1.6.1.随机变量序列的收敛性
随机变量序列的两种收敛
概率论与数理统计
2)、设 n ,n 是两个随机变量序列, a,b为常数,
若 n P a,n Pb 且在g(x,y)在点(a,b)处连续, 则 g(n ,n ) P g(a,b), (n ). 证明略,方法类似于1) 3)、若 n P ,n P,
则n n P , (n )
nn P , (n )
1)、若 n P ,n P, 则P ( ) 1
证: n n
0
,由
则 n
2
与
n
2
中至
少有一个成立,即
n
2
n
2
于是
P(
) P(n
2
)
P(
n
) 0(n )
2
即 0,有P( ) 1,从而P( ) 1
这表明,若将两个以概率为1相等的随机变量看作 相等时,依概率收敛的极限是唯一的。
概率论与数理统计
定理5.6 随机变量序列 n P c(c为常数)
的充要条件为 Fn (x) W F (x)
这里 F(x)是 c 的分布函数,也就是退化分布
1, x c F(x) 0, x c
即
n P c
Fn (x) W F (x)
在F(x)的连续点.
当n P, (n ) 时,它们的分布函数之间就有
lim
n
Fn
(
x)
F
(
x)
成立.
1.定义
定义5.3
概率论与数理统计
设 Fx, F1(x), F2 (x), 是一列分布函数,如果对
F(x)的每一个连续点x,
都有
lim
n
Fn (x)
F ( x)
成立,
则称分布函数列 Fn (x) 弱收敛于分布函数F(x),
dvoretzky’s 收敛定理
Dvoretzky’s 收敛定理一、概述Dvoretzky’s 收敛定理是概率论中的一个重要定理,它描述了随机变量序列的收敛性质,对于理解随机序列的极限行为具有重要意义。
本文将对Dvoretzky’s 收敛定理进行深入剖析,旨在帮助读者全面了解该定理的内容、证明过程和应用领域。
二、Dvoretzky’s 收敛定理的表述Dvoretzky’s 收敛定理描述了随机变量序列的收敛性质,在正式表述如下:对于一个随机变量序列X1, X2, …, Xn,在满足一定条件下,这个序列可以在概率意义下收敛于一个常数或者一个随机变量。
具体而言,若满足以下条件:1. 随机变量序列的方差有界:存在一个正数C,使得对于所有的n,有Var(Xn) <= C。
2. 随机变量序列的"距离"有限:对于任意的i≠j,有E|Xi - Xj| <=d(i,j),其中d(i,j)是一个随机变量序列的"距离"函数。
那么,这个随机变量序列在概率意义下收敛于一个常数或者一个随机变量。
三、Dvoretzky’s 收敛定理的证明Dvoretzky’s 收敛定理的证明是通过利用概率论和数学分析的方法来完成的。
主要思路是采用刻画随机变量序列的距离函数,配合方差有界的条件,最终利用概率的收敛性质来推断序列的收敛性。
具体证明过程如下:1. 定义随机变量序列的距离函数d(i,j),并使得该距离函数满足E|Xi - Xj| <= d(i,j)。
2. 利用方差有界的条件,推导出随机变量序列的均值序列收敛到一个常数。
3. 利用概率的性质,证明了随机变量序列在概率意义下的收敛性。
四、Dvoretzky’s 收敛定理的应用Dvoretzky’s 收敛定理在概率论和统计学中有着广泛的应用。
主要体现在以下几个方面:1. 随机变量序列的收敛性分析:Dvoretzky’s 收敛定理可以用来分析随机变量序列的收敛性,对于理解随机序列的极限行为具有重要意义。
迪利克雷收敛定理
迪利克雷收敛定理
一、迪利克雷收敛定理简介
迪利克雷收敛定理(Dirlikov Convergence Theorem)是概率论中一个重要的收敛性定理,主要用于研究随机变量序列的收敛性。
该定理由保加利亚数学家迪利克雷(Kolmogorov)提出,因此得名。
二、迪利克雷收敛定理的条件
迪利克雷收敛定理指出,当且仅当以下两个条件同时满足时,一个随机变量序列收敛:
1.单调性:序列中的每个随机变量具有单调性,即随着自变量的增加,随机变量值也单调增加或减少。
2.矩条件:序列的任意阶矩存在且有限。
三、迪利克雷收敛定理的应用
迪利克雷收敛定理在概率论、统计学和随机过程等领域具有广泛的应用,例如:
1.用于研究随机变量序列的收敛性,判断其极限分布。
2.用于大数定律和中心极限定理的证明。
3.研究稳定分布和无穷可分分布的性质。
四、实例分析
以伯努利试验为例,设随机变量序列:X_n = B(n, p),其中n为试验次数,p为每次试验成功的概率。
1.判断单调性:随着n的增加,X_n的成功次数也单调增加或减少。
2.判断矩条件:计算序列的矩,如E[X_n] = np,Var[X_n] = np(1-p),可知任意阶矩存在且有限。
因此,根据迪利克雷收敛定理,序列X_n收敛。
五、总结与展望
迪利克雷收敛定理为研究随机变量序列的收敛性提供了一个有力的工具。
在实际应用中,判断序列的单调性和矩条件是关键。
通过对迪利克雷收敛定理的学习,我们可以更深入地理解随机变量序列的收敛性,并为后续的研究奠定基础。
茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】
(1)|φ (t)|≤φ (0)=1.
