开关电源基础与应用(第二版)(辛伊波)6-10章 (4)
开关电源基础与应用(第二版) 第4章
![开关电源基础与应用(第二版) 第4章](https://img.taocdn.com/s3/m/10f0af90964bcf84b8d57b40.png)
图4-3 LM2577ADJ应用电路
4.1.2 单片开关电源L4962 1.L4962构成的可调稳压电源电路 L4962的内部电路集成有5.1 V的基准电压稳压器、锯齿
波发生器、PWM比较器、误差放大器和功率开关等。为了 提高可靠性,还设有过流限制和芯片过热保护电路。L4962 的锯齿波发生器外接并联的定时电路RT、CT,振荡频率可 以由下式确定:
图4-5 W296组成的降压开关电源电路
3.W296组成的保护电路 W296具有延迟动作保护功能,可用于输出过流、短路 保护电路。图4-6所示为延迟动作保护电路的原理图。该电 路增设小阻值取样电阻R2,串联接在输出负载电路中。当负 载电流超限时,开关管VT立即导通,其发射极输出高电平 经VD3送入12脚,14脚输出延时后,通过VD1输入6脚启动保 护电路。为了使短路保护动作更快,13脚外接C1容量约为 0.22 μF左右,保持大约10 ms的延时。其目的是防止接通电 源瞬间C2的充电峰值电流使电路误动作。
LM2576ADJ的内部结构见图4-1。
图4-1 LM2576ADJ的内部结构
2.LM2576ADJ的应用 LM2576ADJ的典型应用电路如图4-2所示。其中 LM2576ADJ各脚功能如下: 1脚:直流电压输入端,输入电压最高为45 V。若由低 压交流整流供电,为了避免空载时电压超出45 V,交流输入 电压应不高于32 V。 2脚:脉冲输出端,最大输出5.8 A的调宽脉冲。在正脉 冲持续期,二极管VD截止,脉冲电流向L存储磁场能量,同 时向负载提供直通电流,并向C充电。在脉冲截止期,L释 放磁场能量,产生右正左负的感应电势使VD导通,继续向C 充电,并向负载提供不间断的电流。输出电压值取决于输出 脉冲的幅度和占空比。
3脚:输入、输出级共地端。 4脚:脉冲宽度控制端。当4脚电位升高时,输出脉冲宽 度减小,使输出电压降低。电路中由RP3 + RP4、R1组成输出 电压取样分压器,通过调整RP3(细调)和RP4(粗调)可改变输出 电压值。在上述控制过程中,输出电压Ui的表达式为
开关电源基础与应用(第二版) 第2章
![开关电源基础与应用(第二版) 第2章](https://img.taocdn.com/s3/m/e906b78279563c1ec4da7140.png)
图2-3 晶闸管过压保护原理
自激式降压型开关电源的过流保护相当重要,因为自激 式负载短路保护功能不可能代替负载过流保护。实用中一旦 开关电源负载过流引起开关管击穿,将造成严重超压,使开 关电源和负载电路同时损坏。
最简单的过流保护可通过在电路中加入负载电流I0取样 电路实现,原理见图2-4。
在开关电源稳压输出端,设置负载电流取样电阻R0,通过R0 将负载电流I0变成过流电压U0 = I0·R0。VT2作为过流控制管, 当I0R0 > 0.7 V时,VT2导通,稳压管输出电压U2经VT2集电 极输出,触发晶闸管导通,将开关电源负载短路,实现停振
冲变压器,使得VT1可以依靠脉冲变压器的正反馈作用产生 振荡。
图2-2 不隔离电源原理图
2.1.2 降压型电源保护电路 降压型开关电源的输出过压保护至关重要,因为输出电
压超压,不仅开关电源本身受损,负载电路也同时会损坏。 新的过压保护器件的内部电路由一只小型压敏二极管VDVS 和一只晶闸管VS组成,见图2-3。小电流的VDVS和晶闸管VS 封装在同一芯片上,VDVS击穿后触发大电流晶闸管VS,使 短路效果更可靠。该器件有A、K、G三只脚,外表与晶闸 管相同,用于保护电路时,在G极和K极之间外电路加入R、 C,防止干扰脉冲造成晶闸管误触发。
图2-4 自激式电源过流保护原理
利用晶闸管的短路保护可以实现更精确的过压保护。用 分压电阻将U2分压,将分压点经过稳压二极管接入晶闸管 控制极。如果U2升高,分压点电压使稳压管反向击穿,则 触发晶闸管导通。由于稳压管有比较准确的稳定电压值,特 性曲线比较陡,反向电流较小,因此这种过压保护精度可以 达到输出电压2%以内,优于上述简单的过压保护电路。
保护。该电路具有自锁功能,一旦负载电流增大的持续时间
关于开关电源的书
![关于开关电源的书](https://img.taocdn.com/s3/m/7001790ace84b9d528ea81c758f5f61fb736280a.png)
关于开关电源的书开关电源是一种常见的电源类型,广泛应用于许多电子设备中。
它具有高效率、小体积和稳定性好等特点,因此备受推崇。
本文将详细介绍开关电源的工作原理、优点和应用领域,并对其在现代电子技术中的地位进行探讨。
第一章:开关电源的工作原理(约2000字)开关电源是一种能将输入电能转换成稳定输出直流电能的电源装置。
它的基本工作原理是通过开关元件对输入电压进行高频的开关控制,使得输入电能以脉冲形式传递到输出端,经过滤波和稳压环节后得到稳定的直流输出。
开关电源将输入电能转换成高频脉冲信号,可以通过变压变流进行功率传输,然后经过整流和滤波得到所需的直流电压。
开关电源采用了先进的电子元器件,如功率开关器件、高频变压器、电感、电容等,配合复杂的控制电路实现高效率和稳定输出。
第二章:开关电源的优点(约2000字)开关电源相对于传统的线性电源具有多种优点。
首先,开关电源的效率高,可以达到85%以上,远高于线性电源的60%左右。
其次,开关电源体积小巧,适合应用于小型电子设备中。
此外,开关电源稳定性好,可以在较大的输入电压范围内保持输出电压的稳定性。
开关电源还具有较低的输出纹波和良好的电流、电压调节特性。
总之,开关电源具有高效、小巧、稳定等多方面的优点,因此被广泛应用于各种电子设备中。
第三章:开关电源的应用领域(约2000字)开关电源在现代电子技术中有着广泛的应用。
首先,它常被用于计算机、电视机、音响等家用电器中,为这些设备提供稳定的电源。
其次,开关电源在通信设备领域也有重要应用,如基站、交换机、路由器等。
这些设备需要高效率、小体积的电源,以满足其长时间运行的需求。
再者,开关电源还被广泛应用于医疗设备、工业自动化设备、航空航天等领域。
开关电源可以满足这些设备对稳定性、效率和体积的严格要求,提供可靠的电源支持。
第四章:开关电源的未来发展趋势(约2000字)随着科技的不断发展,开关电源仍然有很大的发展空间。
首先,随着能源危机的日益加剧,节能和环保已成为重要的发展目标。
《开关电源基础与应用》课件第5章
![《开关电源基础与应用》课件第5章](https://img.taocdn.com/s3/m/b0ecb64f905f804d2b160b4e767f5acfa1c783c7.png)
图5-1 推挽式开关电路
推挽式开关电路中,能量转换由两管交替控制。当输出
相同功率时,电流仅是单端开关电源管的一半,因此开关损
耗随之减小,效率提高。如果选用同规格的开关管组成单端
变换电路,输出最大功率为150 W。若使用两只同规格开关 管组成推挽电路,输出功率可以达到400~500 W。所以, 输出功率200 W以上的开关电源均宜采用推挽电路。
2.桥式变换电路 全桥变换器电路原理如图5-3所示。4只极性相同的开关 管VT1~VT4组成桥式电路接法的4个臂,变压器初级作为负 载电路接于两臂中点之间。VT1和VT4为一对,VT2和VT3为 另一对,互补导通,即一对导通时另一对截止。当开关管成 对轮流导通时,脉冲变压器初级连续通过方向相反的电流, 将输入直流变成双向对称的矩形脉冲,脉冲变压器次级通过 全波整流滤波,输出稳定的直流电。
变压器绕组N1两端的电压为上正下负,与其耦合的N2绕组 两端的电压也是上正下负,因此VD1处于通态,VD2为断态, 电感L的电流逐渐增长。VT关断后,电感L通过VD2续流, VD1关断。
当VT关断后,变压器的激磁电流经N3绕组和VD3流回电 源,所以开关管VT关断后承受的电压为
US
1
N1 N2
U i
化,只需两组在时间轴上不重合的驱动脉冲,两组驱动电路的
参考点为各自开关管的发射极,显然比桥式电路的形式简单得
多。根据上述原理,当采用相同规格开关管时,半桥式负载端
电压为Uin/2,输出功率为桥式电路的1/4。半桥式电路具有全 桥式电路的所有优势,因此其应用比全桥式更普遍。
4.正激变换电路
正激变换器电路原理如图5-5所示。开关管VT开通后,
磁场,而使脉冲变压器等效电感量减小,开关管电流增大。正因
开关电源基础与应用第1章
![开关电源基础与应用第1章](https://img.taocdn.com/s3/m/474618ac5ff7ba0d4a7302768e9951e79a896949.png)
第1章 开关电源基本原理 1.2.2 连接分类
电源以功率开关管的连接方式分类,可分为单端正激开 关电源、单端反激开关电源、半桥开关电源和全桥开关电 源;以功率开关管与供电电源、储能电感的连接方式以及 电压输出方式分类,可分为串联开关电源和并联开关电源.
