核磁共振的原理及其应用发展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核磁共振的原理及其应用发展

摘要:核磁共振是能够深入到物质内部而不破坏被测量对象的一种分析物质构造的现代技术,它通过利用原子核在磁场中的能量变化来获得关于原子核的信息,具有迅速、准确、分辨率高等优点,因而在科研和生产中获得了广泛的应用。本文主要介绍了核磁共振技术的基本原理,以及核磁共振在化学化工、生物化学、医药等方面的应用,并指出核磁共振波谱技术将成为21世纪一个异常广阔的谱学研究领域.

关键词:核磁共振;NMR谱仪

The Application of Nuclear Magnetic Resonance Technology Abstract:Nuclear magnetic resonance are deep into the material can damage the internal rather than a measured analysis of the target material structure of modern technology,it is through the use of nuclear energy in the magnetic field changes the information on the atomic nucleus,with the rapid,accurate,,high resolution,which in scientific research and the production of a wide range of applications received.This paper describes the basic principles of nuclear magnetic resonance technology,and the application of nuclear magnetic resonance in chemical engineering,biochemistry, medicine and other aspects,and that the nuclear magnetic resonance spectroscopy technology will become a broad spectrum of unusual research field in the 21st century.

Key:Nuclear magnetic resonance;NMR spectrometer

引言

核磁共振( Nuclear Magnetic Resonance,NMR)波谱学是一门发展非常迅速的科学。核磁共振是根据有磁的原子核,在磁场的作用下会引起能级分裂,若有相应的射频磁场作用时,在核能级之间将引起共振跃迁,从而得到化学结构信息的一门新技术。最早于1946年由哈佛大学的伯塞尔(E. M. Purcell)和斯坦福大学的布洛赫(F. Bloch)等人用实验所证实[1]。两人由此共同分享了1952年诺贝尔物理学奖[2]。核磁共振技术可以提供分子的化学结构和分子动力学的信息,已成为分子结构解析以及物质理化性质表征的常规技术手段[3],在物理、化学、生物、医药、食品等领域得到广泛应用,在化学中更是常规分析不可少的手段。从70年代开始,在磁共振频谱学和计算机断层技术等基础上,又发展起一项崭新的医学

诊断技术,即核磁共振成像技术,并在医学临床上获得巨大成功。本文主要介绍了核磁共振技术及其在化学领域的应用进展。

1.1核磁共振基本原理

泡利(W.Pauli)在1924年首先提出原子核具有磁矩,并认为核磁矩与其本身的自旋运动相联系,用此理论成功地解释了原子光谱的超精细结构[4]。核磁矩μ与核自旋角动量L之间的关系为:

式中是质子质量,e为单位电荷,g称为朗德因子(Landefactor),对于不同的核它有不同的值,它反映核内部自旋和磁矩的实验关系。实验工作中,常常用磁旋比(Magnetogyric-ratio)γ这个物理量表示核磁矩与核自旋的关系,其定义为:

γ随核的结构不同而不同,对于氢核,即质子,核磁矩比电子的自旋磁矩小得多,一般要小三个数量级。在外磁场中,原子核的自旋角动量是空间量子化的以外磁场B的方向为Z轴的正向,则核自旋角动量的空间量子化表示为

式中M是核自旋量子数,对于具有自旋量子数为I的核,M的取值为-I,-I+1,……,I,共有2I+1个值.对于不同的核,I可能为整数或半整数或零。

核自旋的空间取向,由(1)式[5]由(4)和(5)式可得g因子与磁旋比γ的关系为

可见,g因子也是一种磁旋比。

1.2 核磁共振的产生

静磁场中,磁性核存在不同能级。用一特定频率的电磁波照射样品,核会吸收电磁波进行能级间的跃迁,此即核磁共振。

核磁共振是指频率在60兆赫以上(波长在纳米级)的低能量电磁波与物质原子核相互作用的一种物理现象。核磁共振的能量较大,故当它照射到分子上时,会引起分子中价电子能级的跃迁。红外光的能量较低,它只能引起分子中成键原子核间振动和转动能级的跃迁。核磁共振波的能量更低,它产生是原子核自旋能级的跃迁。

原子核除了具有电荷和质量外,约有半数以上的原子核具有自旋。由于原子核是带电荷的粒子,旋转时即产生一小磁场。这些原子核的能量在强磁场中将分裂成两个或两个以上的量子化能级。当适当波长的电磁辐射照射这些在磁场中的核时,原子核便在这些磁诱导能级之间发生跃迁,并产生强弱不同的吸收讯号。

核磁共振仪主要由磁体、谱仪、探头和工作站四部分组成。磁体的作用是提供一个稳定的高强度磁场,目前商业核磁已经能够提高900MHZ的超强磁场。

谱仪用于供给固定频率的电磁辐射。试样管安放在试样探头中可使试样管固定在磁场中某一确定的位置。接受线圈和传送线圈也安装在试样探头中,以保证试样相对于这些组件的位置不变。试样探头还装有气动涡轮,能使试样管绕其轴迅速旋转,以减少磁场不均匀影响。

2核磁共振技术的发展

1930年代,物理学家伊西多-拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。1946年两位美国科学家发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发现原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。1964年后,核磁共振谱仪经历两次重大的技术革命,其一是磁场超导化;其二是脉冲傅立叶变换技术。从根本上提高了核磁共振波谱

相关文档
最新文档