纵向动力学性能分析p

合集下载

高速列车车辆动力学性能分析与仿真

高速列车车辆动力学性能分析与仿真

高速列车车辆动力学性能分析与仿真高速列车是现代高铁交通系统中的重要组成部分,其快速、安全、高效的特点使其成为现代人们日常出行的首选方式。

而高速列车的动力学性能则直接影响着列车的运行速度、稳定性和舒适性。

因此,对高速列车的车辆动力学性能进行分析与仿真具有重要的理论和实践意义。

一、动力学性能分析1. 车辆稳定性分析高速列车在高速运行时,车辆的稳定性是一项重要的参数。

稳定性分析主要包括侧向稳定性、纵向稳定性和车轨耦合稳定性。

通过对车辆的悬挂、车轮与轨道之间的力学关系进行分析,可以评估车辆的稳定性,并采取相应的设计措施来提高稳定性。

2. 列车动力学分析列车动力学分析主要研究列车在不同运行状态下的加速度、速度、减速度等参数。

通过对列车的动力学性能进行分析,可以确定列车的最大运行速度和最大加速度,为高速列车的设计和运营提供重要依据。

3. 车辆空气动力学分析高速列车在高速运行时会受到气动力的影响,而车辆的气动性能直接影响着列车的阻力和能耗。

通过对车辆的外形和流场进行分析,可以评估车辆的气动性能,并提出相应的改进措施来降低阻力和能耗。

二、动力学性能仿真1. 建立车辆动力学模型仿真分析是研究车辆动力学性能的重要手段之一。

首先需要建立准确的车辆动力学模型,包括车体、悬挂系统、牵引系统和制动系统等。

通过建立车辆的数学模型,可以准确地描述车辆的运动状态和受力情况。

2. 仿真分析车辆运行特性利用建立的车辆动力学模型,进行仿真分析可以得到车辆在不同运行状态下的运行特性。

比如在不同速度下的加速度、制动距离、稳定性等参数。

通过对仿真结果的分析,可以评估车辆的性能,优化车辆设计,并为实际运营提供参考。

3. 仿真优化车辆设计基于仿真分析的结果,可以通过调整车辆参数、改进车辆结构和悬挂系统等方式来优化车辆设计。

通过不断的仿真和优化,可以使高速列车的车辆动力学性能得到提升,达到更高的运行效率和更好的乘坐舒适性。

总结:高速列车的车辆动力学性能分析与仿真是提高高速列车运行速度、稳定性和舒适性的重要手段。

铁路旅客列车纵向动力学试验方法与评定指标

铁路旅客列车纵向动力学试验方法与评定指标

铁路旅客列车纵向动力学试验方法与评定指标铁路旅客列车纵向动力学试验方法与评定指标铁路旅客列车纵向动力学是指列车在行驶过程中,由于列车自身重量、牵引力、制动力等因素的影响,导致列车前后车厢之间产生的相对运动。

为了保证列车的安全性和舒适性,需要对列车的纵向动力学进行试验和评定。

试验方法:1. 列车加速试验:在平坦的轨道上,通过改变牵引力的大小,使列车加速到一定速度,记录列车前后车厢之间的相对运动情况。

2. 列车制动试验:在平坦的轨道上,通过改变制动力的大小,使列车减速到一定速度,记录列车前后车厢之间的相对运动情况。

3. 列车过曲线试验:在曲线轨道上,通过改变列车速度和曲线半径,记录列车前后车厢之间的相对运动情况。

4. 列车通过道岔试验:在道岔处,通过改变列车速度和道岔的位置,记录列车前后车厢之间的相对运动情况。

评定指标:1. 列车前后车厢之间的相对位移:列车前后车厢之间的相对位移越小,说明列车的稳定性越好,乘客的舒适性越高。

2. 列车前后车厢之间的相对速度:列车前后车厢之间的相对速度越小,说明列车的稳定性越好,乘客的舒适性越高。

3. 列车前后车厢之间的相对加速度:列车前后车厢之间的相对加速度越小,说明列车的稳定性越好,乘客的舒适性越高。

4. 列车制动距离:列车制动距离越短,说明列车的制动性能越好,乘客的安全性越高。

5. 列车通过曲线和道岔时的侧向加速度:列车通过曲线和道岔时的侧向加速度越小,说明列车的稳定性越好,乘客的舒适性越高。

铁路旅客列车纵向动力学试验和评定是保证列车安全性和舒适性的重要手段。

通过科学的试验方法和评定指标,可以有效地提高列车的运行质量,为乘客提供更加安全、舒适的出行体验。

MT-2型缓冲器纵向动力学分析

MT-2型缓冲器纵向动力学分析
由上表 2 可以看 出: M T 一 2 型缓冲器能够满足 冲 击速度为 8 k m・ h 的要求 ,当冲击速度达到 9 k m・ h
时, 缓冲器的最大阻抗力将超过 M T 一 2 缓冲器的许用
选用大型数值计算软件 M A T L A B ,运用参数化 阻抗力 2 2 7 0 k N。 设计方法对缓冲器工作过程进行数值仿真 。考虑到 缓冲器动态过程需改变调车冲击速度 ,在程序设计 3 列车纵 向动力学计算 时, 将调车冲击速度作为参数化变量 , 用户可输入任 意速度值以运行其程序 。在计算动态 曲线 时首先要 3 . 1 列车纵 向动力学模型 对每节车辆 的纵向动力学微分方程进行降阶,降阶
缓冲器是车辆最基本 、 最重要的部件之一 , 是用 来缓 和列车在运行 中由于机车牵引力的变化或在起
表 1 MT _ 2型缓冲器主 要参数
参 散I 阻 抗5 " J I 正 式 辑 t ) I 工 作 行 程{ 删 I 吸 收事I % ) I 冲 击速 度衄“
散值 『 ‘2 2 7 0 I  ̄5 0 『 8 3 『 8 0 l 8
《 装备制造技术) ) 2 0 1 3 年第 3 期
MT 一 2型缓冲器纵 向动力学分析
罗 军 ( - E江大学机械工程学院, 湖北 荆州 4 3 4 0 2 3 )
摘 要: 以 MT 一 2型缓 冲器为研 究对 象, 分析 了 其静动 态特性。 在此基础上 , 建立该缓 冲器调 车冲击模型和纵向动力 学模
3 5
Eq u i p me n t Ma n u f a c t u r i n g T e c h n o l o g y No . 3, 2 0 1 3
现出的特性为其动态特性。 众所周知 , 列车纵

