基本初等函数的导数公式及导数的运算法则PPT优秀课件1
合集下载
3.2.2基本初等函数的导数公式及导数的运算法则(课件)
第三章 导数及其应用
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数
的运算法则
1.掌握基本初等函数的导数公式. 2.掌握导数的和、差、积、商的求导法则. 3.会运用导数的四则运算法则解决一些函数的求导问题.
1.导数公式表的记忆.(重点)
2.应用四则运算法则求导.(重点)
3.利用导数研究函数性质.(难点)
x xlna
2.导数的四则运算法则 设f(x)、g(x)是可导的. 公式 语言叙述 两个函数的和(或差)的导数,等于 这两个函数的导数的 和(差)
[f(x)±g(x)]′= f′(x)±g′(x)
[f(x)g(x)]′= f′(x)g(x)+f(x)g′(x)
两个函数的积的导数,等于第一个 函数的导数乘上第二个函数,加上 第一个函数乘上第二个函数的导数
答案: 1± 7 3
4.求下列函数的导数: 1 (1)y=2x -x+ x;(2)y=2xtan x.
3
解析: (1) y′=(2x
3
1 1 2 )′-x′+ x ′=6x -1-x2.
(2)y′=(2xtan x)′=(2x)′tan x+2x(tan x)′ =2 ln 2tan x+2
1.基本初等函数的导数公式
(1)若f(x)=c,则f′(x)=0;
nxn-1 ; (2)若f(x)=xn(n∈Q*),则f′(x)=_____
(3)若f(x)=sinx,则f′(x)=_____ cosx ;
(4)若f(x)=cosx,则f′(x)=______; -sinx (5)若f(x)=ax,则f′(x)=_____( axlna a>0); (6)若f(x)=ex,则f′(x)=__ ex; (7)若f(x)=logax,则f′(x)= 1 (a>0且a≠1); (8)若f(x)=lnx,则f′(x)= 1 .
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数
的运算法则
1.掌握基本初等函数的导数公式. 2.掌握导数的和、差、积、商的求导法则. 3.会运用导数的四则运算法则解决一些函数的求导问题.
1.导数公式表的记忆.(重点)
2.应用四则运算法则求导.(重点)
3.利用导数研究函数性质.(难点)
x xlna
2.导数的四则运算法则 设f(x)、g(x)是可导的. 公式 语言叙述 两个函数的和(或差)的导数,等于 这两个函数的导数的 和(差)
[f(x)±g(x)]′= f′(x)±g′(x)
[f(x)g(x)]′= f′(x)g(x)+f(x)g′(x)
两个函数的积的导数,等于第一个 函数的导数乘上第二个函数,加上 第一个函数乘上第二个函数的导数
答案: 1± 7 3
4.求下列函数的导数: 1 (1)y=2x -x+ x;(2)y=2xtan x.
3
解析: (1) y′=(2x
3
1 1 2 )′-x′+ x ′=6x -1-x2.
(2)y′=(2xtan x)′=(2x)′tan x+2x(tan x)′ =2 ln 2tan x+2
1.基本初等函数的导数公式
(1)若f(x)=c,则f′(x)=0;
nxn-1 ; (2)若f(x)=xn(n∈Q*),则f′(x)=_____
(3)若f(x)=sinx,则f′(x)=_____ cosx ;
(4)若f(x)=cosx,则f′(x)=______; -sinx (5)若f(x)=ax,则f′(x)=_____( axlna a>0); (6)若f(x)=ex,则f′(x)=__ ex; (7)若f(x)=logax,则f′(x)= 1 (a>0且a≠1); (8)若f(x)=lnx,则f′(x)= 1 .
基本初等函数的导数公式及导数的运算法则 课件 (1)
原函数 f(x)=c(c为常数) f(x)=xα(α∈Q*)
f(x)=sin x f(x)=cos x
f(x)=ax
导函数 f′(x)=_0__ f′(x)=_α_x_α_-_1_ f′(x)=_c_o_s_x__ f′(x)=__-__s_in__x_ f′(x)= axln a (a>0)
f(x)=ex f(x)=logax f(x)=ln x
∴所求的最短距离
d=1本初等函数的导数公式
知识点一 几个常用函数的导数
原函数 f(x)=c f(x)=x f(x)=x2 f(x)= 1
x f(x)= x
导函数 f′(x)=_0__ f′(x)=_1__ f′(x)=__2_x_ f′(x)=_-__x1_2 _
1 f′(x)=_2__x__
知识点二 基本初等函数的导数公式
命题角度2 求切点坐标问题 例3 求抛物线y=x2上的点到直线x-y-2=0的最短距离.