串联开关电源、并联开关电源、单端正激、单端反激、 半桥及全桥开关电源的工作原理将在以后章节分别讨论.
第1章 开关电源基本原理
<4> 安全可靠.在开关电源中,由于可以方便地设置各种 形式的保护电路,所以当电源负载出现故障时,能自动切断电 源,保护功能可靠.
<5> 元件数值小.由于开关电源的工作频率高,一般在 20 kHz以上,所以滤波元件的数值可以大大减小.
<6> 功耗小.功率开关管工作在开关状态,其损耗小;电 源温升低,不需要采用大面积散热器.采用开关电源可以提高 整机的可靠性和稳定性.
第1章 开关电源基本原理
图1-5 间接输出取样电路
第1章 开关电源基本原理
1.3 开关电源主要结构 1.串联型结构 串联开关电源工作原理方框图如图1-6所示. 功率开关晶体管VT串联在输入与输出之间,正常 工作时,它在开关驱动控制脉冲的作用下周期性 地在导通和截止之间交替转换,使输入与输出之 间周期性地闭合与断开.输入不稳定的直流电压 通过功率开关晶体管VT后输出为周期性脉冲电 压,再经滤波后就可得到平滑的直流输出电压 Uo.Uo与功率开关晶体管VT的脉冲占空比D有
第1章 开关电源基本原理 4.其他方式 若触发信号利用电源电路中的开关晶体管、高频脉冲 变压器构成正反馈环路,完成自激振荡,使开关电源工作,则这 种电源称为自激式开关电源. 它激式开关电源需要外部振荡器,用以产生开关脉冲来 控制开关管,使开关电源工作,输出直流电压.它激式电源大多 数需要专用的PWM触发集成电路.
第六章内容
![第六章内容](https://img.taocdn.com/s3/m/2bc2b9eb856a561252d36fe2.png)
6Converter CircuitsWe have already analyzed the operation of a number of different types of converters: buck, boost,buck-boost, Cuk, voltage-source inverter, etc. With these converters, a number of different functionscan be performed: step-down of voltage, step-up, inversion of polarity, and conversion of dc to ac orvice versa.It is natural to ask, Where do these converters come from? What other converters occur, and whatother functions can be obtained? What are the basic relations between converters? In this chapter,several different circuit manipulations are explored, which explain the origins of the basic converters.Inversion of source and load transforms the buck converter into the boost converter. Cascadeconnection of converters, and simplification of the resulting circuit, shows how the buck-boost andCuk converters are based on the buck and the boost converters. Differential connection of the loadbetween the outputs of two or more converters leads to a single-phase or polyphase inverter. A shortlist of some of the better known converter circuits follows this discussion.Transformer-isolated dc-dc converters are also covered in this chapter. Use of a transformer allowsisolation and multiple outputs to be obtained in a dc-dc converter, and can lead to better converter optimization when a very large or very small conversion ratio is required. The transformer is modeledas a magnetizing inductance in parallel with an ideal transformer; this allows the analysis techniquesof the previous chapters to be extended to cover converters containing transformers. A number ofwell-known isolated converters, based on the buck, boost, buck-boost, single-ended primaryinductance converter (SEPIC), and Cuk, are listed and discussed.Finally, the evaluation, selection, and design of converters to meet given requirements areconsidered. Important performance-related attributes of transformer-isolated converters include:whether the transformer reset process imposes excessive voltage stress on the transistors, w hether theconverter can supply a high-current output without imposing excessive current stresses on thesecondary-side components, and whether the converter can be well-optimized to operate with a widerange of operating points, that is, with large tolerances in V g and P load. Switch utilization is asimplified figure-of-merit that measures the ratio of the converter output power to the total transistorvoltage and current stress. As the switch utilization increases, the converter efficiency increases whileits cost decreases. Isolated converters with large variations in operating point tend to utilize theirpower devices more poorly than nonisolated converters which function at a single operating point.Computer spreadsheets are a good tool for optimization of power stage designs and for trade studiesto select a converter topology for a given application.6.1 CIRCUIT MANIPULATIONSThe buck converter (Fig. 6.1) was developed in Chapter 1 using basic principles. The switch reducesthe voltage dc component, and the low-pass filter removes the switching harmonics. In the continuousconduction mode, the buck converter has a conversion ratio of M =D. The buck converter is thesimplest and most basic circuit, from which we will derive other converters.Fig. 6.1. The basic buck converter.6.1.1 Inversion of Source and LoadLet us consider first what happens when we interchange the power input and power output ports of a converter. In the buck converter of Fig. 6.2(a), voltage V 1 is applied at port 1, and voltage V 2 appears at port 2. We know thatV 2 = DV 1 (6.1)This equation can be derived using the principle of inductor volt-second balance, with the assumption that the converter operates in the continuous conduction mode. Provided that the switch is realized such that this assumption holds, then Eq. (6.1) is true regardless of the direction of power flow.Fig. 6.2. Inversion of source and load transforms a buck converter into a boost converter: (a) buck converter, (b) inversion of source and load, (c) realization of switch.So let us interchange the power source and load, as in Fig. 6.2(b). The load, bypassed by the capacitor, is connected to converter port 1, while the power source is connected to converter port 2. Power now flows in the opposite direction through the converter. Equation (6.1) must still hold; by solving for the load voltage V 1, one obtains211V DV =(6.2) So the load voltage is greater than the source voltage. Figure 6.2(b) is a boost converter, drawn backwards. Equation (6.2) nearly coincides with the familiar boost converter result, M (D )= 1/D ', except that D ' is replaced by D .Since power flows in the opposite direction, the standard buck converter unidirectional switch realization cannot be used with the circuit of Fig. 6.2(b). By following the discussion of Chapter 4, one finds that the switch can be realized by connecting a transistor between the inductor and ground, and a diode from the inductor to the load, as shown in Fig. 6.2(c). In consequence, the transistor duty cycle D becomes the fraction of time which the single-pole double-throw (SPDT) switch of Fig. 6.2(b)spends in position 2, rather than in position 1. So we should interchange D with its complement D ' in Eq. (6.2), and the conversion ratio of the converter of Fig. 6.2(c) is21'1V D V =(6.3) Thus, the boost converter can be viewed as a buck converter having the source and load connections exchanged, and in which the switch is realized in a manner that allows reversal of the direction of power flow.Fig. 6.3. Cascade connection of converters.6.1.2 Cascade Connection of Converters Converters can also be connected in cascade, as illustrated in Fig. 6.3 [1,2]. Converter 1 has conversion ratio M 1(D ), such that its output voltage V 1 isg V D M V )(11= (6.4)This voltage is applied to the input of the second converter. Let us assume that converter 2 is driven with the same duty cycle D applied to converter 1. If converter 2 has conversion ratio M 2(D ), then the output voltage V is12)(V D M V = (6.5) Substitution of Eq. (6.4) into Eq. (6.5) yields)()()(21D M D M D M V V g== (6.6) Hence, the conversion ratio M (D ) of the composite converter is the product of the individual conversion ratios M 1(D ) and M 2(D ).Fig. 6.4. Cascade connection of buck converter and boost converter.Let us consider the case where converter 1 is a buck converter, and converter 2 is a boost converter. The resulting circuit is illustrated in Fig. 6.4. The buck