酯化反应技术进展

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

酯化反应技术进展

羧酸酯是一种重要的有机化合物,不仅可作为有机合成原料,而且是重要的精细化工产品,广泛应用于香料、日化、食品、医药、橡胶、涂料等行业。该产品传统的合成方法是以相应的羧酸和醇为原料,采用浓硫酸为催化剂来制取,该法副反应多、后处理工艺复杂、设备腐蚀严重、废酸排放污染环境。近年来国内外学者对羧酸酯的合成尤为重视,在化学催化、物理催化、生物催化及反应工艺上都有所突破,使酯化产率大大提高,产品色泽大有改观。

1 化学催化技术

酯化反应催化剂一直是化学家研究的重点。近年来,先后有以硫酸为代表的一般强酸型催化剂,以盐酸盐、硫酸盐为代表的无机盐催化剂,以阳离子交换树脂、沸石分子筛为代表的固体酸催化剂,以钨、钼和硅的杂多酸为代表的固体杂多酸催化剂,负载型的固体超强酸催化剂,以及一些非酸催化剂如氧化铝、二氧化钛、氧化亚锡、钛酸酯类,它们可单独使用,也可制成复合催化剂。这些催化剂的应用已基本趋于成熟,最近化学催化技术又有一些新的进展。

1.1 相转移催化酯化

20世纪70-80年代,相转移催化技术已用于酯类合成。由于相转移催化剂能穿越两相之间,从一相提取有机反应物进入另一相反应,因而可克服有机反应的界面接触、扩散等困难,使反应能在温和的条件下进行,显著加快了反应速度,提高了产率。相转移催化反应可用下面通式表示:

Q+RCOO-+R'OHDRCOOR'+Q+OH-(有机相)

↑↓

Q+RCOO-+H2O DRCOOH+Q+OH-(水相)

各种非均相体系都可实现相转移催化反应,关键是寻找合适的催化剂。对于酯化反应,催化剂应用最多的是季铵盐,其优点是制造方便、价格较低和应用面广。王科军等人以季铵盐A-1为相转移催化剂,苯为溶剂,由正丁醇与正丁酸一步反应合成丁酸丁酯,在醇酸摩尔比1.3:1,催化剂质量分数(以反应物总质量计)4.0%,反应温度25-30℃,反应时间30min 的优化反应条件下,酯收率可达94.1%。周建伟用季铵盐CTAMB(溴化十六烷基三甲铵)为相转移催化剂对乙酸异戊酯的酯化反应进行了研究。为进一步提高催化剂活性,李红缨等选用低交联聚苯乙烯凝胶季铵树脂作三相相转移催化剂,催化合成乙酸苄酯。文瑞明则用聚苯乙烯二乙醇胺树脂催化苄氯与丙酸的酯化反应,取得满意效果。相转移催化还较适合于羧酸盐与卤代烷反应生成相应酯,催化效率高。成本诚报道了季铵盐Q-1相转移催化合成乙酸苄酯,加入质量分数5%的催化剂(相对于苄氯),回流反应2h,收率达89%。

1.2 室温离子液体(RTIL)催化酯化

室温离子液体是指主要由有机阳离子和无机或有机阴离子构成的在室温或近于室温下呈液态的盐类,它们具有很多分子溶剂不可比拟的独特性能。在RTIL中进行催化酯化反应,研究结果表明,RTIL具有良好的催化活性。该法不仅可得到好的转化率与产率,而且与传统方法相比,具有2个明显优势:①反应产物(酯类)不溶于RTIL,可很容易分离出来;②RTIL 经高温脱水处理后可重复使用。酸性的氯化铝离子液体就可用于醇酸酯化反应,但由于酯化过程有水产生,氯铝酸离子液体难免会有一定程度的破坏,将磺酸基引入到离子液体的阳离子烷基链上,可得到Bronsted酸(布朗斯酸)性离子液体,其在催化多种醇酸酯化反应时表现出一定的活性。Trissa等人研究了乙酸和苯甲醇的酯化合成,用1-丁基-3-甲基咪唑对甲苯磺酸盐离子液体催化剂,反应2h最大转化率及产品选择性均达100%,并且产品易分离,除水后催化剂可重复使用4次。

