4cmC .2cmD .4cm10.如图,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与X 轴交点的横坐标分别为x 1,x 2,其中﹣2<x 1<﹣1,0<x 2<1,下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③a+c <1;④b 2+8a >4ac ,其中正确的有( ) A .1个B .2个C .3个D .4个二、填空题(共6小题,每题3分,共18分) 11.如图、正比例函数x k y 11=与反比例函数xk y 22=的图象交于(1,2), 则在第一象限内不等式>x k 1xk 2的解集为 .第6题图第8题图第9题图第10题图12. 如图,点D 为边AC 上一点,点O 为边AB 上一点,AD =DO ,以O 为圆心,OD 长为半径作半圆,交AC 于另一点E ,交AB 于点F ,G ,连接EF.若∠BAC =22°,则∠EFG =________.13.某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间函数表达式是y=60x ﹣1.5x 2,该型号飞机着陆后滑行的最大距离是 m .14.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两个人同坐2号车的概率为 .15.抛物线22y x x m =-+与x 轴有两个公共点,请写出一个符合条件的表达式为 .16.如图,将Rt △ABC 绕直角顶点A 顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C 的度数是 .三、解答题(本大题共7小题,满分52分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分6分)解方程:(1)3x 2﹣6x+2=0. (2) 2(x ﹣3)2=x 2﹣9.18.(本小题满分8分)△ABC 在平面直角坐标系中的位置如图,其中每个小正方形的边长为1个单位长度. (1)按要求作图:①画出△ABC 关于原点O 的中心对称图形△A 1B 1C 1; ②画出将△ABC 绕点O 顺时针旋转90°得到△A 2B 2C 2. (2)回答下列问题:第12题图第16题图①若点P (a ,b )为△ABC 边上一点,则按照(1)中①作图,点P 对应的点P 1的坐标为 .②点C 转到C 2经过的路径长为 .19.(本小题满分8分)如图,放在直角坐标系中的正方形ABCD 边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P 点的坐标(第一次的点数作横坐标,第二次的点数作纵坐标).(1)用列表法或画树形图法求P 点落在正方形ABCD 面上(含正方形内部和边界)的概率.(2)将正方形ABCD 平移整数个单位,则是否存在一种平移,使点P 落在正方形ABCD面上的概率为43;若存在,指出其中的一种平移方式;若不存在,请说明理由.20.(本小题满分6分)如图,已知△ABC 内接于⊙O ,CD 是⊙O 的切线与半径OB 的延长线交于点D ,C 是切点,∠A=30°,OB=1,求△DBC 的面积.21.(本小题满分8分)如图,直线y=mx+n 与双曲线y=xk相交于A (﹣1,2)、B (2,b )两点,与y 轴相交于点C .(1)若点D 与点C 关于x 轴对称,求△ABD 的面积;(2)在坐标轴上是否存在异于D 点的点P ,使得S △PAB =S △DAB ?若存在,直接写出P 点坐标;若不存在,说明理由.22.(本小题满分8分)如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5 m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m )与飞行时间t(单位:s )之间满足函数关系y =at 2+5t +c ,已知足球飞行0.8 s 时,离地面的高度为3.5 m . (1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m )与飞行时间t(单位:s )之间具有函数关系x =10t ,已知球门的高度为2.44 m ,如果该运动员正对球门射门时,离球门的水平 距离为24m ,他能否将球直接射入球门?23. (本小题满分8分) 如图,已知抛物线y=221412+--x x 与x 轴交于A 、B 两点,与y 轴交于点C. (1)求点A ,B ,C 的坐标;(2)点E 是此抛物线上的点,点F 是其对称轴上的点,当以A ,B ,E ,F 为顶点的四边形为平行四边形时,求点E 、点F 的坐标铜陵市2017~2018学年第一学期期末质量检测九年级数学试题参考答案及评分标准 (备课组长安排专人做卷并完善评分细则)二、填空题(共6题,每题3分,共18分) 11. 1 x12. 33°; 13. 600;14. ;15.y= x 2-2x-1(答案不唯一) ; 16. 70°;三、解答题(本大题共7小题,满分52分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分6分,每题3分)(1)x 1=,x 2=;(2) x 1=3,x 2=918.解:(1)图略…………… (4分)(2)P 1 (-a ,-b) …………… (6分)(3) 210π …………… (8分)19. (1)其中点(1,1),(1,2),(2,1),(2,2)四种情况将落在正方形ABCD 面上,故所求的概率为.…………… (5分)(2)因为要使点P 落在正方形ABCD 面上的概率为,所以只能将正方形ABCD向上或向右整数个单位平移,且使点P 落在正方形面上的数目为12.∴存在满足题设要求的平移方式:先将正方形ABCD 上移2个单位,后右移1个单位(先右后上亦可);或先将正方形ABCD 上移1个单位,后右移2个单位(先右后上亦可). …………… (8分)20.解:解:连结OC,证明△COB 为等边三角形△CBD 的面积为43…………… (6分) 21.解:(1)∵点A (﹣1,2)在双曲线y=上,∴2=,解得,k=﹣2,∴反比例函数解析式为:y=﹣,∴b==﹣1,则点B 的坐标为(2,﹣1),∴,解得,m=﹣1,n=1;对于y=﹣x+1,当x=0时,y=1, ∴点C 的坐标为(0,1), ∵点D 与点C 关于x 轴对称, ∴点D 的坐标为(0,﹣1),∴△ABD 的面积=×2×3=3;…………… 5分 (2)P 点坐标为(﹣1,0)或(3,0)或(0,3).…………… 8分22.解:(1)抛物线的解析式为y =-2516t 2+5t +12,∴当t =85时,y 最大=4.5…………… 4分(2)把x =24代入x =10t 得t =2.4,∴当t =2.4时,y =-2516×2.42+5×2.4+12=6.5 2.44,∴他不能将球直接射入球门. …………… 8分23. 解:(1)令y=0得﹣x 2﹣x+2=0,∴x 2+2x ﹣8=0,x=﹣4或2,∴点A 坐标(2,0),点B 坐标(﹣4,0),令x=0,得y=2,∴点C 坐标(0,2).…………… 3分 (2)由图象①AB 为平行四边形的边时,∵AB=EF=6,对称轴x=﹣1∴点E 的横坐标为﹣7或5,∴点E 坐标(﹣7,﹣)或(5,﹣),此时点F (﹣1,﹣),②当点E 在抛物线顶点时,点E (﹣1,),设对称轴与x 轴交点为M ,令EM 与FM 相等,则四边形AEBF 是菱形,此时F 点的坐标为(﹣1,-)…………… 8分。
铜陵市九年级上学期数学期末考试试卷
![铜陵市九年级上学期数学期末考试试卷](https://img.taocdn.com/s3/m/3e06f07ba76e58fafbb00366.png)
铜陵市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八下·顺义期末) 下列交通标志中是中心对称图形的是()A .B .C .D .2. (2分)二次函数y=x2-6x+5的图像的顶点坐标是()A . (-3, 4)B . (3,-4)C . (-1,2)D . (1,-4)3. (2分)下列说法正确的是()A . 掷一枚硬币,正面一定朝上B . 某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C . 旅客上飞机前的安检应采用抽样调查D . 方差越大,数据的波动越大4. (2分) (2017九上·上城期中) 如图,点,,在⊙ 上,,,则的度数为()A .B .C .D .5. (2分)已知关于x的二次方程x2+2x+k=0,要使该方程有两个不相等的实数根,则k的值可以是()A . 0B . 1C . 2D . 36. (2分)如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围()A . 3≤OM≤5B . 4≤OM≤5C . 3<OM<5D . 4<OM<57. (2分)(2017·鹤壁模拟) 一个不透明的袋子中装有4张卡片,卡片上分别标有数字﹣3,1,,2,它们除所标数字外完全相同,摇匀后从中随机摸出两张卡片,则两张卡片上所标数字之积是正数的概率是()A .B .C .D .8. (2分) (2016八下·吕梁期末) 小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A .B .C .D .9. (2分)某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间既周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的,设人行通道的宽度为x千米,则下列方程正确的是()A . (2﹣3x)(1﹣2x)=1B . (2﹣3x)(1﹣2x)=1C . (2﹣3x)(1﹣2x)=2D . (2﹣3x)(1﹣2x)=210. (2分)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果:①b2>4ac;②abc >0;③2a+b=0;④a+b+c>0;⑤a-b+c<0;则正确的结论是()A . ①②③④B . ②④⑤C . ②③④D . ①④⑤二、填空题 (共6题;共10分)11. (1分)若点A(n,2)与点B(-3,m)关于x轴对称,则n-m=________ .12. (1分) (2016八上·吴江期中) 已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为________13. (1分)“仁义礼智信孝”是我们中华民族的传统美德,小明同学将这六个字分别写在一个正方体六个表面上,这个正方体的表面展开图如图所示,那么与“孝”所在面相对的面上的字是________14. (5分)下表记录了一名球员在罚球线上投篮的结果,投篮次数(n)50100150209250300350投中次数(m)286078104123152175投中频率(n/m)0.560.60________________0.49________________(1)计算并填写表中的投中频率(精确到0.01);(2)这名球员投篮一次,投中的概率约是________ (精确到0.1)?15. (1分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个.为实现平均每月10000元的销售利润,则这种台灯的售价应定为________元.16. (1分) (2017八下·泰州期中) 如图,在Rt△ABC中,∠ACB=90°,∠A=40°,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为________.三、解答题 (共7题;共90分)17. (20分)解方程:(1)(x﹣2)2﹣16=0.(2) x2﹣6x+5=0 (配方法)(3) x2﹣3x+1=0.(4)(4)x(x﹣3)=x﹣3.18. (10分) (2015九上·宜春期末) 每年淘宝网都会举办“双十一”购物活动,许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售一件A商品成本为50元,网上标价80元.(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引买主,问平均每次降价率为多少,才能使这件A商品的利润率为10%?(≈0.83)(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天,先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出60件A商品.在“双十一”购物活动这天,乙网店先将网上标价提高a%,再推出五折销售的促销活动,吸引了大量网购者,乙网店在“双十一”购物活动当天卖出的A商品数量也比原来一周卖出的A商品数量增加了a%,这样“双十一”活动当天乙网店的利润达到了3600元,求乙网店在“双十一”购物活动这天的网上标价为多少?19. (10分)(2016·嘉善模拟) 如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2.(2)求点C1在旋转过程中所经过的路径长.20. (10分) (2019九上·宝安期末) 有3张正面分别写有数字,0,1的卡片,它们的背面完全相同,现将这3张卡片背面朝上洗匀,小明先从中任意抽出一张卡片记下数字为x;小亮再从剩下的卡片中任意取出一张记下数字为y,记作.(1)用列表或画树状图的方法列出所有可能的点P的坐标;(2)若规定:点在第二象限小明获胜;点在第四象限小亮获胜,游戏规则公平吗?21. (10分)在△ABC中,∠ACB=90°,O为边AB上的一点,以O为圆心,以OA为半径,作⊙O,交AB于点D,交AC于点E,交BC于点F,且点F恰好是ED的中点,连接DF.(1)求证:BC是⊙O的切线;(2)若⊙O的直径为10,AE=6,求图中阴影部分的面积.22. (15分) (2016九上·淅川期末) 某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23. (15分)某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共90分)17-1、17-2、17-3、17-4、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、第11 页共11 页。
安徽省铜陵市义安区2019届九年级上学期期末调研考试数学试题(含答案)
![安徽省铜陵市义安区2019届九年级上学期期末调研考试数学试题(含答案)](https://img.taocdn.com/s3/m/e18a70ad76eeaeaad1f330f0.png)
参考答案与试题解析一.选择题(共10小题)1.下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个【分析】根据中心对称图形的定义和各图的特点即可求解.【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形.中心对称图形有3个.故选:B.2.已知关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),则a﹣b值为()A.﹣1 B.0 C.1 D.2【分析】由一元二次方程的根与系数的关系x1•x2=、以及已知条件求出方程的另一根是﹣1,然后将﹣1代入原方程,求a﹣b的值即可.【解答】解:∵关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),∴x1•(﹣a)=a,即x1=﹣1,∴1﹣b+a=0,∴a﹣b=﹣1.故选:A.3.如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A.B.C.D.【分析】连接OA,设⊙O的半径为r,由于AB垂直平分半径OC,AB=,则AD==,OD=,再利用勾股定理即可得出结论.【解答】解:连接OA,设⊙O的半径为r,∵AB垂直平分半径OC,AB=,∴AD==,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.故选:A.4.下列事件是必然事件的是()A.通常加热到100℃,水沸腾B.抛一枚硬币,正面朝上C.明天会下雨D.经过城市中某一有交通信号灯的路口,恰好遇到红灯【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【解答】解:A、通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B、抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C、明天会下雨,是随机事件,故C选项不符合题意;D、经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.故选:A.5.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°【分析】△COD是由△AOB绕点O按逆时针方向旋转而得,由图可知,∠AOC为旋转角,可利用△AOC的三边关系解答.【解答】解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选:C.6.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)【分析】二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).抛物线的开口方向有a的符号确定,当a>0时开口向上,当a<0时开口向下.【解答】解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选:A.7.从1~9这九个自然数中任取一个,是2的倍数的概率是()A.B.C.D.【分析】先从1~9这九个自然数中找出是2的倍数的有2、4、6、8共4个,然后根据概率公式求解即可.【解答】解:1~9这九个自然数中,是2的倍数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是2的倍数的概率是:.故选:B.8.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.9.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.10.关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.二.填空题(共5小题)11.把方程2x2﹣1=x(x+3)化成一般形式是x2﹣3x﹣1=0 .【分析】直接去括号,进而移项合并同类项进而得出答案.【解答】解:2x2﹣1=x(x+3)2x2﹣1=x2+3x,则2x2﹣x2﹣3x﹣1=0,故x2﹣3x﹣1=0.故答案为:x2﹣3x﹣1=0.12.一个多边形的每一个外角都是36°,则这个多边形的边数是10 .【分析】多边形的外角和是固定的360°,依此可以求出多边形的边数.【解答】解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.故答案为:10.13.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为 2 .【分析】根据扇形的面积公式S=lr,其中l=r,求解即可.【解答】解:∵S=lr,∴S=×2×2=2,故答案为2.14.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么PP′=3.【分析】由旋转的性质可知,AP=AP′=3,∠PAP′=∠BAC=90°,在Rt△APP′中,由勾股定理求PP′2.【解答】解:∵△ABP绕A逆时针旋转后,能够得到△ACP′,∴AP=AP′=3,∠PAP′=∠BAC=90°,在Rt△APP′中,由勾股定理,得PP′2=AP2+AP′2=32+32=18,∴PP′=3故答案为:3.15.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0,②2a+b =0,③a﹣b+c=0;④4ac﹣b2>0,⑤4a+2b+c>0,其中正确的结论序号是①②③⑤【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可知:抛物线开口方向向下,则a<0,对称轴直线位于y轴右侧,则a、b异号,即b>0,抛物线与y轴交于正半轴,则c>0,abc<0,故①正确;②对称轴为x=﹣=1,b=﹣2a,故②正确;③由抛物线的对称性知,抛物线与x轴的另一个交点坐标为(﹣1,0),所以当x=﹣1时,y=a﹣b+c=0,即a﹣b+c=0,故③正确;④抛物线与x轴有两个不同的交点,则b2﹣4ac>0,所以4ac﹣b2<0,故④错误;⑤当x=2时,y=4a+2b+c>0,故⑤正确.故答案是:①②③⑤.三.解答题(共7小题)16.用适当的方法解下列一元二次方程:(1)x(2x﹣5)=4x﹣10.(2)x2+5x﹣4=0.【分析】(1)利用因式分解法求解可得;(2)利用公式法求解可得.【解答】解:(1)∵x(2x﹣5)﹣2(2x﹣5)=0,∴(2x﹣5)(x﹣2)=0,则2x﹣5=0或x﹣2=0,解得x=2.5或x=2;(2)∵a=1,b=5,c=﹣4,∴△=52﹣4×1×(﹣4)=41>0,则x=.17.为增强中学生体质,篮球运球已列为铜陵市体育中考选考项目,某校学生不仅练习运球,还练习了投篮,下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.(1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?【分析】(1)计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.(2)用总投篮次数乘以其概率即可求得投中次数.【解答】解:(1)估计这名球员投篮一次,投中的概率约是≈0.5;(2)622×0.5=311(次).故估计这名同学投篮622次,投中的次数约是311次.18.如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°,得到△OA1B1.(1)线段A1B1的长是 6 ,∠AOA1的度数是90°;(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.【分析】(1)根据旋转的性质即可直接求解;(2)根据旋转的性质以及平行线的判定定理证明B1A1∥OA且A1B1=OA即可证明四边形OAA1B1是平行四边形;(3)利用平行四边形的面积公式求解.【解答】解:(1)A1B1=AB=6,∠AOA1=90°.故答案是:6,90°;(2)∵A1B1=AB=6,OA1﹣OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,∴∠OA1B1=∠AOA1,A1B1=OA,∴B1A1∥OA,∴四边形OAA1B1是平行四边形;(3)S=OA•A1O=6×6=36.即四边形OAA1B1的面积是36.19.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2017年我市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年我市能否完成计划目标?【分析】(1)根据题意可以列出相应的方程从而可以求得这两年我市推行绿色建筑面积的年平均增长率;(2)根据(1)中的增长率可以求得实际到2017年绿色建筑的面积,然后与计划的作比较,即可解答本题.【解答】解:(1)设这两年我市推行绿色建筑面积的年平均增长率为x,950(1+x)2=1862,解得,x1=0.4,x2=﹣2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862(1+40%)=2606.8,∵2606.8>2400,∴2017年我市能完成计划目标,即如果2017年仍保持相同的年平均增长率,2017年我市能完成计划目标.20.如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)方法1、先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;方法2、判断出OP是CD的垂直平分线,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)方法1、连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;方法2、∵PD,PC是⊙O的切线,∴PD=PC,∵OD=OC,∴P,O在CD的中垂线上,∴OP⊥CD(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.21.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)∵在Rt△AED中,∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=,∴S△OCD=,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.22.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.【分析】(1)根据题意得出关于a、b、c的方程组,求得a、b、c的值,即可得出抛物线的解析式,根据抛物线的对称性得出点B的坐标,再设出直线BC的解析式,把点B、C的坐标代入即可得出直线BC的解析式;(2)点A关于对称轴的对称点为点B,连接BC,设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小,再求得点M的坐标.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴B(﹣3,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2∴M(﹣1,2).即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2).。