converter has conversion ratioD V V g=1 (6.7) The boost converter has conversion ratioDV −11So the composite conversion ratio isDD V V g −=1 (6.9) The composite converter has a noninverting buck-boost conversion ratio. The voltage is reduced whenD < 0.5, and increased when D > 0.5.Fig. 6.5. Simplification of the cascaded buck and boost converter circuit of Fig. 6.4: (a) removal of capacitor C 1, (b) combining of inductors L 1 and L 2.The circuit of Fig. 6.4 can be simplified considerably. Note that inductors L 1 and L 2, along with capacitor C 1, form a three-pole low-pass filter. The conversion ratio does not depend on the number of poles present in the low-pass filter, and so the same steady-state output voltage should be obtained when a simpler low-pass filter is used. In Fig. 6.5(a), capacitor C 1 is removed. Inductors L 1 and L 2 are now in series, and can be combined into a single inductor as shown in Fig. 6.5(b). This converter, the noninverting buck-boost converter, continues to exhibit the conversion ratio given in Eq. (6.9).Fig. 6.6. Connections of the circuit of Fig. 6.5(b): (a) while the switches are in position 1, (b) while the switches are in position 2.The switches of the converter of Fig. 6.5(b) can also be simplified, leading to a negative output voltage. When the switches are in position 1, the converter reduces to Fig. 6.6(a). The inductor is connected to the input source V g and energy is transferred from the source to the inductor. When the switches are in position 2, the converter reduces to Fig. 6.6(b). The inductor is then connected to the load, and energy is transferred from the inductor to the load. To obtain a negative output, we can simply reverse the polarity of the inductor during one of the subintervals (say, while the switches are in position 2). The individual circuits of Fig. 6.7 are then obtained, and the conversion ratio becomesDV g −1Note that one side of the inductor is now always connected to ground, while the other side is switched between the input source and the load. Hence only one SPDT switch is needed, and the converter circuit of Fig. 6.8 is obtained. Figure 6.8 is recognized as the conventional buck-boost converter.Fig. 6.7. Reversal of the output voltage polarity, by reversing the inductor connections while the switches are in position 2: (a) connections with the switches in position 1, (b) connections with the switches in position 2.Fig. 6.8. Converter circuit obtained from the subcircuits of Fig. 6.7.Thus, the buck-boost converter can be viewed as a cascade connection of buck and boost converters. The properties of the buck-boost converter are consistent with this viewpoint. Indeed, the equivalent circuit model of the buck-boost converter contains a 1:D (buck) dc transformer, followed by a D ':1 (boost) dc transformer. The buck-boost converter inherits the pulsating input current of the buck converter, and the pulsating output current of the boost converter.Other converters can be derived by cascade connections. The Cuk converter (Fig. 2.20) was originally derived [1,2] by cascading a boost converter (converter 1), followed by a buck (converter 2).A negative output voltage is obtained by reversing the polarity of the internal capacitor connection during one of the subintervals; as in the buck-boost converter, this operation has the additional benefit of reducing the number of switches. The equivalent circuit model of the Cuk converter contains a D ':1 (boost) ideal dc transformer, followed by a 1:D (buck) ideal dc transformer. The Cuk converter inherits the nonpulsating input current property of the boost converter, and the nonpulsating output current property of the buck converter.6.1.3 Rotation of Three-Terminal CellThe buck, boost, and buck-boost converters each contain an inductor that is connected to a SPDT switch. As illustrated in Fig. 6.9(a), the inductor-switch network can be viewed as a basic cell having the three terminals labeled a , b , and c . It was first pointed out in [1,2], and later in [3], that there are three distinct ways to connect this cell between the source and load. The connections a-A b-B c-C lead to the buck converter. The connections a-C b-A c-B amount to inversion of the source and load, and lead to the boost converter. The connections a-A b-C c-B lead to the buck-boost converter. So the buck, boost, and buck-boost converters could be viewed as being based on the same inductor-switch cell, with different source and load connections.Fig. 6.9. Rotation of three-terminal switch cells: (a) switch/inductor cell, (b) switch/capacitor cell.A dual three-terminal network, consisting of a capacitor-switch cell, is illustrated in Fig. 6.9(b). Filter inductors are connected in series with the source and load, such that the converter input and output currents are nonpulsating. There are again three possible ways to connect this cell between the source and load. The connections a-A b-B c-C lead to a buck converter with L-C input low-pass filter. The connections a-B b-A c-C coincide with inversion of source and load, and lead to a boost converter with an added output L-C filter section. The connections a-A b-C c-B lead to the Cuk converter. Rotation of more complicated three-terminal cells is explored in [4].6.1.4 Differential Connection of the LoadIn inverter applications, where an ac output is required, a converter is needed that is capable of producing an output voltage of either polarity. By variation of the duty cycle in the correct manner, a sinusoidal output voltage having no dc bias can then be obtained. Of the converters studied so far in this chapter, the buck and the boost can produce only a positive unipolar output voltage, while the buck-boost and Cuk converter produce only a negative unipolar output voltage. How can we derive converters that can produce bipolar output voltages?Fig. 6.10. Obtaining a bipolar output by differential connection of load.A well-known technique for obtaining a bipolar output is the differential connection of the load across the outputs of two known converters, as illustrated in Fig. 6.10. If converter 1 produces voltagedc source V 1, and converter 2 produces voltage V 2, then the load voltage V is given by21V V V −= (6.11)Although V 1 and V 2 may both individually be positive, the load voltage V can be either positive or negative. Typically, if converter 1 is driven with duty cycle D , then converter 2 is driven with its complement, D ', so that when V 1 increases, V 2 decreases, and vice versa.Several well-known inverter circuits can be derived using the differential connection. Let’s realize converters 1 and 2 of Fig. 6.10 using buck converters. Figure 6.11(a) is obtained. Converter 1 is driven with duty cycle D , while converter 2 is driven with duty cycle D '. So when the SPDT switch of converter 1 is in the upper position, then the SPDT switch of converter 2 is in the lower position, and vice versa. Converter 1 then produces output voltage V 1 = DV g , while converter 2 produces output voltage V 2 = D'V g . The differential load voltage isg g V D DV V '−= (6.12)Simplification leads tog V D V )12(−= (6.13)This equation is plotted in Fig. 6.12. It can be seen the output voltage is positive