第一章-5-飞行动力学-飞机的纵向运动讲解

第一章-5-飞行动力学-飞机的纵向运动讲解
有关 俯仰力矩:M a M a (V , , ,e , , q) ,还与动导数有关
基准运动为定直平飞,小扰动假设:空气密度=常值,可忽略 简化的力与力矩:
T T (V ,T ) L L(V ,,e ) D D(V , ) M a M a (V ,,e ,, q)
长周期运动分开处理, 使分析过程大为简化。 摄动理论 用于纵侧向解耦设计 非线性动态逆设计
短周期响应
长周期响应
六、短周期运动的近似传递函数
纵向运动的初始阶段,短周期运动占主导地位,其过渡过程时间很短,飞
行速度变化不大,可以认为速度增量V=0。 纵向运动方程式中第一式(切向力方程)可以删去,其他两式当V=0时,

以e为输入,为输出的传递函数:
稳定的,表现为单调发散 运动。
短周期模态在一般情况下 不会变成不稳定,只有重 心移到焦点之后的飞机, 短周期模态才变成一正一 负两个实根,其中正实根 表征不稳定的单调发散运 动,且单调发散的指数比 较大。
(二)传递函数及其频率特性 某飞机,有关数据如下:
重心之矩为正
2、升力L,垂直于飞行速度V,向上为正; 3、阻力D,平行于飞行速度V,向后为正; 4、俯仰力矩Ma(仅指气动力矩),抬头为正。
5、重力G,永远指向地心。
一、纵向运动方程
由受力图可得方程组:
速度的切向方向速度的法向方向-
m dV dt
T cos( T ) D G sin
研究初始条件为t=0时, 的扰动运动的解。
(一)扰动运动的解 用拉氏变换求解,令 考虑到前面给出的初始条件,有 代人微分方程组,得拉氏变换代数方程组:
方程的系数行列式(特征行列式)为
展开系数行列式,得特征多项式:

快捷与普通货车混编列车纵向动力学仿真分析

快捷与普通货车混编列车纵向动力学仿真分析

快捷与普通货车混编列车纵向动力学仿真分析陈海啸;魏伟【摘要】快捷货车与普通货车在制动特性上存在较为明显差异,在混编列车制动过程中,由于不同车辆制动缸充气时间的差异,会导致车辆间制动效果的不同步性加剧,可能会出现车辆加速度、纵向冲击力过大等问题,影响列车运行平稳性,进而危害货物运输安全.由于在实际运用中,一般不进行快速列车解列,因此,在混合编组时将整列快捷货车分别编组在列车前、中、后部.使用列车空气制动和纵向动力学联合仿真系统对3种编组方式列车在紧急制动工况下的纵向动力学性能进行仿真计算及比较分析.计算结果表明:当快捷货车编组在列车前、后部时,车辆间分别会产生较大的压钩力和拉钩力,当快捷货车编组在列车中部时,列车车辆间纵向冲动较小,编组方式较为合理;列车制动力分布不均是影响列车纵向冲动的重要因素,当制动力较强车辆编组在列车前部和中部时,最大纵向力表现为压钩力,当编组在列车后部时,最大纵向力表现为拉钩力;3种编组方式下,列车最大纵向力出现车位均在快捷货车与普通货车连接位置.【期刊名称】《铁道机车车辆》【年(卷),期】2017(037)004【总页数】6页(P60-65)【关键词】快捷货车;混编列车;制动缸充气特性;紧急制动;纵向动力学【作者】陈海啸;魏伟【作者单位】大连交通大学交通运输工程学院,辽宁大连116028;大连交通大学交通运输工程学院,辽宁大连116028【正文语种】中文【中图分类】U272.11随着我国经济的发展及产业结构的优化升级,煤炭、钢铁等传统大宗货物的运输需求量相对减小,以时效性强、多样化、高附加值等为特征的货物运输需求急剧增长。

尤其是近年来网络经济迅速占据主导地位,对货物运输的便捷性、经济性、时效性、安全性等要求越来越高。

而我国传统货运列车具有载重量大、编组长、运行速度慢的特点,且不能够有效保证日常用品运输的安全性,为适应当今国内货物运输需求的变化,提升铁路运输竞争力,提高铁路运输经济效益,开行160 km/h速度等级快捷货物运输势在必行。

