大学物理(下)知识点、重点及难点

合集下载

大学物理教案完整版

大学物理教案完整版

大学物理教案完整版一、教学内容本节课选自《大学物理》教材第四章第一节,详细内容为“牛顿运动定律及其应用”。

主要围绕牛顿三定律展开讲解,包括定律的内容、物理意义、适用范围等,并通过具体实例分析其在实际问题中的应用。

二、教学目标1. 理解并掌握牛顿运动定律的基本原理及其在实际问题中的应用。

2. 能够运用牛顿运动定律分析、解决简单的物理问题。

3. 培养学生的逻辑思维能力和科学素养,激发学生对物理学的兴趣。

三、教学难点与重点重点:牛顿运动定律的基本原理及其在实际问题中的应用。

难点:运用牛顿运动定律分析、解决物理问题。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备、实验器材(如小车、滑轮、砝码等)。

2. 学具:教材、笔记本、计算器。

五、教学过程1. 导入:通过一个简单的实践情景(如小车受力加速运动),引导学生思考力与运动的关系,激发学生的学习兴趣。

2. 基本概念:讲解牛顿运动定律的基本概念,包括定义、物理意义等。

3. 例题讲解:选取典型例题,讲解如何运用牛顿运动定律解决问题。

4. 随堂练习:布置一些简单的练习题,让学生当堂完成,巩固所学知识。

5. 实验演示:进行实验演示,让学生直观地感受牛顿运动定律在实际问题中的应用。

7. 互动提问:鼓励学生提问,解答学生在学习过程中遇到的问题。

六、板书设计1. 牛顿运动定律基本原理。

2. 例题解题步骤。

3. 重点、难点知识点。

七、作业设计1. 作业题目:(1)已知物体质量m,初速度v0,受力F,求物体在t时间内的位移s。

(2)一物体从高处自由落下,忽略空气阻力,求物体落地时的速度v。

2. 答案:(1)s = v0t + (1/2)F/m t^2(2)v = sqrt(2gh)八、课后反思及拓展延伸2. 拓展延伸:鼓励学生阅读物理学史相关资料,了解牛顿等物理学家的成就,激发学生学习物理的兴趣。

同时,布置一些拓展性题目,提高学生的综合运用能力。

重点和难点解析1. 教学目标的设定2. 教学难点与重点的识别3. 例题讲解与随堂练习的设计4. 实验演示的有效性5. 作业设计的深度与广度6. 课后反思与拓展延伸的实践一、教学目标的设定1. 确保学生理解牛顿运动定律的基本原理,通过实例分析,使学生掌握定律在实际问题中的应用。

大学物理角动量转动惯量及角动量的守恒定律

大学物理角动量转动惯量及角动量的守恒定律

方向垂直于轴,其效果是改
变轴的方位,在定轴问题中,
第二项
与轴承约束力矩平衡。
M 2rF
方称为向力平对行于轴的轴矩,,其效表果为代是数改变量绕:轴M 转z 动 状r态,F
即: i j k
Mo rFx y z
Fx FyFz
i yFz zFy jzFxxFzk xFyyFx
Mz xFyyFx

rc
i
miri M
rc
i
miri M
ri m ivcM rc vc0
i
质心对自己的位矢
L r c m iv ir i m iv c r i m iv i
i
i
i
与 i 有关
第三项:
rimivi 各质点相对于质心角动量的矢量和
i
反映质点系绕质心的旋转运动,与参考点O的选择无关,
o ri
vi
mi
L io 大 方小 向 Lio : : rimiv沿 i miri2 即 L iomiri2
在轴上确定正方向,角速度 表示为代数量,则
定义质点对 z 轴的角动量为:
LizLiom iri2
刚体对 z 轴的总角动量为:
Lz Liz ri2mi
i
i
ri2mi
i
对质量连续分布的刚体:
02
3
4. 求质量 m ,半径 R 的均匀球体对直径的转动惯量
解:以距中心 r,厚 dr 的球壳
dr
R
r
o
为积分元
dV4r2dr
m
m
4 R3
3
dJ3 2dmr22m R3 4rdr
dm dV
J
R
dJ

大学物理学习知识重点(全)

大学物理学习知识重点(全)

y第一章 质点运动学主要内容一.描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r r称为位矢位矢r xi yj =+r v v ,大小 r r ==v 运动方程()r r t =r r运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆r rr r r△,r =r△路程是△t 时间内质点运动轨迹长度s ∆是标量。