——————
——————
(2)φ (-t)=φ (t),其中φ (t)表示 φ (t)的共轭.
(3)若 y=aX+b,其中 a,b 是常数,则 φ Y(t)=eibtφ X(at).
(4)独立随机变量和的特征函数为每个随机变量的特征函数的积.即设 X 与 Y 相互独
5 / 167
圣才电子书 十万种考研考证电子书、题库视频学习平台
P
Xn a
P
Yn b
则有 ①
P
X n Yn a b
②
1 / 167
圣才电子书
十万种考研考证电子书、题库视频学习平台
P
X n Yn a b
③
P
Xn Yn a b(b 0)
2.按分布收敛、弱收敛
(1)按分布收敛
设随机变量 X,X1,X2,…的分布函数分别为 F(X),F1(X),F2(X),….若对 F(x)
p(x) x e n/21 x/2 ,x 0 Γ (n / 2)2n/2
exp
it
2t 2
2
(1 it )1
(1 it )
(1 2it )n / 2
贝塔分布
Be(a,b)
p(x) Γ (a b) xa1 (1 x)b1,0 x 1 Γ (a)Γ (b)
Γ (a b)
(it)k Γ (a k)
P
Xn x
或者说,绝对偏差|Xn-x|小于任一给定量的可能性将随着 n 增大而愈来愈接近于 1, 即等价于 P(|Xn-x|<ε)→1(n→∞).
特别当 x 为退化分布时,即 P(X-c)=1,则称序列{Xn}依概率收敛于 C. (2)依概率收敛于常数的四则运算性质如下: 设{Xn},{Yn}是两个随机变量序列,a,b 是两个常数.如果
第5章中心极限定理
第一节
一,随机变量的收敛性 1. 依概率收敛
大数定律
定义1 若对任意给定的ε 定义1 若对任意给定的ε>0, 有:
lim P{| X n X |< ε } = 1,
n→∞
( lim P{| X n X |≥ ε } = 0 )
n→∞
则称{X 依概率收敛于X, 记作: 则称{Xn}依概率收敛于X, 记作:
σ2 P{| X |< ε } ≥ 1 2 ε
σ2 8 P{| X |< 3σ } ≥ 1 2 = 9σ 9
8 ∴ P { 3σ < X < + 3σ } ≥ 9
将一枚硬币抛掷1000 1000次 [例2] 将一枚硬币抛掷1000次,试利用车贝晓夫不等 式估计: 1000次中,出现正面H的次数在400至600次 式估计:在1000次中,出现正面H的次数在400至600次 次中 400 之间的概率. 之间的概率. 解: 设1000次抛掷中出现正面的次数为 则 次抛掷中出现正面的次数为X, 次抛掷中出现正面的次数为
n
D (∑ X i )
i =1
D(∑ X i )
i =1
n
n a n 1 b n = P{ < ( ∑ X i n ) ≤ } n σ n σ i =1 n σ
b n a n ≈ Φ( ) Φ( ) n σ n σ
2. 德莫佛---拉普拉斯定理
定理2 设随机变量X n ~ B( n, p ), (n = 1, 2), 则对 任意x ∈ R, 有
第一节 大数定律 第二节 中心极限定理
基本要求: 基本要求 理解实际推断原理; 1. 理解实际推断原理; 掌握车贝晓夫不等式; 2. 掌握车贝晓夫不等式; 熟悉几个常用的大数定律; 3. 熟悉几个常用的大数定律; 4. 熟练掌握并能运用几个常见的中心极限定理. 熟练掌握并能运用几个常见的中心极限定理. 重点: 重点 1.车贝晓夫不等式的运用; 1.车贝晓夫不等式的运用; 车贝晓夫不等式的运用 2.中心极限定理的应用. 2.中心极限定理的应用. 中心极限定理的应用 学时数 3-4
大数定律与中心极限定理