纵向动力学

纵向动力学

汽车动力传递路线:发动机→离合器→变速器→ 副变速器→传动轴→主减速器→差速器→半轴→ 轮边减速器→车轮。
动力装置的匹配
P Ttq e
制动性
P e
功率Pe ---曲轴转速n
复习题
Ttq
转矩Ttq ---曲轴转速n
n
Lecture02: Longitudinal Dynamics of Vehicle System
动力性
2、加速时间 (t):
燃油经济性
动力装置的匹配
原地起步加速时间: 由I或II档起步,以amax,并考虑换 档时间,一般用0~400m或者0~ 100km/h的时间表示原地起步的加速时 间。 超车加速时间: 以最高档或次高档,以a 以最高档或次高档,以amax加速至某 一高速所用的时间。
制动性
复习题
1、最高车速 (kM/h):指在良好的路面(混凝土或 沥青)上所能达到的最高行驶车速。
制动性
复习题
Lecture02: Longitudinal Dynamics of Vehicle System
汽车动力性评价指标
SUBTITLES
Vehicle Tractive Performance Evaluation Criteria
复习题
ηt ----- 传动系的机械效率;
r ----- 车轮半径。
此式从数学、物理上容易理解,但有关参 数的意义尚需进一步探讨!
Lecture02: Longitudinal Dynamics of Vehicle System
汽车行驶方程式
SUBTITLES
1、理解发动机驱动力矩Ttq
动力性 燃油经济性
汽车行驶方程式
SUBTITLES

列车纵向动力学分析【精选】

列车纵向动力学分析【精选】

第一部分开行重载列车,就机车车辆本身来讲,重载列车技术涵盖牵引性能、制动系统性能、列车纵向动力学性能、机车车辆动力学性能、机车车辆及其零部件强度以及合理操纵方法等众多方面。

而重载列车的通信、纵向冲击力和长大下坡道的循环制动问题是开行重载列车的三大关键技术。

而这三大技术其实就是制动系统的三大难题。

下面就以制动系统来分析。

1.重载列车制动系统的关键技术制动系统对列车运行安全具有举足轻重的重要作用,随着铁道技术的不断进步,已出现了多种制动方式,但对货物列车而言,空气制动仍是最基本的制动作用方式。

众所周知,货物列车空气制动作用的制约因素甚多,列车长度就是主要影响因素之一。

我国重载列车的发展始于20世纪80年代,至今列车编组重量已由5 000t级提高到2万t以上,编组辆数从62辆增加到210辆之多,列车最大长度已达2·6 km以上,导致空气制动作用条件严重恶化。

1.1制动空走时间和制动距离影响货物列车紧急制动距离的主要因素除制动初速、线路条件(坡道)、列车制动率(每百吨重量换算闸压瓦力)和闸瓦性能以外,还有影响空走距离的空走时间,后者主要与列车长度或编组辆数有关。

笔者在根据上述因素编制我国《铁路技术管理规程》中的制动限速表时,对货物列车考虑的列车编组条件为5000t级以下,由于重载列车编组辆数的增加,必然导致制动空走时间和距离相应增加,加上长大列车压力梯度对后部车辆制动力的影响,因此该限速表不适用于重载列车。

对于重载列车,其制动力应比普通列车高,以保持和普通列车同等的制动距离。

1.2充气作用和长大下坡道的运行安全列车空气制动后的再充气时间随编组辆数的增加而呈非线性的增加。

重载列车需要有比普通列车长得多的再充气时间,因此,在长大下坡道多次循环制动作用时对司机操纵方法特别是再充气时间的要求更高。

1.3减轻列车纵向动力作用货物列车在纵向非稳态运动过程中产生的纵向动力作用不仅是导致断钩、脱轨等重大事故的主要原因,也是破坏货物完整性和加速机车车辆装置疲劳破坏的重要因素。

219447156_制动工况下旅客列车纵向动力学分析

219447156_制动工况下旅客列车纵向动力学分析

运营管理2023/06CHINA RAILWAY 制动工况下旅客列车纵向动力学分析陈然(中国铁路西安局集团有限公司 西安机务段,陕西 西安 710000)摘要:以单节和谐型机车加挂19节25G 型旅客列车为计算模型,运用多体系统动力学分析软件Universal Mechanism ,对采用“大劈叉”制动方式时,制动初速、列车管减压量对旅客列车纵向动力学指标的影响进行研究,并对比分析常用与紧急制动工况下的动力学特性差异。

研究结果表明,制动初速越低、列车管减压量越大,车钩力及纵向加速度越大、冲动越大;在100 kPa 和170 kPa 两种列车管减压量下,列车纵向动力学特性差异不大;相对于常用制动,紧急制动时全列车产生很大的压钩力,车辆间的拉钩力作用较小。

在西康铁路青岔—营镇下行区段11.9‰下坡道分相处,19节编组列车断电通过时有明显冲动,且冲动发生在机后15位车。

关键词:旅客列车;制动工况;制动初速;列车管减压量;纵向加速度;冲动中图分类号:U268 文献标识码:A 文章编号:1001-683X (2023)06-0095-10DOI :10.19549/j.issn.1001-683x.2022.12.29.0020 引言列车是由机车和车辆编成的车列,机车与车辆间以及车辆与车辆间通过车钩缓冲装置连接。

在列车运行过程中,由于车钩间隙的存在,线路纵断面变化、机车工况转变都在一定程度上造成列车冲动。

对于旅客列车而言,抑制冲动产生保持列车平稳运行,对确保行车安全和提升旅客乘坐舒适度具有极为重要的意义[1-6]。

针对旅客列车开展纵向动力学分析,探索旅客列车在不同运行工况下的纵向动力学特性,不仅能掌握列车冲动的产生机理,也能为优化旅客列车平稳操纵办法提供一定的理论依据[7-8]。

西安—安康铁路(简称西康铁路)线路条件较复杂,全线坡度大、曲线半径小,列车操纵要求较高。

以西康铁路实际图定开行旅客列车编组情况为依据,选取既有国产某和谐型电力机车和120 km/h 速度等级25G 型旅客列车,利用多体系统动力学分析软件Universal Mechanism (简称UM ),通过构建一维列车纵向动力学计算模型,对常用和紧急制动工况下的旅客列车纵向动力学指标进行对比分析,同时选取该线路青岔—营镇下行区段作为研究区段,考虑其实际线路纵断面作者简介:陈然(1994—),男,助理工程师。