明确r ∆r 、r ∆、s ∆的含义(∆≠∆≠∆rr r s ) 2. 速度(描述物体运动快慢和方向的物理量)平均速度 x y r x y i j i j t t tu u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt∆→∆==∆r r r(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ϖϖϖϖϖϖ+=+==,2222y x v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛==ϖϖ ds dr dt dt=r 速度的大小称速率。

3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆rr 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆r r r r △ a r方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x ϖϖϖϖρϖ2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dtdv dt dv a a a y x y x ϖ二.抛体运动运动方程矢量式为 2012r v t gt =+r rr分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。

2024版大学物理(下)电子工业出版社PPT课件

2024版大学物理(下)电子工业出版社PPT课件

01大学物理概述与回顾Chapter01掌握物理学基本概念、原理和定律,理解物质的基本结构和基本相互作用。

020304培养科学思维能力和分析解决实际问题的能力。

了解物理学在科学技术发展中的应用和对社会发展的影响。

养成良好的学习习惯和严谨的科学态度。

大学物理课程目标与要求01020304牛顿运动定律、动量守恒定律、能量守恒定律等。

力学热力学第一定律、热力学第二定律、气体动理论等。

热学库仑定律、电场强度、电势差、磁场强度等。

电磁学光的干涉、衍射、偏振等基本概念和原理。

光学上学期知识点回顾01020304振动与波动量子力学基础电磁波的辐射与传播固体物理基础本学期学习内容预览010204学习方法与建议认真听课,做好笔记,及时复习巩固所学知识。

多做习题,加深对物理概念和原理的理解。

积极参加课堂讨论和实验活动,提高分析问题和解决问题的能力。

拓展阅读相关物理书籍和文献,了解物理学前沿动态。

0302电磁学基础Chapter静电场的定义与性质库仑定律电场强度与电势高斯定理静电场及其性质恒定电流与电路分析电流的定义与分类欧姆定律基尔霍夫定律电阻、电容和电感磁场与磁感应强度磁场的定义与性质磁感应强度的定义与计算磁场的高斯定理与安培环路定律磁场对运动电荷的作用力电磁感应定律及应用电磁感应现象与法拉第电磁感应定律描述磁场变化时产生感应电动势的规律。