{3套试卷汇总}2018年安徽省名校九年级上学期期末教学质量检测数学试题
![{3套试卷汇总}2018年安徽省名校九年级上学期期末教学质量检测数学试题](https://img.taocdn.com/s3/m/263aab1d0508763230121265.png)
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AE BD ⊥,垂足为点E ,5AE =,且2EO BE =,则OA 的长为( )A 5B .25C .35D 151313【答案】C 【分析】由矩形的性质得到:,OA OB =设,BE x = 利用勾股定理建立方程求解x 即可得到答案. 【详解】解: 矩形ABCD ,,OA OB ∴=2,EO BE =设,BE x =则2,3,OE x OA OB x ===AE BD ⊥,222(3)(2)5,x x ∴=+2525,x ∴=5,5x x ∴==3 5.OA ∴=故选C .【点睛】本题考查的是矩形的性质,勾股定理,掌握以上知识点是解题的关键.2.下列函数是二次函数的是( )A .y =2x ﹣3B .y =21xC .y =(x ﹣1)(x+3)D .233y =+【答案】C【分析】根据二次函数的定义作出判断.【详解】解:A 、该函数属于一次函数,故本选项错误;B 、该函数未知数在分母位置,不符合二次函数的定义,故本选项错误;C 、该函数符合二次函数的定义,故本选项正确;D 、该函数只有一个变量不符合二次函数的定义,故本选项错误;故选:C .【点睛】此题考查的是二次函数的判断,掌握二次函数的定义是解决此题的关键.3.若反比例函数y =k x 的图象经过点(2,-1),则该反比例函数的图象在( ) A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限 【答案】D【解析】试题分析:反比例函数k y x=的图象经过点21-(,),求出K=-2,当K>0时反比例函数的图象在第一、三象限,当K 〈0时反比例函数的图象在第二、四象限,因为-2〈0,D 正确.故选D考点:反比例函数的图象的性质.4.如图,小江同学把三角尺含有60︒角的一端以不同的方向穿入进另一把三角尺(含有45︒角)的孔洞中,已知孔洞的最长边为2cm ,则三角尺穿过孔洞部分的最大面积为( )A .233B 23cmC .223cmD .(223cm 【答案】B【分析】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,故可求解.【详解】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,∵孔洞的最长边为2cm∴23a 2323=故选B.【点睛】此题主要考查等边三角形的面积求解,解题的关键是根据题意得到当穿过孔洞三角尺为等边三角形时面积最大.5.如图,在ABC ∆中,D 在AC 边上,12AD DC :=:,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE EC :=( )A .1:2B .1:3C .1:4D .2:3【答案】B 【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出12AD DC :=:,根据已知和平行线分线段成比例得出2121AD DG GC AG GC AO OF ==,:=:,:=:,再由同高不同底的三角形中底与三角形面积的关系可求出BF FC :的比.【详解】解:如图,过O 作//OG BC ,交AC 于G ,∵O 是BD 的中点,∴G 是DC 的中点.又12AD DC :=:,AD DG GC ∴==,2121AG GC AO OE ∴:=:,:=:,2AOB BOE S S ∆∆∴:=设2BOE AOB S S S S ∆∆=,=,又BO OD =,24AOD ABD S S S S ∆∆∴=,=,12AD DC :=:,287BDC ABD CDOE S S S S S ∆∆∴四边形==,=,93AEC ABE S S S S ∆∆∴=,=, 3193ABE AEC S BE S EC S S ∆∆∴=== 故选B .【点睛】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.6.下列约分正确的是( )A .632x x x= B .0x y x y +=+ C .222142xy x y = D .1()a b x a b x+=+ 【答案】D 【分析】根据约分的运算法则,以及分式的基本性质,分别进行判断,即可得到答案.【详解】解:A 、642x x x=,故A 错误; B 、1x y x y+=+,故B 错误; C 、22242=xy y x y x,故C 错误; D 、1()a b x a b x+=+,正确; 故选:D .【点睛】本题考查了分式的基本性质,以及约分的运算法则,解题的关键是熟练掌握分式的基本性质进行解题. 7.一元二次方程x 2+4x =5配方后可变形为( )A .(x+2)2=5B .(x+2)2=9C .(x ﹣2)2=9D .(x ﹣2)2=21【答案】B【分析】两边配上一次项系数一半的平方可得.【详解】∵x 2+4x=5,∴x 2+4x+4=5+4,即(x+2)2=9,故选B .【点睛】本题主要考查解一元二次方程的基本技能,熟练掌握解一元二次方程的常用方法和根据不同方程灵活选择方法是解题的关键.8.某鱼塘里养了100条鲤鱼、若干条草鱼和50条罗非鱼,通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,可估计该鱼塘中草鱼的数量为( )A .150B .100C .50D .200 【答案】A【分析】根据大量重复试验中的频率估计出概率,利用概率公式求得草鱼的数量即可.【详解】∵通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,∴捕捞到草鱼的概率约为0.5,设有草鱼x 条,根据题意得: 10050++x x =0.5, 解得:x =150,故选:A .【点睛】本题考查用样本估计总体,解题的关键是明确题意,由草鱼出现的频率可以计算出鱼的数量. 9.如图,点(),A m n ,34,2B ⎛⎫ ⎪⎝⎭在双曲线k y x=上,且0m n <<.若AOB 的面积为454,则m n +=( ).A .7B .112C .252D .33【答案】A 【分析】过点A 作AC ⊥x 轴,过点B 作BD ⊥x 轴,垂足分别为点C ,点D ,根据待定系数法求出k 的值,设点6,A m m ⎛⎫ ⎪⎝⎭,利用△AOB 的面积=梯形ACDB 的面积+△AOC 的面积-△BOD 的面积=梯形ACDB 的面积进行求解即可.【详解】如图所示,过点A 作AC ⊥x 轴,过点B 作BD ⊥x 轴,垂足分别为点C ,点D ,由题意知,3462k =⨯=, 设点6,A m m ⎛⎫ ⎪⎝⎭, ∴△AOB 的面积=梯形ACDB 的面积+△AOC 的面积-△BOD 的面积=梯形ACDB 的面积,∴13645()(4)224AOB S m m ∆=⨯+⨯-=, 解得,1m =或16m =-(舍去),经检验,1m =是方程的解,∴6n =,∴7m n +=,故选A .【点睛】本题考查了利用待定系数法求反比例函数的表达式,反比例函数系数k 的几何意义,用点A 的坐标表示出△AOB 的面积是解题的关键.10.如图,AB 是O 的直径,CD 是O 的弦,若56ABD ∠=︒,则BCD ∠=( ).A .32︒B .34︒C .44︒D .46︒【答案】B 【分析】根据AB 是⊙O 的直径得出∠ADB =90°,再求出∠A 的度数,由圆周角定理即可推出∠BCD 的度数.【详解】∵AB 是⊙O 的直径,∴∠ADB =90°,∴在Rt △ABD 中,∠A =90°﹣∠ABD =34°,∵弧BD =弧BD ,∴∠BCD =∠A =34°,故选B .【点睛】本题考查圆周角定理及其推论,熟练掌握圆周角定理是解题的关键.11.如图,双曲线k y x=与直线y mx =相交于A 、B 两点,B 点坐标为()2,3--,则A 点坐标为( )A .()2,3? --B .()2,3C .()2,3-D .()2,3-【答案】B【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【详解】解:点A 与B 关于原点对称, B 点坐标为()2,3--∴A 点的坐标为(2,3).所以B 选项是正确的.【点睛】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.12.菱形的两条对角线长分别为60cm 和80cm ,那么边长是( )A .60cmB .50cmC .40cmD .80cm【答案】B【分析】根据菱形的对角线互相垂直平分求出OA 、OB 的长,再利用勾股定理列式求出边长AB ,然后根据菱形的周长公式列式进行计算即可得解.【详解】解:如图,∵菱形的两条对角线的长是6cm 和8cm ,∴OA=12×80=40cm ,OB=12×60=30cm , 又∵菱形的对角线AC ⊥BD ,∴223040+,∴这个菱形的边长是50cm .故选B.【点睛】本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.二、填空题(本题包括8个小题)13.在一个不透明的袋中装有12个红球和若干个白球,它们除颜色外都相同.从袋中随机摸出一个球,记下颜色后放回,并搅均,不断重复上述的试验共5000次,其中2000次摸到红球,请估计袋中大约有白球______个.【答案】1【解析】根据口袋中有12个红球,利用小球在总数中所占比例得出与实验比例应该相等求出即可. 【详解】解:通过大量重复摸球试验后发现,摸到红球的频率是2000250005=,口袋中有12个红球, 设有x 个白球, 则122125x =+,解得:12x=,答:袋中大约有白球1个.故答案为:1.【点睛】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.14.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.则直线CD与⊙O的位置关系是_______ ,阴影部分面积为(结果保留π) ________.【答案】相切6-π【详解】∵正方形ABCD是正方形,则∠C=90°,∴D与⊙O的位置关系是相切.∵正方形的对角线相等且相互垂直平分,∴CE=DE=BE,∵CD=4,∴BD=42,∴CE=DE=BE=22梯形OEDC的面积=(2+4)×2÷2=6,扇形OEC的面积=904 360π=π,∴阴影部分的面积=6-π.15.在一个不透明的盒子中装有6个白球,x个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到白球的概率为23,则x=_______.【答案】1【分析】直接以概率求法得出关于x的等式进而得出答案.【详解】解:由题意得:6263x =+ , 解得3x =,故答案为:1.【点睛】 本题考查了概率的意义,正确把握概率的求解公式是解题的关键.16.观察下列各式:2(1)(1)1x x x -+=-; 23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-; 4325(1)(1)1x x x x x x -++++=-则2019201820172222...221++++++=_______________________.【答案】202021-【分析】由所给式子可知,(1x -)(122...1n n n x x x x x --++++++)=11n x +-,根据此规律解答即可.【详解】由题意知(21-)(2019201820172222...221++++++)=202021-,∴20192018201722020222...22121++++++=-.故答案为202021-.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.17.如图,矩形ABCD 中,AB=1,AD=2.以A 为圆心,AD 的长为半径做弧交BC 边于点E ,则图中DE 的弧长是_______.【答案】24π 【分析】根据题意可得2,则可以求出sin∠AEB,可以判断出可判断出∠AEB=45°,进一步求解∠DAE=∠AEB=45°,代入弧长得到计算公式可得出弧DE 的长度.【详解】解:∵AD 半径画弧交BC 边于点E ,2∴2,又∵AB=1,∴2 sin22ABAEBAE∠===∴∠AEB=45°,∵四边形ABCD是矩形∴AD∥BC∴∠DAE=∠AEB=45°,故可得弧DC的长度为=452180π⋅⋅=24π,故答案为:24π.【点睛】此题考查了弧长的计算公式,解答本题的关键是求出∠DAE的度数,要求我们熟练掌握弧长的计算公式及解直角三角形的知识.18.将抛物线y=(x+2)2-5向右平移2个单位所得抛物线解析式为_____.【答案】y=x2−1【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−1向右平移2个单位,得:y=(x+2−2)2−1,即y=x2−1.故答案是:y=x2−1.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.三、解答题(本题包括8个小题)19.如图,点B,E,C,F 在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.【答案】证明见解析;【解析】试题分析:由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D .考点:全等三角形的判定与性质.20.已知抛物线y =ax 2+2x ﹣32(a ≠0)与y 轴交于点A ,与x 轴的一个交点为B . (1)①请直接写出点A 的坐标 ;②当抛物线的对称轴为直线x =﹣4时,请直接写出a = ;(2)若点B 为(3,0),当m 2+2m+3≤x ≤m 2+2m+5,且am <0时,抛物线最低点的纵坐标为﹣152,求m 的值;(3)已知点C (﹣5,﹣3)和点D (5,1),若抛物线与线段CD 有两个不同的交点,求a 的取值范围.【答案】(1)①3(0,)2-;②14;(2)1m =;(1)a >1750或a <﹣1. 【分析】(1)①令x =0,由抛物线的解析式求出y 的值,便可得A 点坐标;②根据抛物线的对称轴公式列出a 的方程,便可求出a 的值;(2)把B 点坐标代入抛物线的解析式,便可求得a 的值,再结合已知条件am <0,得m 的取值范围,再根据二次函数的性质结合条件当m 2+2m+1≤x ≤m 2+2m+5时,抛物线最低点的纵坐标为152-,列出m 的方程,求得m 的值,进而得出m 的准确值;(1)用待定系数法求出CD 的解析式,再求出抛物线的对称轴1x a=-,进而分两种情况:当a >0时,抛物线的顶点在y 轴左边,要使抛物线与线段CD 有两个不同的交点,则C 、D 两必须在抛物线上方,顶点在CD 下方,根据这一条件列出a 不等式组,进行解答;当a <0时,抛物线的顶点在y 轴的右边,要使抛物线与线段CD 有两个不同的交点,则C 、D 两必须在抛物线下方,抛物线的顶点必须在CD 上方,据此列出a 的不等式组进行解答.【详解】(1)①令x =0,得32y =-, ∴3(0,)2A -, 故答案为:3(0,)2-;②∵抛物线的对称轴为直线x =﹣4, ∴ 242a-=-, ∴a =14, 故答案为:14; (2)∵点B 为(1,0),∴9a+6﹣32=0,∴抛物线的解析式为:213222y x x =+-, ∴对称轴为x =﹣2,∵am <0,∴m >0,∴m 2+2m+1>1>﹣2, ∵当m 2+2m+1≤x ≤m 2+2m+5时,y 随x 的增大而减小,∵当m 2+2m+1≤x ≤m 2+2m+5,且am <0时,抛物线最低点的纵坐标为﹣152, ∴ 2221315(25)2(25)222m m m m -+++++-=-, 整理得(m 2+2m+5)2﹣4(m 2+2m+5)﹣12=0,解得,m 2+2m+5=6,或m 2+2m+5=﹣2(△<0,无解),∴1m =-∵m >0,∴1m =;(1)设直线CD 的解析式为y =kx+b (k ≠0),∵点C (﹣5,﹣1)和点D (5,1),∴ 5351k b k b -+=-⎧⎨+=⎩, ∴251k b ⎧=⎪⎨⎪=-⎩,∴CD 的解析式为215y x =-, ∵y =ax 2+2x ﹣32(a ≠0) ∴对称轴为1x a=-, ①当a >0时,10a-<,则抛物线的顶点在y 轴左侧, ∵抛物线与线段CD 有两个不同的交点, ∴23251032325101211321()2()()125a a a a a a ⎧---⎪⎪⎪+-⎨⎪⎪-+----⎪⎩>><,②当a <0时,10a ->,则抛物线的顶点在y 轴左侧,∵抛物线与线段CD 有两个不同的交点,∴23251032325101211321()2()()125a a a a a a ⎧---⎪⎪⎪+-⎨⎪⎪-+----⎪⎩<<>, ∴a <﹣1,综上,1750a >或a <﹣1. 【点睛】本题为二次函数综合题,难度较大,解题时需注意用待定系数法求出CD 的解析式,再求出抛物线的对称轴1x a=-,要分两种情况进行讨论. 21.如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,CF ⊥AF ,且CF=CE(1)求证:CF 是⊙O 的切线;(2)若sin ∠BAC=25,求CBD ABC S S ∆∆的值.【答案】(1)见解析 (2)825【分析】(1)首先连接OC ,由CD ⊥AB ,CF ⊥AF ,CF=CE ,即可判定AC 平分∠BAF ,由圆周角定理即可得∠BOC=2∠BAC ,则可证得∠BOC=∠BAF ,即可判定OC ∥AF ,即可证得CF 是⊙O 的切线.(2)由垂径定理可得CE=DE ,即可得S △CBD =2S △CEB ,由△ABC ∽△CBE ,根据相似三角形的面积比等于相似比的平方,易求得△CBE 与△ABC 的面积比,从而可求得CBD ABCS S ∆∆的值. 【详解】(1)证明:连接OC .∵CE ⊥AB ,CF ⊥AF ,CE=CF ,∴AC 平分∠BAF ,即∠BAF=2∠BAC .∵∠BOC=2∠BAC ,∴∠BOC=∠BAF .∴OC ∥AF .∴CF ⊥OC .∴CF 是⊙O 的切线.(2)解:∵AB 是⊙O 的直径,CD ⊥AB ,∴CE=ED ,∠ACB=∠BEC=90°.∴S △CBD =2S △CEB ,∠BAC=∠BCE .∴△ABC ∽△CBE . ∴.∴.22.如图,有一个斜坡AB ,坡顶B 离地面的高度BC 为20米,坡面AB 的坡度为25,求坡面AB 的长度.【答案】29【分析】根据坡度的定义可得25BC AC =,求出AB ,再根据勾股定理求222050.AB =+ 【详解】∵坡顶B 离地面的高度BC 为20米,坡面AB 的坡度为25即25BC AC =, 2025AC = ∴50AC =米由勾股定理得2220501029AB =+=答:坡面AB 的长度为29.【点睛】考核知识点:解直角三角形应用.把问题转化为解直角三角形是关键.23.用配方法解方程2x 2-4x-3=0.【答案】x 110,x 210.【分析】借助完全平方公式,将原方程变形为25(1)2x -=,开方,即可解决问题. 【详解】解:∵2x 2-4x-3=0, 2322x x ∴-= 25(1)2x ∴-= 1210101,1x x ∴=+=- 点睛:用配方法解一元二次方程的步骤:移项(常数项右移)、二次项系数化为1、配方(方程两边同加一次项一半的平方)、开方、求解、定解24.如图,C 地在B 地的正东方向,因有大山阻隔,由B 地到C 地需绕行A 地,已知A 地位于B 地北偏东53°方向,距离B 地516千米,C 地位于A 地南偏东45°方向.现打算打通穿山隧道,建成两地直达高铁,求建成高铁后从B 地前往C 地的路程.(结果精确到1千米)(参考数据:sin53°=45,cos53°=35,tan53°=43)【答案】建成高铁后从B 地前往C 地的路程约为722千米.【分析】作AD ⊥BC 于D ,分别根据正弦、余弦的定义求出BD 、AD ,再根据等腰直角三角形的性质求出CD 的长,最后计算即可.