3 汽车纵向动力学解析

3 汽车纵向动力学解析
z x
u x
& p=φ
w z
γ=ψ &
x y
υ
y q=ϕ &
z
∑M I q′ − ( I − I ) pγ = ∑ M I γ ′ − (I − I ) pq = ∑ M
I x p′ − ( I y − I z )qγ =
y z x y
x y
∑ Fx )= z m s(w′ − u ⋅ q ) = ∑ F
y q =ϕ &
SAE坐标系
13
第三章
汽车纵向动力学
二、空间任一刚体的运动方程
ms (u′−υ⋅γ + w⋅q) = ms ms
∑F (v′−w⋅ p+u⋅γ ) = ∑F (w′−u⋅q+υ ⋅ p) = ∑F
z x
x y z
∑M I q ′ − ( I − I ) pγ = ∑ M I γ ′ − (I − I ) pq = ∑ M
2009-10-19 6
第三章
汽车纵向动力学
作用在每个驱动轮上的垂直载荷等于静态载荷加上动态载荷, 后者是由加速时的纵向载荷转移或驱动转矩造成的横向载荷转移引 起的。 (1) 驱动转矩引起的横向载荷转移 不管是前桥还是后桥,只要驱动桥是刚性桥就存在横向载荷转 移。绕车桥中心点的力矩平衡方程为:
∑T O = ( W
这部分在汽车理论和第二章 轮胎动力学中有相应介绍,在此不
再重复。
二、汽车加速性能
知道了驱动力和行驶阻力,就可以计算车辆的加速性能了。 1.取决于发动机功率的极限加速能力 2.取决于附着力的极限加速能力 假设发动机功率足够大,极限加速能力会受到轮胎与路面之间
摩擦系数的限制。这样的话,驱动力的极限值为:

汽车纵向动力学研究综述

汽车纵向动力学研究综述

Internal Combustion Engine&Parts・23・汽车纵向动力学研究综述Research Progress of Automobile Longitudinal Dynamics于旺YU Wang(沈阳理工大学汽车与交通学院车辆工程专业,沈阳110159)(Vehicle Engineering,School of Automobile and Transportation,Shenyang University of Technology,Shenyang110159,China)摘要:随着汽车工业的发展,汽车纵向动力学研究不断加深,汽车在道路上行驶,就会存在驱动、制动、滑移等纵向动力学方面的问题。

针对这一问题的研究,人们提出了汽车纵向动力学的概念。

汽车纵向动力学的研究主要包括:汽车制动动力学、汽车防抱死系统、汽车驱动防滑系统、汽车自适应巡航系统、汽车自动刹车系统。

本文将主要介绍汽车纵向动力学控制系统组成和原理、汽车制动动力学控制系统的研究进展、汽车防抱死系统的研究进展、汽车驱动防滑系统的研究进展、汽车自适应巡航控制系统的研究进展、汽车自动刹车辅助系统的研究进展。

Abstract:With the development of the automotive industry,the research on the longitudinal dynamics of automobiles has continued to deepen,and there are problems with longitudinal dynamics such as driving,braking,and slipping when the car is driving on the road.In view of this problem,people have proposed the concept of automobile longitudinal dynamics.The research of automobile longitudinal dynamics mainly includes:automobile braking dynamics,automobile anti-lock braking system,automobile driving anti-skid system, automobile adaptive cruise system,automobile automatic braking system.This article will mainly introduce the composition and principle of automotive longitudinal dynamics control system,the research progress of automotive brake dynamics control system,the research progress of automotive anti-lock system,the research progress of automotive drive anti-skid system,the research of automotive adaptive cruise control system Progress,research progress of auto brake assist systems.关键词:汽车;纵向动力学;防抱死;驱动防滑;制动动力学;自适应巡航;自动刹车;系统Key words:automobile;longitudinal dynamics;anti-lock braking;driving anti-skid;braking dynamics;adaptive cruise;automatic braking;system中图分类号:U469.72文献标识码:A文章编号:1674-957X(2020)24-0023-020引言目前城市的发展和道路的优化设计极大地考验了汽车在道路上的行驶性能,要想在现有的道路上道路上提高交通流量并控制交通事故的发生,这就要求汽车设计者能在提高汽车安全行驶的车速和减小汽车与前后车之间的距离(但能有足够的安全距离)的同时能够保证汽车的各方面的稳定性能。

纵向动力学性能分析ppt

纵向动力学性能分析ppt


➢驱动力定义为地面作用于驱动轮胎接地印迹内纵向作
用力的的合力。

Fx M H / rd M eigi0t / rd

动 ➢车辆沿前进方向的动力供求平衡方程
力 学
M et igi0
rd
(imv
mc )ax
(iG
fR )(mv
mc
)
g
CD
A
a
2
u2
6
汽 概述 第二节 动力性

➢车辆动力性由加速能力、爬坡能力和最高车速来衡量。
➢根据pme和ne确定该工况的燃油消耗率be (g/(kw.h))
17
汽 计算燃油消耗量
燃油消耗量的计算

➢单位时间的燃油消耗量

Btp be Pe / f
➢单位里程的燃油消耗量

Btr Btp / ua

➢对于循环行驶工况,须将过程划分成若干段稳定工况,分别计

算燃油消耗量,再求和。
➢若发动机处于不稳定工况,则只能求近似解。
30
汽 二、直线制动动力学分析

➢忽略坡度和空气对轴荷的影响,有

Fb maxb Fzs z
➢车辆制动时能得到的最大制动强度等于路面附着系数 统

zmax axb,max / g
➢为了在不同附着系数的路面上得到最好的制动效果,
力 需合理的分配前后轴制动力。
学 ➢理想制动强度与前轴制动力的关系
➢车辆总行驶阻力
车 系
FDem
(imv
mc )ax
(iG
fR )(mv
mc )g
CD A
a
2
u2