for D > 0.5, and negative for D < 0.5. If the duty cycle is varied sinusoidally about a quiescent operating point of 0.5, then the output voltage will be sinusoidal, with no dc bias.The circuit of Fig. 6.11 (a) can be simplified. It is usually desired to bypass the load directly with a capacitor, as in Fig. 6.11(b). The two inductors are now effectively in series, and can be combined into a single inductor as in Fig. 6.11(c). Figure 6.11(d) is identical to Fig. 6.11(c), but is redrawn for clarity. This circuit is commonly called the H-bridge , or bridge inverter circuit. Its use is widespread in servo amplifiers and single-phase inverters. Its properties are similar to those of the buck converter, from which it is derived.Fig. 6.11. Derivation of bridge inverter (H-bridge): (a) differential connection of load across outputs of buck converters, (b) bypassing load by capacitor, (c) combining series inductors, (d) circuit (c) redrawn in its usual form.Fig. 6.12. Conversion ratio of the H-bridge inverter circuit.Fig. 6.13. Generation of dc-3Фac inverter by differential connection of 3Ф load.Polyphase inverter circuits can be derived in a similar manner. A three-phase load can be connected differentially across the outputs of three dc-dc converters, as illustrated in Fig. 6.13. If the three-phase load is balanced, then the neutral voltage V n will be equal to the average of the three converter output voltages:)(21321V V V V n ++= (6.14) If the converter output voltages V 1, V 2, and V 3 contain the same dc bias, then this dc bias will also appear at the neutral point V n . The phase voltages V an , V bn and V cn are given by ncn n bn nan V V V V V V V V V −=−=−=321 (6.15)It can be seen that the dc biases cancel out, and do not appear in V an , V bn , and V cn .Let us realize converters 1, 2, and 3 of Fig. 6.13 using buck converters. Figure 6.14(a) is then obtained. The circuit is redrawn in Fig. 6.l4(b) for clarity. This converter is known by several names, including the voltage-source inverter and the buck-derived three-phase bridge .Inverter circuits based on dc-dc converters other than the buck converter can be derived in a similar manner. Figure 6.14(c) contains a three-phase current-fed bridge converter having a boost-type voltage conversion ratio. Since most inverter applications require the capability to reduce the voltage magnitude, a dc-dc buck converter is usually casacded at the current-fed bridge dc input port. Several other examples of three-phase inverters are given in [5-7], in which the converters are capable of both increasing and decreasing the voltage magnitude.Fig. 6.14. Derivation of dc-3Фac inverters: (a) differential connection of 3Ф load across outputs of buck converters; (b) simplification of low-pass filters to obtain the dc-3Фac voltage-source inverter; (c) the dc-3Фac current-source inverter.Fig. 6.14. Continued.6.2 A SHORT LIST OF CONVERTERSAn infinite number of converters are possible, and hence it is not feasible to list them all here. A short list is given here.Let’s consider first the class of single-input single-output converters, containing a single inductor. There are a limited number of ways in which the inductor can be connected between the source and load. If we assume that the switching period is divided into two subintervals, then the inductor should be connected to the source and load in one manner during the first subinterval, and in a different manner during the second subinterval. One can examine all of the possible combinations, to derive the complete set of converters in this class [8-10]. By elimination of redundant and degenerate circuits, one finds that there are eight converters, listed in Fig. 6.15. How the converters are counted can actually be a matter of semantics and personal preference; for example, many people in the field would not consider the noninverting buck-boost converter as distinct from the inverting buck-boost. Nonetheless, it can be said that a converter is defined by the connections between its reactive elements, switches, source, and load; by how the switches are realized; and by the numerical range of reactive element values.Fig. 6.15. Eight members of the basic class of single-input single-output converters containing a single inductor.Fig. 6.15. Continued.The first four converters of Fig. 6.15, the buck, boost, buck-boost, and the noninverting buck-boost, have been previously discussed. These converters produce a unipolar dc output voltage.Converters 5 and 6 are capable of producing a bipolar output voltage. Converter 5, the H-bridge, has previously been discussed. Converter 6 is a nonisolated version of a push-pull current-fed converter [11-15]. This converter can also produce a bipolar output voltage; however, its conversion ratio M(D) is a nonlinear function of duty cycle. The number of switch elements can be reduced by using a two-winding inductor as shown. The function of the inductor is similar to that of the flyback converter, discussed in the next section. When switch 1 is closed the upper winding is used, while when switch 2 is closed, current flows through the lower winding. The current flows through only one winding at any given instant, and the total ampere-turns of the two windings are a continuous function of time. Advantages of this converter are its ground-referenced load and its ability to produce a bipolar output voltage using only two SPST current-bidirectional switches. The isolated version and its variants have found application in high-voltage dc power supplies.Converters 7 and 8 can be derived as the inverses of converters 5 and 6. These converters are capable of interfacing an ac input to a dc output. The ac input current waveform can have arbitrary waveshape and power factor.The class of single-input single-output converters containing two inductors is much larger. Several of its members are listed in Fig. 6.16. The Cuk converter has been previously discussed and analyzed. It has an inverting buck-boost characteristic. The SEPIC (single-ended primary inductance converter) [16], and its inverse, have noninverting buck-boost characteristics. Two-inductor converters having conversion ratios M(D) that are biquadratic functions of the duty cycle D are also numerous. An example is converter 4 of Fig. 6.16 [17]. This converter can be realized using a single transistor and three diodes. Its conversion ratio is M(D) =D2. This converter may find use in nonisolated applications that require a large step-down of the dc voltage, or in applications having wide variationsin operating point.Fig. 6.16. Several members of the basic class of single-input single-output converters containing two inductors.6.3 TRANSFORMER ISOLATIONIn a large number of applications, it is desired to incorporate a transformer into a switching converter, to obtain dc isolation between the converter input and output. For example, in off-line applications (where the converter input is connected to the ac utility system ), isolation is usually required by regulatory agencies. Isolation could be obtained in these cases by simply connecting a 50 Hz or 60 Hz transformer at the converter ac input. However, since transformer size and weight vary