【详解】解:如图:作AD ⊥BC 于D ,在Rt △ADB 中,cos ∠DAB =AD AB,sin ∠DAB =BD AB , ∴AD =AB •cos ∠DAB =516×35=309.6,BD =AB •sin ∠DAB =516×45=412.8, 在Rt △ADC 中,∠DAC =45°,∴CD =AD =309.6,∴BC =BD+CD ≈722,答:建成高铁后从B 地前往C 地的路程约为722千米.【点睛】本题考查了方向角问题,掌握方向角的概念和熟记锐角三角函数的定义是解答本题的关键.25.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°.求CD的长.【答案】CD=2 3 .【分析】根据相似三角形的判定定理求出ABP PCD∽,再根据相似三角形对应边的比等于相似比解答.【详解】解:∵△ABC是等边三角形,∴∠B=∠C=60°,∵∠APB=∠PAC+∠C,∠PDC=∠PAC+∠APD,∵∠APD=60°,∴∠APB=∠PAC+60°,∠PDC=∠PAC+60°,∴∠APB=∠PDC,又∵∠B=∠C=60°,∴△ABP∽△PCD,∴AB BP PC CD=,即312CD =,∴CD=2 3 .【点睛】本题考查了相似三角形的判定和性质、等边三角形的性质,证出两三角形相似是解题的关键.26.我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD 为12米,求条幅AE的长度.(结果保留根号)【答案】AE的长为(123)+【分析】在Rt ACF中求AF的长, 在Rt CEF中求EF的长,即可求解.【详解】过点C作CF AB⊥于点F由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF 中,45ACF ∠=︒tan 1AF ACF CF ∴∠== 12AF ∴=在Rt CEF 中,30ECF ∠=︒tan EF ECF CF∴∠=312EF ∴= 43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为()1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.27.已知:点D 是△ABC 中AC 的中点,AE ∥BC ,ED 交AB 于点G ,交BC 的延长线于点F . (1)求证:△GAE ∽△GBF ;(2)求证:AE=CF ;(3)若BG :GA=3:1,BC=8,求AE 的长.【答案】(1)详见解析;(2)详见解析;(3)AE=1【分析】(1)由AE ∥BC 可直接判定结论;(2)先证△ADE ≌△CDF ,即可推出结论;(3)由△GAE ∽△GBF ,可用相似三角形的性质求出结果.【详解】(1)∵AE ∥BC ,∴△GAE ∽△GBF ;(2)∵AE ∥BC ,∴∠E=∠F ,∠EAD=∠FCD ,又∵点D 是AC 的中点,∴AD=CD ,∴△ADE≌△CDF(AAS),∴AE=CF;(3)∵△GAE∽△GBF,∴BG BF BC CF GA EA AE+==,又∵AE=CF,∴BC AE BGAE GA+==3,即8AEAE+=3,∴AE=1.【点睛】本题考查了相似三角形的判定与性质等,解答本题的关键是灵活运用相似三角形的性质.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A.12B.22C.32D.33【答案】B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=2BD.cos∠ACB=1222ADAB==,故选B.2.如图,在平面直角坐标系中,直线OA过点(4,2),则tanα的值是( )A.12B.5C.5D.2【答案】A【分析】根据题意作出合适的辅助线,然后根据锐角三角函数和图象中的数据即可解答本题.【详解】如图:过点(4,2)作直线CD⊥x轴交OA于点C,交x轴于点D,∵在平面直角坐标系中,直线OA过点(4,2),∴OD=4,CD=2,∴tanα=CD OD =24=12, 故选A .【点睛】本题考查解直角三角形、坐标与图形的性质,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.3.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >0【答案】B【分析】利用抛物线开口方向确定a 的符号,利用对称轴方程可确定b 的符号,利用抛物线与y 轴的交点位置可确定c 的符号.【详解】∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y 轴的右侧,∴x=﹣2b a>0, ∴b>0,∵抛物线与y 轴的交点在x 轴上方,∴c>0,故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.4.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或【答案】C 【分析】根据抛物线的对称性确定抛物线与x 轴的另一个交点为(−3,1),然后观察函数图象,找出抛物线在x 轴上方的部分所对应的自变量的范围即可.【详解】∵y =ax 2+bx +c 的对称轴为直线x =−1,与x 轴的一个交点为(1,1),∴抛物线与x 轴的另一个交点为(−3,1),∴当−3<x <1时,y >1.故选:C .【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x 轴的交点. 5.关于抛物线y =x 2﹣6x+9,下列说法错误的是( )A .开口向上B .顶点在x 轴上C .对称轴是x =3D .x >3时,y 随x 增大而减小【答案】D【分析】直接利用二次函数的性质进而分别分析得出答案.【详解】解:22693y x x x , 则a=1>0,开口向上,顶点坐标为:(3,0),对称轴是x=3,故选项A ,B ,C 都正确,不合题意;x >3时,y 随x 增大而增大,故选项D 错误,符合题意.故选:D .【点睛】此题主要考查了二次函数的性质,正确掌握相关性质是解题关键.6.如图所示,在直角坐标系中,A 点坐标为(-3,-2),⊙A 的半径为1,P 为x 轴上一动点,PQ 切⊙A 于点Q ,则当PQ 最小时,P 点的坐标为( )A .(-3,0)B .(-2,0)C .(-4,0)或(-2,0)D .(-4,0)【答案】A 【解析】此题根据切线的性质以及勾股定理,把要求PQ 的最小值转化为求AP 的最小值,再根据垂线段最短的性质进行分析求解.【详解】连接AQ ,AP .根据切线的性质定理,得AQ ⊥PQ ;要使PQ 最小,只需AP 最小,则根据垂线段最短,则作AP ⊥x 轴于P ,即为所求作的点P ;此时P 点的坐标是(-3,0).故选A .【点睛】此题应先将问题进行转化,再根据垂线段最短的性质进行分析.7.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?若设每轮传染中平均一个人传染了x 个人,那么x 满足的方程是( )A .(1)121x x +=B .1(1)121x x ++=C .(1)121x x x ++=D .1(1)121x x x +++=【答案】D【分析】先由题意列出第一轮传染后患流感的人数,再列出第二轮传染后患流感的人数,即可列出方程.【详解】解:设每轮传染中平均一个人传染了x 个人,则第一轮传染后患流感的人数是:1+x ,第二轮传染后患流感的人数是:1+x+x (1+x ),因此可列方程,1+x+x (1+x )=1.故选:D .【点睛】本题主要考查一元二次方程的应用,找到等量关系是解题的关键.8.下列几何体的三视图相同的是( ) A .圆柱 B .球 C .圆锥D .长方体【答案】B 【解析】试题分析:选项A 、圆柱的三视图,如图所示,不合题意;选项B 、球的三视图,如图所示,符合题意;选项C 、圆锥的三视图,如图所示,不合题意;选项D 、长方体的三视图,如图所示,不合题意;.故答案选B.考点:简单几何体的三视图.9.如图,在ABC 中,AB BC =,90ABC ∠=︒,点D 、E 、F 分别在边AC 、BC 、AB 上,且CDE △与FDE 关于直线DE 对称.若2AF BF =,72AD =,则CD =( ).A .3B .5C .D .【答案】D 【分析】过点F 作FH ⊥AD ,垂足为点H ,设BF a =,根据勾股定理求出AC ,FH ,AH ,设EC x =,根据轴对称的性质知3BE a x =-,在Rt △BFE 中运用勾股定理求出x ,通过证明FHDEBF ∆∆,求出DH 的长,根据AD AH HD =+求出a 的值,进而求解.【详解】过点F 作FH ⊥AD ,垂足为点H ,设BF a =,由题意知,2AF a =,3BC AB a ==,由勾股定理知,AC =,FH AH ==, ∵CDE ∆与FDE ∆关于直线DE 对称,∴EC FE =,45DFE DCE ︒∠=∠=,设EC x =,则3BE a x =-,在Rt △BFE 中,222(3)a a x x +-=, 解得,53x a =,即53EC a =,43BE a =, ∵45DFE DCE A AFH ︒∠=∠=∠=∠=,∴90DFH BFE ︒∠+∠=,90BEF BFE ︒∠+∠=,∴DFH BEF ∠=∠,∵90DHF FBE ︒∠+∠=,∴FHDEBF ∆∆, ∴DH FH BF BE=,∴4DH a =,∵AD AH HD =+== ∴解得,4a =,∴CD AC AD =-==,故选D .【点睛】本题考查了轴对称图形的性质,相似三角形的判定与性质,勾股定理,等腰直角三角形的性质等,巧作辅助线证明FHD EBF ∆∆是解题的关键.10.方程x 2=2x 的解是( )A .2B .0C .2或0D .﹣2或0【答案】C【分析】利用因式分解法求解可得.【详解】解:∵x 2=2x ,∴x 2﹣2x =0,则x (x ﹣2)=0,∴x =0或x ﹣2=0,解得:x 1=0,x 2=2,故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.11.如图是我们学过的反比例函数图象,它的表达式可能是( )A .22y x =B .4y x =C .3y x =-D .3y x =-【答案】B 【分析】根据反比例函数图象可知,经过第一三象限,0k >,从而得出答案.【详解】解:A 、22y x =为二次函数表达式,故A 选项错误;B 、4y x=为反比例函数表达式,且0k >,经过第一三象限,符合图象,故B 选项正确;C 、3y x =-为反比例函数表达式,且0k <,经过第二四象限,不符合图象,故C 选项错误;D 、3y x =-为一次函数表达式,故D 选项错误.故答案为B .【点睛】本题考查了反比例函数的图象的识别,掌握反比例函数的图象与性质是解题的关键.12.如图,线段AB 两个端点的坐标分别为A(4,4),B(6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( )A .(2,2),(3,2)B .(2,4),(3,1)C .(2,2),(3,1)D .(3,1),(2,2)【答案】C 【解析】直接利用位似图形的性质得出对应点坐标乘以12得出即可. 【详解】解:∵线段AB 两个端点的坐标分别为A (4,4),B (6,2), 以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD , ∴端点的坐标为:(2,2),(3,1).故选C .【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.二、填空题(本题包括8个小题)13.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).【答案】38π 【解析】试题分析:将左下阴影部分对称移到右上角,则阴影部分面积的和为一个900角的扇形面积与一个450角的扇形面积的和:2290145133603608πππ⨯⨯⨯⨯+=. 14.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB =∠________.【答案】70°【分析】根据CB =CD ,得到30CAB CAD ∠=∠=︒,根据同弧所对的圆周角相等即可得到50ABD ACD ∠=∠=︒,根据三角形的内角和即可求出.【详解】∵CB =CD ,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒,∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.故答案为70.︒【点睛】考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.15.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为 ________. 【答案】16【分析】采用列举法求概率.【详解】解:随机抽取的所有可能情况为:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁六种情况,则符合条件的只有一种情况,则P (抽取的2名学生是甲和乙)=1÷6=16. 故答案为:16 【点睛】本题考查概率的计算,题目比较简单.16.若一个反比例函数的图像经过点(),Aa a 和()3,2B a -,则这个反比例函数的表达式为__________. 【答案】36y x= 【分析】这个反比例函数的表达式为k y x=,将A 、B 两点坐标代入,列出方程即可求出k 的值,从而求出反比例函数的表达式.【详解】解:设这个反比例函数的表达式为k y x =将点(),A a a 和()3,2B a -代入,得23k a a k a ⎧=⎪⎪⎨⎪-=⎪⎩化简,得260a a +=解得:126,0a a =-=(反比例函数与坐标轴无交点,故舍去)解得:36k = ∴这个反比例函数的表达式为36y x =故答案为:36y x =. 【点睛】此题考查的是求反比例函数的表达式,掌握待定系数法是解决此题的关键.17.如果在比例尺1:100000的滨海区地图上,招宝山风景区与郑氏十七房的距离约是19cm ,则它们之间的实际距离约为_____千米.【答案】1.【分析】根据比例尺=图上距离∶实际距离,列比例式即可求得它们之间的实际距离. 要注意统一单位.【详解】解:设它们之间的实际距离为xcm ,1∶100000=1∶x ,解得x =100000.100000cm =1千米.所以它们之间的实际距离为1千米.故答案为1.【点睛】本题考查了比例线段. 熟练运用比例尺进行计算,注意单位的转换.18.如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到A B C ''''''△的位置.设1BC =,AC =A 运动到点A ''的位置时,点A 经过的路线长为_________.【答案】433π⎛⎫+⎪ ⎪⎝⎭【分析】根据题意得到直角三角形在直线l上转动两次点A分别绕点B旋转120°和绕C″旋转90°,将两条弧长求出来加在一起即可.【详解】解:在Rt△ABC中,∵BC=1,3AC=,∴AB=2,∠CBA=60°,∴弧AA′=12024 1803ππ⨯=;弧A′A′′=9033ππ⨯=;∴点A经过的路线的长是4343() 3232πππ+=+;故答案为:43 () 32π+.【点睛】本题考查了弧长的计算方法及勾股定理,解题的关键是根据直角三角形的转动过程判断点A是以那一点为圆心转动多大的角度.三、解答题(本题包括8个小题)19.某中学课外兴趣活动小组准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃垂直于墙的一边长为x米.(1)若苗圃的面积为72平方米,求x的值;(2)这个苗圃的面积能否是120平方米?请说明理由.【答案】(1)x的值为12;(2)这个苗圃的面积不能是120平方米,理由见解析.【分析】(1)用x表示出矩形的长为30-2x,利用矩形面积公式建立方程求解,根据平行于墙的边长不能大于18米,舍去不符合题意的解;(2)根据面积120平方米建立方程,若方程有解,则可以达到120平米,否则不能.。
安徽省铜陵市九年级上学期数学期末考试试卷
![安徽省铜陵市九年级上学期数学期末考试试卷](https://img.taocdn.com/s3/m/3ca23b9b915f804d2a16c111.png)
安徽省铜陵市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)方程x2+2x-3=0的解是()A . x1=1,x2=3B . x1=1,x2=-3C . x1=-1,x2=3D . x1=-1,x2=-32. (2分)下列运算正确的是()A . +=B . 3x2y﹣x2y=3C . =a+bD . (a2b)3=a6b33. (2分) (2019九上·嘉定期末) 如果点D、E分别在△ABC中的边AB和AC上,那么不能判定DE∥BC的比例式是()A . AD:DB=AE:ECB . DE:BC=AD:ABC . BD:AB=CE:ACD . AB:AC=AD:AE4. (2分)下列方程有实数根的是()A . x2-x-1=0B . x2+x+1=0C . x2-6x+10=0D . x2-x+1=05. (2分)(2017·西安模拟) 如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB 于点D,交AC于点E,连接CD,则CD=()A . 3B . 4C . 4.8D . 56. (2分)下列说法正确的是()A . 一个游戏中奖的概率是,则做500次这样的游戏一定会中奖B . 了解50发炮弹的杀伤半径,应采用普查的方式C . 一组数据1,2,3,2,3的众数和中位数都是2D . 数据:1,3,5,5,6的方差是3.27. (2分)已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A . (2,3)B . (3,1)C . (2,1)D . (3,3)8. (2分) (2016九上·芜湖期中) 如图,在⊙O中,AB是直径,点C是的中点,点P是的中点,则∠PAB的度数()A . 30°B . 25°C . 22.5°D . 不能确定9. (2分) (2019九上·慈溪期中) 已知抛物线具有如下性质:抛物线上任意一点到定点F(0,2)的距离与到x轴的距离相等,点M的坐标为(3,6),P是抛物线上一动点,则△PMF周长的最小值是()A . 5B . 9C . 11D . 1310. (2分)已知点A的坐标是(2,1),以坐标原点O为位似中心,图像与原图形的位似比为2,则点的坐标为()A . (1,)B . (4,2)C . (1,)或(-1,- )D . (4,2)或(-4,-2)二、填空题 (共5题;共5分)11. (1分)(2016·鸡西模拟) 函数y= 中,自变量x的取值范围是________.12. (1分)某校举行A、B两项趣味比赛,甲、乙两名学生各自随即选择其中的一项,则他们恰好参加同一项比赛的概率是________.13. (1分) (2016九上·北京期中) “圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为________.14. (1分) (2018八上·阜宁期末) 在中,,,AD是角平分线,则的面积为________cm2 .15. (1分)(2018·龙湖模拟) 如图,将矩形绕点旋转至矩形位置,此时的中点恰好与点重合,交于点 .若 =1,则矩形的面积为________.三、解答题 (共8题;共97分)16. (5分)(2017·灌南模拟) 计算:()﹣1﹣(π﹣2)0+| ﹣2|+sin60°.17. (15分) (2017九上·海淀月考) 已知二次函数.(1)请你将函数解析式化成的形式,并在直角坐标系中画出的图像.(2)利用()中的图像结合图像变换表示出方程的根,要求保留画图痕迹,指出方程根的图形意义.18. (2分)(2018·岳阳模拟) 如图,有小岛A和小岛B,轮船以45km/h的速度由C向B航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A 在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈1.41,≈2.45)19. (15分)(2012·宜宾) 某市政府为落实“保障性住房政策”,2011年已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到2013年底,将累计投入10.5亿元资金用于保障性住房建设.(1)求到2013年底,这两年中投入资金的平均年增长率(只需列出方程);(2)设(1)中方程的两根分别为x1,x2,且mx12﹣4m2x1x2+mx22的值为12,求m的值.20. (15分) (2019九上·东台期中) 一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价x元,则平均每天销售数量为________件(用含x的代数式表示):(2)当每件商品降价多少元时,该商店每天销售利润为1200元?21. (10分)(2018·安徽) 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M 为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.22. (10分) (2019八上·洪山期末) 如图1,△ABC中;(1)若∠ABC=45°,P为BC边上一点,且PC=2PB,∠APC=60°,求∠ACB的大小.(2)如图2,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE=α.①连接DC与BE,G、F分别是DC与BE的中点,求∠AFG的度数.________②如图3,DC、BE交于点M,连接AM,直接写出∠AMC与α的数量关系是________.23. (25分)(2017·徐汇模拟) 如图,已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,点D是抛物线在第一象限的点.(1)当△ABD的面积为4时,①求点D的坐标;②联结OD,点M是抛物线上的点,且∠MDO=∠BOD,求点M的坐标;(2)直线BD、AD分别与y轴交于点E、F,那么OE+OF的值是否变化,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共97分)16-1、17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-2、。
铜陵市九年级上学期数学期末考试试卷
![铜陵市九年级上学期数学期末考试试卷](https://img.taocdn.com/s3/m/cca5acb0783e0912a3162a65.png)