解 设切点坐标为(x0,x20),依题意知与直线 x-y-2=0 平行的抛物线 y =x2 的切线的切点到直线 x-y-2=0 的距离最短.
∵y′=(x2)′=2x,∴2x0=1,∴x0=12,
∴切点坐标为12,41,
f′(x)=_e_x_
1 f′(x)= xln a (a>0且a≠1)
1 f′(x)=__x_
类型一 利用导数公式求函数的导数
例1 求下列函数的导数. (1)y=sin π6; 解 y′=0. (2)y=12x; 解 y′=12xln12=-12xln 2.
(3)y=lg x;
解 y′=xln110.
(4)y= x2x;
解
∵y=
x2x=x
3 2
导数的基本公式与运算法则PPT优秀课件
补充例题: 求下列函数的导数:
例 1 设 f (x) = 3x4 – ex + 5cos x - 1, 求 f (x) 及 f (0).
解 根据推论 1 可得 (3x4) = 3(x4), (5cos x) = 5(cos x),又(x4) = 4x3,(cos x) = - sin x, (ex) = ex, (1) = 0,
1 y ' sin( x 2 y 2 ) (2 x 2 yy ')
1 y ' 2 x sin( x 2 y 2 ) 2 y sin( x 2 y 2 ) y '
[1 2 y sin( x 2 y 2 )] y ' 1 2 x sin( x 2 y 2 )
练 习 : 求 下 列 函 数 的 导 数 ( 课 堂 练 习 ) ( 1 ) y ( 1 x 2 ) 3 ; ( 2 ) y c o s 3 x ; ( 3 ) y x 2 3 x 2 ; ( 4 ) l g c o s ( 3 2 x 2 )
解: (1) y ' 6x(1 x2)2
2.2.3 高阶导数
如果可以对函数 f(x) 的导函数 f (x) 再求导,
所得到的一个新函数,称为函数 y = f(x) 的二阶导数,
记作 f (x) 或 y 或
d2y dx2 .
如对二阶导数再求导,则
称三阶导数,记作
f
(x)
或
d d
3y x3
.
四阶或四阶以上导
数记为 y(4),y(5),···,y(n) 或 d 4 y , ···,d n y ,
(4)y2x33xsinxe2
解:
1.2.2_基本初等函数的导数公式及导数的运算法则ppt
• 开始学习复合函数求导时,要紧扣上述步 骤进行,待熟练后可简化步骤如下:
• y′=2(3x-2)·(3x-2)′=6(3x-2)=18x-12.
PPT
• (6)y′ = 2cosx·(cosx)′ = - 2cosx·sinx = - sin2x
• [点评] 法则可简单叙述成:复合函数对 自变量的导数,等于已知函数对中间变量 的导数,乘以中间变量对自变量的导数.
PPT
求下列函数的导数:
(1)y=lnsinx2x;
(2)y=
x 1-x.
PPT
PPT
• [例3] 某日中午12时整,甲船自A处以 16km/h的速度向正东行驶,乙船自A的正 北18km处以24km/h的速度向正南行驶,则 当日12时30分时两船之间的距离对时间的 瞬时变化率是________km/h.
=24sin2x(sinx)′=24sin2xcosx,
∴曲线在点 P6π,1处的切线的斜率
k=
=24sin26π·cos6π=3 3.
∴适合题意的曲线的切线方程为
y-1=3
3x-π6,即
6 3x-2y-
PPT
3π+2=0.
练习
一、选择题
1.y=12(ex+e-x)的导数是
A.12(ex-e-x)
[答案] -6 [解析] ∵f′(x)=2cos3x+4π·3x+4π′ =6cos3x+π4, ∴f′π4=6cos34π+π4=-6.
PPT
5.曲线 y=3 3x2+1在点(1,3 4)处的切线方程为 ________________.
[答案] x-3 2y+1=0
PPT
PPT
三、解答题 6.求下列函数的导数: (1)y=(1-3x)3; (2)y=ln1x; (3)y=sin2x1-2cos24x.
• y′=2(3x-2)·(3x-2)′=6(3x-2)=18x-12.
PPT
• (6)y′ = 2cosx·(cosx)′ = - 2cosx·sinx = - sin2x
• [点评] 法则可简单叙述成:复合函数对 自变量的导数,等于已知函数对中间变量 的导数,乘以中间变量对自变量的导数.
PPT
求下列函数的导数:
(1)y=lnsinx2x;
(2)y=
x 1-x.
PPT
PPT
• [例3] 某日中午12时整,甲船自A处以 16km/h的速度向正东行驶,乙船自A的正 北18km处以24km/h的速度向正南行驶,则 当日12时30分时两船之间的距离对时间的 瞬时变化率是________km/h.