inversely with frequency, significant improvements can be made by incorporating the transformer into the converter, so that the transformer operates at the converter switching frequency of tens or hundreds of kilohertz. When a large step-up or step-down conversion ratio is required, the use of a transformer can allow better converter optimization. By proper choice of the transformer turns ratio, the voltage or current stresses imposed on the transistors and diodes can be minimized, leading to improved efficiency and lower cost.Multiple dc outputs can also be obtained in an inexpensive manner, by adding multiple secondary windings and converter secondary-side circuits. The secondary turns ratios are chosen to obtain the desired output voltages. Usually only one output voltage can be regulated via control of the converter duty cycle, so wider tolerances must be allowed for the auxiliary output voltages. Cross-regularion is a measure of the variation in an auxiliary output voltage, given that the main output voltage is perfectly regulated [18-20].A physical multiple-winding transformer having turns ratio n 1:n 2:n 3:... is illustrated in Fig. 6.17(a).A simple equivalent circuit is illustrated in Fig. 6.17(b), which is sufficient for understanding the operation of most transformer-isolated converters. The model assumes perfect coupling between windings and neglects losses; more accurate models are discussed in a later chapter. The ideal transformer obeys the relations...)()()(0...)()()(332211332211+++====t i n t i n t i n n t v n t v n t v(6.16)In parallel with the ideal transformer is an inductance L M, called the magnetizing inductance, referred to the transformer primary in the figure.Fig. 6.17. Simplified model of a multiple-winding transformer (a) schematic symbol, (b) equivalent circuit containing a magnetizing inductance and ideal transformer.Fig. 6.18. B-H characteristics of transformer core.Physical transformers must contain a magnetizing inductance. For example, suppose we disconnect all windings except for the primary winding. We are then left with a single winding on a magnetic core - an inductor. Indeed, the equivalent circuit of Fig. 6.17(b) predicts this behavior, via the magnetizing inductance.The magnetizing current i M(t) is proportional to the magnetic field H(t) inside the transformer core. The physical B-H characteristics of the transformer core material, illustrated in Fig. 6.18, govern the magnetizing current behavior. For example, if the magnetizing current i M(t) becomes too large, then the magnitude of the magnetic field H(t) causes the core to saturate. The magnetizing inductance then becomes very small in value, effectively shorting out the transformer.The presence of the magnetizing inductance explains why transformers do not work in dc circuits: at dc, the magnetizing inductance has zero impedance, and shorts out the windings. In a well-designed transformer, the impedance of the magnetizing inductance is large in magnitude over the intended range of operating frequencies, such that the magnetizing current i M(t) has much smaller magnitudethan i l (t ). Then i l ’(t ) ≈ i l (t ), and the transformer behaves nearly as an ideal transformer. It should be emphasized that the magnetizing current i M (t ) and the primary winding current i l (t ) are independent quantities.The magnetizing inductance must obey all of the usual rules for inductors. In the model of Fig.6.17(b), the primary winding voltage v l (t ) is applied across L M , and hencedtt di L t v M Ml )()(= (6.17) Integration leads to ∫=−tl M M M d v L i t i 0)(1)0()(ττ (6.18) So the magnetizing current is determined by the integral of the applied winding voltage. The principle of inductor volt-second balance also applies: when the converter operates in steady-state, the dc component of voltage applied to the magnetizing inductance must be zero:∫=s T l s dt t v T 0)(10 (6.19)Since the magnetizing current is proportional to the integral of the applied winding voltage, it is important that the dc component of this voltage be zero. Otherwise, during each switching period there will be a net increase in magnetizing current, eventually leading to excessively large currents and transformer saturation.The operation of converters containing transformers may be understood by inserting the model of Fig. 6.17(b) in place of the transformer in the converter circuit. Analysis then proceeds as described in the previous chapters, treating the magnetizing inductance as any other inductor of the converter.Practical transformers must also contain leakage inductance . A small part of the flux linking a winding may not link the other windings. In the two-winding transformer, this phenomenon may be modeled with small inductors in series with the windings. In most isolated converters, leakage inductance is a nonideality that leads to switching loss, increased peak transistor voltage, and that degrades cross-regulation, but otherwise has no influence on basic converter operation.There are several ways of incorporating transformer isolation into a dc-dc converter. The full-bridge , half-bridge , forward , and push-pull converters are commonly used isolated versions of the buck converter. Similar isolated variants of the boost converter are known. The flyback converter is an isolated version of the buck-boost converter. These isolated converters, as well as isolated versions of the SEPIC and the Cuk converter, are discussed in this section.Fig. 6.19. Full-bridge transformer-isolated buck converter: (a) schematic diagram, (b) replacement of transformer with equivalent circuit model.6.3.1 Full Bridge and Half-Bridge Isolated Buck ConvertersThe full-bridge transformer-isolated buck converter is sketched in Fig. 6.19(a). A version containing a center-tapped secondary winding is shown; this circuit is commonly used in converters producing low output voltages. The two halves of the center-tapped secondary winding may be viewed as separate windings, and hence we can treat this circuit element as a three-winding transformer having turns ratio 1:n :n . When the transformer is replaced by the equivalent circuit model of Fig. 6.17(b), the circuit of Fig. 6.19(b) is obtained. Typical waveforms are illustrated in Fig. 6.20. The output portion of the converter is similar to the nonisolated buck converter - compare the v s (t ) and i (t ) waveforms of Fig. 6.20 with Figs. 2.1(b) and 2.10.Fig. 6.20. Waveforms of the full-bridge transformer-isolated buck converter.During the first subinterval 0 < t < DT s , transistors Q 1 and Q 4 conduct, and the transformer primary voltage is v T = V g . This positive voltage causes the magnetizing current i M (t ) to increase with a slope of V g /L M . The voltage appearing across each half of the center-tapped secondary winding is nV g , with the polarity mark at positive potential. Diode D 5 is therefore forward-biased, and D 6 is reverse-biased. The voltage v s (t ) is then equal to nV g , and the output filter inductor current i (t ) flows through diode D 5.Several transistor control schemes are possible for the second subinterval DT s < t < T s . In the most common scheme, all four transistors are switched off, and