铜陵市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·库伦旗期末) 下列事件是必然事件的是()A . 明天气温会升高B . 随意翻到一本书的某页,这页的页码是奇数C . 早晨太阳会从东方升起D . 某射击运动员射击一次,命中靶心2. (2分) (2019七下·景县期中) 如图,在数轴上标注了四段范围,则表示的点落在()A . 段(1)B . 段(2)C . 段(3)D . 段(4)3. (2分)二次函数y=x2+2x﹣7的函数值是8,那么对应的x的值是()A . 3B . 5C . ﹣3和5D . 3和﹣54. (2分) (2019九上·黄石期中) 二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax﹣bc的图象大致是()A .B .C .D .5. (2分)在抛一枚均匀硬币的实验中,如果没有硬币,则作为实验替代物的是()A . 同一副扑克中的任意两张B . 图钉C . 瓶盖D . 一个小长方体6. (2分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2 .若设道路的宽为,则下面所列方程正确的是()A . (32-x)(20-x)=32×20-570B . 32x+2×20x=32×20-570C . 32x+2×20x-2x2=570D . (32-2x)(20-x)= 5707. (2分)如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点A′的对应点A的纵坐标是1.5,则点A'的纵坐标是()A . 3B . -3C . -4D . 48. (2分) (2018九下·市中区模拟) 如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P 从点B出发,沿着B-A-D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD 于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为()A .B .C .D .9. (2分)如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A . M或O或NB . E或O或CC . E或O或ND . M或O或C10. (2分)如图,已知坡面AB的坡度i=1∶,则坡角α为()A . 15°B . 20°C . 30°D . 45°二、填空题 (共5题;共6分)11. (1分)计算:2342﹣468×134+1342=________.12. (1分) (2015九上·潮州期末) 某网店一种玩具原价为100元,“双十一”期间,经过两次降价,售价变成了81元,假设两次降价的百分率相同,则每次降价的百分率为________.13. (2分)一山坡的坡度为i=1:,那么该山坡的坡角为________度.14. (1分)(2018·泸县模拟) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x <3;⑤当x<0时,y随x增大而增大;其中结论正确有________.15. (1分)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2, BC=2,则图中阴影部分的面积为________三、解答题 (共8题;共59分)16. (5分)(2017·武汉模拟) 先化简,再求值:• ﹣,其中a=1+ ,b=1﹣.17. (10分) (2018九上·萧山开学考) 已知关于x的方程(a﹣1)x2+2x+a﹣1=0.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程仅有一个根?求出此时a的值及方程的根.18. (10分)如图是二次函数y=a(x+1)2+2的图象的一部分,根据图象回答下列问题:(1)抛物线与x轴的一个交点A的坐标是________,则抛物线与x轴的另一个交点B的坐标是________;(2)确定a的值;(3)设抛物线的顶点是P,试求△PAB的面积.19. (5分) (2019九上·定边期中) 在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离,如图,在某个路口,一辆长为的大巴车遇红灯后停在距交通信号灯的停止线处,小张驾驶一辆小轿车跟随大巴车行驶,设小张距离大巴车,已知大巴车车顶高于小张的水平视线,红灯下沿高于小张的水平视线,若小张能看到整个红灯,求的最小值.20. (15分)(2016·怀化) 甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.21. (2分)某校教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长22m,坡角∠BAD=68°,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长(精确到0.1m);(2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC削进到F点处,问BF至少是多少米?(精确到0.1m)(参考数据:sin68°=0.9272,cos68°=0.3746,tan68°=2.4751,sin50°=0.766O,cos50°=0.6428,tan50°=1.1918)22. (2分) (2019七上·武昌期末) 已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.23. (10分)(2017·港南模拟) 如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).(1)求b、c的值;(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共59分)16-1、17-1、17-2、18-1、18-2、18-3、19-1、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、23-3、。
铜陵市九年级上学期数学期末考试试卷
![铜陵市九年级上学期数学期末考试试卷](https://img.taocdn.com/s3/m/ffe91ac9b7360b4c2e3f64f6.png)
铜陵市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2012·贵港) 从2,﹣1,﹣2三个数中任意选取一个作为直线y=kx+1中的k值,则所得的直线不经过第三象限的概率是()A .B .C .D . 12. (2分) (2015九上·宜昌期中) 一元二次方程x2﹣3x=0的根是()A . x=3B . x1=0,x2=﹣3C . x1=0,x2=D . x1=0,x2=33. (2分)(2020·乾县模拟) 如图,内接于,连接并延长交于点,若,则的度数是()A .B .C .D .4. (2分) (2018九上·徐闻期中) 二次函数y=(x﹣1)2+1的图象顶点坐标是()A . (1,-1)B . (-1,1)C . (1,1)D . (-1,-1)5. (2分) 2013年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟),则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()成绩(个/分钟)140160169170177180人数111232A . 众数是177B . 平均数是170C . 中位数是173.5D . 方差是1356. (2分) (2017九上·宝坻月考) 初中毕业时,九年级(1)班的每个同学都将自己的相片向全班其他同学各送1张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为()A . x(x-1)=2 070B . x(x+1)=2 070C . 2x(x+1)=2 070D . =2 0707. (2分) (2017·桂平模拟) 将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A . 10cmB . 30cmC . 45cmD . 300cm8. (2分) (2017九上·沙河口期中) 从正方形铁片上截去2cm宽的一个长方形,剩余矩形的面积为80cm2 ,则原来正方形的面积为()A . 100cm2B . 121cm2C . 144cm2D . 169cm29. (2分)(2017·和平模拟) 有一边长为4的正n边形,它的一个内角为120°,则其外接圆的半径为()A .B . 4C .D . 210. (2分)已知:二次函数y=x2-4x-a,下列说法错误的是()A . 当x<1时,y随x的增大而减小B . 若图象与x轴有交点,则a≤4C . 当a=3时,不等式x2-4x+a<0的解集是1<x<3D . 若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=3二、填空题 (共8题;共8分)11. (1分)在九年级体育中考中,某校某班参加仰卧起坐测试的一组女生(每组6人)测试成绩如下(单位:次/分):44,42,48,46,47,45.则这组数据的极差为________。
铜陵市九年级上学期期末数学试卷(五四学制)
![铜陵市九年级上学期期末数学试卷(五四学制)](https://img.taocdn.com/s3/m/c77506d46edb6f1afe001f08.png)
铜陵市九年级上学期期末数学试卷(五四学制)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·高台模拟) 某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A .B .C .D .2. (2分)tan30°的值等于()A .B .C .D .3. (2分)(2011·湛江) 在同一坐标系中,正比例函数y=x与反比例函数的图象大致是()A .B .C .D .4. (2分)如图,以(1,﹣4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是()A . 2<x<3B . 3<x<4C . 4<x<5D . 5<x<65. (2分)如图所示的几何体,其主视图是()A .B .C .D .6. (2分)如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A .B .C .D .7. (2分)抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A . 先向左平移2个单位,再向上平移3个单位B . 先向左平移2个单位,再向下平移3个单位C . 先向右平移2个单位,再向下平移3个单位D . 先向右平移2个单位,再向上平移3个单位8. (2分)如图,等边△ABC的边长为4,D、E是边AB、BC上的动点(与A、B不重合),AD=2CE,以CE的长为半径作⊙C,DF与⊙C相切于F,下列关于DF的长说法正确的是()A . 有最大值,无最小值B . 有最小值,无最大值C . 有最大值,也有最小值D . 为定值9. (2分) (2017九上·邗江期末) 如图,点E在y轴上,⊙E与x轴交于点A、B,与y轴交于点C、D,若C(0,16),D(0,﹣4),则线段AB的长度为()A . 10B . 8C . 20D . 1610. (2分)(2019·福田模拟) 如图,正方形ABCD中,以BC为边向正方形内部作等边△BCE.连接AE.DE,连接BD交CE于F,下列结论:①∠AED=150°②△DEF~△BAE;③tan∠ECD=④△BEC的面积:△BFC的面积( +1):2,其中正确的结论有()个.A . 4B . 3C . 2D . 111. (2分)如图,直线AB与双曲线y=相交于A、B两点,过点A作AC⊥y轴于点C,过点B作BD⊥x轴于点D,连结AD、BC,分别记△ABC与△ABD的面积为S1、S2 ,则下列结论中一定正确的是()A . S1>S2B . S1<S2C . S1=S2D . 无法判断S1与S2的大小关系12. (2分) (2019九上·香坊期末) 如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)13. (1分)如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣上,B、D在双曲线y2=上,k1=2k2(k1>0),AB∥y轴,S▱ABCD=24,则k1=________ .14. (1分) (2019七上·施秉月考) 如图是一个正方体的平面展开图,在这个正方体中相对的面上的数字互为相反数,那么m所表示的数应是________.15. (1分)(2017·浦东模拟) 如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x=________.16. (1分)(2014·苏州) 如图,在△ABC中,AB=AC=5,BC=8.若∠BPC= ∠BAC,则tan∠BPC=________.17. (1分) (2017九下·江都期中) 如图,在正十边形A1A2A3A4A5A6A7A8A9A10中,连接A1A4、A1A7 ,则∠A4A1A7=________°.18. (1分)已知⊙P的半径为1,圆心P在抛物线上运动,当⊙P与x轴相切时,圆心P的坐标为________ .三、解答题 (共8题;共75分)19. (5分)计算:|﹣2|++2﹣1﹣cos60°.20. (5分)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D.(1)当△ABC的外接圆半径为1时,且∠BAC=60°,求弧BC的长度.(2)连接BD,求证:DE=DB.21. (5分)如图(3)是利用四边形的不稳定性制造的一个移动升降装修平台,其基本图形是菱形,主体部分相当于由6个菱形相互连接而成,通过改变菱形的角度,从而可改变装修平台高度.(1)如图(1)是一个基本图形,已知AB=1米,当∠ABC为30°时,求AC的长及此时整个装修平台的高度(装修平台的基脚高度忽略不计);(2)当∠ABC从30°变为90°(如图(2)是一个基本图形变化后的图形)时,求整个装修平台升高了多少米.[结果精确到0.1米,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.41].22. (10分)已知,如图,AB和DE是直立在地面上的两根立柱AB=6m,某一时刻AB在太阳光下的投影BC=3m.(1)请你在图中画出此时DE在太阳光下的投影EF;(2)在测量AB的投影时,同时测量出DE在太阳光下的投影EF长为6m,请你计算DE的长.23. (14分) (2017·中原模拟) 某数学兴趣小组对函数y=x+ 的图象和性质进行了探究,探究过程如下,请补充完整.x…﹣3﹣2﹣1﹣﹣123…y…﹣m﹣2﹣﹣2…(1)自变量x的取值范围是________,m=________.(2)根据(1)中表内的数据,在如图所示的平面直角坐标系中描点,画出函数图象的一部分,请你画出该函数图象的另一部分.(3)请你根据函数图象,写出两条该函数的性质;(4)进一步探究该函数的图象发现:①方程x+ =3有________个实数根;②若关于x的方程x+ =t有2个实数根,则t的取值范围是________.24. (15分) (2019九下·黄石月考) 如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP= ,求AD;(3)请猜想PF与FD的数量关系,并加以证明.25. (11分) (2019八上·碑林期末) 问题提出:(1)平面直角坐标系中,若点A(a,2a+1)在一次函数y=x﹣1的图象上,则a的值为________.(2)如图1,平面直角坐标系中,已知A(4,2)、B(﹣1,1),若∠A=90°,点C在第一象限,且AB=AC,试求出C点坐标.(3)近几年在经济、科技等多方面飞速发展的中国向世界展示了有一个繁华盛世.在政府的引导下,各地也都就本市特点修建了一些具有本地特色的旅游开发项目.如图2,某市就其地势特点,在一块由三条高速路(分别是x轴和直线AB:y= x+4、直线AC:y=2x﹣1)围成的三角形区域内计划修建一个三角形的特色旅游小镇.如图,D(﹣4,0),△DEF的顶点E、F分别在线段AB、AC上,且∠DEF=90°,DE=EF,试求出该旅游小镇(△DEF)的面积.26. (10分)(2016·安顺) 如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC 分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB= ,BC=2,求⊙O的半径.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、20-1、21-1、22-1、22-2、23-1、23-2、23-3、23-4、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。
铜陵市九年级上学期数学期末考试试卷
![铜陵市九年级上学期数学期末考试试卷](https://img.taocdn.com/s3/m/f4a531e9580216fc700afdfd.png)
铜陵市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·龙湖期末) 已知关于x的一元二次方程的一个根为1,则m的值为()A . 1B . -8C . -7D . 72. (2分)已知⊙O的面积为9πcm2 ,若点O到直线l的距离为πcm,则直线l与⊙O的位置关系是()A . 相交B . 相切C . 相离D . 无法确定3. (2分) (2019九上·东阳期末) 若关于x的方程x2+bx+1=0有两个不相等的实数根,则b的值可以是()A . 0B . 1C . 2D . 34. (2分)抛掷两枚质地均匀的硬币,两枚硬币落地后,正面都朝上的概率是A .B .C .D .5. (2分)(2016·慈溪模拟) 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长为()A . 2πB . πC .D .6. (2分)如图,⊙O中,直径CD⊥弦AB,则下列结论①△ABD是正△;②∠BOC=2∠ADC;③∠BOC=60°;④AC∥BD,正确的个数有()A . 1个B . 2个C . 3个D . 4个7. (2分)如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为A . 2B . 4C . 8D . 168. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a-b+c<0,其中正确的个数()A . 2个B . 3个C . 4个D . 5个9. (2分)(2019·盘龙模拟) 如图,为半圆内一点,为圆心,直径长为,,,将绕圆心逆时针旋转至,点在上,则边扫过区域(图中阴影部分)的面积为()A .B .C .D .10. (2分) (2018九上·丰台期末) 已知抛物线上部分点的横坐标x与纵坐标y的对应值如下表:x…0123…y…30m3…有以下几个结论:①抛物线的开口向下;②抛物线的对称轴为直线;③方程的根为0和2;④当y>0时,x的取值范围是x<0或x>2.其中正确的是()A . ①④B . ②④C . ②③D . ③④二、填空题 (共8题;共8分)11. (1分)(2019·桂林模拟) 如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为________.12. (1分)(2017·大连模拟) 分解因式:a﹣ab=________.13. (1分)如图,⊙O过△ABC的顶点A、B、C,且∠C=30°,AB= 3,则弧AB长为________.14. (1分)从1,2,3,…9共9个数字中任取一个数字,取出数字为奇数的概率是1 .15. (1分)同时抛掷两枚均匀的硬币,则两枚硬币正面都向上的概率是116. (1分)如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=8,那么BD的值为________ .17. (1分) (2020九上·嘉陵期末) 如图,△ABC的内切圆与三边分别切于点D,E,F,若∠C=90,AD=3,BD=5,则△ABC的面积为________。
最新-安徽省铜陵县九年级数学第一学期期末考试试卷人教新课标版精品
![最新-安徽省铜陵县九年级数学第一学期期末考试试卷人教新课标版精品](https://img.taocdn.com/s3/m/dbf56ed5f46527d3240ce0bf.png)
乡(镇)________________学校_________________班级______________姓名____________…………………………装…………………………………订……………………线………………_________________________________________________________________________-________安徽省铜陵县九年级数学第一学期期末考试试卷(考试时间120分钟,满分150分)一、精心选一选(本题有10小题,每小题4分,共40分)1、计算12183127的结果是()A 、1 B 、-1 C 、23 D 、322、小明把如图(1)所示的扑克牌放在一张桌子上,请一位同学避开他任意将其中一张牌倒过来,然后小明很快辨认出被倒过来的那张扑克牌是()A 、方块 5B 、梅花 6C 、黑桃7D 、黑桃8 3、连掷两次骰子,它们的点数都是4的概率是()A 、61 B 、41 C 、161 D 、3614、如图2,在平行四边形ABCD 中,AE ⊥BC 于E ,AE=EB=EC=a ,且a 是一元二次方程0322x x 的根,则平行四边形ABCD 的周长是()A 、224 B 、2612 C 、222 D 、261222或5、如图3,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是()A 、内含 B 、相交 C 、相切 D 、外离6、将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8000元,则售价应定为()。
A 、60元 B 、80元 C 、60元或80元 D 、70元7、关于x 的一元二次方程01)1(22a x x a 的一个根是x=0,则a 的值是()A 、1 B 、-1 C 、1或-1 D 、218、如图4,⊙O 外接于△ABC ,AD 为⊙O 的直径,∠ABC=30°,则∠CAD=()A 、30°B 、40°C 、50°D 、60°9、已知二次函数k x y2)1(3的图象上有A ),2(1y ,B (2,y 2),C ),5(3y 三个点,则y 1、y 2、y 3的大小关系是()A 、y 1>y 2>y 3B 、y 2>y 1>y 3C 、y 3>y 1>y 2D 、y 3>y 2>y 110、抛物线342x xy 是由抛物线2x y平移而得,则下列平移正确的是()A 、先向左平移2个单位,再向上平移1处单位;B 、先向右平移2个单位,再向下平移1处单位;C 、先向左平移2个单位,再向下平移1处单位;D 、先向右平移2个单位,再向上平移1处单位;二、耐心填一填(本题有8小题,每小题5分,共40分)11、已知2<x<5,化简22)5()2(x x _____________。