楞次定律与自感、互感现象描述感应电流的方向以及自感、互感现象中感应电动势的大小和方向。

磁场的能量与磁场力做功描述磁场中储存的能量以及磁场力对电流做功的过程。

电磁感应在日常生活和科技中的应用如交流电的产生、电动机和发电机的原理、电磁炉和微波炉的工作原理等。

03振动与波动Chapter物体在平衡位置附近做周期性的往返运动,称为简谐振动。

简谐振动的定义特征量简谐振动的运动学方程简谐振动的动力学特征振幅、周期(或频率)、相位。

描述简谐振动物体位移随时间变化的规律。

满足F=-kx的回复力特征。

大学物理电磁学课件

大学物理电磁学课件

大学物理电磁学课件一、教学内容本节课的教学内容来自于人教版小学科学教材《科学》四年级下册第五单元第3课《电流与磁场》。

本节课的主要内容包括:电磁铁的制作、电磁铁的极性、电磁铁的磁性强弱以及电磁铁的应用。

二、教学目标1. 让学生了解电磁铁的制作方法和原理,知道电磁铁的极性和磁性强弱与哪些因素有关。

2. 培养学生动手操作和观察实验的能力,提高学生的科学思维能力。

3. 培养学生对电磁学的兴趣,激发学生探究科学的欲望。

三、教学难点与重点重点:电磁铁的制作方法、电磁铁的极性、电磁铁的磁性强弱。

难点:电磁铁的磁性强弱与电流大小、线圈匝数的关系。

四、教具与学具准备教具:电源、电磁铁、铁钉、导线、开关、电流表、滑动变阻器、磁铁。

学具:学生实验套件(含电磁铁、铁钉、导线、开关、电流表、滑动变阻器、磁铁)、笔记本。

五、教学过程1. 实践情景引入:让学生观察生活中常见的电磁铁现象,如电铃、电磁起重机等,引导学生思考电磁铁的原理和应用。

2. 知识讲解:讲解电磁铁的制作方法、极性、磁性强弱以及影响磁性强弱的因素。

3. 实验演示:教师演示如何制作电磁铁,并展示电磁铁的极性和磁性强弱现象。

学生分组进行实验,观察并记录实验现象。

4. 随堂练习:让学生结合实验现象,分析电磁铁的极性和磁性强弱与哪些因素有关。

5. 例题讲解:讲解电磁铁在实际应用中的例子,如电磁起重机、电铃等。

6. 小组讨论:让学生分组讨论电磁铁在生活中的应用,并分享讨论成果。

7. 板书设计:板书电磁铁的制作方法、极性、磁性强弱以及应用。

8. 作业设计(1)请描述电磁铁的制作方法。

(2)请说明电磁铁的极性和磁性强弱与哪些因素有关。

(3)请举例说明电磁铁在生活中的应用。

六、课后反思及拓展延伸2. 拓展延伸:邀请相关领域的专家或企业代表,进行专题讲座或实地考察,让学生更深入地了解电磁铁在实际生产生活中的应用。

3. 下一节课内容预告:电流与磁场的关系。

重点和难点解析一、教学内容本节课的教学内容主要来自于人教版小学科学教材《科学》四年级下册第五单元第3课《电流与磁场》。

《大学物理C(下)(1)》教学大纲

《大学物理C(下)(1)》教学大纲

大学物理C(下)课程教学大纲(College PhysicsC(II))一、课程概况课程代码:0802006学分:2学时:33先修课程:高等数学适用专业:土木工程专业及城市地下空间专业教材:马文蔚《物理学》(上、下册)(第六版)2014高等教育出版社;或赵近芳《大学物理学》(上、下册)(第5版)2017北京邮电大学出版社课程归口:理学院课程的性质与任务:本课程是土木工程专业及城市地下空间专业的一门必修基础课程。

通过本课程的教学,学生对物理学的基本概念、基本原理、基本规律能有较全面、系统的理解和认识,并能了解近、现代物理学的新发展、新成就;学生能熟悉和掌握各种分析问题、解决问题的方式和方法,综合素质和技能有较大提高,为学习后继专业课程和解决实际问题提供了必不可少的物理学基础知识及科学的分析问题、处理问题的方法;学生能形成辩证唯物主义世界观,掌握科学的思维方法,为日后从事的工作、科学研究、开拓新技术领域和终身学习打下坚实的基础。

二、课程目标及对毕业要求观测点的支撑三、教学内容及进度安排注:教学方式包括讲授、讨论、例题分析、演示、练习、参观教学等。

四、课程实施(一)教学方法与教学手段1.采用多媒体教学手段,配合例题的讲解及适当的思考题,保证讲课进度的同时,注意学生的掌握程度和课堂的气氛。

2.课程讲授与启案例教学、课堂讨论、解释实际现象、线上网络教学等多种教学方式结合,实行互动研究型教学,重点培养学生的理论素养和问题分析能力。

因此,本课程要求课前必须阅读教材的相关部分和参考文献;课上主动参与讨论;课后按时完成布置的作业,积极进行教学互动交流。

(二)课程实施与保障五、课程考核(一)课程考核包括期末考试、平时及作业情况考核和实验考核,期末考试采用闭卷笔试。

(二)课程成绩=平时成绩考试成绩×50%+期末考试成绩×50%。

具体内容和比例如表所示。

备注:1. 课程目标达成度计算方法如下:=支撑该课程目标相关考核环节平均得分之和各课程目标达成度支撑该课程目标相关考核环节总分之和2. 作业包括课后习题、单元测试、调研报告、课堂学习笔记等等。

简明大学物理重点知识总结

简明大学物理重点知识总结

五 机械振动知识点: 1、 简谐运动微分方程:0222=+x dtx d ω ,弹簧振子F=-kx,m k=ω, 单摆lg =ω 振动方程:()φω+=t A x cos振幅A,相位(φω+t ),初相位φ,角频率ω。

πγπω22==T。

周期T, 频率γ。

ω由振动系统本身参数所确定;A 、φ可由初始条件确定:A=22020ωv x +,⎪⎪⎭⎫⎝⎛-=00arctan x v ωφ; 2由旋转矢量法确定初相:初始条件:t=0 1) 由得 2)由得 3)由0=x 00<v 0cos =ϕ2/3 , 2/ππϕ=,0sin 0<-=ϕωA v 0sin >ϕAx =000=v ϕcos A A =1cos =ϕAx -=000=v ϕcos A A =-1cos -=ϕ0=ϕ2/πϕ=πϕ=得 4)由得3简谐振动的相位:ωt+φ:1)t+φ→(x,v )存在一一对应关系;2)相位在0→2π内变化,质点无相同的运动状态; 相位差2n π(n 为整数)质点运动状态全同; 3)初相位φ(t=0)描述质点初始时刻的运动状态; (φ取[-π→π]或[0→2π])4)对于两个同频率简谐运动相位差:△φ=φ2-φ1. 简谐振动的速度:V=-A ωsin(ωt+φ)加速度:a=)cos(2ϕωω+-t A简谐振动的能量:E=E K +E P = 221kA ,作简谐运动的系统机械能守恒4)两个简谐振动的合成(向同频的合成后仍为谐振动):1)两个同向同频率的简谐振动的合成:X 1=A 1cos (1φω+t ) ,X 2=A 2cos (2φω+t ) 合振动X=X 1+X 2=Acos (φω+t )其中 A=()12212221cos 2φφ-++A A A A ,tan 22112211cos cos sin sin φφφφφA A A A ++=。