⼤数定律与中⼼极限定理⽬录随机变量序列的两种收敛性依概率收敛:设{X n}为⼀随机变量序列,X为⼀随机变量,若对于任意ϵ>0,有P(|X n−X|≥ϵ)→0(n→∞)则称序列{X n}依概率收敛于X,记作X n P →X依概率收敛的性质:若X n P →aY n P →b则:X n±Y n P→a±bX n Y n P→abX n÷Y n P→a÷b弱收敛(按分布收敛):随机变量X,X1,X2…的分布函数为F(x),F1(x),F2(x)…,若对于F(x)的任意⼀个连续点x,有lim n→∞F n(x)=F(x)则称分布函数序列{F n(x)}弱收敛于F(x),记作F n(x)W→F(x)也称{X n}按分布收敛于X,记作X n L →X特征函数特征函数:设X是⼀个随机变量,则φ(t)=E(e itX)为X的特征函数。
常⽤分布的特征函数0-1分布:φ(t)=pe it+q泊松分布:φ(t)=∑e itx λk e−λk!=e−λ∑(λe it)kk!=eλ(e it−1)均匀分布:φ(t)=∫b ae itxb−a dx=e itb−e itait(b−a)标准正态分布:φ(t)=e−1 2t2证明:φ(t)=∫∞−∞e itx1√2πe−12x2dx=1√2π∫∞−∞∞∑n=0(itx)nn!e−12x2dx=∞∑n=0(it)nn![∫∞−∞x n1√2πe−12x2]dx=∞∑n=0(it)nn!E(X n)当n为奇数时,E(X n)=∫∞−∞x n1√2πe−12x2dx=0当n为偶数时,E(X n)=E(X2m)=∫∞−∞x2m1√2πe−12x2dx=1√2π∫∞−∞−x2m−1d(e−12x2)=1√2π(2m−1)∫∞−∞x2m−2e−12x2dx=(2m−1)(2m−3)…1∫∞−∞1√2πe−12x2dx=(2m−1)!!=2m!2m(m−1)!故φ(t)=∞∑m=0(it)2m(2m)!E(X2m)=∞∑m=0(it)2m(2m)!2m!2m(m−1)!=∞∑m=0(−t22)mm!=e−1 2t2指数分布的特征函数:φ(t)=(1−it λ)−1证明:φ(t)=∫∞0e itxλe−λx dx=λ[∫∞0cos(tx)e−λx dx+i∫∞0sin(tx)e−λx dx]I=∫∞0cos(tx)e−λx dx=∫∞01t e−λx dsin(tx)=λt∫∞sin(tx)e−λx dx=−λt2[−1+λ∫∞cos(tx)e−λx dx]=−λ2t2I+λt2故I=λλ2+t2φ(t)=λ(λλ2+t2+itλ2+t2)=λλ2+t2(λ+it)=λλ−it=(1−it λ)−1特征函数的性质|φ(t)|≤φ(0)=1证明:|φ(t)|=|∫e itx f(x)dx|≤∫|e itx|f(x)dx=1若Y=aX+b,则φY(t)=e ibtφX(at)证明:φY(t)=∫e it(ax+b)f(x)dx=e itb∫e itax f(x)dx=e ibtφX(at)若X和Y相互独⽴,则有φX+Y(t)=φX(t)φY(t)证明:E(e it(X+Y))=E(e itx e ity)=E(e itx)E(e ity)=φX(t)φY(t)若E(X l)存在,则X的特征函数l次可导,且对1≤k≤l有φ(k)(0)=i k E(X k)证明:φ(k)(t)=∫i k x k e ixt f(x)dx将t=0代⼊得φ(k)(0)=i k∫x k f(x)dx=i k E(X k)⼤数定律 概率是频率的稳定值,其中稳定是什么意思?⼤数定律详细的描述了这个问题。
§4.3随机变量序列的两种收敛性
n
再令x ' x F ( x 0) lim Fn ( x )
n
8
同理可证: 当 x " x时,F ( x ") limFn ( x ),
n
再令x " x, F ( x 0) limFn ( x ) .
n
即有 F ( x 0) lim Fn ( x ) lim Fn ( x ) F ( x 0) . n
0, x c; 有 Fn (c / 2) F (c / 2) 1, F ( x ) 1 , x c . Fn (c ) F (c ) = 0 .
从而 P ( X n c ) (n ) 0
且 Fn ( x ) F ( x ) , 所以当 n 时,
n
若x是F ( x )的连续点,
则 Fn ( x ) F ( x ), 即X n X .