(汇总3份试卷)2018年安徽省名校九年级上学期数学期末综合测试试题
![(汇总3份试卷)2018年安徽省名校九年级上学期数学期末综合测试试题](https://img.taocdn.com/s3/m/07c974259e31433238689389.png)
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC中,点G为△ABC的重心,过点G作DE∥BC,分别交AB、AC于点D、E,则△ADE与四边形DBCE的面积比为()A .45B.23C.34D.49【答案】A【分析】连接AG并延长交BC于H,如图,利用三角形重心的性质得到AG=2GH,再证明△ADE∽△ABC,根据相似三角形的性质得到ADEABCSS=2()DEBC=49,然后根据比例的性质得到△ADE与四边形DBCE的面积比. 【详解】解:连接AG并延长交BC于H,如图,∵点G为△ABC的重心,∴AG=2GH,∴AGAH=23,∵DE∥BC,∴△ADE∽△ABC,∴ADEABCSS=2()DEBC=(23)2=49,∴△ADE与四边形DBCE的面积比=45.故选:A.【点睛】本题考查了三角形的重心与相似三角形的性质与判定. 重心到顶点的距离与重心到对边中点的距离之比为2∶1.2.如图,⊙O的半径为6,点A、B、C在⊙O上,且∠BCA=45°,则点O到弦AB的距离为()A .3B .6C .32D .62【答案】C 【分析】连接OA 、OB ,作OD ⊥AB 于点D ,则△OAB 是等腰直角三角形,得到OD 12=AB ,即可得出结论.【详解】连接OA 、OB ,作OD ⊥AB 于点D .∵△OAB 中,OB=OA=6,∠AOB=2∠ACB=90°,∴AB 22OA OB =+=62.又∵OD ⊥AB 于点D ,∴OD 12=AB=32.故选C .【点睛】本题考查了圆周角定理,得到△OAB 是等腰直角三角形是解答本题的关键.3.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD=6,DB=3,则AEAC 的值为()A .23 B .32 C .34 D .2【答案】A【分析】先求出AB ,由平行线分线段成比例定理得出比例式,即可得出结果.【详解】∵63AD DB ==,,∴9AB AD DB =+=,∵DE BC ,∴6293AE AD AC AB ===;故选:A.【点睛】本题考查了平行线分线段成比例定理;熟记平行线分线段成比例定理是解决问题的关键.4.已知两个相似三角形,其中一组对应边上的高分别是2和6,那么这两个三角形的相似比为()A.12B.13C.14D.16【答案】B【分析】根据相似三角形对应高的比等于相似比,即可得出结论. 【详解】解:∵相似三角形对应高的比等于相似比∴ 相似比=1 3故选B【点睛】此题主要考查了相似三角形的性质,相似三角形对应高的比等于相似比,熟记相关性质是解题的关键. 5.已知O的半径为6cm,点P到圆心O的距离为6cm,则点P和O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【答案】B【解析】根据点与圆的位置关系进行判断.【详解】∵⊙O的半径为6cm,P到圆心O的距离为6cm,即OP=6,∴点P在⊙O上.故选:B.【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.6.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C 、是随机事件,选项错误;D 、是随机事件,选项错误.故选A .7.方程5x 2=6x ﹣8化成一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是( ) A .5、6、﹣8 B .5,﹣6,﹣8 C .5,﹣6,8 D .6,5,﹣8【答案】C【解析】根据一元二次方程的一般形式进行解答即可.【详解】5x 2=6x ﹣8化成一元二次方程一般形式是5x 2﹣6x+8=0,它的二次项系数是5,一次项系数是﹣6,常数项是8,故选C .【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.8.如图,菱形OABC 在第一象限内,60AOC ∠=︒,反比例函数(0)k y x x =>的图象经过点A ,交BC 边于点D ,若AOD ∆的面积为23,则k 的值为( )A .43B .33C .23D .4【答案】C 【分析】过A 作AE ⊥x 轴于E ,设OE=a ,则AE=3a ,OA=2a ,即菱形边长为2a ,再根据△AOD 的面积等于菱形面积的一半建立方程可求出2a ,利用点A 的横纵坐标之积等于k 即可求解.【详解】如图,过A 作AE ⊥x 轴于E ,设OE=a ,在Rt △AOE 中,∠AOE=60°∴AE=OE tan 60=3⋅︒a ,OA=OE =2cos 60︒a ∴A (),3a a ,菱形边长为2a由图可知S 菱形AOCB =2S △AOD∴OC AE=223⋅⨯,即23=43⋅a a∴2=2a∴23323=⋅==k a a a故选C.【点睛】本题考查了反比例函数与几何综合问题,利用特殊角度的三角函数值表示出菱形边长及A 点坐标是解决本题的关键.9.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,若OA =2,∠P =60°,则AB 的长为( )A .23πB .πC .43πD .53π 【答案】C【解析】试题解析:∵PA 、PB 是⊙O 的切线,∴∠OBP=∠OAP=90°,在四边形APBO 中,∠P=60°,∴∠AOB=120°,∵OA=2,∴AB 的长l=12024=1803ππ⨯. 故选C.10.下列四种图案中,不是中心对称图形的为( ) A . B . C . D .【答案】D【分析】根据中心对称图形的定义逐个判断即可.【详解】解:A、是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项符合题意;故选D.【点睛】本题考查了对中心对称图形的定义,判断中心对称图形的关键是旋转180°后能够重合.能熟知中心对称图形的定义是解此题的关键.11.在△ABC中,若cosA=22,tanB=3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【答案】A【解析】试题解析:∵cosA=22,tanB=3,∴∠A=45°,∠B=60°.∴∠C=180°-45°-60°=75°.∴△ABC为锐角三角形.故选A.12.如图所示,AB是⊙O的直径,AM、BN是⊙O的两条切线,D、C分别在AM、BN上,DC切⊙O于点E,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD相交于点Q,已知AD=4,BC=9,以下结论:①⊙O的半径为132,②OD∥BE ,③PB=181313,④tan∠CEP=23其中正确结论有()A.1个B.2个C.3个D.4个【答案】C【解析】试题解析:作DK⊥BC于K,连接OE.∵AD 、BC 是切线,∴∠DAB=∠ABK=∠DKB=90°,∴四边形ABKD 是矩形,∴DK=AB ,AD=BK=4,∵CD 是切线,∴DA=DE ,CE=CB=9,在RT △DKC 中,∵DC=DE+CE=13,CK=BC ﹣BK=5,∴DK=22DC CK -=12,∴AB=DK=12,∴⊙O 半径为1.故①错误,∵DA=DE ,OA=OE ,∴OD 垂直平分AE ,同理OC 垂直平分BE ,∴AQ=QE ,∵AO=OB ,∴OD ∥BE ,故②正确.在RT △OBC 中,PB=BC OB OC⋅=313=181313,故③正确,∵CE=CB ,∴∠CEB=∠CBE ,∴tan ∠CEP=tan ∠CBP=BP PC =181313271313=23,故④正确,∴②③④正确,故选C . 二、填空题(本题包括8个小题)13.如果二次根式3x -有意义,那么x 的取值范围是_________.【答案】x≤1【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:二次根式3x -有意义,则1-x≥0,解得:x≤1.故答案为:x≤1.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.14.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是_____(填写序号).【答案】①③④.【解析】首先根据二次函数图象开口方向可得0a < ,根据图象与y 轴交点可得0c >,再根据二次函数的对称轴b 12a x =﹣=,结合a 的取值可判定出b>0,根据a,b,c 的正负即可判断出①的正误;把1x =﹣代入函数关系式2y ax bx c y a b c +++=中得=﹣,再根据对称性判断出②的正误;把2b a a b c +=﹣代入﹣ 中即可判断出③的正误;利用图象可以直接看出④的正误.【详解】解:根据图象可得:00a c <,> ,对称轴:b 12ax =﹣=, 2b a ∴=﹣,0a <,0b ∴>,, 0abc ∴<,故①正确; 把1x =﹣ 代入函数关系式2y ax bx c y a b c +++=中得:=﹣, 由抛物线的对称轴是直线130x =,且过点(,),可得当10x y =﹣时,=, 0a b c ∴+﹣=,故②错误; 2b a =﹣,a--2a +c=0∴(),即:30a c +=,故③正确; 由图形可以直接看出④正确.故答案为①③④.【点睛】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当0a > 时,抛物线向上开口;当0a < 时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即0ab <),对称轴在y 轴左侧; 当a 与b 异号时(即0ab <),对称轴在y 轴右侧.(简称:左同右异);③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于0c (,). 15.如图,若△ADE ∽△ACB ,且AD AC =23,DE=10,则BC=________【答案】15【分析】根据相似三角形的性质,列出比例式即可解决问题.【详解】解:∵△ADE ∽△ACB ,∴23DE AD BC AC ==,DE=10, ∴1023BC =,∴15BC =.【点睛】本题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形的性质.16.分解因式:29a -=__________.【答案】()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式.a 2-9=a 2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.17.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.【答案】4103【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=2x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对应边的比值相等可求出x 的值,在直角三角形ADF 中利用勾股定理即可求出AF 的长.详解:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,∵四边形ABCD 是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x ,AN=4﹣x ,∵AB=2,∴AM=BM=1,∵5AB=2,∴BE=1,∴=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,4x=-,解得:x=4 3∴=.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,18.已知P(﹣1,y1),Q(﹣1,y1)分别是反比例函数y=﹣3x图象上的两点,则y1_____y1.(用“>”,“<”或“=”填空)【答案】<【分析】先根据反比例函数中k=﹣3<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】∵比例函数y=﹣3x中,k<0,∴此函数图象在二、四象限,∵﹣1<﹣1<0,∴P(﹣1,y1),Q(﹣1,y1)在第二象限,∵函数图象在第二象限内,y随x的增大而增大,∴y1<y1.故答案为:<.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的性质,掌握其函数增减性是关键.三、解答题(本题包括8个小题)19.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O 是AB上一点,⊙O过B 、E 两点,交BD 于点G ,交AB 于点F .(1)判断直线AC 与⊙O 的位置关系,并说明理由;(2)当BD =6,AB =10时,求⊙O 的半径.【答案】(1)(1)AC 与⊙O 相切,证明见解析;(2)⊙O 半径是154. 【解析】试题分析:(1)连结OE ,如图,由BE 平分∠ABD 得到∠OBE=∠DBO ,加上∠OBE=∠OEB ,则∠OBE=∠DBO ,于是可判断OE ∥BD ,再利用等腰三角形的性质得到BD ⊥AC ,所以OE ⊥AC ,于是根据切线的判定定理可得AC 与⊙O 相切;(2)设⊙O 半径为r ,则AO=10﹣r ,证明△AOE ∽△ABD ,利用相似比得到10106r r -=,然后解方程求出r 即可.试题解析:(1)AC 与⊙O 相切.理由如下:连结OE ,如图,∵BE 平分∠ABD ,∴∠OBE=∠DBO ,∵OE=OB ,∴∠OBE=∠OEB ,∴∠OBE=∠DBO ,∴OE ∥BD ,∵AB=BC ,D 是AC 中点,∴BD ⊥AC ,∴OE ⊥AC ,∴AC 与⊙O 相切;(2)设⊙O 半径为r ,则AO=10﹣r ,由(1)知,OE ∥BD ,∴△AOE ∽△ABD , ∴AO OE AB BD =,即10106r r -=,∴r=154,即⊙O半径是154.考点:圆切线的判定:相似经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.解决(2)小题的关键是利用相似比构建方程.20.黎托社区在创建全国卫生城市的活动中,随机检查了本社区部分住户10月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天).(1)扇形统计图B部分所对应的圆心角的度数是______.(2)12月份雨花区将举行一场各社区之间“垃圾分类”知识抢答赛,黎托社区准备从甲、乙、丙、丁四户家庭以抽签的形式选取两户家庭参赛,求甲、丙两户家庭恰好被抽中的概率.【答案】(1)108度;(2)16.【分析】(1)先由A类别户数及其所占百分比求得总户数,再由各类别户数之和等于总户数求出B类别户数,继而用360°乘以B类别户数占总人数的比例即可得;(2)画树状图或列表将所有等可能的结果列举出来,利用概率公式求解即可.【详解】(1)被调查的总户数为9÷15%=60(户),∴B类别户数为60−(9+21+12)=18(户),则扇形统计图B部分所对应的圆心角的度数是360°×1860=108°;故答案为:108°;(2)根据题意画图如下:由树状图知共有12种等可能结果,其中恰好选中甲和丙的有2种结果,所以恰好选中甲和丙的概率为21 126=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.21.在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B (0,4),已知点E(0,1).(1)求m的值及点A的坐标;(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.①当点E′落在该二次函数的图象上时,求AA′的长;②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;③当A′B+BE′取得最小值时,求点E′的坐标.【答案】(2)m="2,A(-3点E′的坐标是(2,2),③点E′的坐标是(67,2).【分析】试题分析:(2)将点代入解析式即可求出m的值,这样写出函数解析式,求出A点坐标;(2)①将E点的坐标代入二次函数解析式,即可求出AA′;②连接EE′,构造直角三角形,利用勾股定理即可求出A′B2+BE′2 当n=2时,其最小时,即可求出E′的坐标;③过点A作AB′⊥x轴,并使AB′ =" BE" = 2.易证△AB′A′≌△EBE′,当点B,A′,B′在同一条直线上时,A′B + B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,由相似就可求出E′的坐标试题解析:解:(2)由题意可知4m=4,m=2.∴二次函数的解析式为24y x=-+.∴点A的坐标为(-2,0).(2)①∵点E(0,2),由题意可知,241x -+=. 解得3x =±.∴AA′=3.②如图,连接EE′.由题设知AA′=n (0<n <2),则A′O=2-n .在Rt △A′BO 中,由A′B 2=A′O 2+BO 2,得A′B 2=(2–n)2+42=n 2-4n+3.∵△A′E′O′是△AEO 沿x 轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=n .又BE=OB-OE=2.∴在Rt △BE′E 中,BE′2=E′E 2+BE 2=n 2+9,∴A′B 2+BE′2=2n 2-4n+29=2(n –2)2+4.当n=2时,A′B 2+BE′2可以取得最小值,此时点E′的坐标是(2,2).③如图,过点A 作AB′⊥x 轴,并使AB′=BE=2.易证△AB′A′≌△EBE′,∴B′A′=BE′,∴A′B+BE′=A′B+B′A′. 当点B ,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′, ∴''3'4AA AB A O OB ==, ∴AA′=36277⨯= ∴EE′=AA′=67,∴点E′的坐标是(67,2). 考点:2.二次函数综合题;2.平移.【详解】22.如图,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,﹣n ),抛物线经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点C ,已知实数m 、n (m <n )分别是方程x 2﹣2x ﹣3=0的两根.(1)求抛物线的解析式;(2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点(点D 在y 轴右侧),连接OD 、BD①当△OPC 为等腰三角形时,求点P 的坐标;②求△BOD 面积的最大值,并写出此时点D 的坐标.【答案】(1)抛物线的解析式为211y=x +x 22-;(2)①P 点坐标为P 1(323244-)或P 2(3344-,)或P 2(3322-,);②D (33 28-,). 【分析】(1)首先解方程得出A ,B 两点的坐标,从而利用待定系数法求出二次函数解析式即可. (2)①首先求出AB 的直线解析式,以及BO 解析式,再利用等腰三角形的性质得出当OC=OP 时,当OP=PC 时,点P 在线段OC 的中垂线上,当OC=PC 时分别求出x 的值即可.②利用S △BOD =S △ODQ +S △BDQ 得出关于x 的二次函数,从而得出最值即可.【详解】解:(1)解方程x 2﹣2x ﹣2=0,得 x 1=2,x 2=﹣1.∵m <n ,∴m=﹣1,n=2.∴A (﹣1,﹣1),B (2,﹣2).∵抛物线过原点,设抛物线的解析式为y=ax 2+bx .∴a b=1{9a 3b=3----,解得:1a=2{1b=2-.∴抛物线的解析式为211y=x +x 22-. (2)①设直线AB 的解析式为y=kx+b .∴k+b=1{3k+b=3---,解得:1k=2{3b=2--. ∴直线AB 的解析式为13y=x 22--. ∴C 点坐标为(0,32-). ∵直线OB 过点O (0,0),B (2,﹣2),∴直线OB 的解析式为y=﹣x .∵△OPC 为等腰三角形,∴OC=OP 或OP=PC 或OC=PC .设P (x ,﹣x ).(i )当OC=OP 时,()229x +x =4-,解得12x =x =44-(舍去). ∴P 1(44-). (ii )当OP=PC 时,点P 在线段OC 的中垂线上,∴P 2(3344-,). (iii )当OC=PC 时,由2239x +x+=24⎛⎫- ⎪⎝⎭, 解得123x =x =02,(舍去). ∴P 2(3322-,). 综上所述,P 点坐标为P 1(44-)或P 2(3344-,)或P 2(3322-,). ②过点D 作DG ⊥x 轴,垂足为G ,交OB 于Q ,过B 作BH ⊥x 轴,垂足为H .设Q (x ,﹣x ),D (x ,211x +x 22-). S △BOD =S △ODQ +S △BDQ =12DQ•OG+12DQ•GH =12DQ (OG+GH ) =2111x+x +x 3222⎡⎤⎛⎫-⋅ ⎪⎢⎥⎝⎭⎣⎦ =23327x +4216⎛⎫- ⎪⎝⎭. ∵0<x <2,∴当3x=2时,S 取得最大值为2716,此时D (33 28-,). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解一元二次方程、图形的面积计算等,其中(2)要注意分类求解,避免遗漏.23.如图1,若要建一个长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.求:(1)若鸡场面积150平方米,鸡场的长和宽各为多少米?(2)鸡场面积可能达到200平方米吗?(3)如图2,若在鸡场内要用竹篱笆加建一道隔栏,则鸡场最大面积可达多少平方米?【答案】(1)长为15米,宽为10米;(2)不可能达到200平方米;(3)122512【分析】(1)若鸡场面积150平方米,求鸡场的长和宽,关键是用一个未知数表示出长或宽,并注意去掉门的宽度;(2)求二次函数的最值问题,列出面积的关系式化为顶点式,确定函数最大值与200的大小关系,即可得到答案;(3)此题中首先设出鸡场的面积和宽,列函数式时要注意墙宽有三条道,所以鸡场的长要用篱笆的周长减去3个宽再加上大门的宽2米,再求函数式的最大值.【详解】(1)设宽为x 米,则:x (33﹣2x+2)=150,解得:x 1=10,x 2=152(不合题意舍去), ∴长为15米,宽为10米;(2)设面积为w 平方米,则:W =x (33﹣2x+2),变形为: 23512252()48W x =--+, ∴鸡场面积最大值为12258=15318<200,即不可能达到200平方米; (3)设此时面积为Q 平方米,宽为x 米,则:Q =x (33﹣3x+2),变形得:Q =﹣3(x -356)2+ 122512, ∴此时鸡场面积最大值为122512. 