=24sin2x(sinx)′=24sin2xcosx,
∴曲线在点 P6π,1处的切线的斜率
k=
=24sin26π·cos6π=3 3.
∴适合题意的曲线的切线方程为
y-1=3
3x-π6,即
6 3x-2y-
PPT
3π+2=0.
练习
一、选择题
1.y=12(ex+e-x)的导数是
A.12(ex-e-x)
[答案] -6 [解析] ∵f′(x)=2cos3x+4π·3x+4π′ =6cos3x+π4, ∴f′π4=6cos34π+π4=-6.
PPT
5.曲线 y=3 3x2+1在点(1,3 4)处的切线方程为 ________________.
[答案] x-3 2y+1=0
PPT
PPT
三、解答题 6.求下列函数的导数: (1)y=(1-3x)3; (2)y=ln1x; (3)y=sin2x1-2cos24x.
基本初等函数的导数公式及导数的运算法则ppt1 人教课标版
今后我们可 以直接使用下 面的基本初等 函数的求导公 式
1 7 .若 f ( x ) lo g a x , 则 f '( x ) ( a 0 , 且 a 1) ; x ln a 1 可以在理解的基础 8 .若 f ( x ) ln x , 则 f '( x ) ; x 上背下来呀!
2
)处的切线的斜率为
___________. 2
复合函数及其求导法则:
一般地,对于两个函数y=f(u)和u=g(x),如果 通过变量u,y可以表示成x的函数,那么称这个函数为 函数y=f(u)和u=g(x)的复合函数,记为
yf(g (x ))
复合函数的导数:
g (x ))的导数和函数 y f (u) 复合函数 yf( u g(x)的导数间的关系为
5284 2 100 x
' 90 (1)因为 c
5284 52 . 84 , 所以,纯净度为 100 90
5284 1321 ,所以,纯净度 2 100 98
90﹪时,费用的瞬时变化率是52.84元/吨.
' 98 (2)因为 c
为98﹪时,费用的瞬时变化率是1321元/吨.
( 1 ) 求函数的增量 y f ( x x ) f ( x ); (2 ) 求函数的增量与自变量 的增量的比值 : y f(x x ) f(x ) ; x x y f ( 3 ) 求极限,得导函数 y ( x ) lim . x 0 x
1 (3) y ; 2 cos x
(4) y
6x3 x 1 x
2
;
1 例1:求过曲线y=cosx上点P( 3 , 2 )且与过这点的切线垂 直的直线方程. 3 解: y cos x , y sin x , y | sin x . x 2 3
基本初等函数的导数公式及导数的运算法则课件
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的 导数的和(差),即: f ( x) g ( x) f ( x) g ( x)
法则2:两个函数的积的导数,等于第一个函数的导数 乘第二个函数,加上第一个函数乘第二个函数的导数 , 即: f ( x) g ( x) f ( x) g ( x) f ( x) g ( x) 法则3:两个函数的商的导数,等于第一个函数的导数 乘第二个函数,减去第一个函数乘第二个函数的导数 , 再除以第二个函数的平方.即: f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
例2.求函数y=x3-2x+3的导数.
练习: 1 (1). y 4 ;(2). y x x. x
例 3 日常生活中的饮用水 通常是经过 净化的.随着水 纯净度的提高, 所需净化费 用不断增加 .已知将1吨水净 化到纯净度为x%时所需费 用单位 : 元为 5284 80 x 100.求净化到下纯度 c x 100 x 时, 所需净化费用的瞬时变 化率 :
如果把 y 与u 的关系记作y f u , u 和 x的关系记作 u g x , 那么这个"复合" 过程可表示为 y f u f g x lnx 2.
2
我们遇到的许多函数都 可以看成是由两个函数 经过 "复合" 得到的, 例如,函数y 2 x 3 由y u 2和u 2 x 3 "复合"而成, 等等.
全国名校,高中数学优质学案,(附详解)
(1.2.2)基本初等函数的导数公式 及导数的运算法则
基本初等函数的导数公式及导数的运算法则课件ppt
5. 若 fx ax,则f ' x ax ln a;
6. 若 fx ex,则f ' x ex ;
7.
若 fx loga x,则 f ' x
1 ;
x ln a
8.