hence the transformer voltage is v T = 0. Alternatively, transistors Q 2 and Q 4 could conduct, or transistors Q 1 and Q 3 could conduct. In any event, diodes D 5 and D 6 are both forward-biased during this subinterval; each diode conducts approximately one-half of the output filter inductor current.Actually, the diode currents i D 5 and i D 6 during the second subinterval are functions of both the output inductor current and the transformer magnetizing current. In the ideal case (no magnetizing current), the transformer causes i D 5(t ) and i D 6(t ) to be equal in magnitude since, if i l ’(t ) = 0, then ni D 5(t )=ni D 6(t ). But the sum of the two diode currents is equal to the output inductor current:)()()(65t i t i t i D D =+ (6.20)Therefore, it must be true that i D 5 = i D 6 = 0.5i during the second subinterval. In practice, the diode currents differ slightly from this result, because of the nonzero magnetizing current.The ideal transformer currents in Fig. 6.19(b) obey0)()()('65=+−t i t ni t i D D l (6.21)The node equation at the primary of the ideal transformer is0)(')()(=+=t i t i t i l M l (6.22)。
开关电源基础与应用(第二版)(辛伊波)6-10章 (3)
![开关电源基础与应用(第二版)(辛伊波)6-10章 (3)](https://img.taocdn.com/s3/m/fc20e5ed0912a21615792912.png)
1只,钳位电容
只。 (n 1)(n 2)
2
第8章 多电平直流变换 图8-3 飞跨电容型三电平变换器的结构
第8章 多电平直流变换 飞跨电容型多电平变换器的特点是: (1) 电平数越多,输出电压谐波含量越少。 (2) 阶梯波调制时,器件工作在基波频率,开关损耗小, 效率高。 (3) 大量的开关状态组合冗余,可用于电压平衡控制。 (4) 可以采用背靠背的方式实现四象限运行。
+Uin/2、0、-Uin/2三种电平,故称之为三电平逆变器。显然, NPC逆变器的输出电压的谐波成分比传统的单相逆变器电路要 小。对于每一种开关组合来说,由于钳位二极管的作用,每个 关断的开关管均仅承受一半的输入直流母线电压,这与开关管 串联技术相比,避免了动态电压的均压分配问题。图8-2所示 为NPC逆变器与传统的逆变器的单相输出电压波形对比。由图 可见,前者输出更接近正弦波。
第8章 多电平直流变换
2.飞跨电容钳位型电路(Flying-capacitor)
图8-3所示为飞跨电容型三电平变换器的结构。电路利用
飞跨在串联开关器件之间的串联电容CS进行钳位。CS的作用是 将功率开关管的电压钳位在单个直流分压电容的电压上,从而
实现三电平输出。图中,P点电位为Uin/2,N点电位为-Uin/2。 飞跨电容型的拓扑结构也可以拓展到任意电平中,对于一个n
现有的电力电子开关器件无法满足其功率与开关频率之间 的矛盾,往往功率越大,耐压越高,开关频率越低。为了设计 高频、高压、高性能和低EMI的大功率变换器,必须将高性能 开关器件、主电路拓扑以及变换器所在系统的控制策略进行综 合考虑,以寻找合理的解决方案。为此人们进行了大量的研究 和探索,提出了多种中、高压大功率变换器的解决方案,如功 率器件串/并联技术,功率变换器的串/并联,多重化技术以及 组合变换器相移等。多电平结构成为其中一种具有代表性和较 为理想的解决方案。
《开关电源基础与应用》课件第10章
![《开关电源基础与应用》课件第10章](https://img.taocdn.com/s3/m/ff549a400a4e767f5acfa1c7aa00b52acfc79c21.png)
第10章 提高电源质量的新技术 10.2.2 多重级联变换器的结构
对于N重相同的H桥臂串联的级联型变换器,若能输出 M个电平,则该变换器称为N重M电平级联型逆变器,其中, M=2N+1。由此可知,由两个级联单元组成的级联型逆变器, 可输出 +2E、E、0、-E、-2E五种电平,由H型全桥逆变 电路作为功率单元级联而成。例如图10-5就是一个三重七电 平级联型逆变器,此种拓扑结构的特点是:
第10章 提高电源质量的新技术 图10-6 H桥逆变单元的主电路拓扑结构
第10章 提高电源质量的新技术
为防止直流母线发生短路,同一桥臂的两个IGBT不能 同时导通,因而来自控制系统的IGBT的触发信号中VT1和 VT2触发信号反相,VT3和VT4触发信号反相。四个IGBT共 有四种有效的组合状态:当VT1和VT4导通而VT2和VT3关断 时,L、R之间输出电压为 +E,即Uo=+E;当VT2和VT3导通 而VT1和VT4关断时,L、R之间输出电压为-E,即Uo= -E;当VT1和VT3导通而VT2和VT4关断时,或当VT2和VT4 导通而VT1和VT3关断时,L、R之间输出电压为0,即Uo=0。 因此,根据四个IGBT不同的状态组合,每个逆变功率单元 能够输出3种不同电平的电压,+E、0和-E,如图10-7所示。
第10章 提高电源质量的新技术
5.线电压冗余与相电压冗余 三相多电平逆变器存在线电压冗余状态。以五电平逆变 器为例,可输出电压2、1、0、-1、-2,则可知当(ua, ub, uc)=(1,1,0)与(ua,ub,uc) = (2,2,1),或者(0,0,-1) 时,空间矢量是一致的。线电压冗余存在于各种三相多电平 逆变器中。 级联型逆变器不仅存在线电压冗余,还存在相电压冗余。 相电压冗余是针对单相而言,当某相输出某一电压时,对应 于多种级联单元的状态组合。如对于五电平逆变器,不同输 出电平与级联单元的状态如表10-2所示。由表可见,当输出 E时,有两种冗余状态;而对于零电平,则有三种冗余状态; 当输出2E时,则对应于确切的工作模式。
开关电源基础知识学习资料PPT课件
![开关电源基础知识学习资料PPT课件](https://img.taocdn.com/s3/m/ad9c6543aaea998fcc220ea4.png)
开关电源最常用的三种拓朴电路1—BUCK Converter 工作原理 降压电路(Buck)其主要原件为:开关管SW、续流流二级管D、
电感L、电容C和负载电阻RL。
ON-Stage:当SW导通时,电流经S、L到负载,能量同时储存在电感中,输出平均 直流电压Vo;
2020/11/13
➢ 保护功能及附属功能: 1、OCP,OVP,OTP,欠压保护,限功率; 2、 绝缘电阻、绝缘电压、漏电流。
➢ 结构要求: 1、外形尺寸,2、外包装,3、安装条件,4、冷却方式,5、接口方式,6、 重量,7、名牌。
➢ 安规标准及EMC标准: 1、认证标志,3C,UL,GS,PSE,2、EMI测试标准。
分类方法多种多样。分为AC/DC和DC/DC两大类,DC/DC变换器现已实 现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到 用户的认可。但AC/DC的模块化,因其自身的特性使得在模块化的进程中, 遇到较为复杂的技术和工艺制造问题。又可分为离线式非离线式,反激式、 正激式、半桥式全桥式, Adaptor/内置式开关电源open open frame等。
开关电源中应用的电力电子器件主要为快速恢复二极管、肖特基二极管和 MOSFET,SCR在开关电源输入整流电路及软启动电路中有少量应用。 开关电源的三大特征
1、开关:电力电子器件工作在开关接近工频的低频;
3、直流:开关电源输出的是直流而不是交流。 开关电源的种类
开关电源: 优点:体积小重量轻(线性电源的20~30%);效率高70~95%,易满足 各国的能效要求;输入输出电压范围宽,模块化。 缺点:电路复杂、开发、制程难度较大,由于工作在高频 (50K~300K),干扰大、EMC难解决。
总而言之,开关电源正逐渐取代线性电源,应用领域越来越广泛。
开关电源原理与应用讲义111019
![开关电源原理与应用讲义111019](https://img.taocdn.com/s3/m/d228f081ed630b1c58eeb575.png)
开关电源原理与应用讲义111019开关电源的原理与应用课件下载方法:进入综合信息门户-教学资源-网络教学综合平台中,在课程编号中输入(0806034034)-出现(开关电源的原理与应用)点击进入后-左侧信息中点击(课程互动)-左侧信息中点击(教学材料)-显示(开关电源讲义--2011)-点击后显示(开关电源的原理与应用)-点击下载序论开关电源的技术领域-属于电力电子技术电力电子技术-电力学、电子技术、控制理论三个学科的交叉1.电力电子技术的概念及研究领域电力电子技术(Power Electronics)是以电力电子器件(Power Electronic Device)为基础,利用电路和控制理论对电能进行交换和控制的技术,即应用于电力应用领域的电子技术。
电力电子技术也称为电力电子学或功率电子学。
电力电子技术由电力学、电子学、和控制理论三个学科交叉形成,是目前较为活跃的应用型学科。
电力电子技术通常分为器件的制造技术和电力电子电路的应用技术即变流技术两大部分。
其中,器件制造技术包括各种电力电子器件的设计、制造、参数测试、模型分析等。
而目前所用的电力电子器件基本都采用半导体材料制成,所以电力电子器件也称为电力半导体器件。
电力电子器件的制造技术是电力电子技术的基础。
电能有交流(Alternating Current, AC)和直流(Direct Current, DC)两大类。
交流电能有电压大小、相位、频率和相数的差别,直流电能有大小和极性的差别。
在电能的实际应用中,常常需要在两种电能之间,或是对同一种电能的一个或多个参数(如电压、电流、频率等)进行变换,这就是电力变换(Power Conversion),也就是电力电子变流技术。
电力变换可总结为以下四种类型:交流—直流(AC—DC)变换—整流,将交流电能变换为直流电能。
直流—交流(DC—AC)变换—逆变,将直流电能变为交流电能,是整流的逆过程。
交流—交流(AC—AC)变换—包括交流调压和交流变频,即改变交流电能的参数。
开关电源基础与应用 第10章PPT课件
![开关电源基础与应用 第10章PPT课件](https://img.taocdn.com/s3/m/dd3aee6c2cc58bd63186bdf8.png)
第10章 提高电源质量的新技术 10.2.2 多重级联变换器的结构
对于N重相同的H桥臂串联的级联型变换器,若能输出 M个电平,则该变换器称为N重M电平级联型逆变器,其中, M=2N+1。由此可知,由两个级联单元组成的级联型逆变器, 可输出 +2E、E、0、-E、-2E五种电平,由H型全桥逆变 电路作为功率单元级联而成。例如图10-5就是一个三重七电 平级联型逆变器,此种拓扑结构的特点是:
第10章 提高电源质量的新技术
第10章 提高电源质量的新技术
10.1 交错并联技术 10.2 多重变换在电源中的应用 10.3 多电平变换器的控制方法
第10章 提高电源质量的新技术
总体概述
标题添加
点击此处输入相 关文本内容
点击此处输入 相关文本内容
标题添加
点击此处输入相 关文本内容
点击此处输入 相关文本内容
第10章 提高电源质量的新技术
10.2 多重变换在电源中的应用
10.2.1 多重变换器技术的优点 1.技术优势 级联型逆变器具有以下优势: (1) 多种输出电平改善输出波形和控制效果。 (2) 低的du /dt和较低的开关损耗降低了对开关器件的要
求,使中等功率的开关器件可用于高电压场合。 (3) 降低了输入电流的谐波,减小了对环境的污染。 (4) 用于三相感应电动机驱动时,可以减小或消除中性
第10章 提高电源质量的新技术
10.1 交错并联技术
10.1.1 交错并联结构 交错运行属于并联运行方式,若N个模块并联交错运行,
要求各模块同频率运行,开关导通时刻依次滞后1/N个开关 周期。这种方式具有并联运行变换器的多种优点,输出电流、 电压纹波峰值大为减小,从而减小所需的滤波电感值以及整 个变换器的尺寸,提高变换器的功率密度。下面以图10-1所 示的N只Buck变换器并联组成的电源系统为例进行 分析。
开关电源原理及其应用
![开关电源原理及其应用](https://img.taocdn.com/s3/m/8347994b767f5acfa1c7cd52.png)
第一部分:功率电子器件第一节:功率电子器件及其应用要求功率电子器件大量被应用于电源、伺服驱动、变频器、电机保护器等功率电子设备。
这些设备都是自动化系统中必不可少的,因此,我们了解它们是必要的。
近年来,随着应用日益高速发展的需求,推动了功率电子器件的制造工艺的研究和发展,功率电子器件有了飞跃性的进步。
器件的类型朝多元化发展,性能也越来越改善。
大致来讲,功率器件的发展,体现在如下方面:1.器件能够快速恢复,以满足越来越高的速度需要。
以开关电源为例,采用双极型晶体管时,速度可以到几十千赫;使用MOSFET和IGBT,可以到几百千赫;而采用了谐振技术的开关电源,则可以达到兆赫以上。
2.通态压降(正向压降)降低。
这可以减少器件损耗,有利于提高速度,减小器件体积。
3.电流控制能力增大。
电流能力的增大和速度的提高是一对矛盾,目前最大电流控制能力,特别是在电力设备方面,还没有器件能完全替代可控硅。
4.额定电压:耐压高。
耐压和电流都是体现驱动能力的重要参数,特别对电力系统,这显得非常重要。
5.温度与功耗。
这是一个综合性的参数,它制约了电流能力、开关速度等能力的提高。
目前有两个方向解决这个问题,一是继续提高功率器件的品质,二是改进控制技术来降低器件功耗,比如谐振式开关电源。
总体来讲,从耐压、电流能力看,可控硅目前仍然是最高的,在某些特定场合,仍然要使用大电流、高耐压的可控硅。
但一般的工业自动化场合,功率电子器件已越来越多地使用MOSFET和IGBT,特别是IGBT获得了更多的使用,开始全面取代可控硅来做为新型的功率控制器件。
第二节:功率电子器件概览一. 整流二极管:二极管是功率电子系统中不可或缺的器件,用于整流、续流等。
目前比较多地使用如下三种选择:1.高效快速恢复二极管。
压降0.8-1.2V,适合小功率,12V左右电源。
2.高效超快速二极管。
0.8-1.2V,适合小功率,12V左右电源。
3.肖特基势垒整流二极管SBD。
《开关电源基础讲解》课件
![《开关电源基础讲解》课件](https://img.taocdn.com/s3/m/d16b8ff764ce0508763231126edb6f1aff007103.png)
常见的开关电源类型
AC-DC开关电源
将交流电转换为直流电的开关电源,广泛应用于各种电子设备。
DC-DC开关电源
实现不同电压级别的转换,常用于电子设备中的电源管理。
DC-AC逆变器
将直流电转换为交流电的开关电源,用于太阳能发电等领域。
开关开关电路
实现高频脉冲开关,控制电能的转换。
整流电路
将交流输入电压转换为直流电压。
输出滤波电路
消除开关电源输出的纹波电压,保证输出稳定性。
开关电源的输入端和输出端
开关电源的输入端接入交流电源,输出端连接电子设备,通过变换和稳定电 能实现设备的正常工作。
开关电源的保护电路
为了保护开关电源和电子设备,通常会采用过压保护、过流保护、短路保护 等多种保护电路。
电源管理芯片的作用
电源管理芯片用于监控和控制开关电源的工作状态和性能,提高系统稳定性和效率。
《开关电源基础讲解》 PPT课件
本PPT课件详细介绍了开关电源的基础知识和应用领域,包括历史发展、原理、 优缺点、组成部分、工作原理和性能参数等。
什么是开关电源?