【点睛】此题考查一元二次方程的实际应用,二次函数最大值的确定方法,正确理解题意列得方程及二次函数关系式是解题的关键.24.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18C ︒的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y (°C )随时间x (小时)变化的函数图象,其中BC 段是双曲线k y x=的一部分.请根据图中信息解答下列问题: (1)恒温系统在这天保持大棚内温度18C ︒的时间有________小时;(2)当15x =时,大棚内的温度约为多少度?【答案】(1)8;(2)12C ︒.【分析】找出临界点即可.【详解】(1)8;()2∵点()10,18B 在双曲线k y x=上,∴1810k =, ∴解得:180k =. 当15x =时,1801215y ==, 所以当15x =时,大棚内的温度约为12C ︒.【点睛】理解临界点的含义是解题的关键.25.为了解学生的艺术特长发展情况,某校决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)扇形统计图中“戏曲”部分对应的扇形的圆心角为 度;(2)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列举法求恰好选中“舞蹈、声乐”这两项的概率.【答案】(1)28.8;(2)16【分析】(1)用喜欢声乐的人数除以它所占百分比即可得到调查的总人数,用总人数分别减去喜欢舞蹈、乐器、和其它的人数得到喜欢戏曲的人数,即可得出答案;(2)先画树状图展示所有12种等可能的结果数,再找出恰好选中“①舞蹈、③声乐”两项活动的结果数,然后根据概率公式计算.【详解】(1)抽查的人数=8÷16%=50(名);喜欢“戏曲”活动项目的人数=50﹣12﹣16﹣8﹣10=4(人);扇形统计图中“戏曲”部分对应的扇形的圆心角为360°×450=28.8°; 故答案为:28.8;(2)舞蹈、乐器、声乐、戏曲的序号依次用①②③④表示,画树状图:共有12种等可能的结果数,其中恰好选中“①舞蹈、③声乐”两项活动的有2种情况,所有故恰好选中“舞蹈、声乐”两项活动的概率=212=16. 【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了扇形统计图和条形统计图. 26.如图,在直角三角形ABC 中,∠C =90°,点D 是AC 边上一点,过点D 作DE ⊥BD ,交AB 于点E ,若BD =10,tan ∠ABD =12,cos ∠DBC =45,求DC 和AB 的长.【答案】DC=6;AB=4053, 【分析】如图,作EH ⊥AC 于H .解直角三角形分别求出DE ,EB ,BC ,CD ,再利用相似三角形的性质求出AE 即可解决问题. 【详解】如图,作EH ⊥AC 于H .∵DE ⊥BD ,∴∠BDE =90°,∵tan ∠ABD =DE DB =12,BD =10, ∴DE =5,BE 22BD DE +22105+=5∵∠C =90°,cos ∠DBC =BC BD =45, ∴BC =8,CD 22BD BC -22108-6,∵EH ∥BC ,∴△AEH ∽△ABC , ∴AE AB =EC BC , ∴55AE +=58, ∴AE =255, ∴AB =AE+BE=2553+55=4053. 【点睛】本题考查解直角三角形的应用,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识 27.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为(2)y 随x 的增大而减小的自变量x 的取值范围为 ;(3)若方程ax 2+bx +c =k 有两个不相等的实数根时,k 的取值范围为 ;(4)求出此抛物线的解析式.【答案】(1)x 1=1,x 2=1;(2)x >2;(1)k <2;(4)2-286y x x =+-.【分析】(1)利用二次函数与x 轴的交点坐标与对应一元二次方程的解的关系即可写出;(2)由图像可知,在对称轴的右侧,y 随x 的增大而减小;(1)方程ax 2+bx+c=k 有两个不相等的实数根,即函数y=ax 2+bx+c (a≠0)与y=k 有两个交点,画图分析即可;’(4)由图像可知:该抛物线的顶点是(2,2),过(1,0),设抛物线解析式为:()222y a x =-+ ,把(1,0)代入()222y a x =-+,求出a 即可.【详解】解:(1)当y=0时,函数图象与x 轴的两个交点的横坐标即为方程ax 2+bx+c=0的两个根, 由图可知,方程的两个根为x 1=1,x 2=1.故答案为:x 1=1,x 2=1.(2)根据函数图象,在对称轴的右侧,y 随x 的增大而减小,此时,x >2,故答案为:x >2(1)方程ax 2+bx+c=k 有两个不相等的实数根,即函数y=ax 2+bx+c (a≠0)与y=k 有两个交点,如图所示:当k >2时,y=ax 2+bx+c (a≠0)与y=k 无交点;当k=2时,y=ax 2+bx+c (a≠0)与y=k 只有一个交点;当k <2时,函数y=ax 2+bx+c (a≠0)与y=k 有两个交点,故当k <2时,方程ax 2+bx +c =k 有两个不相等的实数根.故答案为:k <2.(4)由图像可知:该抛物线的顶点是(2,2),过(1,0),∴设抛物线解析式为:()222y a x =-+把(1,0)代入()222y a x =-+得:()20122a =-+,∴=-2a ,∴()22-222=-2+8-6y x x x =-+,∴抛物线解析式为2-286y x x =+-.【点睛】此题考查了二次函数与x 轴的交点坐标与对应一元二次方程的解的关系、通过图像观察抛物线的增减性、利用画图解决抛物线与直线的交点个数问题、求函数解析式,掌握二次函数的性质是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.用配方法解方程2230x x +-=时,可将方程变形为( )A .2(1)2x +=B .2(1)2x -=C .2(1)4x -=D .2(1)4x +=【答案】D【分析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:2230x x +-=223x x +=2214x x ++=()214x +=故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.2.在Rt △ABC 中,∠C=90°,若cosB=12,则∠B 的度数是( ) A .90°B .60°C .45°D .30° 【答案】B【分析】根据锐角三角函数值,即可求出∠B.【详解】解:∵在Rt △ABC 中,cosB=12, ∴∠B=60°故选:B.【点睛】此题考查的是根据锐角三角函数值求角的度数,掌握特殊角的锐角三角函数值是解决此题的关键. 3.一个几何体的三视图如图所示,那么这个几何体是( )A .B .C .D .【答案】C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C . 4.在阳光的照射下,一块三角板的投影不会是( )A .线段B .与原三角形全等的三角形C .变形的三角形D .点 【答案】D【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.5.下列说法中正确的是( )A .必然事件发生的概率是0B .“任意画一个等边三角形,其内角和是180°”是随机事件C .投一枚图钉,“钉尖朝上”的概率不能用列举法求得D .如果明天降水的概率是50%,那么明天有半天都在下雨【答案】C【分析】根据必然事件、随机事件的概念以及概率的求解方法依次判断即可.【详解】解:A 、必然事件发生的概率为1,故选项错误;B 、“任意画一个等边三角形,其内角和是180°”是必然事件,故选项错误;C 、投一枚图钉,“钉尖朝上”和“钉尖朝下”不是等可能事件,因此概率不能用列举法求得,选项正确;D 、如果明天降水的概率是50%,是表示降水的可能性,与下雨时长没关系,故选项错误.故选:C.【点睛】本题考查了必然事件、随机事件和概率的理解,掌握概率的有关知识是解题的关键.6.把抛物线()2y x 1=+向下平移2个单位,再向右平移1个单位,所得到的抛物线是A .()2y x 22=++B .()2y x 22=+-C .2y x 2=+D .2y x 2=-【答案】D【解析】根据平移概念,图形平移变换,图形上每一点移动规律都是一样的,也可用抛物线顶点移动,根据点的坐标是平面直角坐标系中的平移规律:“左加右减,上加下减.”,顶点(-1,0)→(0,-2).因此,所得到的抛物线是2y x 2=-.故选D .7.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( )A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 【答案】C【分析】一元二次方程有实数根,则根的判别式∆≥1,且k ≠1,据此列不等式求解.【详解】根据题意,得: ∆=1-16k ≥1且k ≠1,解得:116k ≤且k ≠1. 故选:C .【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k ≠1.8.若关于x 的一元二次方程方程(k ﹣1)x 2+2x ﹣1=0有两个不相等的实数根,则k 的取值范围是( ) A .k≥0B .k >0且k≠1C .k≤0且k≠﹣1D .k >0【答案】B【解析】根据一元二次方程定义,首先要求20ax bx c ++=的二次项系数不为零,再根据已知条件,方程有两个不相等的实数根,令根的判别式大于零即可.【详解】解:由题意得, 10k -≠解得, 1k ≠;且240b ac ∆=->,即()22410k +->, 解得0k >.综上所述, 0k >且1k ≠.【点睛】本题主要考查一元二次方程的定义和根的判别式,理解掌握定义,熟练运用根的判别式是解答关键. 9.如图,□ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =21:7;④FB 2=OF•DF .其中正确的是( )。
安徽省铜陵市2018-2019学年九年级上期末数学试卷(含答案解析)
![安徽省铜陵市2018-2019学年九年级上期末数学试卷(含答案解析)](https://img.taocdn.com/s3/m/6419e6a43169a4517723a3d3.png)
安徽省铜陵市2018-2019学年九年级上期末数学试卷一、选择题:本题共10小题,每小题3分,满分30分.在每小题都给出A、B、C、D的四个选项,其中只有一个是正确的.1.下列图形是中心对称图形的是()A.B.C.D.2.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数3.已知x=2是一元二次方程(m﹣2)x2+4x﹣m2=0的一个根,则m的值为()A.2B.0或2C.0或4D.04.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°5.若要得到函数y=(x+1)2+2的图象,只需将函数y=x2的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度6.点P1(x1,y1)P2(x2,y2)都在反比例函数y=的图象上,若x1<x2<0,则()A.y2>y1>0B.y1>y2>0C.y1<y2<0D.y2<y1<07.边长为2的正方形内接于⊙O,则⊙O的半径是()A.1B.C.2D.28.如图,AB是半圆O的直径,点D在半圆O上,AB=13,AD=5,C是弧BD上的一个动点,连接AC,过D点作DH⊥AC于H.连接BH,在点C移动的过程中,BH的最小值是()A.B.C.D.9.如图,P是正方形ABCD内一点,∠APB=135°,BP=1,AP=,求PC的值.()A.B.3C.2D.210.如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为()A.从D点出发,沿弧DA→弧AM→线段BM→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从C点出发,沿线段CN→弧ND→弧DA→线段ABD.从A点出发,沿弧AM→线段BM→线段BC→线段CN二、填空题(本题共5小题,每小题2分,满分10分)11.若抛物线y=x2+2x+c与x轴没有交点,写出一个满足条件的c的值:.12.在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是.13.如图,PA,PB分别与⊙O相切于A、B两点,点C为劣弧AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若AP=8,则△PDE的周长为.14.如图,A,B两点在反比例函数y=的图象上,C、D两点在反比例函数y=的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=3,EF=,则k2﹣k1=.15.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论中:①abc>0;②2a+b=0;③3|a|<2|b|;④b2﹣4ac<0;⑤4a+2b+c>0;⑥a+b≤n(an+b)(n为一切实数),其中正确的是.三、解答题(本题共7小题,满分60分)16.解下列方程:(1)x2﹣4x﹣1=0;(2)2(x﹣3)2=9﹣x217.线段AB的端点A、B在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC.如图所示,回答下列问题:(1)在上述旋转过程中,求线段AB扫过的区域的面积;(2)若有一张与(1)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,求该几何体底面圆的半径.18.如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A.B 两点,且点A的横坐标是3.(1)求k的值:(2)过点P(0,n)作一条与x轴平行的直线,且该直线与y=x﹣2的图象交于点M,与双曲线y=(k≠0)的图象交于点N,若点M在N右边,求n的取值范围.19.已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O,并标出圆心.(不写作法,保留作图痕迹).(2)判断直线BC与⊙O的位置关系,并说明理由.(3)若AB=8,BD=4,求⊙O的半径.20.某省2019新中考方案规定:语文、数学、外语、体育四门为必考科目:历史、政治、物理、化学、地理、生物6门为选考科目.选考科目采取“6选3”模式,具体规定是:物理、化学中选一门:政治、历史中选一门;地理、生物中选一门.问:(1)选考科目中共有多少种不同的选考结果,并用树形图表示:(2)从(1)的结果中随机选择一种,求该结果同时包含生物和历史的概率.21.为迎接2019年的到来,铜陵万达广场某商铺将进价为40元的礼盒按50元售出时,能卖出500盒.商铺发现这种礼盒每涨价0.1元时,其销量就减少1盒.问:(1)若该商铺计划赚得9000元的利润,售价应定为多少元?(2)物价部门规定:该礼盒售价不得超过进价的1.5倍.问:此时礼盒售价定为多少元,才能使得商铺的获利最大?且最大利润为多少元?22.如图1,等腰Rt△ABC中,∠A=90°,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=8,AB=20,请直接写出△PMN面积的最大值.参考答案与试题解析一、选择题:本题共10小题,每小题3分,满分30分.在每小题都给出A、B、C、D的四个选项,其中只有一个是正确的.1.下列图形是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.2.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数【解答】解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.3.已知x=2是一元二次方程(m﹣2)x2+4x﹣m2=0的一个根,则m的值为()A.2B.0或2C.0或4D.0【解答】解:∵x=2是一元二次方程(m﹣2)x2+4x﹣m2=0的一个根,∴4(m﹣2)+8﹣m2=0,即m2﹣4m=0,解得:m=0或m=4.故选:C.4.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°【解答】解:根据圆周角定理可知:圆周角的度数等于它所对的弧的度数的一半,根据量角器的读数方法可得:(86°﹣30°)÷2=28°.故选:B.5.若要得到函数y=(x+1)2+2的图象,只需将函数y=x2的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度【解答】解:∵抛物线y=(x+1)2+2的顶点坐标为(﹣1,2),抛物线y=x2的顶点坐标为(0,0),∴将抛物线y=x2先向左平移1个单位长度,再向上平移2个单位长度即可得出抛物线y =(x+1)2+2.故选:B.6.点P1(x1,y1)P2(x2,y2)都在反比例函数y=的图象上,若x1<x2<0,则()A.y2>y1>0B.y1>y2>0C.y1<y2<0D.y2<y1<0【解答】解:∵,k=2019>0,∴图象在第一、三象限,在每个象限内,y随x的增大而减小,∵x1<x2<0,∴0>y1>y2.7.边长为2的正方形内接于⊙O,则⊙O的半径是()A.1B.C.2D.2【解答】解:连接OB,OC,则OC=OB,∠BOC=90°,在Rt△BOC中,OB=.∴⊙O的半径是,故选:B.8.如图,AB是半圆O的直径,点D在半圆O上,AB=13,AD=5,C是弧BD上的一个动点,连接AC,过D点作DH⊥AC于H.连接BH,在点C移动的过程中,BH的最小值是()A.B.C.D.【解答】解:连接BD,取AD的中点E,连接BE,∵DH⊥AC,∴H点在以E为圆心,AE为半径的圆上,当B、H、E三点共线时,BH最小,∵AB是直径,∴∠BDA=90°,∵AB=13,AD=5,∴BD=12,DE=,在Rt△BED中,BE=,∴BH=﹣=,9.如图,P是正方形ABCD内一点,∠APB=135°,BP=1,AP=,求PC的值.()A.B.3C.2D.2【解答】解:如图,把△PBC绕点B逆时针旋转90°得到△ABP′(点C的对应点C′与点A重合),所以,AP′=PC,BP′=BP=1,所以,△PBP′是等腰直角三角形,所以,∠P′PB=45°,PP′===,∵∠APB=135°,∴∠APP′=∠APB﹣∠P′PB=135°﹣45°=90°,在Rt△APP′中,AP′===3,∴PC=AP′=3,故选:B.10.如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为()A.从D点出发,沿弧DA→弧AM→线段BM→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从C点出发,沿线段CN→弧ND→弧DA→线段ABD.从A点出发,沿弧AM→线段BM→线段BC→线段CN【解答】解:结合两幅图形分析可知:图2中函数图象的线段部分对应的是点P在⊙O上运动的情形,曲线部分对应的是点P在正方形的边上运动的情形,在图2中函数图象的最高点分别对应着点P运动到了图1中的B、C两点,由此可知:与图2中函数图象对应的点P的运动路线有以下两种情况:①点P是从A点出发,沿弧AM→线段BM→线段BC→线段CN;②点P是从D点出发,沿弧DN→线段NC→线段CB→线段BM.故选:D.二、填空题(本题共5小题,每小题2分,满分10分)11.若抛物线y=x2+2x+c与x轴没有交点,写出一个满足条件的c的值:2.【解答】解:因为要使抛物线y=x2+2x+c与x轴没有交点,必须b2﹣4ac=22﹣4×1×c <0,解得:c>1,取c=2,故答案为:2.12.在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是50%.【解答】解:能有的共有4种情况,能构成平方式的有两种情况.==50%.故能构成完全平方式的概率是50%.故答案为:50%.13.如图,PA ,PB 分别与⊙O 相切于A 、B 两点,点C 为劣弧AB 上任意一点,过点C 的切线分别交AP ,BP 于D ,E 两点.若AP =8,则△PDE 的周长为 16 .【解答】解:∵DA 、DC 、EB 、E C 分别是⊙O 的切线,∴DA =DC ,EB =EC ;∴DE =DA +EB ,∴PD +PE +DE =PD +DA +PE +BE =PA +PB ,∵PA 、PB 分别是⊙O 的切线,∴PA =PB =8,∴△PDE 的周长=16.故答案为:1614.如图,A ,B 两点在反比例函数y =的图象上,C 、D 两点在反比例函数y =的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =,则k 2﹣k 1= 4 .【解答】解:连接OA 、OC 、OD 、OB ,如图:由反比例函数的性质可知S △AOE =S △BOF =|k 1|=﹣k 1,S △COE =S △DOF =k 2, ∵S △AOC =S △AOE +S △COE ,∴AC •OE =×2OE =OE =(k 2﹣k 1)…①,∵S △BOD =S △DOF +S △BOF ,∴BD•OF=×3(EF﹣OE)=×3(﹣OE)=5﹣OE=(k2﹣k1)…②,由①②两式解得OE=2,则k2﹣k1=4.故答案为:4.15.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论中:①abc>0;②2a+b=0;③3|a|<2|b|;④b2﹣4ac<0;⑤4a+2b+c>0;⑥a+b≤n(an+b)(n为一切实数),其中正确的是②③④⑤.【解答】解:①函数的对称轴在y轴右侧,则ab<0,而c>0,故abc>0错误,不符合题意;②函数的对称轴为:x=﹣=1,即b=﹣2a,故2a+b=0正确,符合题意;③由②知b=﹣2a,3a+2b=﹣a<0,而a>0,b<0,故3|a|<2|b|为3a+2b<0,正确,符合题意;④抛物线与x轴有两个交点,故b2﹣4ac<0正确,符合题意;⑤当x=2时,y=4a+2b+c>0,正确,符合题意;⑥函数在x=1时,取得最小值,故a+b+c≤n(an+b)+c(n为一切实数),故a+b≤n(an+b)(n为一切实数)正确,符合题意;故答案为:②③④⑤.三、解答题(本题共7小题,满分60分)16.解下列方程:(1)x2﹣4x﹣1=0;(2)2(x﹣3)2=9﹣x2【解答】解:(1)x2﹣4x﹣1=0x2﹣4x+4=5(x﹣2)2=5,则x﹣2=±,解得:x1=2+,x2=2﹣;(2)2(x﹣3)2=9﹣x2.2(x﹣3)2﹣(3﹣x)(3+x)=0,(3﹣x)[2(3﹣x)﹣(3+x)]=0,(3﹣x)(3﹣3x)=0,故3﹣x=0或3﹣3x=0,解得:x1=3,x2=1.17.线段AB的端点A、B在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC.如图所示,回答下列问题:(1)在上述旋转过程中,求线段AB扫过的区域的面积;(2)若有一张与(1)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,求该几何体底面圆的半径.【解答】解:(1)S==.(2)设该几何体底面圆的半径为r.由题意:2πr=,r=.18.如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=(k≠0)相交于A.B 两点,且点A的横坐标是3.(1)求k的值:(2)过点P(0,n)作一条与x轴平行的直线,且该直线与y=x﹣2的图象交于点M,与双曲线y=(k≠0)的图象交于点N,若点M在N右边,求n的取值范围.【解答】解:(1)令x=3,代入y=x﹣2,则y=1,∴A(3,1),∵点A(3,1)在双曲线y=(k≠0)上,∴k=3×1=3;(2)联立得:,解得:或,即B(﹣1,﹣3),如图所示:当点M在N右边时,n的取值范围是n>1或﹣3<n<0.19.已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O,并标出圆心.(不写作法,保留作图痕迹).(2)判断直线BC与⊙O的位置关系,并说明理由.(3)若AB=8,BD=4,求⊙O的半径.【解答】解:如图,(1)⊙O即为所求;(2)直线BC与⊙O的位置关系为:相切,理由如下:连接OD,∴OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴AC∥OD,∴∠ODB=∠C=90°,∴OD⊥BC,OD是半径,∴直线BC与⊙O相切;(3)设⊙O的半径为x,在Rt△OBD中,OD=x,OB=8﹣x,BD=4,∴(8﹣x)2=x2+42,解得x=3.答:⊙O的半径为3.20.某省2019新中考方案规定:语文、数学、外语、体育四门为必考科目:历史、政治、物理、化学、地理、生物6门为选考科目.选考科目采取“6选3”模式,具体规定是:物理、化学中选一门:政治、历史中选一门;地理、生物中选一门.问:(1)选考科目中共有多少种不同的选考结果,并用树形图表示:(2)从(1)的结果中随机选择一种,求该结果同时包含生物和历史的概率.【解答】解:(1)画树状图如下:由树状图可知,共有10种等可能结果;(2)因为共有10种等可能结果,其中同时包含生物和历史的有2种结果,所以该结果同时包含生物和历史的概率为=.21.为迎接2019年的到来,铜陵万达广场某商铺将进价为40元的礼盒按50元售出时,能卖出500盒.商铺发现这种礼盒每涨价0.1元时,其销量就减少1盒.问:(1)若该商铺计划赚得9000元的利润,售价应定为多少元?(2)物价部门规定:该礼盒售价不得超过进价的1.5倍.问:此时礼盒售价定为多少元,才能使得商铺的获利最大?且最大利润为多少元?【解答】解:设涨价为x元,(1)根据题意得:(50+x﹣40)(500﹣)=9000,(x﹣20)2=0,x1=x2=20,所以定价为:20+50=70元,所以售价应该定位70元,该商铺可赚得9000元的利润;(2)设该商铺的利润为y元,根据题意得:y=(50+x﹣40)(500﹣)=﹣10(x﹣20)2+9000,∵该礼盒售价不得超过进价的1.5倍,∴50+x≤1.5×40,∴x≤10,∴当x=10时有最大利润﹣10(10﹣20)2+9000=8000,此时售价为50+10=60元,∴当售价为60元时,最大利润为800元.22.如图1,等腰Rt△ABC中,∠A=90°,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM ⊥PN;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=8,AB=20,请直接写出△PMN面积的最大值.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=28,∴PM=14,∴S=PM2=142=98.△PMN最大。
【精选3份合集】2018-2019年安徽省名校九年级上学期数学期末考试试题
![【精选3份合集】2018-2019年安徽省名校九年级上学期数学期末考试试题](https://img.taocdn.com/s3/m/ff23677ddd3383c4ba4cd210.png)
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知x2+y=3,当1≤x≤2时,y的最小值是( )A.-1 B.2 C.2.75 D.3【答案】A【分析】移项后变成求二次函数y=-x2+2的最小值,再根据二次函数的图像性质进行答题.【详解】解:∵x2+y=2,∴y=-x2+2.∴该抛物线的开口方向向下,且其顶点坐标是(0,2).∵2≤x≤2,∴离对称轴越远的点所对应的函数值越小,∴当x=2时,y有最小值为-4+2=-2.故选:A.【点睛】本题考查了二次函数的最值.求二次函数的最值有常见的两种方法,第一种是配方法,第二种是直接套用顶点的纵坐标求,熟练掌握二次函数的图像及性质是解决本题的关键.2.在下列图形中,是中心对称图形的是()A.B.C.D.【答案】C【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.据此判断即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.【点睛】本题考查的是中心对称图形的概念:中心对称图形关键是寻找对称中心,旋转180度后与原图重合.3.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣153)米C.153米D.(36﹣103)米【答案】D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=103(米),∴AC=ED=BD﹣BE=(36﹣103)(米).∴甲楼高为(36﹣103)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.4.如图,某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.3m C.150m D.3【答案】A【解析】∵堤坝横断面迎水坡AB 的坡比是1:3,∴BC =AC 3, ∵BC=50,∴AC=503,∴()2222AB=AC +BC 503+50100==(m ).故选A 5.将抛物线()2213y x =+-先向上平移3个单位长度,再向右平移1个单位长度可得抛物线( ) A .22y x = B .()222y x =+ C .226y x =- D .()2226y x =+-【答案】A【分析】根据抛物线平移的规律:上加下减,左加右减,即可得解. 【详解】平移后的抛物线为()22211332y x x =+--+= 故答案为A. 【点睛】此题主要考查抛物线平移的性质,熟练掌握,即可解题.6.已知0x =是方程22210x x a ++-=的一个解,则a 的值是( ) A .±1 B .0C .1D .-1【答案】A【分析】利用一元二次方程解得定义,将0x =代入22210x x a ++-=得到210a -=,然后解关于a 的方程.【详解】解:将0x =代入22210x x a ++-=得到210a -=, 解得1a =± 故选A 【点睛】本题考查了一元二次方程的解.7.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC 的度数等于( )A .50°B .49°C .48°D .47°【答案】A【解析】连接OC ,根据等边三角形的性质得到∠BOC =60°,得到∠AOC =100°,根据圆周角定理解答. 【详解】连接OC ,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.8.如图,MN所在的直线垂直平分线段AB,利用这样的工具,可以找到圆形工件的圆心,如果使用此工具找到圆心,最少使用次数为().A.1 B.2 C.3 D.4【答案】B【分析】根据垂径定理可知,MN所在直线是直径的位置,而两条直径的交点即为圆心,故最少使用2次就可以找到圆形工件的圆心.【详解】根据垂径定理可知,MN所在直线是直径的位置,而两条直径的交点即为圆心,如图所示,使用2次即可找到圆心O,故选B.【点睛】本题考查利用垂径定理确定圆心,熟练掌握弦的垂直平分线经过圆心是解题的关键.9.某药品原价为100元,连续两次降价%a 后,售价为64元,则a 的值为( ) A .10 B .20C .23D .36【答案】B【解析】根据题意可列出一元二次方程100(1-%a )²=64,即可解出此题. 【详解】依题意列出方程100(1-%a )²=64, 解得a=20,(a=180100>,舍去) 故选B. 【点睛】此题主要考察一元二次方程的应用,依题意列出方程是解题的关键. 10. 如图,AB 是⊙O 直径,若∠AOC =140°,则∠D 的度数是( )A .20°B .30°C .40°D .70°【答案】A【分析】根据邻补角的性质,求出∠BOC 的值,再根据圆周角与圆心角的关系求出∠D 的度数即可. 【详解】∵∠AOC =140°, ∴∠BOC =180°-∠AOC=40°, ∵∠BOC 与∠BDC 都对BC , ∴∠D =12∠BOC =20°, 故选A . 【点睛】本题考查了圆周角定理,知道同弧所对的圆周角是圆心角的一半是解题的关键. 11.一元二次方程2660x x --=配方后化为( ) A .2(3)15x -= B .2(3)3x -=C .2(3)15x +=D .2(3)3x +=【答案】A【分析】先把常数项移到方程的右边,再在方程两边同时加上一次项系数一半的平方,即可. 【详解】2660x x --= 移项得:266x x -=,方程两边同加上9,得:26915x x -+=,即:2(3)15x -=, 故选A. 【点睛】本题主要考查解一元二次方程的配方法,熟练掌握完全平方公式,是解题的关键. 12.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形和中心对称图形的定义进行判断即可. 【详解】解:A 、不是轴对称图形,是中心对称图形,故此选项错误; B 、不是轴对称图形,是中心对称图形,故此选项错误; C 、既是轴对称图形,也是中心对称图形,故此选项正确; D 、是轴对称图形,不是中心对称图形,故此选项错误; 故选C. 【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是正确判断的关键.二、填空题(本题包括8个小题) 13.若2sin 2α=,则锐角α的度数是_____. 【答案】45°.【分析】直接利用特殊角的三角函数值得出答案. 【详解】解:∵2sin α=, ∴α=45°. 故答案为:45°. 【点睛】本题考查的知识点特殊角的三角函数值,理解并熟记特殊角的三角函数值是解题的关键. 14.已知抛物线2y x 3x m =+-与 x 轴只有一个公共点,则m=___________. 【答案】94【解析】试题分析:根据抛物线解析式可知其对称轴为x=322b a -=,根据其与x 轴只有一个交点,可知其顶点在x 轴上,因此可知x=32时,y=0,代入可求得m=94.点睛:此题主要考查了二次函数的图像与性质,解题关键是明确与x 轴只有一个交点的位置是抛物线的顶点在x 轴上,因此可求出对称轴代入即可. 15.一元二次方程x (x ﹣3)=3﹣x 的根是____. 【答案】x 1=3,x 2=﹣1.【分析】整体移项后,利用因式分解法进行求解即可. 【详解】x (x ﹣3)=3﹣x , x (x ﹣3)-(3﹣x )=0, (x ﹣3)(x+1)=0, ∴x 1=3,x 2=﹣1, 故答案为x 1=3,x 2=﹣1. 16.一元二次方程x 2﹣x ﹣14=0配方后可化为__________. 【答案】21122x ⎛⎫-= ⎪⎝⎭ 【分析】移项,配方,即可得出选项. 【详解】x 2﹣x ﹣14=0 x 2﹣x=14x 2﹣x+14=14+1421122x ⎛⎫-= ⎪⎝⎭故填:21122x ⎛⎫-= ⎪⎝⎭.【点睛】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.17.若关于x 的一元二次方程(a +3)x 2+2x +a 2﹣9=0有一个根为0,则a 的值为_____. 【答案】1【分析】将x =0代入原方程,结合一元二次方程的定义即可求得a 的值. 【详解】解:根据题意,将x =0代入方程可得a 2﹣9=0, 解得:a =1或a =﹣1, ∵a +1≠0,即a ≠﹣1, ∴a =1. 故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.18.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为_____【答案】1【分析】只要证明△ADC∽△ACB,可得ACAB=ADAC,即AC2=AD•AB,由此即可解决问题.【详解】解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴ACAB =AD AC,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=1,故答案为:1.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.三、解答题(本题包括8个小题)19.为了创建文明城市,增弘环保意识,某班随机抽取了8名学生(分别为A,B,C,D,E,F,G,H),进行垃圾分类投放检测,检测结果如下表,其中“√”表示投放正确,“×”表示投放错误,学生垃圾类别A B C D E F G H可回收物√××√√×√√其他垃圾×√√√√×√√餐厨垃圾√√√√√√√√有害垃圾×√×××√×√(1)检测结果中,有几名学生正确投放了至少三类垃圾?请列举出这几名学生.(2)为进一步了解学生垃圾分类的投放情况,从检测结果是“有害垃圾”投放错误的学生中随机抽取2名进行访谈,求抽到学生A的概率.【答案】(1)有5位同学正确投放了至少三类垃圾,他们分别是B 、D 、E 、G 、H 同学;(2)25. 【分析】(1)从表格中,找出正确投放了至少三类垃圾的同学即可;(2))“有害垃圾”投放错误的学生有A 、C 、D 、E 、G 同学,用列表法列举出所有可能出现的结果,从中找出“有A 同学”的结果数,进而求出概率.【详解】解:(1)有5位同学正确投放了至少三类垃圾,他们分别是B 、D 、E 、G 、H 同学,(2)“有害垃圾”投放错误的学生有A 、C 、D 、E 、G 同学,从中抽出2人所有可能出现的结果如下:共有20种可能出现的结果数,其中抽到A 的有8种, 因此,抽到学生A 的概率为82205=. 【点睛】本题考查的知识点是概率,理解题意,利用列表法求解比较简单.20.某网店销售一种商品,其成本为每件30元.根据市场调查,当每件商品的售价为x 元(30x >)时,每周的销售量y (件)满足关系式:10600y x =-+.(1)若每周的利润W 为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元? (2)当3552x ≤≤时,求每周获得利润W 的取值范围.【答案】(1)售价应定为每件40元;(2)每周获得的利润的取值范围是1250元W ≤≤2250元. 【分析】(1)根据题意列出方程即可求解;(2)根据题意列出二次函数,根据3552x ≤≤求出W 的取值. 【详解】解:(1)根据题意得()()30106002000x x --+=, 解得140x =,250x =.∵让消费者得到最大的实惠,∴140x =. 答:售价应定为每件40元.(2)()()230106001090018000W x x x x =--+=-+-()210452250x =--+.∵100-<,∴当45x =时,W 有最大值2250. 当35x =时,1250W =;当52x =时,1760W =.∴每周获得的利润的取值范围是1250元W ≤≤2250元. 【点睛】此题主要考查二次函数的应用,解题的关键是根据题意找到等量关系列出方程或二次函数进行求解.21.(1)计算:122126045330452(2)tan tan cos sin ---︒+-⎛⎫⎝⎭-⎪.(2)如图,正方形纸板ABCD 在投影面a 上的正投影为1111D C B A ,其中边AB CD 、与投影面平行,,AD BC 与投影面不平行.若正方形ABCD 的边长为5厘米,145BCC ∠=,求其投影1111D C B A 的面积.【答案】(1)3525+-;(2)252. 【分析】(1)代入特殊角的三角函数值,根据实数的混合运算法则计算即可;(2) 作BE ⊥CC 1于点E ,利用等腰直角三角形的性质求得BE 的长即可求得BC 的正投影11B C 的长,即可求得答案.【详解】(1) 122126045330452(2)tan tan cos sin ---︒+-⎛⎫ ⎝⎭-⎪ ()21232=231()22--+-- ()232=231()22-+-- 352=5+-; (2)过点B 作BE ⊥CC 1于点E ,在Rt BCE 中,45BCE ∠=︒,5BC =,∴52sin 452BE BC =︒=, ∵1BB ⊥11B C ,1CC ⊥11B C ,且BE ⊥CC 1,∴四边形11BB C E 为矩形, ∴11522B C BE ==, ∵115C D CD ==,∴1111111152252522A B C D S B C C D ===四边形. 【点睛】本题主要考查了平行投影的性质,特殊角的三角函数值,等腰直角三角形的性质,本题理解并掌握正投影的特征是解题的关键:正投影是在平行投影中,投影线垂直于投影面产生的投影.22.一种拉杆式旅行箱的示意图如图所示,箱体长60AB cm =,拉杆最大伸长距离40BC cm =,(点,,A B C 在同一条直线上),在箱体的底端装有一圆形滚轮, A A 与水平地面切于点, //,D AE DN 某一时刻,点B 距离水平面42cm ,点C 距离水平面66cm .(1)求圆形滚轮的半径AD 的长; (2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点C 处且拉杆达到最大延伸距离时,点C 距离水平地面83.3cm ,求此时拉杆箱与水平面AE 所成角CAE ∠的大小(精确到1%,参考数据:500.77, 500.64, 50 1.19sin cos tan ︒︒︒≈≈≈).【答案】(1)6cm ;(2)50︒【分析】(1)过点B 作BH AF ⊥于点G ,交DM 于点H ,由平行得到ABG ACF ∽,再根据相似三角形的性质得到BG AB CF AC=,列出关于半径()AD xcm 的方程,解方程即可得解; (2)在(1)结论的基础上结合已知条件,利用锐角三角函数解Rt ACF 即可得解.【详解】解:(1)过点B 作BH AF ⊥于点G ,交DM 于点H ,如图:∴//BG CF∴ABG ACF ∽∴设圆形滚轮的半径AD 的长是xcm ∴BG AB CF AC=,即6042360+40665x x -==- ∴6x =∴圆形滚轮的半径AD 的长是6cm ;(2)∵83.3677.3CF cm =-=∴在Rt ACF 中,77.3sin 0.77100CF CAF AC ∠==≈ ∴50CAF ∠=︒.故答案是:(1)6cm ;(2)50︒【点睛】本题考查了解直角三角形以及相似三角形的判定和性质,在求线段长度时,可以通过建立方程模型来解决问题.23.已知:关于x 的方程23(1)230--+-=mx m x m(1)求证:m 取任何值时,方程总有实根.(2)若二次函数213(1)23y mx m x m =--+-的图像关于y 轴对称. a 、求二次函数1y 的解析式b 、已知一次函数222y x =-,证明:在实数范围内,对于同一x 值,这两个函数所对应的函数值12y y ≥均成立.(3)在(2)的条件下,若二次函数23y ax bx c =++的象经过(-5,0),且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥均成立,求二次函数23y ax bx c =++的解析式.【答案】(1)证明见解析;(2)a 、y 1=x 2-1;b 、证明见解析;(3)23145333y x x =+-. 【解析】(1)首先此题的方程并没有明确是一次方程还是二次方程,所以要分类讨论:①m=0,此时方程为一元一次方程,经计算可知一定有实数根;②m≠0,此时方程为二元一次方程,可表示出方程的根的判别式,然后结合非负数的性质进行证明.(2)①由于抛物线的图象关于y 轴对称,那么抛物线的一次项系数必为0,可据此求出m 的值,从而确定函数的解析式;②此题可用作差法求解,令y 1-y 2,然后综合运用完全平方式和非负数的性质进行证明.(3)根据②的结论,易知y 1、y 2的交点为(1,0),由于y 1≥y 3≥y 2成立,即三个函数都交于(1,0),结合点(-5,0)的坐标,可用a 表示出y 3的函数解析式;已知y 3≥y 2,可用作差法求解,令y=y 3-y 2,可得到y 的表达式,由于y 3≥y 2,所以y≥0,可据此求出a 的值,即可得到抛物线的解析式.【详解】解:(1)分两种情况:当m=0时,原方程可化为3x-3=0,即x=1; ∴m=0时,原方程有实数根;当m≠0时,原方程为关于x 的一元二次方程,∵△=[-3(m-1)]2-4m (2m-3)=m 2-6m+9=(m-3)2≥0,∴方程有两个实数根;综上可知:m 取任何实数时,方程总有实数根;(2)①∵关于x 的二次函数y1=mx 2-3(m-1)x+2m-3的图象关于y 轴对称;∴3(m-1)=0,即m=1;∴抛物线的解析式为:y 1=x 2-1;②∵y 1-y 2=x 2-1-(2x-2)=(x-1)2≥0,∴y 1≥y 2(当且仅当x=1时,等号成立);(3)由②知,当x=1时,y 1=y 2=0,即y 1、y 2的图象都经过(1,0);∵对应x 的同一个值,y 1≥y 3≥y 2成立,∴y 3=ax 2+bx+c 的图象必经过(1,0),又∵y 3=ax 2+bx+c 经过(-5,0),∴y3=a (x-1)(x+5)=ax2+4ax-5a ;设y=y 3-y 2=ax 2+4ax-5a-(2x-2)=ax 2+(4a-2)x+(2-5a );对于x 的同一个值,这三个函数对应的函数值y 1≥y 3≥y 2成立,∴y 3-y 2≥0,∴y=ax 2+(4a-2)x+(2-5a )≥0;根据y1、y2的图象知:a >0,∴y 最小=()24a 25a 424a a ---()≥0∴(4a-2)2-4a (2-5a )≤0, ∴(3a-1)2≤0,而(3a-1)2≥0,只有3a-1=0,解得a=13, ∴抛物线的解析式为:23145333y x x =+- 【点睛】本题考查二次函数与一元二次方程的关系、根的判别式、完全平方公式、非负数的性质以及用待定系数法确定函数解析式的方法,难度较大,24.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=2,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)1.【分析】(1)可得∠ADB=90°,证得∠ABD=∠CAD,∠AED=∠ABD,则结论得证;(2)证得∠EDB=∠DAE,证明△EDG∽△EAD,可得比例线段ED EAEG ED=,则结论得证;(3)连接OE,证明OE∥AD,则可得比例线段OF EFOA DE=,则EF可求出.