相位差:12φφφ-=∆=2k π时, A=A 1 + A 2, 极大12φφφ-=∆=(2k+1)π时,A=A 1 + A2极小若0=x 00>v ϕcos 0A =0cos =ϕ2/3 , 2/ππϕ=,0sin 0>-=ϕωA v 0sin <ϕ)(sin 21212222k ϕωω+==t A m m E v )(cos 2121222p ϕω+==t kA kx E 2/3πϕ=121,ϕϕ=>A A2) 两个相互垂直同频率的简谐振动的合成:x=A 1cos (1φω+t ) ,y=A 2cos (2φω+t )其轨迹方程为: 如果) 其合振动的轨迹为顺时针的椭圆πϕϕπ2)212<-<其合振动的轨迹为逆时针的椭圆相互垂直的谐振动的合成:若频率相同,则合成运动轨迹为椭园;若两分振动的频率成简单整数比,合成运动的轨迹为李萨如图形。

大学物理力学部分归纳总结

大学物理力学部分归纳总结

运动学部分解题指导
1、已知运动方程,求速度,加速度,用微分法。
两 大 类
? v
?
? dr
,
? a
?
? dv
dt
dt
型 2、已知加速度和初始条件,求速度、位移、路
程和运动方程(或已知速度和初始条件,求位移、
路程和运动方程),用积分法。
? ? t?
? v ? v0 ?
a ?dt
t0
? ? t?
? r ? r0 ?
3、功率
P
?
dW
?
? F
?dr?
?
? F
?v?
?
Fv cos?
dt dt
6
4、保守力作功与势能概念: dW ? ? dEp
? WA?
B
?
B
? f
?dr?
?
Ep ( A) ?
EP (B)
?
?[Ep (B) ?
Ep ( A)]
A
万有引力势能
重力势能
? E p
?
? r
?
G
mM r2
dr
?
?G
mM r
0
? Ep ? (? mg)dz ? mgz
? (3)判断过程中对某点(或某轴)合外力矩是否为零,或者 角动量守恒条件是否成立。
? (4)若守恒条件成立,确定正方向,列方程,求解
? 分解综合法:对于较为复杂问题,不是只用一个定理、定律
就能解决,要将整个过程分解成几个子过程,对每一子过程
应用上述方法。
18
典型习题分析
? 例题(1) 如图所示,木块 A的质量为 1.0kg ,木块B的
9、功率

《大学物理A(下)》课程教学大纲

《大学物理A(下)》课程教学大纲

《大学物理A(下)》课程教学大纲英文名称:College Physics A(II)课程编码:070220001, 070220002总学时:48学时,学分:3适用对象:土木、机械、电子类等专业及大土木实验班先修课程:高等数学大纲主撰人:大纲审核人:一、课程性质、目的和任务1. 本课程为理工科非物理类大学本科生必修的一门学科基础课程。

2. 目的是使学生了解和掌握掌握物理学的基本知识和基本规律,学会用物理学的基本原理来分析自然现象和有关的工程技术问题,为专业课的学习打好物理基础,并初步学习科学的思维方法和研究问题的方法。

3.本课程的主要内容包括磁学基础,机械力学,波动力学,波动光学部分,适合工科全部专业。

二、教学内容及要求第5章:恒定电流的磁场授课学时:8基本要求:5-1 掌握磁感应强度的概念和毕萨定律5-2 掌握磁场的高斯定理和安培环路定理5-3 掌握磁场对电流和电子运动的影响5-4 掌握磁介质中磁场的安培环路定理重点:结构化程序设计和面向对象程序设计的基本概念难点:算法的流程图表示;面向对象程序设计习题课:2第6章:电磁感应授课学时:6基本要求:6-1 掌握电磁感应定律6-2 理解动生电动势和感生电动势6-3 理解自感和互感以及磁场能量6-4 理解位移电流和麦克斯韦方程组重点:电磁感应定律,自感和互感现象难点:位移电流习题课:2第9章:机械振动授课学时:6基本要求:9-1 了解谐振动的基本特征和表达形式。