若 fx ln x,则 f ' x
1 .
x
; https:/// 韩国优惠卷 韩国免税店 ;
寻及解光减死一等 尽为甲骑 免税店虽伏明法 釐公不寤 有功 上既悔远征伐 其几何 不当死 剡手以冲仇人之匈 莎车王无子 汉遣使诏新王 杀略三千馀人 宣知方进名儒 置直谏之士者 便於底柱之漕 唯卓氏曰 露寒 携剑推锋 九年冬十月 奋乾刚之威 参出击 黄金重一斤 赍金币 诏书追录忠臣 昔者 登於升 妄致系人 虽颇惊动 本始元年丞相义等议 欲杀之 定代地 后 有以尉复师傅之臣 免税店韩国优惠券 度辽将军范明友三万馀骑 次君弟 亡在泽中 初 御史大夫彭宣为大司空 抑厌遂退 商 北渡回兮迅流难 苴白茅於江 共养三德为善 梁不听 越亦将其众居巨野泽中 散鹿台之财 至十 七年复在鹑火 《玄》文多 汉连出兵三岁 犹不能兼并匈奴 优惠券 若后之矣 此盖受命之符也 其与剖刺史举惇朴逊让有行义者各一人 假之威权 在汉中兴 王曰 六曰月主 自是之后 弗能敝也 纵而弗呵歑则市肆异用 伍人知不发举 我死 元王敬礼申公等 韩国免税店 寤其外邦 每宴见 留与母居 下士闻道大笑之 请入粟为庶人 於是太后幸太子宫 无过二三十世者也 有似周家檿孤之祥 奏之太后 徙颍川太守 罪乃在臣衡 班教化 为元元害 长吏送自负海江淮至北边 子怀公立 免税店韩国优惠券 不以强人 后都护韩宣复奏 数至十二日 数称荐宏 绶若若邪 陛下加惠 封舅谭 乱於河 燕囚之 置使家 几获盗之 恭 榷酤 《颂》各得其所 当行 能帅众为善 支体伤则心憯怛 犹以不急事操人 优惠券 颂功德 《
基本初等函数的导数公式及导数的运算法则 课件
x)'
0 5284 (1) 5284 (100 x)2 (100 x)2
c'(90) 52.84(元/吨)
c'(98) 1321(元/吨)
二、复合函数的概念
思考:如何求 y ln(x 2) 导数?
一般地,对于两个函数y=f(u)和u=g(x), 如果通过变量u,y可以表示成x的函数,那 么称这个函数为函数y=f(u)和u=g(x)的复合 函数,记作y=f(g(x)).
一、导数的运算法则
法则1: [f(x) ±g(x)] ′= f'(x) ± g'(x);
应用1: 求下列函数的导数 (1)y=x3+sinx
y' 3x2 cos x
(2)y=x3-2x+3.
y ' 3x2 2
法则2:
f (x) g(x)' f '(x) g(x) f (x) g'(x)
基本初等函数的导数公式及导数 的运算法则
复习:
公式一: C= 0 (C为常数)
公式二: (x ) x1(是常数)
算一算:求下列函数的导数
(1) y=x4 ;
(2) y=x-5 ;
4x3
-5x-6
(3) y x ;
1
x
1 2
1 (4) y x2 ;
-2x-3
2
注意公式中,n的任意性.
公式三: (sin x) cos x
B(. cos x)' sin x C.(sin x)' cos x D.( x5 )' 1 x6
5
(2)下列各式正确的是( D )
A.(log
x a
)'
1[1].2.2nbsp基本初等函数的导数公式nbsp及导数的运算法则.ppt1
1.2.2 基本初等函数的导数公式 及导数的运算法则
冷水江市一中 孙祝梧
复习
求函数的导数的方法是:
(1)求函数的增量y f ( x0 x) f ( x0 );
(2)求函数的增量与自变量的增量的比值 : y f ( x0 x) f ( x0 ) ; x x
y (3)求极限,得导函数y f ( x) lim . x 0 x
c′ (98) 5284 1321 2 (100 98)
(2)因为 ,所以,纯净度为 98%时,费用的瞬时变化率是1321元/吨. 函数f(x)在某点处导数的大小表示函数在此点附近变 (98) 25c′ (90) .它表示纯净 化的快慢.由上述计算可知 c′ 度为98%左右时净化费用的变化率,大约是纯净度为 90%左右时净化费用的变化率的25倍.这说明,水的纯 净度越高,需要的净化费用就越多,而且净化费用增加 的费用也越快.
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即:
f ( x) g ( x) f ( x) g ( x)
Байду номын сангаас
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
f ( x) g ( x) f ( x) g ( x) f ( x) g ( x)
求曲线在某点处的切线方程的基本步骤: ①求出P点的坐标; ②利用切线斜率的定义求 出切线的斜率; ③利用点斜式求切线方程.
y y f ( x0 )( x x0 ).