【详解】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°∵AC⊥AB,∴∠CAB=90°,∴∠CAD+∠BAD=90°∴∠ABD=∠CAD,∵ AD = AD ,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴ DE BE=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴ED EA EG ED=,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴OF EF OA DE=,∵BO=BF=OA,DE=2,∴212EF =,∴EF=1.【点睛】本题考查了圆的综合应用题,涉及了圆周角定理、相似三角形的性质与判定等知识点,解题的关键是熟悉上述知识点.25.如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数)(参考数据:sin67°≈0.92;cos67°≈0.38;3≈1.73)【答案】A地到C地之间高铁线路的长为592km.【分析】过点B作BD⊥AC于点D,利用锐角三角函数的定义求出AD及CD的长,进而可得出结论.【详解】过点B作BD⊥AC于点D,∵B地位于A地北偏东67°方向,距离A地520km,∴∠ABD=67°,∴AD=AB•sin67°=520×0.92=478.4km,BD=AB•cos67°=520×0.38=197.6km.∵C地位于B地南偏东30°方向,∴∠CBD=30°,∴CD=BD•tan30°=197.6×33≈113.9km,∴AC=AD+CD=478.4+113.9≈592(km).答:A地到C地之间高铁线路的长为592km.【点睛】考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.26.如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于E.(1)求证DE⊥BC;(2)若⊙O的半径为5,BE=2,求DE的长度.【答案】(1)证明见解析;(2)DE=4【分析】(1)连接OD,DE是切线,则OD⊥DE,则OD是△ABC的中位线,可得OD∥BC,据此即可求证;(2)过B 作OD 的垂线,垂足为F ,证明四边形DFBE 为矩形,Rt△OFB 中用勾股定理即可求得DE 的长度.【详解】证明(1)连接OD∵DE 切⊙O 于点D∴OD ⊥DE∴∠ODE =90°∵D 是AC 的中点,O 是AB 的中点∴OD 是△ABCD 的中位线∴OD ∥BC∴∠DEC =90°∴DE ⊥BC(2)过B 作BF ⊥OD∵BF ⊥OD∴∠DFB =90°∴∠DFB =∠DEB =∠ODE =90°∴四边形DFBE 为矩形∴DF =BE =2∴OF =OD -DF =5-2=3∴DE =BF =4【点睛】本题考查了圆的切线的性质、三角形中位线的判定和性质、矩形的判定和性质、直角三角形的性质,辅助线是关键.27.已知关于x 的一元二次方程2(2)(21)0x m x m -++-=.(1)求证:方程总有两个不相等的实数根.(2)若此方程的一个根是1,求出方程的另一个根及m 的值.【答案】(1)证明见解析;(2)2m =,2;【分析】(1)要证明方程有两个不相等的实数根,即证明△>1即可;(2)将x=1代入方程,求出m 的值,进而得出方程的解.【详解】(1)证明:∵222(2)41(21)48(2)4m m m m m ∆=+-⨯⨯-=-+=-+而2(2)m -≥1,∴△>1.∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴1-(m+2)+2m-1=1,解得:m=2,∴原方程为:2430x x -+=,解得:121,3x x ==.即m 的值为2,方程的另一个根是2.∴方程总有两个不相等的实数根;【点睛】此题考查了根的判别式,一元二次方程20ax bx c ++=(a ≠1)的根与△=24b ac -有如下关系: (1)△>1方程有两个不相等的实数根;(2)△=1方程有两个相等的实数根;(2)△<1方程没有实数根.同时考查了一元二次方程的解的定义.第(2)问还可以利用根与系数的关系得到另一个解与m 的二元一次方程组来解题.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能【答案】A【解析】先求出点P到x轴的距离,再根据直线与圆的位置关系得出即可.【详解】解:点P(-2,3)到x轴的距离是3,3>2,所以圆P与x轴的位置关系是相离,故选A.【点睛】本题考查了坐标与图形的性质和直线与圆的位置关系等知识点,能熟记直线与圆的位置关系的内容是解此题的关键.2.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是( )A.B.C.D.【答案】A【解析】试题分析:根据平行投影特点以及图中正六棱柱的摆放位置即可求解.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.考点:平行投影.3.已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点E共有()个.A.1 B.2 C.3 D.4【答案】C【分析】根据△ABC的面积可将高求出,即⊙O上的点到AB的距离为高长的点都符合题意.【详解】过圆心向弦AB作垂线,再连接半径.设△ABE的高为h,由182ABES AB h=⨯⨯=可求2h=.由圆的对称性可知,有两个点符合要求;又弦心距22543-=.。
铜陵市九年级上学期期末数学试卷
![铜陵市九年级上学期期末数学试卷](https://img.taocdn.com/s3/m/cb049ed569dc5022abea0066.png)
铜陵市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题) (共14题;共28分)1. (2分)下列说法中正确的是()A . “打开电视,正在播放《新闻联播》”是必然事件;B . 某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖;C . 数据1,1,2,2,3的众数是3;D . 想了解无锡市城镇居民人均年收入水平,宜采用抽样调查2. (2分)(2017·烟台) 若x1 , x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2 ,则m的值为()A . ﹣1或2B . 1或﹣2C . ﹣2D . 13. (2分)某种商品的进货价为每件a元,零售价为每件90元,若商品按八五折出售,仍可获利10%,则下列方程正确的是()A . 85%a=10%×90B . 90×85%×10%=aC . 85%(90﹣a)=10%D . (1+10%)a=90×85%4. (2分)如图,等边三角形ABC中,将边AC逐渐变成以BA为半径的,其他两边的长度不变,则∠ABC 的度数大小由60变为()A .B .C .D .5. (2分)(2017·安徽模拟) 设△ABC的一边长为x,这条边上的高为y,y与x满足的反比例函数关系如图所示.当△ABC为等腰直角三角形时,x+y的值为()A . 4B . 5C . 5或3D . 4或36. (2分) (2019九上·十堰期末) 如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y 轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③b2﹣4ac>0;④当y<0时,x<﹣1或x>2.其中正确的有()A . 4个B . 3个C . 2个D . 1个7. (2分)如图所示,当b<0时,函数y=ax+b与y=ax2+bx+c在同一坐标系内的图象可能是()A .B .C .D .8. (2分)(2014·内江) 如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A .B . 3C . 2D . 49. (2分)正比例函数y=mn与反比例函数(m,n是非零常数)的图象交于A,B两点.若点A的坐标为(1,2),则点B的坐标是().A . (-2,-4)B . (-2,-1)C . (-1,-2)D . (-4,-2)10. (2分) (2017八下·东台期中) 如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y= (x>0)的图象经过顶点B,则k的值为()A . 12B . 20C . 24D . 3211. (2分)在等腰直角三角形ABC中,∠C=90°,则sinA等于()A .B .C .D . 112. (2分)(2017·凉州模拟) 如图,直线y=﹣ x+m(m>0)与x轴交于点C,与y轴交于点D,以CD 为边作矩形ANCD,点A在x轴上.双曲线y= 经过点B,与直线CD交于点E,则点E的坐标为()A . (,﹣)B . (4,﹣)C . (,﹣)D . (6,﹣1)13. (2分)如图,在△ABC中,∠ACB=90º,∠A=15º,AB=8,则AC·BC的值为()A . 14B . 12C . 4D . 1614. (2分)给出下列四个函数:①y=-x;②y=x;③y=;④y=x2 . x<0时,y随x的增大而减小的函数有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共5题;共5分)15. (1分)已知,则的值是________.16. (1分)(2017·六盘水) 如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=________.17. (1分)(2017·十堰模拟) 如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2 cm,∠BCD=22°30′,则⊙O的半径为________cm.18. (1分) (2018九上·兴义期末) 如图,AB与相切于点B,AO的延长线交GO于点C,连接BC,若ABC=120 ,OC=3,则弧BC的长为________.(结果保留 )19. (1分)如图,在△OAB中,AO=AB,S△AOB=10,函数y=(x>0)图象与OA交于点C,点D是函数y=(x>0)的图象上一点,且CD∥x轴,若∠ADC=90°,则k的值是________.三、解答题 (共7题;共61分)20. (10分) (2019九上·新蔡期中)(1)计算:()-2- +( -4)0- cos45°.(2)解方程:2x2+5x=3.21. (6分)(2018·潘集模拟) 如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF 过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1________S2+S3;(填“>”“=”或“<”)(2)写出图中的三对相似三角形,并选择其中一对进行证明.22. (10分)(2016·东营) 如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.23. (5分)已知:如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻,AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6m,请你计算DE的长.24. (5分)如图,新城区新建了三个商业城A,B,C,其中C在A的正东方向,在A处测得B在A的南偏东52°的方向,在C处测得B在C的南偏东26°的方向,已知A和B的距离是1000m.现有甲、乙两个工程对修建道路,甲修建一条从A到C的笔直道路AC,乙修建一条从B到直线AC最近的道路BD.求甲、乙修建的道路各是多长.(结果精确到1m)(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)25. (10分)(2017·海曙模拟) 如图,C为⊙O上的一点,P为直径AB延长线上的一点,BH⊥CP于H交⊙O于D,∠PBH=2∠PAC.(1)求证:PC是⊙O的切线;(2)若sin∠P= ,求的值.26. (15分)(2017·新疆) 如图,抛物线y=﹣ x2+ x+2与x轴交于点A,B,与y轴交于点C.(1)试求A,B,C的坐标;(2)将△ABC绕AB中点M旋转180°,得到△BAD.①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.参考答案一、选择题) (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共5题;共5分)15-1、16-1、17-1、18-1、19-1、三、解答题 (共7题;共61分)20-1、20-2、21-1、21-2、22-1、22-2、23-1、24-1、25-1、25-2、26-1、26-2、26-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年安徽省铜陵市义安区九年级(上)期末数学试卷一、选择题[本题共30分,每小题3分)1.(3分)下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个2.(3分)已知关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),则a﹣b值为()A.﹣1B.0C.1D.23.(3分)如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A.B.C.D.4.(3分)下列事件是必然事件的是()A.通常加热到100℃,水沸腾B.抛一枚硬币,正面朝上C.明天会下雨D.经过城市中某一有交通信号灯的路口,恰好遇到红灯5.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°6.(3分)对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)7.(3分)从1~9这九个自然数中任取一个,是2的倍数的概率是()A.B.C.D.8.(3分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°9.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4B.k<﹣4C.k≤4D.k<410.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3二、填空题(本题共15分,毎小题3分)11.(3分)把方程2x2﹣1=x(x+3)化成一般形式是.12.(3分)一个多边形的每一个外角都是36°,则这个多边形的边数是.13.(3分)如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为.14.(3分)如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么PP′=.15.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0,②2a+b=0,③a﹣b+c=0;④4ac﹣b2>0,⑤4a+2b+c>0,其中正确的结论序号是三、解答题(共55分)16.(6分)用适当的方法解下列一元二次方程:(1)x(2x﹣5)=4x﹣10.(2)x2+5x﹣4=0.17.(6分)为增强中学生体质,篮球运球已列为铜陵市体育中考选考项目,某校学生不仅练习运球,还练习了投篮,下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.投篮次数(n)50100150200250300500投中次数(m)286078104124153252(1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?18.(6分)如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°,得到△OA1B1.(1)线段A1B1的长是,∠AOA1的度数是;(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.19.(8分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2017年我市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年我市能否完成计划目标?20.(9分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.21.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.22.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.2018-2019学年安徽省铜陵市义安区九年级(上)期末数学试卷参考答案与试题解析一、选择题[本题共30分,每小题3分)1.【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形.中心对称图形有3个.故选:B.2.【解答】解:∵关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),∴x1•(﹣a)=a,即x1=﹣1,∴1﹣b+a=0,∴a﹣b=﹣1.故选:A.3.【解答】解:连接OA,设⊙O的半径为r,∵AB垂直平分半径OC,AB=,∴AD==,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.故选:A.4.【解答】解:A、通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B、抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C、明天会下雨,是随机事件,故C选项不符合题意;D、经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.故选:A.5.【解答】解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选:C.6.【解答】解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选:A.7.【解答】解:1~9这九个自然数中,是2的倍数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是2的倍数的概率是:.故选:B.8.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.9.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.10.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.二、填空题(本题共15分,毎小题3分)11.【解答】解:2x2﹣1=x(x+3)2x2﹣1=x2+3x,则2x2﹣x2﹣3x﹣1=0,故x2﹣3x﹣1=0.故答案为:x2﹣3x﹣1=0.12.【解答】解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.故答案为:10.13.【解答】解:∵S=lr,∴S=×2×2=2,故答案为2.14.【解答】解:∵△ABP绕A逆时针旋转后,能够得到△ACP′,∴AP=AP′=3,∠P AP′=∠BAC=90°,在Rt△APP′中,由勾股定理,得PP′2=AP2+AP′2=32+32=18,∴PP′=3故答案为:3.15.【解答】解:①由图象可知:抛物线开口方向向下,则a<0,对称轴直线位于y轴右侧,则a、b异号,即b>0,抛物线与y轴交于正半轴,则c>0,abc<0,故①正确;②对称轴为x=﹣=1,b=﹣2a,故②正确;③由抛物线的对称性知,抛物线与x轴的另一个交点坐标为(﹣1,0),所以当x=﹣1时,y=a﹣b+c=0,即a﹣b+c=0,故③正确;④抛物线与x轴有两个不同的交点,则b2﹣4ac>0,所以4ac﹣b2<0,故④错误;⑤当x=2时,y=4a+2b+c>0,故⑤正确.故答案是:①②③⑤.三、解答题(共55分)16.【解答】解:(1)∵x(2x﹣5)﹣2(2x﹣5)=0,∴(2x﹣5)(x﹣2)=0,则2x﹣5=0或x﹣2=0,解得x=2.5或x=2;(2)∵a=1,b=5,c=﹣4,∴△=52﹣4×1×(﹣4)=41>0,则x=.17.【解答】解:(1)估计这名球员投篮一次,投中的概率约是≈0.5;(2)622×0.5=311(次).故估计这名同学投篮622次,投中的次数约是311次.18.【解答】解:(1)A1B1=AB=6,∠AOA1=90°.故答案是:6,90°;(2)∵A1B1=AB=6,OA1﹣OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,∴∠OA1B1=∠AOA1,A1B1=OA,∴B1A1∥OA,∴四边形OAA1B1是平行四边形;(3)S=OA•A1O=6×6=36.即四边形OAA1B1的面积是36.19.【解答】解:(1)设这两年我市推行绿色建筑面积的年平均增长率为x,950(1+x)2=1862,解得,x1=0.4,x2=﹣2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862(1+40%)=2606.8,∵2606.8>2400,∴2017年我市能完成计划目标,即如果2017年仍保持相同的年平均增长率,2017年我市能完成计划目标.20.【解答】解:(1)方法1、连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;方法2、∵PD,PC是⊙O的切线,∴PD=PC,∵OD=OC,∴P,O在CD的中垂线上,∴OP⊥CD(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.21.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)∵在Rt△AED中,∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=,∴S△OCD=,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.22.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴B(﹣3,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2∴M(﹣1,2).即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2).。