燕山大学振动理论习题答案
大学物理学振动与波动习题答案
.
显然f点的速度大于零,所以取负值,解得
tf= -T/12.
从f点到达a点经过的时间为T/4,所以到达a点的时刻为
ta= T/4 +tf= T/6,
其位相为
.
由图可以确定其他点的时刻,同理可得各点的位相.
4.3如图所示,质量为10g的子弹以速度v= 103m·s-1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N·m-1,木块的质量为4.99kg,不计桌面摩擦,试求:
[解答](1)设物体的简谐振动方程为
x = Acos(ωt + φ),
其中A= 0.12m,角频率ω =2π/T= π.
当t =0时,x= 0.06m,所以
cosφ= 0.5,
因此
φ= ±π/3.
物体的速度为
v= dx/dt= -ωAsin(ωt + φ).
当t =0时,
v= -ωAsinφ,
由于v> 0,所以sinφ< 0,因此
大学物理学(上)
第四,第五章习题答案
第4章振动
P174.
4.1一物体沿x轴做简谐振动,振幅A= 0.12m,周期T= 2s.当t= 0时,物体的位移x= 0.06m,且向x轴正向运动.求:
(1)此简谐振动的表达式;
(2)t=T/4时物体的位置、速度和加速度;
(3)物体从x= -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.
φ= -π/3.
简谐振动的表达式为
x= 0.12cos(πt –π/3).
(2)当t=T/4时物体的位置为
x= 0.12cos(π/2–π/3)
= 0.12cosπ/6 = 0.104(m).
振动理论课后答案
解:
模态函数的一般形式为:
题设边界条件为:
,
边界条件可化作:
,
导出C2= 0及频率方程:
,其中
解:
,
不计质量的梁上有三个集中质量,如图所示。用邓克利法计算横向振动的基频。
图
解:
当系统中三个集中质量分别单独存在时:
, ,
在图所示系统中,已知m和k。用瑞利法计算系统的基频。
图
解:
近似选取假设模态为:
系统的质量阵和刚度阵分别为:
,
由瑞利商公式:
在图所示系统中,已知k和J。用传递矩阵法计算系统的固有频率和模态。
解:
设该简谐振动的方程为 ; 二式平方和为
将数据代入上式:
;
联立求解得
A=10.69cm; 1/s;T= s
当 时, 取最大,即:
得:
答:振动周期为;振幅为10.69cm;最大速度为22.63m/s。
1-3一个机器内某零件的振动规律为 ,x的单位是cm, 1/s。这个振动是否为简谐振动试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。
求图T 2-7中系统的固有频率,悬臂梁端点的刚度分别是 及 ,悬臂梁的质量忽略不计。
图T 2-7答案图T 2-7
解:
和 为串联,等效刚度为: 。(因为总变形为求和)
和 为并联(因为 的变形等于 的变形),则:
和 为串联(因为总变形为求和),故:
故:
由一对带偏心质量的等速反向旋转齿轮构成的振动机械安装在弹簧和阻尼器构成的支承上,如图所示。当齿轮转动角速度为 时,偏心质量惯性力在垂直方向大小为 。已知偏心重W=N,偏心距e=15.0cm,支承弹簧总刚度系数k=N/cm,测得垂直方向共振振幅 ,远离共振时垂直振幅趋近常值 。求支承阻尼器的阻尼比及在 运行时机器的垂直振幅。
大学机械振动考试题目及答案
大学机械振动考试题目及答案一、选择题(每题2分,共10分)1. 在简谐振动中,振幅与振动的能量关系是()。
A. 无关B. 成正比C. 成反比D. 振幅越大,能量越小答案:B2. 下列哪个不是机械振动系统的自由度?()。
A. 转动B. 平动C. 振动D. 形变答案:C3. 一个单自由度系统在受到初始条件激励后,其振动形式是()。
A. 简谐振动B. 阻尼振动C. 受迫振动D. 自由振动答案:D4. 在阻尼振动中,如果阻尼系数增加,振动的振幅将()。
A. 增加B. 不变C. 减小D. 先增加后减小答案:C5. 对于一个二自由度振动系统,其振动模态数量是()。
A. 1B. 2C. 3D. 4答案:B二、填空题(每题2分,共10分)6. 一个物体做自由振动时,其频率称为______。
答案:固有频率7. 当外力的频率与系统的固有频率相等时,系统发生的振动称为______。
答案:共振8. 阻尼力与速度成正比的阻尼称为______阻尼。
答案:线性9. 振动系统的动态响应可以通过______分析法求解。
答案:傅里叶10. 在转子动力学中,临界转速是指转子发生______振动的转速。
答案:自激三、简答题(每题5分,共20分)11. 简述什么是简谐振动,并说明其运动方程的形式。
答案:简谐振动是一种周期性的振动,其加速度与位移成正比,且方向相反。
在数学上,简谐振动的运动方程可以表示为:x(t) = A * cos(ωt + φ)其中,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。
12. 解释什么是阻尼振动,并说明其特点。
答案:阻尼振动是指在振动系统中存在能量耗散,导致振幅随时间逐渐减小的振动。
其特点包括振幅逐渐衰减,振动频率可能会随着振幅的减小而发生变化,且阻尼力通常与振动速度成正比。
13. 描述什么是受迫振动,并给出其稳态响应的条件。
答案:受迫振动是指系统在周期性外力作用下的振动。
当外力的频率接近系统的固有频率时,系统将发生共振,此时振幅会显著增大。
《振动力学》习题集(附答案解析)
(1)保持水平位置:
(2)微幅转动:
故:
2.10求图T 2-10所示系统的固有频率,刚性杆的质量忽略不计。
图 T 2-10答案图 T 2-10
解:
m的位置:
, ,
,
,
2.11 图T 2-11所示是一个倒置的摆。摆球质量为m,刚杆质量可忽略,每个弹簧的刚度为 。