水平路面汽车滑行时纵向动力学性能分析

水平路面汽车滑行时纵向动力学性能分析

r a me t e r s i s e s t a b l i s h e d b y u s e o f he t l e a s t s q u a r e p r i n c i p l e .T h e t e s t s h o w s t h a t s p e e d a n d d e c e l e r a t i o n d e c r e a s e
理利用汽 车动力 , 降低汽车油耗具 有重要意义。根 据汽车纵 向动力 学分析 , 通 过滑行试 验 , 利用最 小二乘原 理建
立水平路 面车辆 滑行 时车速、 减速 度、 滚动 阻力与空气 阻力、 时间等参数变 化的关 系模 型。试验 表 明: 滑行车速 、 滑行减速度 随滑行 时间的延长而减小 , 滑行 减速 度、 滑行 阻力( 包 括 空气 阻力和滚 动 阻力) 随滑行 车速 的减 小而 减小。最后试验验证表 明, 所建立 的参 数关系模 型精 确度 较高, 该模 型对机 动车驾驶者选 择合 理、 经 济的滑行 方
式具 有 l 象考 和借 鉴价 值 。
关键词 : 汽车 ; 滑行试验 ; 行驶 阻力; 最小二乘原理 ; 模 型 中图分类号 : U 4 6 3 . 6 文献标识码 : A 文章编号 : ( 2 0 1 3 ) 0 4— 0 0 2 5— 4 0
Ana l y s i s o n Lo n g i t u d i n a l Dy n a mi c Pe r f o r ma n c e o f Ve h i c l e Wh i l e S l i d i n g o n Le v e l Ro a d
第4 期
2 0 1 3焦
陕 西 交 通 职 业 技 术 学 院 学 报

(整理)列车纵向动力学分析.

(整理)列车纵向动力学分析.

第一部分开行重载列车,就机车车辆本身来讲,重载列车技术涵盖牵引性能、制动系统性能、列车纵向动力学性能、机车车辆动力学性能、机车车辆及其零部件强度以及合理操纵方法等众多方面。

而重载列车的通信、纵向冲击力和长大下坡道的循环制动问题是开行重载列车的三大关键技术。

而这三大技术其实就是制动系统的三大难题。

下面就以制动系统来分析。

1.重载列车制动系统的关键技术制动系统对列车运行安全具有举足轻重的重要作用,随着铁道技术的不断进步,已出现了多种制动方式,但对货物列车而言,空气制动仍是最基本的制动作用方式。

众所周知,货物列车空气制动作用的制约因素甚多,列车长度就是主要影响因素之一。

我国重载列车的发展始于20世纪80年代,至今列车编组重量已由5 000t级提高到2万t以上,编组辆数从62辆增加到210辆之多,列车最大长度已达2·6 km以上,导致空气制动作用条件严重恶化。

1.1制动空走时间和制动距离影响货物列车紧急制动距离的主要因素除制动初速、线路条件(坡道)、列车制动率(每百吨重量换算闸压瓦力)和闸瓦性能以外,还有影响空走距离的空走时间,后者主要与列车长度或编组辆数有关。

笔者在根据上述因素编制我国《铁路技术管理规程》中的制动限速表时,对货物列车考虑的列车编组条件为5000t级以下,由于重载列车编组辆数的增加,必然导致制动空走时间和距离相应增加,加上长大列车压力梯度对后部车辆制动力的影响,因此该限速表不适用于重载列车。

对于重载列车,其制动力应比普通列车高,以保持和普通列车同等的制动距离。

1.2充气作用和长大下坡道的运行安全列车空气制动后的再充气时间随编组辆数的增加而呈非线性的增加。

重载列车需要有比普通列车长得多的再充气时间,因此,在长大下坡道多次循环制动作用时对司机操纵方法特别是再充气时间的要求更高。

1.3减轻列车纵向动力作用货物列车在纵向非稳态运动过程中产生的纵向动力作用不仅是导致断钩、脱轨等重大事故的主要原因,也是破坏货物完整性和加速机车车辆装置疲劳破坏的重要因素。

汽车纵向动力学

汽车纵向动力学

tan G,max, ,r
表5-5 不同驱动形式不同路面附着下车 辆的加速及爬坡能力
驱动效率
• Fzs
W
驱动轴静载 与整车重量 之比
制动性
汽车行驶时能在短距离内停车且维持行驶方向稳定性
和在下长坡时能维持一定车速的能力,称为汽车的制动性。
制动性是汽车主动安全性的重要评价指标。 制动性的评价指标包括: 制动效能—制动距离与制动减速度; 制动效能恒定性; 制动时的方向稳定性。
纵向动力学
纵向动力学性能分析
• • • • • 动力的需求与供应 动力性 燃油经济性 驱动与附着极限和驱动效率 制动性
驱动力平衡图

动力的需求与供应
• 车辆对动力的需求(行驶阻力)
稳态匀速行驶阻力
车轮滚动阻力、空气阻力、坡度阻力
瞬态加速行驶阻力(加速阻力)
车辆对动力的需求
FG (mv mc ) g sin G (mv mc ) giG
Btp
里程燃油消耗量
be Pe


be PmeVs nei
f
f
cf
be PmeVs nei Btr cf ua f ua
Btp
减少油耗的途径
• Btr

f
be
be
( FDem 1
M Lig i0 rd
)
f t
be

1
FDem
f t
[(mv mc ) g ( f R cos G sin G ) CD A
a
2
(u uw ) mg sin G max
2
f
b h a mgf ( cos sin G ) x R G 2 rd L L

zaigai 汽车系统动力学报告

zaigai 汽车系统动力学报告

汽车系统动力学课程学习(MATLAB)小组报告指导教师:杨树军组别:第五组组长:陈全祥 S150********组员:赵建兵S150********魏志斌 S150********魏庆 S150********刘维 S150********刘志雷 S150********2015年12月11日一、纵向动力学性能分析1、三点插值法确定发动机外特性方程,该方程的曲线是一个二次曲线,方程如下:Me=(n-ne1)(n-ne2)Te3/(ne3-ne1)(ne3-ne2) + (n-ne1)(n-ne3)Te2/(ne2-ne1)(ne2-ne3)+ (n-ne2)(n-ne3)Te1/(ne1-ne2)(ne1-ne3)曲线如下:2、计算最高车速最高车速可用驱动力行驶阻力平衡图求解。