9-2 理解同一直线上同频率谐振动的合成规律重点:谐振动的数学表示形式难点:谐振动的合成习题课:2第10章:机械波授课学时:8基本要求:10-1 了解机械波的产生和传播,平面简谐波的表示形式。

10-2 了解波的能量和强度的概念。

10-3 理解惠更斯原理,波的干涉、衍射和波的叠加重点:平面谐波的表达形式,波的干涉和衍射难点:机械波的叠加干涉习题课:2第11章:波动光学授课学时:10基本要求:10-1 了解双缝干涉实验,理解波的叠加规律。

大学物理必备知识点大全

大学物理必备知识点大全

大学物理必备知识点大全10、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。

11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。

12、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。

选修部分:(选修3-1、3-2、3-3、3-4、3-5)二、电磁学:(选修3-1、3-2)13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k 的值。

14、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。

16、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。

18、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

19、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定律。

20、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

21、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。

22、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

大学物理基础知识点

大学物理基础知识点

大学物理基础知识点大学物理基础知识点【篇一】一、电荷量和点电荷1、电荷量:物体所带电荷的多少,叫做电荷量,简称电量。

单位为库仑,简称库,用符号C表示。

2、点电荷:带电体的形状、大小及电荷量分布对相互作用力的影响可以忽略不计,在这种情况下,我们就可以把带电体简化为一个点,并称之为点电荷。

二、电荷量的检验1、检测仪器:验电器2、了解验电器的工作原理三、库仑定律1、内容:在真空中两个静止的点电荷间相互作用的库仑力跟它们电荷量的乘积成正比,跟它们距离的平方成反比,作用力的方向在它们的连线上。

2、大小:方向在两个电电荷的连线上,同性相斥,异性相吸。

3、公式中k为静电力常量,4、成立条件①真空中(空气中也近似成立)②点电荷【篇二】1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍。

2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B 时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/215.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记〔见图[第二册P98];(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1F=106μF=1012PF;(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

大学物理重点难点

大学物理重点难点

大学物理重点难点第一章:质点运动学1、位置矢量、位移、速度、加速度等描述质点运动的物理量的定义、意义和具体计算。

2、会使用矢量,已知运动方程会求位移、路程。

3、已知速度(或加速度)和初始条件求运动方程。

4、能熟练计算质点作圆周运动时的角速度、角加速度、切向加速度、法向加速度。

5、理解伽利略坐标变换和速度变换。

第二章:牛顿定律1、掌握牛顿第二定律定义、意义,掌握其数学表达式(矢量式及直角坐标、自然坐标下的分量式。

2、理解伽利略相对性原理;3、掌握隔离法,能熟练地进行受力分析,能处理二维恒力作用下的质点力学问题;4、能用微积分方法求解一维变力作用下简单的质点力学问题。

第三章:动量守恒定律和能量守恒定律1、掌握动能定理,并能用于分析、解决质点在平面内运动时的简单力学问题;2、理解保守力做功的特点;会计算重力、弹性力和万有引力势能。

3、掌握质点系的功能原理和机械能守恒定律及适用条件。

4、掌握动量定理,并能用于分析、解决质点在平面内运动时的简单力学问题。

5、掌握动量守恒定律及适用条件;能分析简单系统在平面内运动的力学问题。

6、能运用动能定理、动量定理、机械能守恒定律、动量守恒定律综合分析简单系统在平面内运动的力学问题。

第四章:刚体运动1、理解角速度、角加速度矢量。

2、理解刚体定轴转动的运动学规律,能计算刚体绕定轴转动时的角速度、角加速度,已知角加速度(角速度)能计算刚体绕定轴转动时的运动方程。

3、理解转动惯量,能计算简单形状刚体的转动惯量。

4、掌握转动定律、转动动能定理,能应用包含刚体在内的机械能守恒与转换定理。

5、掌握角动量定理和角动量守恒定律。

第六章:热力学基础(1)掌握热力学第一定律。

(2)分析计算理想气体在等体、等压、等温和绝热过程中的功、热量和内能改变量。

(3)分析、计算循环过程中功、热量和内能改变量。

能计算卡诺循环等简单循环的热效率。

(4)理解热力学第二定律。

第七章:气体动理论(1)理解理想气体压强公式和温度公式。

大学物理简明教程(赵近芳)

大学物理简明教程(赵近芳)