(1)求倒摆作微幅振动时的固有频率;
(3)
故:
由(3)得:
2.5在图E2.3所示系统中,已知m,c,k, 和 ,且t=0时, , ,求系统响应。验证系统响应为对初值的响应和零初值下对激励力响应的叠加。
图E2.3
解:
,
求出C,D后,代入上面第一个方程即可得。
2.7 由一对带偏心质量的等速反向旋转齿轮构成的振动机械安装在弹簧和阻尼器构成的支承上,如图E2.7所示。当齿轮转动角速度为 时,偏心质量惯性力在垂直方向大小为 。已知偏心重W= 125.5N,偏心距e=15.0cm,支承弹簧总刚度系数k= 967.7N/cm,测得垂直方向共振振幅 ,远离共振时垂直振幅趋近常值 。求支承阻尼器的阻尼比及在 运行时机器的垂直振幅。
,当 时
重复n次得到:
,等号两边左乘
故:
,等号两边左乘
,当 时
即 ,当 时
重复运算:
,当 时
重复n次。
2.10图T 4-11所示的均匀刚性杆质量为m1,求系统的频率方程。
图 T 4-11
解:
先求刚度矩阵。
令 , ,得:
令 , ,得:
答
则刚度矩阵为:
再求质量矩阵。
令 , ,得:
,
令 , ,得:
,
则质量矩阵为:
(2)摆球质量m为0.9 kg时,测得频率 为1.5 Hz,m为1.8 kg时,测得频率为0.75 Hz,问摆球质量为多少千克时恰使系统处于不稳定平衡状态?
大学物理机械的振动答案详解
机械振动答案 一、填空题 1.初位移、初速度、角频率 劲度系数、振子质量 2.4,2π 3.2:1 4.m t x )361cos(10.0ππ+= 5.2π 6.1:2 1:4 1:2 7.±A 0 8.k+0.5(k 为整数) k (k 为整数) 2k+0.5(k 为整数)9.0.173 2π10.3π )(1072m -⨯; 32π- )(1012m -⨯ 11.m t x )2cos(04.0ππ-= 二、选择题 1.B 2.D 3.C 4.B 5.B 6.D 7.C 8.D 9.B 10.D 11.B 12.C三、计算题1.解: (1)可用比较法求解.根据]4/20cos[1.0]cos[ππϕω+=+=t t A x得: 振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==,周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+由cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得20.0707, 4.44/,279/x m m s a m s ν==-=-2.解(1)质点振动振幅A =0.10m.而由振动曲线可画出t 0=0 和t 1=4s时旋转矢量,如图(b ) 所示.由图可见初相3/π0-=ϕ(或3/π50=ϕ),而由()3/2/01ππω+=-t t 得1s 24/π5-=ω,则运动方程为()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x(2)图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c ) 所示.当初相取3/π0-=ϕ时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=ϕ,则点P 相应的相位应表示为()π200=-+=p p t ωϕϕ.(3) 由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t . 3.解:设该物体的振动方程为)cos(ϕω+=t A x 依题意知:2//,0.06T rad s A m ωππ=== 据A x 01cos -±=ϕ得)(3/rad πϕ±= 由于00v >,应取)(3/rad πϕ-= 可得:)3/cos(06.0ππ-=t x(1)0.5t s =时,振动相位为:/3/6t rad ϕπππ=-=据22cos ,sin ,cos xA v A a A x ϕωϕωϕω==-=-=- 得20.052,0.094/,0.512/x m v m s a m s ==-=-(2)由A 旋转矢量图可知,物体从0.03x m =-m 处向x 轴负方向运动,到达平衡位置时,A 矢量转过的角度为5/6ϕπ∆=,该过程所需时间为:/0.833t s ϕω∆=∆=4.解:211k 2K P E E E A =+=() 1/2[2()/k]0.08()K P A E E m =+= 221(2)k 2/22K P K P P P E E E A E E E E E kx =+====因为,当时,有,又因为 222/20.0566()x A x A m ==±=±得:,即21(3)02K P x E E E mv ==+=过平衡点时,,此时动能等于总能量 1/2[2()/]0.8(/)K P v E E m m s =+=±5.解:(1))2cos(21ϕπ+=+=t A x x x按合成振动公式代入已知量,可得合振幅及初相为22224324cos(/2/4)10 6.4810A m ππ--=++-⨯=⨯4sin(/4)3sin(/2) 1.124cos(/4)3cos(/2)arctg rad ππϕππ+==+ 所以,合振动方程为))(12.12cos(1048.62SI t x+⨯=-π (2)当πϕϕk 21=-,即4/2ππϕ+=k 时,31x x +的振幅最大. 当πϕϕ)12(2+=-k ,即2/32ππϕ+=k 时,32x x +的振幅最小.6.解:)6/4sin(10322π-⨯=-t x )2/6/4cos(1032ππ--⨯=-t )3/24cos(1032π-⨯=-t作两振动的旋转矢量图,如图所示.由图得:合振动的振幅和初相分别为3/,2)35(πφ==-=cm cm A .合振动方程为))(3/4cos(1022SI t x π+⨯=-。