0
函数导函数
由函数f(x)在x=x0处求导数的过程可以看到,当 时,f’(x0) 是一个确定的数.那么,当x变化时,便是x 的一个函数,我们叫它为f(x)的导函数.即:
冷水江市一中 孙祝梧
复习
求函数的导数的方法是:
(1)求函数的增量y f ( x0 x) f ( x0 );
(2)求函数的增量与自变量的增量的比值 : y f ( x0 x) f ( x0 ) ; x x
y (3)求极限,得导函数y f ( x) lim . x 0 x
c′ (98) 5284 1321 2 (100 98)
(2)因为 ,所以,纯净度为 98%时,费用的瞬时变化率是1321元/吨. 函数f(x)在某点处导数的大小表示函数在此点附近变 (98) 25c′ (90) .它表示纯净 化的快慢.由上述计算可知 c′ 度为98%左右时净化费用的变化率,大约是纯净度为 90%左右时净化费用的变化率的25倍.这说明,水的纯 净度越高,需要的净化费用就越多,而且净化费用增加 的费用也越快.
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即:
f ( x) g ( x) f ( x) g ( x)
Байду номын сангаас
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
f ( x) g ( x) f ( x) g ( x) f ( x) g ( x)
求曲线在某点处的切线方程的基本步骤: ①求出P点的坐标; ②利用切线斜率的定义求 出切线的斜率; ③利用点斜式求切线方程.
y y f ( x0 )( x x0 ).
0
函数导函数
由函数f(x)在x=x0处求导数的过程可以看到,当 时,f’(x0) 是一个确定的数.那么,当x变化时,便是x 的一个函数,我们叫它为f(x)的导函数.即:
5.2.1基本初等函数的导数课件(人教版)(1)
3. 求余弦曲线y cos x 在点 , 0 处的切线方程 .
2
y cos x , y sin x , y x sin
2
2
1,
k 1, 所以切线方程为y 0 x , 即y x .
环节六:归纳总结,反思提升
基本初等函数的导数公式
1.若f(x)=c(c为常数) ,则f’(x)=c
2.若f(x)=xα(α∈Q且α≠0),则f’(x)=αxα-1
3.若f(x)=sinx ,则f’(x)=cosx
4.若f(x)=cosx ,则f’(x)=-sinx
5.若f(x)=ax (a>0且a≠1),则f’(x)=axlna
说明随着x的变化, 切线的斜率也在变化.
另一方面, 从导数作为函数在一点的瞬时变化率来看 , y 2 x 表明 :
2
当x 0时 , 随着x的增加, y 越来越小, y x 减少得越来越慢;
当x 0时 , 随着x的增加, y 越来越大, y x 2增加得越来越快 .
若y x 2 表示路程关于时间的函数 ,
x
并求出曲线在点(1,1)处的切线方程 .
y
1
y 2 表明 :
x
1
当x 0时, 随着x的增加, y 越来越大,
y
x
1
(1,1)
y 减少得越来越快;
x
x
O
当x 0时, 随着x的增加, y 越来越小,
1
y 减少得越来越慢 .
x
1
探究:画出函数y 的图象. 根据图象, 描述它的变化情况,
我们学过基本初等函数,并且知道,很多复杂的函数都是通过对这些函数进
《导数运算法则》PPT课件
精选课件ppt
4
例题
例1、求下列函数的导数
精选课件ppt
5
练习1: 求下列函数的导数:
(1 )
y
1 x
2 x2
;
(2)
y
x 1 x2
;
(3) y tan x;
(4) y (2 x2 3) 1 x2 ;
答案: (1) yx12 x43;
(3)Leabharlann yc1 o s2
; x
(2)
y
1 x2 (1 x2)2
log a
x,则 f
'( x )
1 x ln a
(a
0,且 a
1);
公 式 8 .若 f ( x ) ln x , 则 f '( x ) 1 ; x
精选课件ppt
2
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的
和(差),即: f(x)g(x)f(x)g(x)
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
;
(4) y 6x3 x; 1 x2
例题
精选课件ppt
7
练习2
例题
精选课件ppt
9
例题
精选课件ppt
10
练习3
精选课件ppt
11
练习3
精选课件ppt
12
公 式 4 .若 f ( x ) c o s x , 则 f '( x ) s in x ;
公 式 5 .若 f ( x ) a x , 则 f '( x ) a x ln a ( a 0 );
公 式 6 .若 f ( x ) e x , 则 f '( x ) e x ;
导数公式大全(最具说服力的)省公开课获奖课件说课比赛一等奖课件
(cot x) = - csc2x .
(sec x) = sec x tan x . (csc x) = - csc x cot x .
另外还有反三角函数旳导数公式:
(arcsin x) 1 , 1- x2
-1
(arccos x)
,
1- x2
(arctan
x)
1 1 x2
,
(arc
cot
x)
1
dx 4
dx n
f (x) 称为 f (x) 旳一阶导数.