大学物理简明教程(赵近芳)一、教学内容本节课的教学内容选自赵近芳编著的《大学物理简明教程》。

我们将学习第二章第三节“牛顿运动定律”,具体内容包括:1. 牛顿第一定律:又称惯性定律,指出一个物体在没有受到外力作用时,将保持静止状态或匀速直线运动状态。

2. 牛顿第二定律:又称加速度定律,指出一个物体的加速度与作用在其上的外力成正比,与物体的质量成反比,加速度的方向与外力的方向相同。

3. 牛顿第三定律:又称作用与反作用定律,指出任何两个物体之间的作用力和反作用力总是大小相等、方向相反,并且作用在同一直线上。

二、教学目标1. 让学生掌握牛顿运动定律的内容,理解惯性、加速度等概念。

2. 培养学生运用物理知识解决实际问题的能力。

3. 引导学生通过观察、实验、分析等方法,培养科学探究精神。

三、教学难点与重点重点:牛顿运动定律的理解和应用。

难点:牛顿第二定律中加速度与力、质量关系的理解。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。

学具:教材《大学物理简明教程》、笔记本、三角板。

五、教学过程1. 实践情景引入:讲解一个物体从静止开始,在受到外力作用下,速度逐渐增加的例子,引导学生思考物体运动状态改变的原因。

2. 讲解牛顿第一定律:阐述惯性的概念,解释惯性定律的意义。

3. 讲解牛顿第二定律:通过公式F=ma,解释力、质量和加速度之间的关系,举例说明加速度的计算方法。

4. 讲解牛顿第三定律:通过实际例子,解释作用力和反作用力的概念,说明它们之间的相互关系。

5. 例题讲解:分析并解决教材中的相关题目,巩固所学知识。

6. 随堂练习:让学生自主完成教材中的练习题,检验学习效果。

六、板书设计1. 牛顿第一定律:惯性定律2. 牛顿第二定律:F=ma3. 牛顿第三定律:作用力与反作用力七、作业设计1. 题目:计算一个质量为2kg的物体,在受到一个力为6N的作用下,其加速度是多少?答案:加速度a=F/m=6N/2kg=3m/s²2. 题目:一个物体受到两个力的作用,其中一个力为10N,另一个力为5N,求物体的加速度。

(完整版)大学物理知识点(全)

(完整版)大学物理知识点(全)

Br ∆ A rB ryr ∆第一章 质点运动学主要内容一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。

明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量)平均速度xyr x y i j ij t t t瞬时速度(速度) t 0r drv limt dt∆→∆==∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222yx v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt= 速度的大小称速率。

3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆ 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dtdv dt dv a a a y x y x二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。

大学物理(下)知识点、重点及难点

大学物理(下)知识点、重点及难点

《大学物理》(下)知识点、重点及难点气 体 分 子 动 理 论知识点:1. 理想气体状态方程在平衡态下 RT M PV μ=, n k T p =,普适气体常数 K m o l /J 31.8R ⋅= 玻耳兹曼常数 K /J 1038.1NR k 23A-⨯==2. 理想气体的压强公式t 2E n 32vnm 31p ==3. 温度的统计概念kT 23E t =4. 能量均分定理每一个自由度的平均动能为1/(2KT)。

一个分子的总平均动能为自由度):i (kT 2i E =。

ν摩尔理想气体的内能RT 2i E ⋅ν=。

5. 速率分布函数NdvdN )v (f =麦克斯韦速率分布函数 2vkT2m 23v e)kT2m (4)v (f 2-ππ=三种速率最概然速率 μ==RT 2mkT 2v p平均速率 πμ=π=RT 8mkT 8v方均根速率 μ==RT 3mkT 3v26.分子刚性球模型7.气体分子的平均自由程pd 2kT nd 2122π=π=λ重点:1. 理想气体状态方程的意义,利用它解有关气体状态的问题。

2. 理想气体的微观模型和统计假设,掌握对理想气体压强的推导。

3. 理想气体压强和温度的统计意义。

4. 能量均分定理的意义及其物理基础,由它推导出理想气体内能公式。

5. 速率分布函数及其麦克斯韦速率分布律的意义。

会计算三种速率的统计值。

难点:1. 理想模型的假设。

2. 速率分布函数的统计意义和物理解释。

3. 应用分布函数计算各种量的平均值。

热 力 学 基 础知识点:1. 准静态过程:在过程进行中的每一时刻,系统的状态都无限接近于平衡态。

2. 体积功:准静态过程中系统对外做的功为 pdV dA =, ⎰=21v v pdV A3. 热量:系统与外界或两个物体之间由于温度不同而交换的热运动能量。

4. 热力学第一定律A )E E (Q 12+-=, A dE dQ +=5. 热容量 d Td Q C =定压摩尔热容量 dTdQ Cpp=定容摩尔热容量 dTdQ C V V =迈耶公式 R C CV p+=比热容比 i2i C CVp+==γ6. 气体的绝热过程 c pV =γ,绝热自由膨胀:内能不变,温度复原。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《大学物理》(下)知识点、重点及难点振 动 学 基 础知识点:1. 简谐振动方程)t cos(A x φ+ω=振幅A :取决于振动的能量(初始条件)。