大学物理学振动与波动习题答案
大学物理学(上)第四,第五章习题答案第4章振动P174.4.1 一物体沿x轴做简谐振动,振幅A = 0.12m,周期T = 2s.当t = 0时,物体的位移x = 0.06m,且向x轴正向运动.求:(1)此简谐振动的表达式;(2)t = T/4时物体的位置、速度和加速度;(3)物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.[解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m,角频率ω = 2π/T= π.当t = 0时,x = 0.06m,所以cosφ = 0.5,因此φ= ±π/3.物体的速度为v = d x/d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sinφ,由于v > 0,所以sinφ < 0,因此φ = -π/3.简谐振动的表达式为x= 0.12cos(πt –π/3).(2)当t = T/4时物体的位置为x= 0.12cos(π/2–π/3)= 0.12cosπ/6 = 0.104(m).速度为v = -πA sin(π/2–π/3)= -0.12πsinπ/6 = -0.188(m·s-1).加速度为a = d v/d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s-2).(3)方法一:求时间差.当x = -0.06m 时,可得cos(πt1 - π/3) = -0.5,因此πt1 - π/3 = ±2π/3.由于物体向x轴负方向运动,即v< 0,所以sin(πt1 - π/3) > 0,因此πt1 - π/3 = 2π/3,得t1 = 1s.当物体从x= -0.06m处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt2 - π/3) = 0,可得πt2 - π/3 = -π/2或3π/2等.由于t2 > 0,所以πt2 - π/3 = 3π/2,可得t2 = 11/6 = 1.83(s).所需要的时间为Δt = t2 - t1 = 0.83(s).方法二:反向运动.物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间就是它从x= 0.06m,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x0/A),(-π < φ≦π),初位相的取值由速度决定.由于v = d x/d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sinφ,当v > 0时,sinφ < 0,因此φ = -arccos(x0/A);当v < 0时,sinφ > 0,因此φ = arccos(x0/A).可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x0 = A时,φ = 0;当初位置x0 = -A时,φ= π.4.2 已知一简谐振子的振动曲线如图所示,试由图求:(1)a,b,c,d,e各点的位相,及到达这些状态的时刻t各是多少?已知周期为T;(2)振动表达式;(3)画出旋转矢量图.[解答]方法一:由位相求时间.(1)设曲线方程为x = A cosΦ,其中A表示振幅,Φ = ωt + φ表示相位.由于x a = A,所以cosΦa = 1,因此Φa = 0.由于x b = A/2,所以cosΦb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t增加,b点位相就应该大于a点的位相,因此Φb = π/3.由于x c = 0,所以cosΦc = 0,又由于c点位相大于b位相,因此Φc = π/2.同理可得其他两点位相为Φd = 2π/3,Φe = π.c点和a点的相位之差为π/2,时间之差为T/4,而b点和a点的相位之差为π/3,时间之差应该为T/6.因为b点的位移值与O时刻的位移值相同,所以到达a点的时刻为t a = T/6.到达b点的时刻为t b = 2t a = T/3.到达c点的时刻为t c = t a + T/4 = 5T/12.到达d点的时刻为t d = t c + T/12 = T/2.到达e点的时刻为t e = t a + T/2 = 2T/3.(2)设振动表达式为x = A cos(ωt + φ),当t = 0时,x = A/2时,所以cosφ = 0.5,因此φ =±π/3;由于零时刻的位相小于a点的位相,所以φ = -π/3,因此振动表达式为cos(2)3tx ATπ=π-.另外,在O时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t轴相交于f点,由于x f= 0,根据运动方程,可得cos(2)03tTππ-=图6.2所以232f t Tπππ-=±. 显然f 点的速度大于零,所以取负值,解得 t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为t a = T /4 + t f = T /6,其位相为203a a t T Φπ=π-=. 由图可以确定其他点的时刻,同理可得各点的位相.4.3如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅; (2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即mv = (m + M )v 0.