开关电源是一种通过将输入电能转换为高频脉冲信号,经过变变换、整流 和滤波等处理后,获得稳定输出电压或电流的电源。
开关电源的历史和发展
开关电源的优缺点
1 优点
高效率、稳定性好、体积小、重量轻、可靠 性高。
2 缺点
造价较高、存在电磁干扰等问题。
开关电源的工作原理和性能参数
工作原理
通过控制开关管的通断状态,实现电能的转换和稳 定输出。
性能参数
包括输入输出电压、电流、效率、负载调整率等。
开关电源的基础知识 ppt课件
![开关电源的基础知识 ppt课件](https://img.taocdn.com/s3/m/eaa460936f1aff00bed51efb.png)
(2).开关管V的截止期内,储能电感中 电流的最大变化量为
ILma1xUi LUO•tON
ILm
a2x
UO L
•tOFF
(3).开关管V导通期与截止期能量转换的条件:
Ui LUO•tONU LO•tOFF 即 U OtOt N O tO NF •U FiD •U itT O• N U i
另一种并联独立输出型开关电源
开关由一个功率场效应管构成(兼脉冲发生),也称为单端型。
脉宽调制等由集成电路UC3842 完成。
开关管导通时储能,开关截止时,储能释放给负载,称为单端型反激式。 开关管导通时间长,传输电能多,变压器次级绕组输出电压高、电流大。 用PWM控制功率开关管, 就可以改变次级绕组输出的电压和电流,同时, 使用闭环反馈可以稳定电压、电流或限制功率。
1.1开关电源组成及开关电源实例
3、并联独立输出型:通过续流电感的电磁耦合,实现隔离输出。 (电源输入端不使用变压器、实现多种电压输出)
*应用最多的一种电路形式
*三极管V可使用功率场效应管 *脉冲调宽、脉冲发生及误差信号的产生等可集成化例如TOP221TOP227
1.1开关电源组成及开关电源实例
(1).串联调整式线性性稳压器 (2).并联调整式线性性稳压器 (3).开关式稳压器
1.2 稳压电源的分类 二、开关电源的分类 1. 按激励方式分类
1.2 稳压电源的分类 二、开关电源的分类 2. 按控制原理(调制方式)分类
(1)脉宽调制型(PDM)开关电源
(2)脉频调制型(PFM)开关电源 (3)混合型开关电源 (4)脉冲密度调制型(PDM)开关电源
2. 开关稳压电源的缺点
(1)电压调整率和负载调整率较差 (2)存在较严重的开关噪声和干扰 (3)电路复杂,不便于维修
精品课件-开关电源基础与应用(第二版)(辛伊波)-第3章
![精品课件-开关电源基础与应用(第二版)(辛伊波)-第3章](https://img.taocdn.com/s3/m/ee9661d46edb6f1afe001f6f.png)
第3章 它激式开关电源 图3-1 MC1394内部结构图
第3章 它激式开关电源
5脚:高电平保护输入端,如此脚输入等于VCC的高电平, 则通过内部闭锁电路关断驱动脉冲输出,开关电源呈保护性停 机。5脚可作为过电压保护,因保护阈值太高,若用于过流保 护,需外设过流检测放大器。
7脚:PWM驱动脉冲输出端,内设射随器输出正向脉冲, 可驱动NPN型开关管。由于驱动功率较小,脉冲电压幅度较低, 开关管需设置前级驱动放大器。
第3章 它激式开关电源
(6) 过流检测输入端可对逐个脉冲进行控制,直接控制 每个周期的脉宽,使输出电压调整率达到0.01%/V。如果3脚 电压大于1 V或1脚电压小于1 V,PWM比较器输出高电平使锁 存器复位,直到下一个脉冲到来时才重新置位。利用1脚和3脚 的电平关系,在外电路控制锁存器的开/闭,使锁存器每个周 期只输出一次触发脉冲。因此,电路的抗干扰性极强,开关管 不会误触发,提高了可靠性。
第3章 它激式开关电源
(4) 电流取样比较器:3脚ISENSE用于检测开关管电流, 当UISENSE > 1 V时,关闭输出脉冲,迫使开关管关断,达到过 流保护的目的。
(5) 欠压锁定电路UVLO:开通阈值16 V,关闭阈值10 V, 具有滞回特性。
(6) PWM锁存电路:保证每一个控制脉冲作用不超过一个 脉冲周期,即所谓逐脉冲控制。另外,VCC与GND之间的稳压管 用于保护,防止器件损坏。
第3章 它激式开关电源
2.充电原理 用MC712构成的锂电池充电电路如图3-6所示。电路中,C1 为输入端滤波电容;R1是限流电阻,可以控制充电电流;C2为 1 μF;C3是0.1 μF补偿电容;VT为PNP功率管,其参数为: UCBO=80 50 V的硅整流管;R5为检测电阻,R5用来设定快速充电 电流Ifast的值,当Ifast = 1 A时,R5为0.25 Ω;RT1、RT2为负 温度系数的热敏电阻。该电路在快速充电、涓流充电时的充电 电流分别为1 A、1/16 A。
《开关电源基础教程》课件
![《开关电源基础教程》课件](https://img.taocdn.com/s3/m/c30e1b4b02d8ce2f0066f5335a8102d276a26181.png)
开关电源的工作流程
01
输入电路将交流电转换 为直流电。
02
通过开关管的控制,将 直流电输入变压器进行 电压转换。
03
通过输出电路的滤波和 稳定,输出稳定的直流 电。
04
控制电路监测电源的工 作状态,根据需要调整 开关管的通断。
开关电源的波形分析
01
02
03
04
输入波形
分析输入电压和电流的波形, 了解其是否满足开关电源的要
THANKS
感谢观看
详细描述
开关电源是一种将电能进行转换的设备,通过控制开关管开通和关断的时间比率 ,将输入的直流电压转换成特定的输出电压或电流。开关电源的核心是开关管, 通过控制其开通和关断的时间比率,实现电能的转换。
开关电源的特点
总结词
开关电源具有效率高、体积小、重量轻、动态性能好等特点。
详细描述
开关电源的效率一般在80%以上,甚至可以达到90%以上,相比传统的线性电源,具有更高的能源利用效率。由 于开关电源的开关管工作在高频率,使得其体积和重量相对较小,有利于设备的紧凑设计和轻量化。此外,开关 电源的动态性能较好,能够快速响应负载的变化,维持稳定的输出电压或电流。
高频化与小型化
随着技术的进步,开关电源正朝 着更高频率和更小体积的方向发 展,以满足便携式设备和穿戴设
备等新兴市场的需求。
智能化与网络化
智能化和网络化技术使得开关电源 具备远程监控、故障诊断和自动调 整等功能,提高了电源的管理效率 和可靠性。
绿色环保
随着环保意识的提高,低噪声、低 辐射、低能耗的绿色开关电源成为 未来的发展趋势,有助于减少对环 境的负面影响。
开关电源的应用前景
电动汽车与充电设施
变频器辅助开关电源的研究与设计
![变频器辅助开关电源的研究与设计](https://img.taocdn.com/s3/m/da1f195e2379168884868762caaedd3382c4b55f.png)
变频器辅助开关电源的研究与设计发布时间:2022-09-13T07:28:10.960Z 来源:《中国电业与能源》2022年第9期作者:戴文静[导读] 现代电力电子技术发展至今,已经成为一个日益完善的专业领域,变频器通过改变电动机工作频率等方式,来调控电机的电力设备。
戴文静东部储运南京输油处六合站南京市六合区 211500摘要:现代电力电子技术发展至今,已经成为一个日益完善的专业领域,变频器通过改变电动机工作频率等方式,来调控电机的电力设备。
开关电源作为电力电子器件中重要的分支,通过开关电源给变频器的控制电路和驱动电路供电,而开关电源的性能直接影响到了变频器的工作质量。
因此本文在变频器的工作机理基础上,研究了一个双路输出的辅助电源设计,用以克服大停电时对变频器所产生的不良影响。
关键词:变频器;辅助开关电源;辅助电源设计引言随着现代电力电子技术不断的进步以及计算机控制技术的迅速发展,电气传动的技术也在不断地更新,交流电机变频调速有许多的优点,例如节约电能,改善产品生产技术特点,提高产品质量,以及改善运行环境等等。
以某输油站变频输油泵机组为例,自2015年投入使用至2020年11月累计运行了32670小时,相较于传统通过调节输油泵出口阀来控制排量的方式来说变频调节节能效果明显,启用变频泵相对于之前每天可节约1.5万度电,年均节约270万元。
而不可忽视的一方面是被动停电对变频器造成的影响是不可逆的,因此对变频器辅助开关电源进行研究和设计,有助于保护变频器安全稳定的运作,延长变频器设备的生命周期。
一、变频器的工作原理变频器的运行原理是透过运用电子技术和变频仪科技,以调整系统工作电源频数的方法来调节交换计算机的功率调节装置。
常用的供电类型包括交流电源和直流电源,而一般的直流电源大多是由交流供电经过变压器变压,整流电路及滤波电路后而获得的。
因此交流供电在人们所用开关电源中占了全部人类所用开关电源的95%左右。
开关电源的电路基础,设计及其应用:第五讲 开关电源...