W L
TH2表明:依概率收敛是弱收敛的充分不必要条件,
由弱收敛不能得出依概率收敛。见下面的例子。
9
例2 设X
X P
1 1 2
1 1 2
令 Xn X ,
L
当然有 X n X . 则 X n 与X 同分布,
P P P X n a ,Yn b X n Yn a b; P P X n Yn a b , X n Yn a b(b 0). 证明: ( X n Yn ) (a b ) X n a Yn b ( X n Yn ) (a b ) X n a Yn b 2 2
0 P X Y
《概率论与数理统计课件》随机变量序列的收敛性
P
定理 4.3.3 若 C 为常数,则 X n C 的充
L
要条件是 X n C .
21
证明:
必要性已由定理 4.3.2 给出,下证充分性.
记随机变量 X n 的分布函数为 Fn x .而常数 X C
(退化分布)的分布函数为
F
x
0 1
xC . xC
22
所以对于任意的 0 ,有
Fn x收敛到一个极限分布函数 Fx 是有实际意义的.现在的 问题是,如何定义分布函数序列 Fn x的收敛性?很自然,由 于 Fn x是实变量函数序列,我们的一个猜想是:对所有的 x , 要求 Fn x F x, n .这就是数学分析中的点点收敛.然
下面的定理说明了依概率收敛是一种比按分布收敛更 强的收敛性.
11
P
L
定理 4.3.2 如果 X n X ,则必有 X n X .
12
证明:
设随机变量 X n 的分布函数为 Fn x , n 1, 2, 3, ;
随机变量
X
的分布函数为
F x .为证
Xn
L
X
,只须证明:
对所有的 x ,有
写出随机变量 Yn
n k 1
Xk 2k
的特征函数n t ;⑶
证
明:当 n 时,随机变量序列Yn依分布收敛于随机变量Y .
33Leabharlann 解:⑴ 由于随机变量Y 服从区间 1, 1 上的均匀分布,因
此 Y 的特征函数为
t eit eit cost i sin t cost i sin t sin t .
(因为 x x 0).所以有
再令 x x ,得
概率论课件 第4章第2讲随机变量序列的两种收敛性
0,当( x a)2 ( y b)2 2时有
| f ( x, y) f (a, b) |
于是 {| f (k ,k ) f (a, b) | } {( a)2 ( b)2 2 }
辛钦k 1n Nhomakorabeak
a | } 1
证明: {n } 同分布, 它们有相同的特征函数, 这个相同的特征函数记为 (t )
1 n 记 n k n k 1
a E ( k )
(0)
i
(t ) (0) (0)t o(t ) 1 iat o(t )
的分布函数Fn ( x) F ( x).
显然有 lim Fn ( x) F ( x)
n
L Xn Y
但对任意的0<ε<2,恒有
P{| n | } P{2 | | } 1
即不可能有{n }依概率收敛于
所以:依分布收敛依概率收敛不真
定理:随机变量序列依概率收敛于常数C 的充要条件是依分布收敛于常数C 证明:必要性已证,下面只证充分性
§4.2 随机变量序列的两种收敛性 上一节我们由大数定理可得,在贝努里试验中, 事件发生的频率稳定于概率,即
lim P{
n
n
n
P } 1
自然想到的是, 随机变量序列是否依 这种方式能稳定于一个随机变量呢 ?
这就是我们要讲的依概率收敛问题.
1
依概率收敛 定义:设{ n }是随机变量序列,若存在随机 变量 (或常数),对于任意ε>0,有
x x
令y x, z x,由x为F ( x)的连续点, 有
随机过程第一章
b
b
a
x dF ( x)
E[g(X1 , X 2 , E[X1X 2
X n )]
n
g ( x1 , x2 ,
xn ) dF ( x1 , x2 ,
xn )
X n ] E[X i ]
i 1
1.5.3 矩与联合矩 假设随机变量X 的概率密度函数为 f ( x),则定 义 1)绝对原点矩和联合绝对原点矩
(1) (2) (3) (4)
g ( x)dF ( x) g ( x)dF ( x) g ( x)dF ( x) [m g ( x) ng ( x)]dF ( x) m g ( x)dF ( x) n g ( x)dF ( x) g ( x)d[mF ( x) n F (x)] m g ( x)dF ( x) n g( x)dF ( x) F(x)为X 连续随机变量的PDF g ( x) dF ( x)= g ( x)f ( x) dx
E [ XY ] E [ X ]E [ Y ]
2 2 2
2 2
1.6 特征函数和概率母函数
1.6.1 特征函数 随机变量X的特征函数定义为
( ) E[exp(j X )] exp( j x) f ( x)dx , 连续RV , R exp( j X i ) P(X X i ) , 离散RV i
4)事件域( F ) 样本空间的若干子集构成的集合
事件域性质
(1) F, F
(2) A,B F ,则A B F ,A-B F
(3) A n F , n 1,2,
(4) A F ,则A F
《概率论与数理统计课件》 随机变量序列的收敛性(精选)PPT共27页
END
《概率论与数理统计课件》 随机变量序 列的收敛性(精选)
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
随机变量的几种收敛及其相互关系
论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。
概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。
主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。
给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。
本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。
关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。
AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is a sequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship.This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows:1. Convergence of random variables the concept of theory;2. the convergence of several random variables between;From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: (4)1 几种收敛性定义 (4)2 依概率收敛与依分布收敛的关系 (5)3 r阶收敛与几乎处处收敛的关系 (11)4 依概率收敛与r阶收敛的关系 (13)5 几乎处处收敛与依概率收敛和依分布收敛的关系 (17)总结 (19)四种收敛性 (19)四种收敛蕴涵关系 (19)致谢 (21)参考文献 (22)引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
大数定律
试验中事件A出现的次数, 则对任意的 ε 0, 都有 μn 1 n lim P pk ε 0 n n n k 1 证 令
0, 第k次试验中 A不发生 k 1, 2,, n X k= 1, 第k次试验中 A发生
n
lim P{| Yn Y | } 1 lim P{| Yn Y | } 0
或
n
则称随机变量序列 {Yn } 依概率收敛与随机变量Y, 简记为
Yn Y
P
Y 依概率收敛表示: n 与 Y 的绝对误差小于任意小 的正数 的可能性(即概率)将随着n增大而愈来愈 大,直至趋于1. P C 定理4.1 设 {Yn } 为一随机变量序列, Yn 且 g() 在点C处连续,则有 (常数),又函数
第一节 大数定律
一、问题的提出 二、随机变量序列的收敛性
回
三、常用的四种大数定律
停 下
一、问题的提出
在第一章有关概率的统计定义中讲到, 随 机现象在大量重复试验中呈现明显的统计规律 性, 即事件发生的频率具有稳定性. 贝努里于1713年首先提出关于频率稳定性的 定理, 被称为贝努里大数定律.
大数定律的客观背景 在实践中, 人们认识到大量测量值的算术平 均值也具有稳定性. 大数定律就是用于研究大 量随机现象中平均结果的稳定性的理论.
可见, 每个随机变量的数学期望都存在.
因为
2 Xn
0 1 1 2 n
na 2
检验是否 有有限方 差
1 P n2 2 na 2 1 a 2 所以 E X n n2
2 D X n E X n E X n 2 a 2
随机变量序列的收敛性及其相互关系
长江大学毕业论文题目名称随机变量序列的收敛性及其相互关系院(系)信息与数学学院专业班级信计11001班学生姓名傅志立指导教师李治辅导教师_________ 李治______________摘要:概率极限理论不仅是概率论的重要组成部分,而且在数理统计中有广泛的应用。
本文主要对a.e.收敛、依概率收敛、依分布收敛、r—阶收敛四种随机变量序列的概率和收敛性性质进行阐述;并结合具体实例讨论了它们之间的关系,进一步对概率论中依分布收敛的等价条件和一些依概率收敛的弱大数定律进行了具体的研究.目录1......................................................................................... 引言2......................................................................................... a.e.收敛、依概率收敛、依分布收敛、r—阶收敛的概念、性质及其相互关系.2.1 a.e.收敛的概念及性质2.2依概率收敛的概念及性质2.3依分布收敛的概念及性质2.4r-阶收敛的概念及性质2.5结论3......................................................................................... 随机变量序列依分布收敛的等价条件4......................................................................................... 随机变量∑=nkkn11ξ依概率收敛的一些结果5......................................................................................... 小结6......................................................................................... 参考文献1.引言:在数学分析和实变函数中“收敛性”极为重要,特别在实变函数中对可测函数列收敛性的讨论。
第五章随机变量的收敛性
当极限分布为点分布时,记为 X n qm c
对应还有:L1收敛(converge to X in L1 )
lim
n
Xn X 0
if Xn X 0, as , then Xn L1 X
7
其他收敛
依概率收敛
lim
n
Xn X 0
或 lim n
: Xn X 0
随机变量序列 X1, X2..., Xn ,当对任意 0,
CDF
1、如果对每个 0 ,当 n
时,
Xn X
0
则Xn依概率收敛于X ,记为 Xn P X 。 2、如果对所有F的连续点t,有
lim
n
Fn
t
Ft
则Xn依分布收敛于X ,记为 Xn
同教材上
X。
5
两种收敛的定义
当极限分布为点分布时,表示为
依概率收敛:
X c 1, and Xn P X , then Xn Pc
Xn p 1 2, Xn 2 n p 1 p n 1 4n
0.4 Xn 0.6 1
Xn Xn
0.1 0.1
1
4n
1 0.12
1 25 0.7 n
1 25 n 0.7 n 84
17
中心极限定理 (Central Limit Theorem, CLT)
发生的频率 fn A nA n逐渐稳定到概率p 。
那么lim n
fn
A
p?