解得子弹射入后的速度为v 0 = mv/(m + M ) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得(m + M ) v 02/2 = kA 2/2,所以振幅为A v =-2(m). (2)振动的圆频率为ω=s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为x = A cos(ωt + φ).当t = 0时,x = 0,可得φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为x = 5×10-2cos(40t - π/2)(m).4.4 如图所示,在倔强系数为k的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为v =物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为0m v v m M ==+这也是它们振动的初速度. 设振动方程为x = A cos(ωt + φ),其中圆频率为ω=物体没有落下之前,托盘平衡时弹簧伸长为x 1,则x 1 = Mg/k .物体与托盘碰撞之后,在新的平衡位置,弹簧伸长为x 2,则x 2 = (M + m )g/k .取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k . 因此振幅为图4.3图4.4A===初位相为arctanvxϕω-==4.5重量为P的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)可以证明:当两根弹簧串联时,总倔强系数为k=k1k2/(k1+ k2),因此固有频率为2πων===.(2)因为当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为2πων===4.6 一匀质细圆环质量为m,半径为R,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]方法一:用转动定理.通过质心垂直环面有一个轴,环绕此轴的转动惯量为I c = mR2.根据平行轴定理,环绕过O点的平行轴的转动惯量为I = I c + mR2 = 2mR2.当环偏离平衡位置时,重力的力矩为M = -mgR sinθ,方向与角度θ增加的方向相反.根据转动定理得Iβ = M,即22dsin0dI mgRtθθ+=,由于环做小幅度摆动,所以sinθ≈θ,可得微分方程22ddmgRt Iθθ+=.摆动的圆频率为ω=周期为2πTω=22==方法二:用机械能守恒定律.取环的质心在最底点为重力势能零点,当环心转过角度θ时,重力势能为E p = mg(R - R cosθ),绕O点的转动动能为212kE I=ω,总机械能为21(cos)2E I mg R R=+-ωθ.环在转动时机械能守恒,即E为常量,将上式对时间求导,利用ω= dθ/d t,β=dω/d t,得0 = Iωβ + mgR(sinθ)ω,由于ω ≠ 0,当θ很小有sinθ≈θ,可得振动的微分方程22ddmgRt Iθθ+=,从而可求角频率和周期.[注意]角速度和圆频率使用同一字母(b)图4.5ω,不要将两者混淆.4.7 横截面均匀的光滑的U 型管中有适量液体如图所示,液体的总长度为L ,求液面上下微小起伏的自由振动的频率。
振动理论课后题部分汇总
第一章2-1 一单层房屋结构可简化为题2-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。
求该房屋作水平方向振动时的固有频率。
解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。
等效弹簧系数为k 则 mg k δ=其中δ为两根杆的静形变量,由材料力学易知δ=324mgh EJ =则 k =324EJ h设静平衡位置水平向右为正方向,则有"m x kx =-所以固有频率3n 24mh EJ p =2-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题2-2图所示。
试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ 2aθ=h α2F =mg由动量矩定理: ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θαα h l ga p ha mg ml n 22222304121==⋅+θθθF sin α2θαFhmgθFg h a l ga h l p T n 3π23π2π222=== 2-3 求题2-3图中系统的固有频率,悬臂梁端点的刚度分别是1k 和3k ,悬臂梁的质量忽略不计。
解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。
k 1ˊ与k 3并联,设总刚度为k 2ˊ。
k 2ˊ与k 4串联,设总刚度为k 。
即为21211k k k k k +=',212132k k kk k k ++=',4241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++=)(42412132314214324212k k k k k k k k k k m k k k k k k k k k p ++++++=2-4求题2-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。
(完整版)大学机械振动课后习题和答案(1~4章总汇)
1.1 试举出振动设计、系统识别和环境预测的实例。
1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为1t k ,2t k 。
解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。
第4章(一)振动学基础答案
10