各档位下的驱动力曲线和行驶阻力曲线的交点所对应的车速即为该车辆的最高车速。

行驶阻力—滚动阻力—空气阻力—驱动力注:在求最高车速时不能直接用最高档的驱动力等于行驶阻力得出最高车速,因为有些车辆的最高车速的档位不一定是最高档。

汽车最高车速=92.2736()3、最大爬坡度一档时候汽车有最大爬坡度。

一档最大驱动力阻力利用,解出的值。

本程序中利用图像法得到交点,交点对应的横坐标就是最大爬坡角度。

汽车最大爬坡角=4、计算各档的最大加速度当汽车在平直道路上加速时可以忽略道路阻力和空气阻力,则有:如图所示:1.6713 1.2590 0.9348 0.6731 0.4627 0.3050 0.1908 0.1069二、基于MATLAB的单轮模型ABS控制仿真1 动力学建模 1.1 单轮模型某车辆简化后的单轮制动力模型如图所示。

其中单轮质量为,车轮滚动半径为,车轮转动惯量为,车轮旋转角速度为,车轮中心前进速度为,地面制动力为,作用于车轮的制动力矩为。

忽略空气阻力和车轮滚动阻力,则系统的运动方程如下: (1)(2)公式中,地面制动力等于作用于车轮的法向反力与路面附着系数的乘积,其中为制动滑移率的函数。

磁悬浮列车动力学性能分析

磁悬浮列车动力学性能分析

磁悬浮列车动力学性能分析磁悬浮列车是一种基于磁悬浮技术实现高速运输的先进交通工具。

相比传统的轮轨列车,磁悬浮列车具有更高的速度、更低的噪音和更少的振动,因此备受关注。

在设计和运行磁悬浮列车时,动力学性能分析是至关重要的,它可以帮助我们了解列车的运行过程中的行为和性能,从而进一步优化设计和改进运营。

一、动力学性能分析的意义动力学性能分析主要是研究车辆在运行过程中的力学相互作用,包括加速度、速度、位移等参数的变化规律。

通过动力学性能分析,可以评估列车在直线段、曲线段、上坡道、下坡道等各种工况下的运行状况,帮助设计师和工程师更好地理解列车的性能和特点,从而进行优化和改进。

二、磁悬浮列车的动力学特点1. 纵向动力学:磁悬浮列车的纵向动力学主要指列车的加速度、速度和制动过程。

由于磁悬浮列车采用磁力进行悬浮,不需要轮轨间的摩擦力来提供纵向牵引力,因此列车的加速度和制动能力较强,能够实现更高的加速度和制动延迟。

2. 横向动力学:磁悬浮列车的横向动力学主要指列车在曲线段上的侧向加速度和侧向力。

由于磁悬浮列车采用磁力进行悬浮,不受轨道的限制,因此可以实现更大的侧向加速度和更小的侧向力,从而提供更高的曲线通过速度。

3. 垂向动力学:磁悬浮列车的垂向动力学主要指列车在起伏路段上的垂向加速度和垂向动态不平顺。

由于磁悬浮列车采用磁力进行悬浮,不需要轮轨间的接触力来支撑车体重量,因此可以实现更平稳的行驶。

三、动力学性能参数的评估1. 加速度:列车的加速度是指列车速度变化率随时间的导数。

通过评估列车在不同工况下的加速度,可以了解列车的加速度性能和加速度变化情况,为优化列车设计和提高运行效率提供参考。

2. 速度:列车的速度是指列车在单位时间内所运行的路程。

通过评估列车在不同工况下的速度变化,可以了解列车的速度性能和速度变化情况,为优化列车设计和提高运行效率提供依据。

3. 位移:列车的位移是指列车在单位时间内所运行的累积路程。

通过评估列车在不同工况下的位移变化,可以了解列车的位移性能和位移变化情况,为优化列车设计和提高运行效率提供参考。

基于车辆动力学的车辆稳定性分析与优化

基于车辆动力学的车辆稳定性分析与优化

基于车辆动力学的车辆稳定性分析与优化随着汽车行业的不断发展,越来越多的人选择汽车作为自己生活和工作中的必备交通工具。

在选择汽车的时候,人们不仅关注车辆外观和内饰,还要关注车辆的安全性和稳定性。

车辆的安全性和稳定性对于驾驶员和乘客的安全有着至关重要的作用。

在此背景下,研究基于车辆动力学的车辆稳定性分析和优化就显得尤为重要。

一、车辆动力学的基本知识要研究车辆稳定性分析和优化,首先需要了解汽车的基本动力学知识。

汽车的动力学主要包括三个部分:速度动力学、横向动力学和纵向动力学。

1.速度动力学速度动力学是指车辆在不同速度下的性能表现。

其中包括加速、制动、绕桩、绕弯等。

2.横向动力学横向动力学是指汽车在转向时的行驶性能,包括转向稳定性、悬挂系统、转向轮胎等。

3.纵向动力学纵向动力学是指汽车在加速、制动和坡道起步等情况下的性能表现。

车辆动力学是汽车工程师必须了解的基础知识,只有熟悉车辆动力学,才能保证车辆的安全性和稳定性。

二、影响车辆稳定性的因素车辆稳定性受到许多因素的影响,通常包括以下几个方面:1.车辆重心高度车辆重心越低,车辆越稳定。

因此,在设计汽车时,要尽可能将车辆的重心降低,以提高车辆的稳定性。

2.轮胎性能轮胎是汽车性能的重要组成部分,轮胎的选择和性能影响车辆的稳定性。