1.3 离子型有机金属化合物催化

近年来,含氟有机阴离子金属盐以其超强的Lewis酸催化活性受到人们关注。已报道的一系列新型全氟氮超酸镧系金属盐Ln(N(SO2CF3)2)3(简称Ln(NTf2)3)均相催化剂,具有较高催化活性,其中将三(双(三氟甲基磺酰亚胺))镱(Yb(NTf2)3)用于酯化反应中,催化苯甲酸与乙醇、异丙醇、叔丁醇和二甘醇的酯化反应,取得了较好的效果。在相同实验条件下,Yb(NTf2)3催化合成苯甲酸乙酯的活性比浓硫酸高出46%,较Lewis酸SnCl2催化活性高出58%;与含氟氧超酸盐Zn(OTf)2和Yb(Otf)3相比,Yb(NTf2)3也表现出明显的优势,说明Yb(NTf2)3是催化酯化反应较好的Lewis酸催化剂。

用三氟甲基磺酸钪催化邻苯二甲酸酐与邻、间二苯酚酯化,其酯化率均在95%以上。三氟甲基磺酸钪甚至可容易地催化高位阻芳香酸如2,4,6-三甲基苯甲酸的酯化,而四氟甲基磺酸钪对苯甲酸与醇的酯化反应也有较好的催化活性。铪的4价盐如氯化铪、叔丁氧基铪等对反应物摩尔比等于其化学计量比的酯化反应催化效果十分显著。最近的研究还表明,有机锡阳离子型化合物作为Lewis酸对酸酐与醇的酯化也有较好的催化能力。

2 物理催化技术

2.1 微波酯化

微波化学反应器的研究经历了从高压到常压、从间歇到连续操作方式的变化。1986年Gedye等将苯甲酸和甲醇密封于用聚四氟乙烯制成的反应器中,在微波炉内靠微波加热进行酯化反应。由于在密封反应器内进行,反应体系可获得瞬间高温高压,极大提高了反应速率,5min后苯甲酸甲酯收率达76%,反应速率较传统加热提高96倍。但这种高压条件易使反应器变形或爆裂,同时也难以对反应进行控制和监测。为实现微波常压反应,1992年刘福安对微波炉进行改造:反应器放在微波炉内,在微波炉顶部打孔,通过顶部开孔外接搅拌、分水和滴液装置。至此,微波常压装置发展到较完备的程度,装置简单,操作方便安全。

在微波加热下酯化反应产率高,副反应少,选择性强,反应速度快,反应时间可从数小时缩短到几分钟。氯乙酸异丙酯是一种重要的医药中间体,以活性炭负载对甲苯磺酸作催化剂,采用微波加热酯化收率提高20.3%,产品纯度达到99.8%,并且减少了环境污染和设备腐蚀。由于活性炭具有较强微波吸收能力,使催化剂温度增加,催化活性增大,促使反应物分子活化,从而加速反应进行,提高目标产物收率;同时活性炭具有吸附和脱色作用,使产品纯度增高,后处理简单。吴东辉研究了马来酸酐和正辛醇的双酯化反应,以活性炭固载对甲苯磺酸作催化剂,微波作用下回流20min,产率由传统加热下的73.0%提高到89.4%,产物选择性由89.6%提高到99.5%,可见微波作用下酯化反应收率和产物选择性都明显高手常规加热方式。

2.2 磁场对酯化反应的影响

有机磁化学是研究外磁场对有机化学反应影响的一门交叉边缘学科,主要研究磁场对反应的催化作用、反应选择性、反应速率和产率的影响等,已成为有机化学的一个新的生长点。对磁化学进行深入细致研究,对于化学、化工及医药工业的发展具有重要的理论和实践意义,甚至可能改变或完善传统的化学理论,开辟化学科学的新方向。

外磁场对乙酸乙酯合成有催化作用,不仅能提高酯化反应产率,而且能使反应体系的电导率发生变化,使乙醇的氢键缔合程度降低,从而使反应速度加快。反应体系在0.35T的磁场中处理后,酯产率净增超过50%。胡奇林等研究发现,在0.3T的磁场中乙酸与正丁醇混合,酯产率最高,正丁醇的黏度和表面张力下降最大。IR显示经磁场处理后,正丁醇的羟基伸缩振动吸收峰变窄,表明磁场能够降低体系内分子间的氢键缔合,增强醇与酸的反应活性。

2.3 超声酯化

近年来,超声化学也引起了国内外化学工作者的普遍关注。超声波作为一种物理方法,对促进有机化学反应,提高反应产率,甚至改变反应历程,都有一定作用。在超声辐射下进

相关文档
最新文档