x1 = 3 cos 3t cm
2)
x2 = 4 cos(3t + π 2) cm
ϕ − 0=2kπ
x3 = 5 cos(3t + ϕ ) cm
x = x1 + x3 合振动的振幅为极大时应满足
由此得
ϕ= kπ 2
(k = 0, ±1, ±2,…)
A = A1 + A3 = 3cm + 5cm = 8cm 3) x = x2 + x3 合振动的振幅为极小时,应满足 合振动的振幅为极小时,
B
v
k x O
选择题2图
A
m T = 2π k
C
k1k 2 k= k1 + k 2
k1 = k 2 = 2k
m T1 = 2π k
1 m 2 = 2π m = 1 T T2 = 2π 1 2k 4k 2
C
5
π 2π = t 6 T
B
π π 5π ∆ϕ = + = 2 3 6
5π :1= 2π : T 6
d 2 x gL2 + x=0 2 dt m
∴ ω= gL2 = m
mg = ρ水 gL2 a
g a
gL2 = 2 ρ水 L a
a T= = 2π ω g
2π
A = b −a
4.三个沿Ox 轴的简谐运动,其表达式依次为 x1 = 3 cos 3t cm .三个沿 轴的简谐运动, x3 = 5 cos(3t + ϕ ) cm x2 = 4 cos(3t + π 2) cm (1)若某质点同时参与第一、二两个运动,试求它的合振 )若某质点同时参与第一、二两个运动, 动表达式。 动表达式。 (2)若某质点同时参与第一、三两个运动,试问:当 ϕ 为 )若某质点同时参与第一、三两个运动,试问: 何值时,该质点合振动最强烈? 何值时,该质点合振动最强烈? (3)若某质点同时参与第二、三两个运动,试问:当 ϕ 为 )若某质点同时参与第二、三两个运动,试问: 何值时,该质点合振动最弱? 何值时,该质点合振动最弱? ϕ 解:1) A sin ϕ1 + A2 sin ϕ 2 2 2 ϕ 0 = tg −1 1 A = A1 + A2 + 2 A1 A2 cos(ϕ1-ϕ 2 ) A1 cos ϕ1 + A2 cos ϕ 2 = 32 + 4 2 + 2 × 3 × 4 cos π 2 = 5 cm 3π −1 4 = tg = 3 π 3 10 x = x + x = 5cos3t +
大学物理第九章振动学基础习题答案
大学物理第九章振动学基础习题答案(共7页)-本页仅作为预览文档封面,使用时请删除本页-第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=,A=,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω==9-4 一放置在水平桌面上的弹簧振子,振幅A = ×10-2 m ,周期T =。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x =×10-2m 处,向负方向运动;(4)物体在x =×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π= (2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为 ×10-2 m 。
(完整版)大学物理振动习题含答案
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
燕山大学振动理论习题答案
第二章 单自由度系统的自由振动2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。
试求2W 下降的最大距离和两物体碰撞后的运动规律。
解:222221v gW h W =,gh v 22=动量守恒:122122v g W W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+= 故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x txt x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=xx 0x 1x 12平衡位置2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。
试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ2aθ=h α2F =mg由动量矩定理:ah a m g a m g Fa M m l I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θααh l ga p ha m g m l n 22222304121==⋅+θθg h a l ga h l p T n 3π23π2π222===2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。
试求其摆动的固有频率。
图2-3 图2-42-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置;(2)杆可以在铅垂平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
图T 2-9 答案图T 2-9解:(1)保持水平位置:m kk n 21+=ω(2)微幅转动:mglllF2112+=mgl1l2xx2xx'm glllF2121+=k2k1ml1l2()()()()()()()()()m gk k l l k l k l m g k k l l k l l k l l l k l m gk k l l kl k l l l l k l l m g l m gk l l l k l l l l l l k l l m g l l l l x x k F x x x 2122122212121221221121212221212211211121212122211211121221112111 ++=+-++=+-⋅+++=⎥⎦⎤⎢⎣⎡+-++++=+-+='+= 故:()22212121221k l k l k k l l k e++=mk en =ω 2-5 试求图2-5所示系统中均质刚性杆AB 在A 点的等效质量。