结构牢固、抓地力强的轮胎能提高车辆的稳定性,并有效降低悬挂系统的损坏程度。

3.转向系统转向系统是汽车的核心部件之一,影响着车辆在转向时的稳定性。

一个优秀的转向系统能够提供良好的转向性能,并确保车辆在高速行驶和高难度驾驶条件下的稳定性。

4.悬挂系统悬挂系统是汽车行驶中最重要的组成部分之一,对车辆的稳定性和舒适性有着重要的影响。

初步、更新的悬挂系统可以提高汽车的稳定性,更好地适应不同的路况。

以上是影响车辆稳定性的几个重要因素,在进行车辆稳定性分析时,需要将这些因素综合考虑。

三、基于车辆动力学的车辆稳定性分析与优化为了提高车辆的稳定性,需要进行基于车辆动力学的分析和优化。

《纵向动力学》课件

《纵向动力学》课件

纵向动力学的应用领域
航空航天
研究飞行器的起飞、降 落、机动飞行等过程中
的纵向动力学行为。
建筑
分析高层建筑的振动、 稳定性及抗震性能。
机械工程
研究各种机械设备的振 动、平衡及稳定性问题

交通运输
研究车辆、船舶、轨道 车辆等的纵向动力学性
能及安全稳定性。
纵向动力学的发展历程
基础理论建立
纵向动力学的基础理论在19世纪开始 建立,包括牛顿的经典力学理论。
详细描述
边界元法在处理复杂几何形状和边界条件时具有高效性和精度,适用于求解偏微分方程和积分方程。然而,对于 大规模问题,边界元法可能存在计算效率和精度方面的挑战。
离散单元法
总结词
离散单元法是一种基于离散化模型的数 值分析方法,通过将连续体离散化为一 系列相互连接的单元,来模拟物体的运 动和相互作用。
复杂结构系统的纵向动力学研究
总结词
复杂结构系统的纵向动力学研究将更加受到关注。
详细描述
复杂结构系统如航空航天器、大型机械等具有多自由度 、多因素耦合的特点,其纵向动力学行为非常复杂。未 来研究将进一步探索复杂结构系统的纵向动力学特性, 包括稳定性、控制策略等方面的内容。
智能材料的纵向动力学研究
总结词
发展与应用
现代研究
现代纵向动力学研究涉及到非线性、 复杂系统、智能材料等方面的研究, 为解决实际问题提供了更深入的理论 基础。
随着科技的发展,纵向动力学在各个 领域得到广泛应用,如航空航天、建 筑、机械工程等。
02
纵向动力学的基本原理
牛顿第二定律
总结词
描述物体运动状态改变与作用力之间 的关系。
详细描述
纵向动力学
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 f Fx2 it0 Fy2 / Fz2







1/2
根据ax和各车轮附着率f,计算各车轮的制动效率。
E ax / g / f
36
转弯制动动力学分析
汽 车
FIAT124车转弯制动工况下的制动效率




若不考虑旋转质量的影响,


i=1,加速能力曲线与后备
驱动力曲线一致。 重型货车低速档i较大,对 加速能力的影响也很大。 图5-8 重型货车旋转质量系数对加速能力的影响
11

汽 后备功率 车
P ex F x,ex u (i mv mc )amax u





图5-9 加速能力与后备功率关系的功率平衡图
2





图5-20 理想的制动力分配曲线 曲线形状取决于车辆质心位置和车辆装载情况。
32
汽 车
三、制动稳定性分析
后轮抱死时,在侧向干扰力的作用下,前轮侧向力将 产生不稳定力矩,使车辆侧偏角增加。





图5-21 前轮和后轮先抱死时的运动车辆情况分析
33
汽 车
四、转弯制动动力学分析
车辆在转弯制动时,轮胎必须提供足够的纵向力和侧向力。
换算到驱动轮上的当量转动惯量Θ ,应包括车轮、制动盘等所 有相关旋转部件的转动惯量。

25
汽 车
三、前后轴的附着率
驱动附着率f定义为纵向驱动力与法向力的比值。


Fxf ff , Fzf
Fxr fr Fzr


附着率与附着系数不同,是车辆所需驱动力与法向载荷的比值, 是附着系数中已经利用了的部分。 附着系数是车辆能得到的最大驱动力与法向载荷的比值。
电涡流缓速器能维持更高的稳定车速;


在低速范围内,发动机制动的效果更好。



图5-12 采用发动机制动和电涡流缓速器的车辆下坡 行驶稳定性分析
15
汽 车
第三节
燃油经济性
燃油消耗量的计算
单位里程燃油消耗量Btr和单位时间燃油消耗量Btp 根据发动机万有特性图可得到燃油消耗率曲线








图5-15 匀速工况下某货车不同档位下的燃油消耗量
21
减少油耗的途径
汽 不同动力总成匹配方案的工作特性 车 CVT系统可以根据所需功率控制传动比,在发动机特性图 上任意选择工作点,使发动机总是工作在最省油的工况。





图5-16 发动机特性曲线与功率需求曲线
22
减少油耗的途径
Ef z / ff zFzf / Fbf , Er z / f r zFzr / Fbr
30
汽 车
二、直线制动动力学分析
忽略坡度和空气对轴荷的影响,有