不对,若
则对于
lim
n
0
fn A p
,总存在 N
0
,当
n
N 时,有
fn
A p 成立
但若取 p , 由于
fn A 0 1 pn 0
南开大学432统计学2017年考研专业课真题试卷
1,两射手彼此独立地 向同一 目标射击 ,设 甲射 中 目标 的概率为 0.5,乙 射 中 目标 的概率为
0.6,则 目标被射 中的概率是___。
己知 E(X)=-2,E(X2)=5,则 肠 '(1-3X)=~°
设随机变量 X与 y独 立同分布,都 服从正态分布 Ⅳ(〃,σ 2),记 σ=X+y,
历F+3。
~。 6,设 冯,¨ ‰是来自正态总体Ⅳ(〃,σ2)的 独立样本,σ 2的 无偏估计是
⒇㈤ A彳 =;喜
2;
:.菇 =m~l∑ 仇-D
C,Jf〓
-D
r,+12;⒇
⒐歼 Ξ泛ˉ =砺
D2°
:⒈ ;(丐
7。 在假设检验 中,以 下说法不正确的是___。 A.若 检验 结果是接收原假设,则 检验可能犯第二类错误 ; B,若 检验结果是拒绝原假设 ,则 检验可能犯第一类错误 ; C.显 著性水平 α控 制 的是犯第二类错误 的概 率 ; D.计 算 出的 越 小,说 明否定原假设 的证据越充分 。
`←
计
。
三 、解答 题 (共 9O分 )
【… Cl⒐ 分 )设随机变量 X的 密度函数为 _
—
叠各葚 )={∶
`(艿
,∶
x兰 1’ :0≤
如果 E(丿r)=:,求 曰和 D。
2. (10分 )假 设有 10个 同种 电器元件,其 中有两个不合格品。装配仪器时,从这批元件
中任取一个 ,如 是不合格品,则 扔掉重新任取一个;如 仍是不合格品,则 扔掉再取一个,
试求在取到合格品之前,己 取出的不合格品个数的数学期望。
3,(10分 )设 随机变量 X与 y独 立同服从于参数为 兄的泊松分布
随机变量序列的几种收敛性
本科毕业论文题目:随机变量序列的几种收敛性及其关系学院:数学与计算机学院班级:数学与应用数学2008级八班姓名:薛永丽指导教师:丁平仁职称:副教授完成日期:2012 年5月10 日随机变量序列的几种收敛性及其关系摘要:本文主要对随机变量序列的四种收敛性:a.e.收敛、依概率收敛、依分布收敛、r—阶收敛的概念、性质进行阐述;并结合具体实例讨论了它们之间的关系,进一步对概率论中依分布收敛的等价条件和一些依概率收敛的弱大数定律进行了具体的研究.关键字:随机变量序列收敛分布函数目录1.引言 .................................................................... 12.a.e.收敛、依概率收敛、依分布收敛、r —阶收敛的概念、性质以及它们之间的关系.2.1 a.e.收敛的概念及性质 ................................................................................................... 1 2.2 依概率收敛的概念及性质 .............................................................................................. 2 2.3依分布收敛的概念及性质 ............................................................................................... 3 2.4 r —阶收敛的概念及性质 .................................................................................................. 5 3.随机变量序列依分布收敛的等价条件. (6)4.随机变量∑=nk k n 11ξ依概率收敛的一些结果 (9)5.小结. .................................................................. 12 6.参考文献 (12)1.引言:在数学分析和实变函数中“收敛性”极为重要,特别在实变函数中对可测函数列收敛性的讨论。
随机变量序列依概率收敛的几个性质_朱永生
第24卷哈尔滨师范大学自然科学学报Vol .24,No .22008第2期NAT URAL SC I E NCES JOURNAL OF HARB I N NOR MAL UN I V ERSI TY随机变量序列依概率收敛的几个性质朱永生(哈尔滨师范大学)【摘要】 对随机变量序列依概率收敛的问题进行研究进而得出一些结论.关键词:依概率收敛;随机变量序列;连续函数收稿日期:2007-1-3 笔者在原有随机变量序列依概率收敛性质基础上进一步研究得出几个系统的结论.定义:设有随机变量序列ξ1,ξ2,ξ3,…,若对任意的ε>0,有li m n →∞P (|ξn -ξ|<ε)=1,则称随机变量序列{ξn }依概率收敛于ξ,并记作li m n →∞ξnPξ或ξnPξ(n →∞).