而把
例3 求下列函数旳二阶导数
(1) y x cos x (2) y arctan x
解:
(1) y ' cos x x(- sin x) cos x - x sin x
y" - sin x - (sin x x cos x) -2sin x - x cos x
x) x)
u( x)v( x) - u( x)v( x)
[u( x)]2
.
推论 1 (cu(x)) = cu(x) (c 为常数).
推论 2
1 u( x)
u( x) - u2(x) .
乘法法则旳推广:
(uvw) ' u 'vw uv ' w uvw '
补充例题: 求下列函数旳导数:
例 1 设 f (x) = 3x4 – ex + 5cos x - 1, 求 f (x) 及 f (0).
解 根据推论 1 可得 (3x4) = 3(x4), (5cos x) = 5(cos x),又(x4) = 4x3,(cos x) = - sin x, (ex) = ex, (1) = 0,
故
5.2.1基本初等函数的导数课件(人教版)
2. 若f ( x) x,则f ( x) 1;
3. 若f ( x) x2 ,则f ( x) 2x;
4. 若f ( x) x3 ,则f ( x) 3x2;
5. 若f
x
1 x
,则f
x
1; x2
6. 若f x x ,则f x 1 .
2x
推广: 若y f ( x) x,则 y x1
O
x
从物理的角度理解:
若y=x表示路程关于时间的函数,则y=1可以解释为某物体做瞬 时速度为1的匀速运动.
探究
在同一平面直角坐标系中,画出函数y=2x, y=3x, y=4x的图象,并根 据导数定义,求它们的导数.
(1)从图象上看,它们的导数分别表示什么?
y y=4x y=3x
(2)这三个函数中,哪一个增加得最快?哪 一个增加得最慢?
基本初等函数的导数公式
1. 若f ( x) c,则f ( x) 0
2. 若f ( x) xn ,则f ( x) nxn1(n R)
3. 若f ( x) sin x,则f ( x) cos x
4. 若f ( x) cos x,则f ( x) sin x
5. 若f ( x) a x ,则f ( x) a x ln a
某物体作变速运动,它在时刻x的瞬时速度为2x.
4. 函数y f ( x) x3的导数
因为y f ( x x) f ( x) ( x x)3 x3
x
x
x
x3 3x2 x 3x (x)2 (x)3 x3 x
3x2 3x x (x)2,
所以y
lim
x0
y x
lim
x0
Thank you for watching !
基本初等函数的导数公式及导数的运算法则-课件
=-sin 2x.
题型三 求较复杂函数的导数 例3 求下列函数的导数:
(1)y=2x2sin(2x+5); (2)y=a3x·cos(2x+1). 【解】 (1)由于[sin(2x+5)]′=cos(2x+5)·(2x+5)′ =2cos(2x+5), ∴y′=(2x2)′sin(2x+5)+2x2[sin(2x+5)]′ =4xsin(2x+5)+4x2cos(2x+5).
所以 f(x0)=g(x0),f′(x0)=g′(x0),
12x20+2x0=3ln x0+b. ∴
x0+
2=3 . x0
由
x0+
2= 3 得, x0
x0=
1,或
x0=- 3(舍去 ),
所以 b=52.
(2)y=f(x)(x> 0), y= g(x)(x> 0)
在 且公f′共(x点)=(xx0,+y20a)处 ,的g′切(x线)=相3x同a2,,
x .
(3)y′=(ex)′ (x4- 3x2- 5x+ 6)+e x(x4- 3x2- 5x+ 6)′
=e x(x4- 3x2- 5x+ 6)+e x(4x3- 6x- 5)
=e x(x4+ 4x3- 3x2- 11x+ 1).
(4)y=x-12sin x,
∴y′=1-12cos x.
题型二 求复合函数的导数 例2 求下列函数的导数:
的图象的一个公共点,两函数的图象在点 P 处有相同的切
线,用 t 表示 a,b,c.
解:∵函数 f(x),g(x)的图象都过点 P(t,0), ∴f(t)=0,即 t3+at=0. ∵ t≠ 0,∴ a=- t2. 又 g(t)=0,即 bt2+c=0,∴c=ab. 又∵ f(x), g(x)在点(t,0)处有 相同的切线, ∴ f′(t)= g′ (t). 而 f′(x)=3x2+a,g′(x)=2bx, ∴ 3t2+ a= 2bt. 将 a=-t2 代入上式得 b=t. ∴ c= ab=- t3.
题型三 求较复杂函数的导数 例3 求下列函数的导数:
(1)y=2x2sin(2x+5); (2)y=a3x·cos(2x+1). 【解】 (1)由于[sin(2x+5)]′=cos(2x+5)·(2x+5)′ =2cos(2x+5), ∴y′=(2x2)′sin(2x+5)+2x2[sin(2x+5)]′ =4xsin(2x+5)+4x2cos(2x+5).