![开关电源的电路基础,设计及其应用:第五讲 开关电源...](https://img.taocdn.com/s3/m/6f70b8595bcfa1c7aa00b52acfc789eb172d9e34.png)
开关电源的电路基础,设计及其应用:第五讲开关电源...航兵
【期刊名称】《电子与仪表》
【年(卷),期】1992(000)005
【总页数】6页(P50-55)
【作者】航兵
【作者单位】无
【正文语种】中文
【中图分类】TN86
【相关文献】
1.开关电源的电路基础,设计及其应用:第一讲开关电源综述 [J], 航兵
2.开关电源的电路基础,设计及其应用:第二讲开关电源的电路基础 [J], 航兵
3.开关电源的电路基础设计及其应用:第三讲开关电源设计与调试 [J], 航兵;鲍登炎
4.开关电源的电路基础,设计及其应用:第四讲开关电源在电视机... [J], 航兵
5.开关电源的电路基础,设计及其应用:第六讲开关电源集成控制器 [J], 航兵因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章 变频电源原理与应用 第二种方法称为脉冲宽度调制(Pulse Width Modulation) 方式,简称PWM方式,是将变压与变频集中于逆变器一起完成 的,即前部为不可控整流器,中间产生恒定直流电压,最后由 逆变器完成变频、变压过程。
第9章 变频电源原理与应用
1.脉幅调制(PAM) 脉幅调制前后的输出电压波形如图9-1所示。由于逆变所 得交流电压的幅值等于前级直流电压值,因此实现变频又变压 最简单的方法便是在调节频率的同时也调节前级直流电压。设 fN为调制前的频率,TN为调制前的周期,UdN为调制前的直流电 压,设定调制前逆变电路的输出波形如图9-1中(a)所示。根据 脉幅调制规则,则可以得到调的周期,UdX为调 制后的直流电压。
第9章 变频电源原理与应用 图9-1 脉幅调制前后的输出电压波形
第9章 变频电源原理与应用 在VVVF控制技术发展的早期均采用PAM方式,由于当时的 半导体器件主要是以普通晶闸管为主,其开关频率不高,属于 半控器件,所以逆变电路输出的交流电压波形只能是方波。而 要使方波电压的有效值随输出频率的变化而改变,只能靠改变 方波的幅值,即只能依靠前面的环节来改变逆变电路前级直流 电压的大小。因此变频电源在采用脉幅调制(PAM)方式的时候, 需要同时调节整流和逆变两个部分,并且两者之间还必须满足 一定的关系,故其控制电路比较复杂。这种方法现在较少使用。
第9章 变频电源原理与应用
早期的开关器件主要是晶体管SCR,其开关频率低,属于 半控器件,主要采用脉幅调制,但它有谐波大、功率因数低、 转速脉动大、动态响应慢以及线路复杂等缺点。为了使晶闸管 具有关断能力,后来推出了门极关断晶闸管GTO,但是其关断 不易控制,工作频率也不够高,因此迅速被随之发展起来的大 功率晶体管GTR所代替。GTR也有其不足之处,由于是用电流信 号进行驱动的,所需驱动功率较大,故驱动系统比较复杂,并 使工作频率难以提高。功率场效应晶体管Power MOSFET的出现 很好地解决了以上问题,它用电压信号控制开通与关断,开关 频率也较高。绝缘栅双极晶体管IGBT是MOSFET和GTR相结合的 产物,其控制部分与场效应晶体管相同是由电压控制,输入阻 抗很高,而主电路部分则与GTR相同,因此击穿电压与击穿电 流很高,非常适宜用于功率开关。近年来,又出现了智能功率 模块IPM等模块化产品,为电源产品的设计和应用提供了极大
第9章 变频电源原理与应用
2.脉宽调制(PWM) 脉宽调制前后的输出电压波形如图9-2所示。如果将每半 个周期内输出电压的波形分割成若干个脉冲波,每个脉冲的宽 度为t1,每两个脉冲间隔宽度为t2,则脉冲的占空比为 t1/(t1+t2),由此可以看出电压的平均值与占空比成正比。所 以在调节频率时,不改变直流电压的幅值,而是改变输出电压 脉冲的占空比,这样便可以实现变频变压的效果。如图 9-2所示,图(a)为调制前的波形,图(b)为调制后的波形。 脉宽调制技术只需要对逆变电路按照占空比规律进行控制 便可以实现,控制电路较为简单,功率因数较高,同时又能克 服PAM法的缺点。
第9章 变频电源原理与应用
变频电源的发展建立在电力电子器件与电力电子技术不断 进步的基础之上,随着新型电力电子器件的不断涌现,变频技 术获得了飞速的发展。从变频器的发展需要出发,大功率电力 电子器件作为其开关器件,其研究和应用为变频技术打下了坚 实的基础。大功率开关器件具有优良的特性: ① 在正常开通状态下,通流容量大,导通压降小;在正常关 断情况下,能承受高电压,漏电流小;② 在正常的开关状态 下,开通与关断时间短,即开关频率高,而且能承受高的 du/dt;③ 有全控功能,并具有寿命长、结构紧凑、体积小、 散热性能良好等优点。
第9章 变频电源原理与应用 第9章 变频电源原理与应用
9.1 变频电源 9.2 变频电源硬件电路设计 9.3 系统软件设计 9.4 变频技术的应用 9.5 大功率变频技术及其对负载的影响 9.6 实现电动机带载启动的AC/AC变频技术
第9章 变频电源原理与应用 9.1 变 频 电 源 9.1.1 变频电源技术 变频就是将直流或固定频率的交流输入转变为频率可变的 交流输出。变频电源在人们的生产、生活和科研中发挥着重要 的作用,不同场合对变频电源的要求也越来越高。变频技术的 发展源于对交流异步电机的调速,如今变频技术已经不再局限 于对电机的调速应用上,越来越多地应用在测控仪器、精密功 率电源、家用电器等领域中。
第9章 变频电源原理与应用
9.1.2 VVVF的基本调制方法 变频电源的发展始终伴随着变压过程,因此通常也称为变
频变压电源,即VVVF电源(Variable Voltage Variable Frequency)。当输入为直流电时,又可称为逆变电源,即将直 流电逆变成为幅频可调的交流电。
实现VVVF的基本调制方法有两种: 第一种方法称为脉幅调制(Pulse Amplitude Modulation), 简称PAM方式。该方法把变压与变频的过程分开完成,在对交 流电整流的同时进行相控调压,而后逆变为可调频率的交流电; 或者是把交流电整流为直流电之后用斩波器调压,然后再将直 流逆变为可调频率的交流电。
第9章 变频电源原理与应用 图9-2 脉宽调制前后的输出电压波形
第9章 变频电源原理与应用
以上两种基本的调制方式,无论是PAM还是PWM,其输出电 压和电流的波形都是非正弦波,具有许多高次谐波成分。为了 得到正弦波输出,人们又开发了多种改进的脉宽调制PWM方法, 主要有自然采样SPWM、载波调制SPWM、谐波注入式PWM、最优 PWM、开关损耗最小PWM、特定谐波消除PWM和跟踪型PWM等。其 中SPWM和特定谐波消除PWM以它们独特的优点得到了广泛应用。 本书涉及的系统输入为低压直流电,而其输出要求为波形失真 小的正弦波,属于正弦波逆变变频电源范畴,根据设计要求, 针对驱动对象选择了自然采样SPWM和载波调制 SPWM两种调制 方式。有关内容请参考其他文献。