引理1 设随机变量序列{ξn }、{ηn }分别依概率收敛于a 与b (其中a 与b 是两个常数),则有①ξn +-×ηnP a +-×b ②ξn ÷ηn Pa ÷b 进一步利用归纳法可证明上述引理在有限次的四则运算下也是成立的,从而可推广如下:定理1 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,并且ξinPa i ,n →∞(i =1,2,…,k ),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (a 1,a 2,…,a k )≠±∞,则有Q (x 1,x 2,…,x k )PQ (a 1,a 2,…,a k ),n →∞成立.为了进一步推广上述定理,下面再给出一个定理.定理2 设随机变量序列{ξn }依概率收敛于ξ,f (x )为直线上的连续函数,则f (ξn )Pf (ξ).证明 ①若f (x )=∑mi =1a i x i是m 次多项式函数,由定理1知f (ξn )Pf (ξ)成立,结论为真.②现在证明一般情形.对任意的ε>0,δ>0,取M 充分大使得有P (|ξ|>M )>δ,又选取N 1充分大,使当n ≥N 1时,有P (|ξ-ξn |>1)<δ,于是有 P (|ξn |>M +1)≤P{(|ξ|>M )∪(|ξ-ξn |>1}<2δ对取定的M ,因为f (x )是连续函数,可以用多项式函数进行任意逼近,且在任意有限区间上是一致收敛的,从而有m 次多项式g m (x ),使有|f (x )-g m (x )|<ε3,x ∈[-(M +1),M +1].对取定的m 次多项式g m (x ),因为g m (ξn )Pg m (ξ),n →∞,故存在N 2,使当n ≥N 2时,有P (|g m (ξ)-g m (ξn )|≥ε3)<δ成立,又P (|f (ξ)-f (ξn )|≥ε)=P{(|f (ξ)-f (ξn )|≥ε)∩(A ∪B )}+P{(|f (ξ)-f (ξn )|≥ε)∩((A ∪B )}=I 1+I 2可以看出(A ∪B )∪(A ∪B )=(A ∪B )∪( A ∩ B )=Ω(A ∪B )∩(A ∪B )=Φ其中(A ∪B )=(|ξ|>M )∪(|ξn |>M +1)(A ∪B )=( A ∩ B )=(|ξ|≤M )∩(|ξn |≤M +1)那么当n ≥m ax {N 1,N 2}时,有I 1≤P (|ξ|>M )+P (|ξn |>M +1)<3δ,又|f (ξ)-f (ξn )|≥ε]|f (ξ)-g m (ξ)+g m (ξ)-g m (ξn )+g m (ξn )-f (ξn )|≥ε]|f (ξ)-g m (ξ)|≥ε3或|g m (ξ)-g m (ξn )|≥ε3或|g m (ξn )-f (ξn )|≥ε3.即(|f (ξ)-f (ξn )|≥ε)<{(|f (ξ)-g m (ξ)|≥ε3)∪(|g m (ξ)-g m (ξn )|≥ε3)∪(|g m (ξn )-f (ξn )|≥ε3)}.然而由上面可知,有下述事实成立P{(|f (ξ)-g m (ξ)|≥ε3)∩ A ∩ B }=P{(|f (ξ)-g m (ξ)|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}=0P{(|g m (ξn )-f (ξn )|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}=0,所以I 2≤P{(|g m (ξ)-g m (ξn )|≥ε3)∩(|ξ|≤M )∩(|ξn |≤M +1)}≤P{|g m (ξ)-g m (ξn )|≥ε3)<δ从而有P (|f (ξ)-f (ξn )|≥ε)=I 1+I 2<4δ成立.由ε、δ的任意性即知f (ξn )Pf (ξ)成立.于是结论得证.进而可得定理3如下.定理3 若ξn Pc,则g (ξn )Pg (c ),其中c 是一个常数,g 是一个连续函数.从而可推广前述两个定理如下:定理4 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,g i (x )是一组连续函数,并且{ξin }Pξi ,n →∞(i =1,2,…,k ),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (g 1(ξ1),g 2(ξ2),…,g k (ξk ))≠±∞,则有Q (g 1(ξ1n ),g 2(ξ2n ),…,g k (ξkn ))PQ (g 1(ξ1),g 2(ξ2),…,g k (ξk ))(n →∞).例 若ξnPξ,ηnPη.则有(eξn+sinηn )/(1+e ξn)P(e ξ+sin η)/(1+e ξ)这是因为g 1(x )=e x,g 2(x )=sin x 为连续函数,Q (x,y )=x +y1+x为有理函数,从而易证.从定理3和上述定理4亦不难得出相应的下述定理5.