所以 f(x0)=g(x0),f′(x0)=g′(x0),
12x20+2x0=3ln x0+b. ∴
x0+
2=3 . x0
由
x0+
2= 3 得, x0
x0=
1,或
x0=- 3(舍去 ),
所以 b=52.
(2)y=f(x)(x> 0), y= g(x)(x> 0)
在 且公f′共(x点)=(xx0,+y20a)处 ,的g′切(x线)=相3x同a2,,
x .
(3)y′=(ex)′ (x4- 3x2- 5x+ 6)+e x(x4- 3x2- 5x+ 6)′
=e x(x4- 3x2- 5x+ 6)+e x(4x3- 6x- 5)
=e x(x4+ 4x3- 3x2- 11x+ 1).
(4)y=x-12sin x,
∴y′=1-12cos x.
题型二 求复合函数的导数 例2 求下列函数的导数:
的图象的一个公共点,两函数的图象在点 P 处有相同的切
线,用 t 表示 a,b,c.
解:∵函数 f(x),g(x)的图象都过点 P(t,0), ∴f(t)=0,即 t3+at=0. ∵ t≠ 0,∴ a=- t2. 又 g(t)=0,即 bt2+c=0,∴c=ab. 又∵ f(x), g(x)在点(t,0)处有 相同的切线, ∴ f′(t)= g′ (t). 而 f′(x)=3x2+a,g′(x)=2bx, ∴ 3t2+ a= 2bt. 将 a=-t2 代入上式得 b=t. ∴ c= ab=- t3.
基本初等函数的导数公式及导数的运算法则 课件
f′(x)= axlna (a>0)
f′(x)= ex
f′(x)= (a>0且a≠1)
f′(x)=
● 2.导数的四则运算法则 ● 设函数f(x)、g(x)是可导的,则 ● (1)(f(x)±g(x))′= ● (2)(f(x)·g(x))′=
f′(x)±g′(x) f′(x)g(x)+f(x)·g′(x)
+9x2)=60x9-48x7+45x7-36x5+60x9-80x7+27x7-36x5
=120x9-56x7-72x5.
解法 2:∵y=12x10-7x8-12x6
∴y′=120x9-56x7-72x5.
(3)y′=(33 x4+4 x3)′=(3x43)′+(4x32)′
● [点评] 1.多项式的积的导数,通常先展开再求导更简便. ● 2.含根号的函数求导一般先化为分数指数幂,再求导.
数加减(的3)求y导=法3则3进x行4求+导4. x3.
[解析]
(1)y′=15x5-43x3+3x+
2′
=15x5′-43x3′+(3x)′+( 2)′=x4-4x2+3. (2) 解 法 1 : y′ = (3x5 - 4x3)′(4x5 + 3x3) + (3x5 -
4x3)(4x5+3x3)′=(15x4-12x2)(4x5+3x3)+(3x5-4x3)(20x4
以写成
y=x-4,y=5
3
x3=x5等,这样就可以直接使用幂函
数的求导公式求导,以免在求导过程中出现指数或系数的 运算失误.
[解析] (1)y′=(x12)′=12x11. (2)y′=x14′=(x-4)′=-4x-5=-x45.
(4)y′=(2x)′=2xln2. (5)y′=2sin2xcos2x′=(sinx)′=cosx.
f′(x)= ex
f′(x)= (a>0且a≠1)
f′(x)=
● 2.导数的四则运算法则 ● 设函数f(x)、g(x)是可导的,则 ● (1)(f(x)±g(x))′= ● (2)(f(x)·g(x))′=
f′(x)±g′(x) f′(x)g(x)+f(x)·g′(x)
+9x2)=60x9-48x7+45x7-36x5+60x9-80x7+27x7-36x5
=120x9-56x7-72x5.
解法 2:∵y=12x10-7x8-12x6
∴y′=120x9-56x7-72x5.
(3)y′=(33 x4+4 x3)′=(3x43)′+(4x32)′
● [点评] 1.多项式的积的导数,通常先展开再求导更简便. ● 2.含根号的函数求导一般先化为分数指数幂,再求导.
数加减(的3)求y导=法3则3进x行4求+导4. x3.
[解析]
(1)y′=15x5-43x3+3x+
2′
=15x5′-43x3′+(3x)′+( 2)′=x4-4x2+3. (2) 解 法 1 : y′ = (3x5 - 4x3)′(4x5 + 3x3) + (3x5 -
4x3)(4x5+3x3)′=(15x4-12x2)(4x5+3x3)+(3x5-4x3)(20x4
以写成
y=x-4,y=5
3
x3=x5等,这样就可以直接使用幂函
数的求导公式求导,以免在求导过程中出现指数或系数的 运算失误.