《振动力学》习题集[含答案解析]
考虑到 的影响,则叠加后的 为:
2.1一弹簧质量系统沿光滑斜面作自由振动,如图T 2-1所示。已知, ,m=1 kg,k= 49 N/cm,开始运动时弹簧无伸长,速度为零,求系统的运动规律。
图T 2-1答案图T 2-1
解:
, cm
rad/s
cm
2.2如图T 2-2所示,重物 悬挂在刚度为k的弹簧上并处于静平衡位置,另一重物 从高度为h处自由下落到 上而无弹跳。求 下降的最大距离和两物体碰撞后的运动规律。
,
代入各单元状态变量的第一元素,即:
得到模态:
,
5.10在图E5.10所示系统中,已知GIpi(i= 1 , 2),li(i= 1 , 2)和Ji(i= 1 , 2)。用传递矩阵法计算系统的固有频率和模态。
图E5.10
解:
两自由端的边界条件为: , 。
其中: , 。
由自由端边界条件得频率方程:
,
代入各单元状态变量的第一元素,即:
得到模态:
,
5.11在图E5.11所示系统中悬臂梁质量不计,m、l和EI已知。用传递矩阵法计算系统的固有频率。
图E5.11
解:
引入无量纲量:
, , ,
定义无量纲的状态变量:
边界条件:
左端固结: ,右端自由:
根据传递矩阵法,有:
其中点传递矩阵和场传递矩阵分别为:
,
得:
利用此齐次线性代数方程的非零解条件导出本征方程:
解:
, ,
根据 和 的自由体动力平衡关系,有:
故:
当 = 时,令:
, ,
代入矩阵方程,有:
,
根据 得:
,
第一振型第二振型
答案图E4.7(2)
《振动理论》课后习题答案
1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制?解:物体与桌面保持相同的运动,知桌面的运动为,x=A sin10πt;由物体的受力分析,N = 0(极限状态)物体不跳离平台的条件为:;既有,,由题意可知Hz,得到,mm。
1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm 时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。
解:设该简谐振动的方程为;二式平方和为将数据代入上式:;联立求解得A=10.69cm;1/s;T=s当时,取最大,即:得:答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。
1-3 一个机器内某零件的振动规律为,x的单位是cm,1/s 。
这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。
解:振幅A=0.583最大速度最大加速度1-4某仪器的振动规律为。
此振动是否为简谐振动?试用x- t坐标画出运动图。
解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ω T2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。
两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。
1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。
解:两简谐振动分别为,,则:=3cos5t+3isin5t=5cos(5t+)+3isin(5t+)或;其合成振幅为:=其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:实部:cos(5t+ arctan)虚部:sin(5t+ arctan)1-6将题1-6图的三角波展为傅里叶级数。
解∶三角波一个周期内函数x (t)可表示为,由式得n=1,2,3……于是,得x(t)的傅氏级数1-7将题1-7图的锯齿波展为傅氏级数,并画出频谱图。
大学物理练习册习题及答案5--振动学基础
(l)木块将作什么运动
(2)求木块质心(重心)运动规律的数值表达式。(水的密度ρ’=1000kg·m-3并取竖直向上方向为x轴的正方向)
第四章振动学基础
参考答案
思考题
4-1答:物体运动时,如果离开平衡位置的位移(或者角位移)按余弦函数(或正弦函数)的规律随时间变化,这种运动就叫简谐运动。
也可从动力学角度来说明:凡是物体所受合外力(或合外力矩)与位移(或角位移)成正比而方向相反,则物体作简谐振动。
(1)不是简谐振动。从受力角度看,它受到地面的作用力,虽然是弹性力,但这外力只是作用一瞬间,而后就只在重力作用下运动。从运动规律来看,虽然是作往复运动,但位移时间关系并不是余弦(正弦)函数,而是作匀变速运动。
(A)T/4;12一长为l,倔强系数为k的均匀轻弹簧分割成长度分别为l1和l2,的两部分,且
l1=nl2,n为整数,则相应的倔强系数k1和k2为()
(A)
(B)
(C)
(D)
习题
4-1质量为 kg的小球与轻弹簧组成的系统,按 (SI)
的规律作振动。求:
正方向,此时木块本身的重力等于水对木块
的浮力,即
(S为木块的截面积, )。则有
,
当木块上移x,如图(b)所示,则木块
所受的浮力为: 。重力仍为 ,合力为 ,根据牛顿第二定律,有
,
将 代入上式得
令 ,得 ,所以木块作简谐振动。
(2)木块的运动方程
时 ,
由此得 ,
(SI)
(1)振动的角频率、周期、振幅、初相、最大速度及最大加速度;
大学大学物理答案-振动