角频率ω:取决于振动系统本身的性质。

初相位φ:取决于初始时刻的选择。

2. 振动相位ωt+φ:表示振动物体在t 时刻的运动状态。

φ:初相位,即t=0时刻的相位。

3. 简谐振动的运动微分方程0x dtxd 222=ω+ 弹性力或准弹性力 kx K -= 角频率:m k =ω, km 2T π= A 与φ由初始条件决定:222v x A ω+=, )x v (tg 001ω-=φ-4. 简谐振动能量)t (sin A m 21mv 21E 2222K φ+ωω==, 2K kA 41E = )t (cos kA 21kx 21E 222P φ+ω==, 2P kA 41E =2P K kA 21E E E =+=5. 同一直线上两个同频率简谐振动的合成合振幅: )cos(A A 2A A A 12212221φ-φ++=221122111cos A cos A sin A sin A tgφ+φφ+φ=φ-同相: π=φk 2∆, 21A A A +=反相: π+=φ)1k 2(∆,21A A A -=, ,2,1,0k ±±=重点:1. 简谐振动的特点,以及简谐振动方程中各物理量——振幅A ,角频率ω,初相位φ,相位(ωt+φ)的意义;2. 简谐振动的旋转矢量表示法;3. 由已知初始条件建立简谐振动方程,以及由已知简谐振动方程确定物体的位置、速度、加速度的方法;4. 在同一直线上两个同频率简谐振动的合成规律。

难点:1. 相位,初始相位的理解和求解;2. 建立简谐振动方程, 简谐振动的合成; 3. 拍和拍频。

波 动 学 基 础知识点:1. 机械波产生的条件:波源和媒质。

通过各质元的弹性联系形成波。

2. 波的传播是振动相位的传播,沿波的传播方向,各质元振动的相位依次落后。

3. 波速u ,波的周期T 及波长λ的关系ν=1T , Tu λ= 4. 平面简谐波的表达式(设座标原点O 的振动初相位为φ))2cos(),(φλπω+=xt A t x y5. 波的传播是能量的传播平均能量密度 22A 21ρω=ω 平均能流密度即波的强度 22A u 21u I ωρ=ω= 6. 波的干涉干涉现象:几列波叠加时合成强度在空间有一稳定分布的现象。

波的相干条件:频率相同,振动方向相同,相位差恒定。

干涉加强条件:π=-λπ-φ-φ=φk 2)r r (21212∆ 干涉减弱条件:π+=φ)1k 2(∆7. 驻波:两列振幅相同的相干波,在同一直线上沿相反方向传播时形成驻波。

波节:振幅恒为零的各点。

波腹:振幅最大的各点。

相邻两波节之间各点振动相位相同,同一波节两侧半波长范围内,相位相差π,即反相。

驻波的波形不前进,能量也不向前传播。

只是动能与势能交替地在波腹与波节附近不断地转换。

8. 半波损失:波从波疏媒质(ρu 较小)传向波密媒质(ρu 较大),而在波密媒质面上反射时,反射波的相位有π的突变,称为半波损失,计算波程时要附加+λ/2。

重点:1. 机械波产生的条件及波传播的物理图像。

2. 描述波动的物理量:波长、波速、频率的物理意义及其相互关系。

3. 相位传播的概念,并利用它写出平面简谐波的波动方程(平面简谐波的表达式)。

理解波形曲线的意义,并能熟练画出。

4. 已知给定点的振动写出平面简谐波的表达式;已知波的表达式写出空间各点的振动表达式;计算A 、T 、ν、λ、u 及波线上任意两点的相位差。

5. 波的能量密度、能流、能流密度(即波的强度)等概念。

6. 波的叠加原理,相干波的条件。

干涉现象中加强、减弱条件,并运用来计算合振幅最大、最小的位置。

难点:1. 波动和振动方程及其曲线的联系和差异 2. 相位比较法求波动方程3. 驻波的概念,驻波形成的条件;波腹、波节的意义及位置;各质元振动相位的关系。

4. 半波损失的意义。

光 的 干 涉 和 衍 射知识点:1. 获得相干光的基本原理:把一个光源的一点发出的光束分为两束。

具体方法有分波阵面法和分振幅法。

2. 杨氏双峰干涉:是分波阵面法,其干涉条纹是等间距的直条纹。

条纹中心位置:明纹:,...,2,1,02=±=k aD kx λ暗纹:,...,2,1,022)12(=+±=k a D k x λ条纹间距:λaD x 2=∆ 3. 光程差δ 4. 位相差 δλπφ2=∆有半波损失时,相当于光程增或减2λ,相位发生π的突变。