Fb maxb Fzs z
车辆制动时能得到的最大制动强度等于路面附着系数


zmax axb,max / g
12
汽 车
传动系统设计方案的影响
在设计传动系统时,必须校核每个档位的加速能力和 爬坡能力。 不同坡度下的驱动力(功率)平衡图
一档能爬上40%的坡度





图5-10 不同坡度情况下的驱动力和驱动功率平衡图
13
汽 车
换档策略
发动机达到最高转速;
传动系统设计方案的影响
为实现车辆的最大加速能力,换档的最佳时机应为
a
2
u2

6
汽 车
概述
第二节
动力性
车辆动力性由加速能力、爬坡能力和最高车速来衡量。


驱动力平衡图
根据发动机外特性曲线计算 得到。 表示某工况的动力供求关系。



PNmax为汽车能产生的最大功率
特性曲线。
图5-4 驱动力平衡图(水平路面行驶工况)
7
汽 驱动功率平衡图 车 将某车速下的驱动力和行驶阻 力值与车速相乘得到的 传递至轮毂的功率PH 行驶时需克服的功率PDem 即功率供应和功率需求
图5-1 加速上坡时车辆受到的行驶阻力示意图
2
Байду номын сангаас
汽 等效转动惯量 车
车辆对动力的需求
等效转动惯量必须考虑所有传动部件的转动惯量,包 括所有车轮。 等效的原则是保持动能一致。


Θi Θw i Θdr i i (Θe Θc ΘTi )
2 0 2 2 0 g



图5-2 非匀速工况下需考虑的旋转质量的转动惯量
,μ ,f amax
μb fa g L (μ f R )h
27
汽 车
五、驱动效率
1、定义:驱动轴静载与整车重量的比值


Fzs / W
2、驱动效率决定着车辆的驱动能力和附着极限 3、驱动效率与车辆质心位置相关
主要取决于发动机位 置和装载情况; 与动态载荷的转移和 上坡时轴荷转移有关。
相邻高档能够提供比当前档位更高的加速度。


各档后备驱动力曲线的交点即代表了相邻两档间的最 佳换档时机。



图5-11 旋转质量换算系数对加速工况下最佳换挡时机的影响
14
汽 由于坡度阻力与汽车行驶方向相同,导致阻力曲线处于横 车 轴以下;
下长坡时的行驶稳定性分析
为增大阻力,需采用缓速装置


图5-13 发动机万有特性图
16
汽 该工况燃油消耗率的确定 车辆行驶所需发动机转矩 车
燃油消耗量的计算


M Dem
ML为转矩损失。
FDem rd ML i g i0


所需发动机缸内平均有效压力
pme
发动机转速
2 M Dem Vs i

Vs为发动机排量,i为每缸每转点火次数。
不同行驶工况,附着率是不同的;

驱动轮才有附着率,教材表5-4。
26
汽 车
四、由路面附着限制的加速或爬坡能力
若潜在的附着力全部用于克服加速或上坡阻力,则可 列出平衡方程。 计算出车辆在不同驱动形式和行驶工况下的各项性能 表达式。(表5-5) 前轮驱动汽车在水平路面的起步加速能力





汽 水平路面匀速行驶的燃油消耗曲线 车 考虑变速器的增矩作用和传动系的功率损失,将随车速 变化的滚动阻力曲线转换到发动机万有特性图上。





图5-14 发动机特性曲线与功率需求曲线
20
减少油耗的途径
汽 有级变速器车辆的油耗状况 车 相同车速下,高速档的燃油消耗量少; 常用档位的燃油消耗量曲线应当尽量靠近最省油的工 作点。
5
汽 车
车辆的动力供应
驱动力定义为地面作用于驱动轮胎接地印迹内纵向作 用力的的合力。


Fx M H / rd M eigi0t / rd
车辆沿前进方向的动力供求平衡方程


M et igi0 rd
( i mv mc )ax (iG f R )(mv mc ) g CD A
汽 车
车辆燃油消耗量的影响因素
轿车车辆参数变化对燃油消耗量的影响





图5-17 各参数的变化对轿车燃油消耗量的影响 对于货车,整车质量对滚动阻力和耗油量起决定作用。 常以最高车速行驶,调整空气动力学参数更为重要。
23
汽 车
第四节 驱动与附着极限和驱动效率
一、车辆所受的垂向力
车辆所受的垂向载荷Fz由静载Fzs、动载Fzd、坡道分量 Fzg和空气动力学分量FL组成。
直线制动时的最佳制动效能,转弯时不一定能达到。 当转弯加剧时,制动减速度(制动效率)将减小。





图5-22 后轴制动效率与车速和转弯半径的关系
34
转弯制动动力学分析
汽 车辆转弯制动时的受力状况 车 转弯制动时,车辆的纵向减速度、侧向加速度和车身侧 倾都会使各个轮胎的垂向载荷发生变化。


sin G,max
Fx,ex (mv mc ) g



图5-7 后备驱动力与爬坡能力关系的驱动力平衡图
10
汽 车
加速能力
车辆加速能力用可达到的最大加速度来表示。 车辆要想达到最大加速度,后备驱动力需全部用来克 服加速阻力


Fx,ex (i mv mc )amax



图5-19 不同驱动方式下车辆的驱动效率与装载情况的关系
28
汽 车
第五节 制动性
一、制动性的评价
1、车辆制动性能的评价
制动效能 ——制动距离和制动减速度 制动效能的稳定性




——连续制动时保持一定制动效能的能力
制动时的方向稳定性 ——不跑偏、不侧滑、不失去转向能力

29
制动性的评价
汽 车
2、制动强度与制动效率
制动强度定义为车辆制动减速度与重力加速度的比值, 是制动效能的评价指标。


z axb / g
相关文档
最新文档