单片机的流量控制系统..

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要

本文介绍了一种pwm结合数字pid算法在液体流量控制系统中的应用方案,系统以A VR单片机atnega32为核心,以比例电磁阀为控制对象,利用atnega32的PWM功能,采用数字PID调节实现液体流速闭坏控制,仿真结果表明采用PWM和数字PID控制液体流速具有良好的动态、稳定态,从而证明了这种设计的合理性和优越性。

关键词:A VR单片机;PWM;PID;比例电磁阀

目录

引言 (4)

第一章系统方案 (5)

1.1 方案整体思路 (5)

1.2 流程实现 (6)

1.3控制器算法与pwm波形输出 (7)

第二章系统硬件设计 (8)

2.1 总体设计框图及说明 (8)

2.2 部分外部电路设计 (8)

2.3 传感器的选择 (10)

第三章系统软件设计 (11)

3.1 程序结构说明 (11)

3.2 程序流程图及部分程序 (11)

第四章总结 (17)

致谢 (18)

参考文献 (19)

引言

流量是衡量设备的效率和经济性的重要指标。流量测量与控制是实现工业生产过程自动化的一项重要任务。

本课题的主要研究内容是对流量进行控制,主要由流量传感器采集流量信息,然后经过AD转换器将连续的模拟信号离散化后传给单片机,单片机在软件系统的控制下,根据预先的设置和预期的控制要求,通过步进电机来精确控制阀门的开度,实现对流量的精确控制。

流量控制系统设计意义

工业生产中过程控制是流量测量与仪表应用的一大领域,流量与温度、压力和物位一起统称为过程控制中的四大参数,人们通过这些参数对生产过程进行监视与控制。对流体流量进行正确测量和调节是保证生产过程安全经济运行、提高产品质量、降低物质消耗、提高经济效益、实现科学管理的基础。流量的检测和控制在化工、能源电力、冶金、石油等领域应用广泛。

随着计算机技术尤其是单片微型机技术的发展,人们已越来越多地采用单片机来对一些工业控制系统中如温度、流量和压力等参数进行检测和控制。PC机具有强大的监控和管理功能,而单片机则具有快速及灵活的控制特点,通过PC 机的RS-232串行接口与外部设备进行通信,是许多测控系统中常用的一种流量控制解决方案。因此如何实现PC机与单片机之间的控制具有非常重要的现实意义。

第一章系统方案

1.1方案整体思路

液体流量控制通常采用电动调节阀实现,近年来,电动调节阀的结构和控制方式发生了很大的变化,随着计算机进入控制领域,以及新型的电力电子功率元器件的不断出现,使采用全控制的开关功率元件进行脉宽调制(pulse width modulation ,简称PWM)控制方式得到了广泛的应用。这种控制方式很容易在单片机中实现,从而为电动调节阀的控制数字化提供了基础。将偏差的比例(proportion)、积分(integral)、微分(differential)通过线性组合构成数字控制量,构成数字PID控制器,它具有非常强的灵活性,可以根据试验和经验在线调整参数,因此可以得到更好的控制性能。

本系统采用C51系列的89S52单片机为核心,通过设置89S52单片机的定时器产生脉宽可调的PWM波【2】,对阀门电机的输入电压进行调制,实现阀门开度的变化,进而实现了对液体流量的控制。单片机通过电磁流量计采集实际流量信号,根据该信号对其内部采用数字PID算法对PWM变量的值进行修改,从而达到对流量的闭环精确控制。

1.2实现流程

流量控制系统是一个过程控制系统,在设计的过程中,必须明确它的组成部分。过程控制系统的组成部分有:控制器、执行器、被控对象和测量变送单元,其框图如图1所示。

图1 流量过程控制组成框图

电磁流量计:对输出流量进行检测,并与设定值比较,差值作为控制器的输入。

PID控制器:对差值进行P 、I、D运算,输出对应得模拟量控制电机正反转和转速。

直流电机:根据控制器输出正反转,控制阀门开度增大或减小。

阀门:直接控制流量的执行机构。

所以,在这个系统的设计中,主要设计以上几个部分。除此之外,根据题目要求,还要选取合适的控制算法来达到满足系统参数的要求。具体就是确定控制器的算法和如何控制阀门开度,因为这两部分是实现本系统控制目的的关键。它们选取的好坏将直接影响着整个系统实现效果的优劣。

1.3控制器算法与PWM波形输出

控制算法是指需执行控制作用的数学表示法。

PWM就是脉冲宽度调制,也就是占空比可变的脉冲波形。PWM波的产生:设计采用单片机atmega32产生PWM信号。atmega32的定时/ 计数器的PWM 模式可以分成快速PWM和频率(相位)调整PWM两大类。本设计采用快速PWM模式,快速PWM可以的到比较高频率的PWM输出,响应比较快,因此具有很高的实时性。此时计数器仅工作在单程正向计数方式,计数器的上限值决定PWM的频率,而比较匹配寄存器的值决定了占空比的大小。

流量是一个普通而又重要的物理量,在许多领域里人们需对它进行测量和控制。本系对流量控制采用PID算法,它具有结构简单、易于理解和实现,且一些高级控制都是以PID为基础改进的。在工业过程控制中90%以上的控制系统回路具有PID结构,

图2 PID控制原理框图

第二章系统硬件设计

2.1总体设计框图及说明

本系统是一个简单的单回路控制系统。为了实现流量的自动测量和控制,采用了89S52单片机作为系统的控制中心,由数据采集模块检测到的流量信号传入单片机,并根据接收到的数据进行处理和控制运算,同时将数据保存,以便与下一次采样值进行比较,根据系统程序控制,进行PID运算以及PWM输出控制电机转速,最终由CPU控制电机正反转,达到调节流量的目的。系统还具有键盘设定模块,便于用户与系统之间的对话。系统的硬件结构较简单,由若干个功能模块组成。具体结构图图3及说明如下,

图3 功能模块结构图

键盘设定:设定控制系统要求的流量大小。

数据采集:用滑动变阻器分压模拟流量大小。

直流电机:接收单片机的控制信号进行正反转和转速调节,带动阀门转动。2.2部分外部电路设计

2.2.1 数码管显示电路

相关文档
最新文档