20XX年复习资料大学复习资料专业:班级:科目老师:日期:20XXXX-1解:由图可知,t=0时,022x A =-=,00v > 由旋转矢量法解得034ϕπ=- 又t =0.5s 时,x =0,v >0由旋转矢量图,即由M 转到P 点4t πω∆= ∴2πω= 运动方程为23410cos()m 24x t ππ-=⨯- 20XXXX-2解:(1)设运动方程为cos()x A t ωϕ=+其中A =0.20XXXXm ,2T πωπ== 由旋转矢量法可得3πϕ=- ∴0.12cos()m 3x t ππ=- (2)t =0.5s 时 0.12cos()0.10m 23x ππ=-= 0.12sin()0.19m/s 23dx v dt πππ==--=- 2220.12cos() 1.03m/s 23d x a dt πππ==--=- (3) 5236t t πππωπΦ=+==∆=∆ ∴5s 6t ∆= 20XXXX-3????????????????????????????????????????20XXXX-4解:设逆时针方向的角位移为正,在切面上有sin t mg ma θ-=∴sin 0t ma g θ+=其中a t 为切向加速度22t d a R R dtθβ== 振幅很小时sin θθ∴ 220d R g dtθθ+= 即2220d dtθωθ+= 其中g Rω=解得0cos()t θθωϕ=+ 由旋转矢量法解得2πϕ=-又0sin()d t dtθθωωϕ=-+ ∴000t d v RR dt θθω=== 即00v R θω= 0cos()2g t R Rg πθ=- 20XXXX-5解:(1)k p E E = k p E E E += ∴12p E E = 即22111222kx kA =⨯ 得20.14m 2x A =±=± (2)一个周期内在357,,,4444ππππϕ=处有k p E E =2rad/s k mω== t ϕω= ∴t =0.39s ,1.20XXXXs ,1.20XXXXs ,2.75s 20XXXX-6解:(1)2max a A ω=∴max a Aω=(2)平衡位置处0p E = ∴224max 11 2.010J 22k E E mA mAa ω-====⨯ (3)当2A x =时 22111()2224p A E kx k E === 34k p E E E E =-= 20XXXX-7解:(1)221212212cos()A A A A A ϕϕ=++-220.050.0620.050.06cos()2π=++⨯⨯⨯- 27.810m -=⨯ 1111221122sin sin 11 1.48rad cos cos A A tg tg A A ϕϕϕϕϕ--+===+ (2)同相时,23x x +振幅最大,即2k ϕπ∆= ∴313224k k ϕϕπππ=+=+,0,1,2,k =±±反相时,23x x +振幅最小,即(21)k ϕπ∆=+ ∴325(21)24k k ϕϕπππ=++=+,0,1,2,k =±± 20XXXX-8解:由题意6πϕ= ∴22112cos 0.1m A A A A A ϕ=+-=A 1、A 2、A 3的量值满足勾股定理∴12A A ⊥即第二个振动与第一个振动的相位差2πθ=20XXXX-9解:(1)(a )反相21A A A =-(b )12πϕ=,20ϕ=∴212πϕϕ-=-∴2222121221122cos()A A A A A A A ϕϕ=++-=+ 21πϕ-=, 22πϕ= 21cos()2x A A t πω=-+ (2)111cos()x A t ωϕ=+ 222cos()x A t ωϕ=+cos()x A t ωϕ=+111122111222sin sin cos cos A A A tg tg A A A ϕϕϕϕϕ--+==+ ∴2211122)A A A A t tg A ω-=++ 20XXXX-20XXXX 解:(1)消去tcos()0.0836x t ππ=+ cos()sin()0.063336y t t ππππ=-=+ ∴222210.080.06x y += 即轨迹为一个正椭圆(2)222222()d r d x d y F ma m m i j dt dt dt===+2()m xi yj ω=+20.44m r r ω=-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k123
k1k23 k1 k23
2k 3
k1234
k123k4 k123 k4
1k 2
(1) mg
k1234 x0 , x0
2mg k
(2)
xt
x0
cosnt
,
xm a x
2x0
4mg k
2-7 图 2-7 所示系统,质量为 m2 的均质圆盘在水平面上作无滑动的滚动,鼓轮 绕轴的转动惯量为 I,忽略绳子的弹性、质量及各轴承间的摩擦力。试求此系统 的固有频率。
2π l a
h 3g
2-3 一半圆薄壁筒,平均半径为 R, 置于粗糙平面上做微幅摆动,如图 2-3 所示。 试求
其摆动的固有频率。
图 2-3
图 2-4
2-4 如图 2-4 所示,一质量 m 连接在一刚性杆上,杆的质量忽略不计,试求下 列情况
系统作垂直振动的固有频率: (1)振动过程中杆被约束保持水平位置; (2)杆可以在铅垂平面内微幅转动; (3)比较上述两种情况中哪种的固有频率较高,并说明理由。
n
ke m
2-5 试求图 2-5 所示系统中均质刚性杆 AB 在 A 点的等效质量。已知杆的质量为 m,A
端弹簧的刚度为 k。并问铰链支座 C 放在何处时使系统的固有频率最高?
图 2-5
图 2-6
2-6 在图 2-6 所示的系统中,四个弹簧均未受力。已知 m=50kg,k1 9800 N m , k2 k3 4900 N m , k4 19600 N m 。试问: (1)若将支撑缓慢撤去,质量块将下落多少距离?