定理5 设{ξ1n },{ξ2n },…,{ξkn }是k 个随机变量序列,g i (x )是一组连续函数,并且{ξin }Pc i ,n →∞(i =1,2,…,k,c i 为常数),又Q (x 1,x 2,…,x k )是k 元变量的有理函数,并且Q (g 1(c 1),g 2(c 2),…,g k (c k ))≠±∞,则有Q (g 1(ξ1n ),g 2(ξ2n ),…,g k (ξkn )PQ (g 1(c 1),g 2(c 2),…,g k (c k ))(n →∞).引理2 设ξnPa,ηnPb,又设函数g (x,y )在点(a,b )连续,则g (ξn ,ηn )Pg (a,b )证明 由函数g (x,y )在(a,b )的连续性知,对于任给的ε>0,必存在δ>0,使当|x -a |+|y -b |<δ时,|g (x,y )-g (a,b )|<ε,于是{|g (ξn ,ηn )-g (a,b )|≥ε}<{|ξn -a |+|ηn -b |≥δ}<{|ξn -a |≥δ2}∪{|ηn -b |≥δ2}因此,P{|g (ξn ,ηn )-g (a,b )|≥ε}≤P{|ξn -a |≥δ2}+P{|ηn -b |≥δ2}→0(n →∞)亦即li m n →∞P{|g (ξn ,ηn )-g (a,b )|<ε}=1.进而得出下述定理:定理6 设{ξ1n },{ξ2n },…,{ξkn }与{η1n },{η2n },…,{ηkn }分别是k 个随机变量序列g i (x,y )是一组二元连续函数,并且ξinPa i ,ηinPb i ,n →∞(i =1,2,…,k,a i ,b i 为常数),又Q (x 1,x 2,…,x k )是k 元变量有理函数,并且Q (g 1(a 1,b 1),…,g 2(a 2,b 2),…,g k (a k ,b k ))≠±∞,则有Q (g 1(ξ1n ,η1n ),g 2(ξ2n ,ξ2n ),g k (ξkn ,ηkn ))PQ (g 1(a 1,b 1),g 2(a 2,b 2),…,g k (a k ,b k ))(n →∞).例 若ξnPξ,ηnPη.则有(e ξn+ηn+sin ξnηn )/(1+e ξn ηn )P(eξ+η+sinξη)/(1+e ξη)83哈尔滨师范大学自然科学学报 2008年此例题由上述定理6很容易看出.由上述的引理2还可以推出引理1.分别取g (x,y )为x ±y,xy,xy(y ≠0),则可由引理2推论得到引理1,因此,引理1可以看作是引理2的特例.最后,还应该注意的是,依概率收敛不同于通常意义上的极限,随机变量序列ξnPξ不一定有ξn (ω)→ξ(ω),(ω∈Ω),甚至可能对每一个ω,ξn (ω)ξ(ω),(ω∈Ω).如取Ω=[0,1],R 是包含[0,1]中一切左闭右开区间的事件域,P 是定义在R 上的概率,且对于[a,b )<[0,1],满足P ([a,b ))=b -a,定义随机变量序列如下:η11(ω)≡1,η21(ω)=1,ω∈[0,12);0,ω∈[12,1)η22(ω)=1,ω∈[0,12);0,ω∈[12,1) …一般地,将[0,1)分成K 个等长的区间,定义ηk i (ω)=1,ω∈[i -1K ,iK);0,ω[i -1K ,iK). (i =1,2,…,K;K =1,2,…)显然,对任意ε>0,P (|ηk i |≥ε)≤1K,将ηk i 重新编号,令ξ1=η11,ξ2=η21,ξ3=η22,ξ4=η31,ξ5=η32,…则由上式可知,ξnP0,但对每一个ω∈Ω,由{ξn }的定义知,数列{ξn (ω)}中皆有无穷多个1和无穷多个0,因而{ξn (ω)}不收敛.参 考 文 献[1] 来向荣.简明概率论教程[M ].北京:北京工业大学出版社,2004.[2] 魏宗舒.概率论与数理统计教程[M ].北京:高等教育出版社,1983.[3] 严士健,王隽骧,刘秀芳.概率论基础[M ].北京:科学出版社,1983.[4] 王梓坤.概率论基础及其应用[M ].北京:科学出版社,1979.[5] Laha ,R.G .and Rohatgi ,B.K .Pr obability theory[M ].JohnW iley &s ons,1985.S OM E CONCLUSIONS OF THE CONVERGENTCHARACTER B Y PR OBABIL I T YZhu Yongsheng(Harbin Nor mal University )ABSTRACTA series of conclusi ons are given according t o researching int o the convergent character by p r obability in this paper .Keywords:Convergent character by p r obability;Random variable;Continuity functi on(责任编辑:王丹红)93第2期 随机变量序列依概率收敛的几个性质。