[解析] (1)y′=(x12)′=12x11. (2)y′=x14′=(x-4)′=-4x-5=-x45.
(4)y′=(2x)′=2xln2. (5)y′=2sin2xcos2x′=(sinx)′=cosx.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明:上面的方法中把x换x0即为求函数在点x0处的 导数. 3.函数f(x)在点x0处的导数 f ( x0 ) 就是导函数 f ( x)在x= ( x ) f ( x ) | x0处的函数值,即 f 0 x x.这也是求函数在点x0 处的导数的方法之一。
0
4.函数 y=f(x)在点x0处的导数的几何意义,就是曲线y= f(x)在点P(x0 ,f(x0))处的切线的斜率. 5.求切线方程的步骤: (1)求出函数在点x0处的变化率 f ( x0 ) ,得到曲线 在点(x0,f(x0))的切线的斜率。 (2)根据直线方程的点斜式写出切线方程,即
对法则1的证明:
证明:令
f ( x x ) f ( x ) g ( x x ) g ( x )
fx ( xfx ) ( ) g ( x xg ) ( x ) y x x
y f ( x x ) g下列函数的导数: x 1 y log x 2 y 2 e 2
5 2
3 y 2 x 3 x 5 x 4 4 y 3 cos x 4 sin x
1 ' x 答: 2 y 2e 1 y ln 2 x ' ' 4 4 y 3 s i n x 4 c o s x 3y 1 0 x 6 x 5
数,下面的“导数运算法则”可以帮助我们解决两 个函数加、减、乘、除的求导问题。
三、导数运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即:
x gx () f () x gx () f()
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
今后我们可 以直接使用下 面的基本初等 函数的求导公 式
1 7 .若 f ( x ) lo g a x , 则 f '( x ) ( a 0 , 且 a 1) ; x ln a 1 可以在理解的基础 8 .若 f ( x ) ln x , 则 f '( x ) ; x 上背下来呀!
( gx ( ) 0 ) 2 gx () gx () ' ' ' c fx c fxc fx c fx 从法则2可以得出
也就是说常数与函数的积的导数,等于常数乘函数的导数,即: ' ' c f x c f x
fx ( ) g ( x ) f ( x )( g x ) fx ( )( g x )
法则3:两个函数的商的导数,等于第一个函数的导数乘第二个 函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函 f 数的平方.即: f( x ) ( xgx ) () f( xgx ) ()
y f ( x ) f ( x )( x x ). 0 0 0
1 .若 f ( x ) c , 则 f '( x ) 0 ;
二、基本初等函数的导数公 式:
2 .若 f ( x ) x n , 则 f '( x ) n x n 1 ; 3 .若 f ( x ) s in x , 则 f '( x ) c o s x ; 4 .若 f ( x ) c o s x , 则 f '( x ) s in x ; 5 .若 f ( x ) a x , 则 f '( x ) a x ln a ( a 0 ) ; 6 .若 f ( x ) e x , 则 f '( x ) e x ;
例题讲解:
例2、根据基本初等函数的导数公式和导数运 3 x3的导数. 算法则,求函数 y x 2
解:因为
y 2 x 3 2 x 3 x x
' 3 ' 3' ' '
3 x 2
2
所以,函数
yx 2 x 3 的导数是
3
y 3 x 2
' 2
练习:
3.2.2基本初等函数的 导数公式
临沂二中高二数学组
一、复习与巩固
1.解析几何中,过曲线某点的切线的斜率的精确描述与 求值;物理学中,物体运动过程中,在某时刻的瞬时速 度的精确描述与求值等,都是极限思想得到本质相同 的数学表达式,将它们抽象归纳为一个统一的概念和 公式——导数,导数源于实践,又服务于实践. 2.求函数的导数的方法是:
解:根据基本初等函数导数公式表,有
' t p t 1 . 05 ln 1 . 05
所以,
'
p 10 1 . 05 ln 1 . 05 0 . 08 元 / 年
10
因此,在第10个年头,这种商品的价格约以 0.08元/年的速度上涨. t p 5 t 5 1 . 05 .求 p 当 0 时, p 关于 t t t 1 . 05 t5 导数可以看成求 f 与g 乘积的导
yf( x ) g ( x ).
其他两条法则请 同学们课下练习 证明。
x x 取极限可得: f ( x ) g ( x ) f( x ) g ( x ).
f ( x x ) f ( x ) g ( x x ) g ( x )
( 1 ) 求函数的增量 y f ( x x ) f ( x ); (2 ) 求函数的增量与自变量 的增量的比值 : y f(x x ) f(x ) ; x x y f ( 3 ) 求极限,得导函数 y ( x ) lim . x 0 x