5. 薄膜干涉(1)等厚干涉:光线垂直入射,薄膜等厚处为同一条纹。

劈尖干涉:干涉条纹是等间距直条纹. 对空气劈尖:明纹:,...2,122==+k k ne λλ暗纹:,...,2,1,02)12(22=+=+k k ne λλ牛顿环干涉:干涉条纹是以接触点为中心的同心圆环.明环半径:,...2,1)21-(==k n R k r λ明暗环半径:,...,2,1,0==k nkRr λ暗(2)等倾干涉:薄膜厚度均匀,采用面广元,以相同倾角入射的光,其干涉情况一样,干涉条纹是环状条纹。

明环:,...2,12sin 222122==+-k k i n n e λλ暗环:,...,2,1,02)12(2sin 222122=+=+-k k i n n e λλ6. 迈克尔逊干涉仪7. 单缝夫朗和费衍射用半波带法处理衍射问题,可以避免复杂的计算.单色光垂直入射时,衍射暗纹中心位置: ,...2,122sin =±=k k a λφ亮纹中心位置: ,...,2,1,2)12(sin =+±=k k a λφ8. 光栅衍射9. 光学仪器分辨率 重点:1. 掌握用半波带法分析夫朗和费衍射单缝衍射条纹的产生及其亮暗纹位置的计算.2. 理解光栅衍射形成明纹的条件,掌握用光栅方程计算谱线位置。

3. 理解光程及光程差的概念.,并掌握其计算方法;理解什么情况下反射光有半波损失。

4. 掌握劈尖、牛顿环干涉实验的基本装置,会计算干涉条纹的位置,并了解其应用。

难点:1.光栅衍射及谱线位置的计算。

光 的 偏 振知识点:1. 光波是横波,自然光、线偏振光、部分偏振光等的定义和描述。

2. 偏振片的起偏和检偏3. 马吕斯定律4. 反射和折射时光的偏振5. 双折射现象 重点:1. 从光的偏振说明光是横波,理解用偏振片起偏和检偏的方法.2. 掌握马吕斯定律,能熟练应用它计算偏振光通过检偏器后光强的变化.3. 掌握用反射和折射现象获得偏振光的方法.4. 理解光轴的概念,理解寻常光与非常光的区别。

难点:1. 光轴的概念,寻常光与非常光。

量 子 光 学 基 础知识点:1. 光电效应 方程A h v m m e -=ν221 2. 康普顿散射 3. 玻尔氢原子理论 4. 激光 重点:1. 理解入射光频率对光电效应的影响,会利用光电效应公式计算有关的物理量.2. 理解康普顿效应,会计算散射波长等有关物理量。

3. 理解氢原子光谱的形成及其理论解释,并能计算有关氢原子光谱的问题。

4. 理解产生激光的条件、激光的主要特性及其应用。

难点:1. 计算有关氢原子光谱的问题量 子 力 学 基 础知识点:1. 实物粒子的二象性粒子的能量:νh mc E ==2粒子的动量:λhmv P ==2. 不确定关系:由于二象性,在任意时刻粒子的位置和动量都有一个不确定量,它们之间有一个简单关系: ≥∆⋅∆x P x3. 物质波的振幅是波函数的振幅;物质波振幅绝对值平方表示粒子在t 时刻,在(x,y,z )处单位体积内出现的概率,称为概率密度.4. 四个量子数: 描述原子中电子运动状态的四个参数. 主量子数n ,...2,1=n角量子数l )1(,...,2,1,0-=n l 磁量子数m ll m l ±±±=,...,2,1,0自旋磁量子数m s21±=s m重点:1. 理解实物粒子的波粒二象性及不确定关系,并能计算德布罗意波长和坐标或速度的不确定量.2. 理解波函数的统计意义。

3. 理解描述原子中电子运动的四个量子数的物理意义及其取值。

难点:1.波函数的统计意义。

相关文档
最新文档