E P02
2
k (1 2 )2 (2)2
证明
E T c2B2 cos(t )dt cB2 0
B
F0 / k
1 2 2 4 22
E c
F02 / k 2 1 2 2 4 2 2
F02 k
2
1 2 2 2 2
3-6 单自由度无阻尼系统受图 3-6 所示的外力作用,已知 x(0) x(0) 0 。试求系 统的响应。
n 6 rad / s
1c
16 m
2n
c 1 0.25 16m 2n
第三章 单自由度系统的强迫振动
3-1 如图 3-1 所示弹簧质量系统中,两个弹簧的连接处有一 激振力 P(t) P0 sin t 。试求质量块的振幅。
图 3-1
解:设弹簧 1,2 的伸长分别为 x1 和 x2,则有,
l1
l2 l2
k1
mg
l2mg
l1 l2 k1
l1
l1
l2
l1k1
l1
l2k2
l2 k1k2
mg
l2k2
l1
l2 l12k1 l1l2k2 l1 l2 2 k1k2
mg
l12k1 l1 l2
l22k2 2 k1k2
mg
ke
l1 l2 2 k1k2 l12k1 l22k2
cos pnt]
当 t1 < t < t2 时, F ( ) P1 ,则有
x(t)
t1 0
P1 mp n
sin
pn (t
)d
t t1
P1 mp n
sin
pn (t
)d
P1 k
[cos pn (t1
t)
cos pnt]
P1 k
[1 cos pn (t1
t)]
当 t < t2 时, F( ) 0,则有
图 3-6
解:由图得激振力方程为
P1 F (t) P1
0
0 t t1 t1 t t2 t t2
当 0 < t < t1 时, F( ) P1 ,则有
x(t)
t 0
P1 mp n
sin
pn (t
)d
P1
mp
2 n
[1
cos
pnt]
由于
pn2
k m
,所以有
x(t)
P1 k
[1
解:给杆一个微转角 a
2 =h
2F=mg
由动量矩定理: I M
I 1 ml 2 12
M Fasin cos mg a mg a2 a
2
2
8h
其中
sin cos 1 2
1 ml 2 mg a 2 0
12
4h
p
2 n
3ga 2 l2h
T 2π 2π pn
l2h 3ga 2
W2 g
v22
, v2
2gh
W2 g
v2
W1
W2 g
v12 , v12
W2 W1 W2
2gh
W1
k x1
,
x1
W1 k
W1
W2
kx12 ,
x12
W1
W2 k
x0
x12
x1
W2 k
n
k
W1 W2
g
kg W1 W2
x
x0
cosnt
x 0 n
sin
nt
x0
cosnt
v12 n
sin
nt
2-2 一均质等直杆,长为 l,重量为 w,用两根长 h 的相同的铅垂线悬挂成水平 位置,如图 2-2 所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程, 并求出振动固有周期。
=l/2,l3=l/4,不计钢杆质量。试求系统的无阻尼固有频率n 及阻尼 。
图 2-9 {2.26} 图 T 2-26 所示的系统中,m = 1 kg,k = 144 N / m,c = 48 N•s / m,l1 = l = 0.49
m,l2 = 0.5 l, l3 = 0.25 l,不计刚杆质量,求无阻尼固有频率n 及阻尼 。
x x1 x2
(A)
由图(1)和图(2)的受力分析,得到
联立解得,
k1x1 k2 x2 P0 sin t mx k2 x2
(B) (C)
mx
k1 k 2 k1 k2
x
k2 k1 k2
P0
sin t
x
k1 k 2 (k1 k2 )m
x
(k1
k2 k2 )m
P0
sin t
pn 所以
2n ,
c 4m ,
n pn
c 8mp n
h ,
ka 4ml ,
pn
得到
B
h ( pn2 2 )2 (2n)2
B B 2l pn2
ka 2l
4ml
(1
2 pn2
)2
(2
n pn
)2 pn
2a (1 2 )2 (2 )2
3-4 一机器质量为 450kg,支撑在弹簧隔振器上,弹簧静变形为 0.5cm,机器有
hl B lB ( pn2 2 )2 (2n)2 1)系统共振,即 pn
B hl (3 p0 / ml) l 2npn 4c 9k mm
2)
1 2
Pn
p0 m 4c k
B
hl
3 4
0 l ml
27k 4m
2
4c 2 m2
9k m
4 p0 9k
n
kb2 ml 2
b l
k m
ca 2 ml 2
2 n ,
ca2 2ml 2n
ca2 2mlb
m k
d n
12 b l
k m
1
c2a4 4m2l 2b2
m k
1 2ml 2
4kml2b2 c2a4
由
1 c
2bl a2
mk
2-9 图 2-9 所示的系统中,m=1kg,k=224N/m,c=48N.s/m,l1=l=0.49m,l2
一偏心重,产生偏心激振力 P0 2.2542 g ,其中 是激振频率,g 是重力加速 度。试求:
(1)在机器转速为 1200r/min 时传入地基的力;(2)机器的振幅。 解:设系统在平衡位置有位移 x ,
则 mx kx F0
x k x F0 即m m
mg k 又有 mg kst 则 st (1)
x(t)
t1 0
P1 mp n
sin
pn (t
)d
t t1
P1 mp n
sin
pn (t
)d
+
0
P1 k
[cos pn (t1
t) cos pnt]
P1 k
[cos pn (t2
t)
cos pn (t1
t)]
图 3-7
3-7 试求在零初始条件下的单自由度无阻尼系统对图 3-7 所示激振力的响应。 解:由图得激振力方程为
B
所以机器的振幅为
F0 k
2 1 2
(2)且
pn
,
40
rad s
(3)
pn2
又有
k m
g st
(4)
将(1)(2)(4)代入(2)得机器的振幅 B =0.584 mm
则传入地基的力为 pT kB 514.7N
2-9 一 个 粘 性 阻 尼 系 统 在 激 振 力 F (t) F0 sin t 作 用 下 的 强 迫 振 动 力 为
解:图(1)为系统的静平衡位置,以 为系统的广义坐标,画受力如图(2)
I 2l c (2l ) 3l k( 3l) 3lP0 sint
又 I=ml2
4c m
k m
3 ml
P0
sin t
则
p
2 n
9k m
2n
4c m
,
h 3p0 ml
B