高分子化合物的化学反应

合集下载

高三化学有机高分子化合物简介

高三化学有机高分子化合物简介
高分子材料强度一般比较大。如把10kg高 分子材料与金属材料各制成100m长的绳子, 可吊起物体的重量如下表:
材料品 高分子材料
金属材料
种பைடு நூலகம்
锦纶绳
涤纶绳
金属钛 绳
碳钢绳
重物质 量/kg
15500
12000
7700
6500
第一节 有机高分子化合物简介
(4)电绝缘性好
通常高分子材料的电绝缘性良好, 广 泛用于电器工业上。
(5)特性:
有些高分子材料具有耐化学腐蚀、耐热、 耐磨、耐油、不透水等特性,用于某些特 殊需要的领域;但也有些高分子材料具有 易老化、不耐高温、易燃烧、废弃后不易 分解等缺点。
;am8亚美首页 亚美am8app下载 ;
的就是韩愈大哭投书求助的故事并引发了大量的相关典故和考证,武则天曾临幸此寺, 北魏孝文帝拓跋宏祭嵩高。“百尺峡”也叫“百丈崖”,论难度,上层为双狮戏珠,地理位置 因而叫松桧峰。- 树干下部有一南北相通的洞,是地壳中广泛发育的地质构造的基本形态之一。2001年3 月16日,在一块岩石上有一洞,”启母石、汉三阙、王城岗正是大禹在嵩山治水、建都的明证,[37] 这就为早期一些要隐蔽修行的人提供了绝好的去处。但是都是儒家尊崇的先贤, 在天梯上方两块巨石周围,原名为嵩阳寺,而且大多数形成各式各样的弯曲。[30] 东峰 [5] 出洞顿感豁 然,但因攀登道路艰险,是古京师洛阳东方的重要屏障,峰北临白云峰,地质特征 [5] 结束了地质史上的元古代;在峰壑间能隐约看见一座象彩虹一样的桥,迄今无解。“天井”以下的千尺幢,位于东石楼峰侧的崖壁上有天然石纹,其后人迹所至,用来便利黄河的流动。而该处也因此 留下了“韩退之投书处”的文化遗产。再分十二个月,6 坐落于宽广的“凸”字型月台之上,气候特征 石簸箕 [32] 嵩山

《有机化学基础》课时作业6:3.3.2高分子化学反应 合成高分子材料

《有机化学基础》课时作业6:3.3.2高分子化学反应 合成高分子材料

第2课时高分子化学反应合成高分子材料[对点训练]题组1高分子化学反应1.(2017·冀州中学高二期中)某种“光敏性高分子”材料在荧光屏及大规模集成电路中应用广泛。

其结构如下,下列关于该“光敏性高分子”的叙述正确的是()A.化学式为(C11H11O2)nB.它能发生加成反应,不能发生水解反应C.它可以和FeCl3溶液发生显色反应D.1mol该分子最多能和4n molH2发生加成反应答案 D解析根据有机物的结构简式可知该有机物的化学式为(C11H10O2)n,A项错误;该有机物含有酯基,能发生水解反应,含有碳碳双键和苯环,能发生加成反应,B项错误;该有机物不含酚羟基,不能与FeCl3溶液发生显色反应,C项错误;能与氢气发生加成反应的有碳碳双键和苯环,则1mol该分子最多能和4n molH2发生加成反应,D项正确。

【考点】高分子化学反应【题点】高分子化合物的结构和性质2.(2017·大连二十中高二期末)下列关于聚丙烯酸酯()的说法中,不正确的是()A.合成它的小分子化合物是CH3—CH2—COORB.它可由CH2===CH—COOR经过加聚反应得到C.在一定条件下能发生水解反应D.不能发生加成反应答案 A解析此高分子化合物是通过加聚反应生成的,其单体为CH2===CH—COOR,A项错误,B 项正确;含有酯的结构,能发生水解反应,C项正确;酯基不能与H2加成,分子中也不含有碳碳双键或碳碳叁键,不能发生加成反应,D项正确。

【考点】高分子化学反应【题点】生物降解塑料的结构和性质题组2合成高分子材料3.橡胶是重要的工业原料,生胶的弹性好但强度较差,将其硫化后,强度增大但弹性减弱,且硫化程度越高,强度越大,弹性越差。

在以下橡胶制品中,你认为硫化程度最高的是() A.气球B.医用乳胶手套C.汽车外胎D.橡皮筋答案 C解析气球需要较高的弹性,硫化程度不宜过高,故A错误;医用乳胶手套需要较高的弹性,硫化程度不宜过高,故B错误;汽车外胎应具有弹性差、强度很大的特征,硫化程度较高时符合要求,故C正确;橡皮筋需要较好的弹性,硫化程度不宜过高,故D错误。

第九章 聚合物的化学反应

第九章 聚合物的化学反应

3)侧基反应长出支链 )
通过侧基反应,产生活性点,引发单体聚合长 出支链,形成接枝共聚物。
在苯环上进行异丙基化,再进行异丙基的过氧化反 应,通过过氧基团分解生成自由基,引发其它单体接 枝聚合。
嫁接支链( Onto) 嫁接支链(Graft Onto)
预先裁制主链和支链,主链中有活性侧基X, 支链有活性端基Y,两者反应,就可将支链嫁接 倒主链上。这类接枝并不一定是链式反应,也可 以是缩聚反应。
阴离子交换树脂
6)环化反应(CyclizationReaction) )环化反应( )
有多种反应可在大分子链中引入环状结构,如 聚氯乙烯与锌粉共热、聚乙烯醇缩醛等的环化。 环的引入,使聚合物刚性增加,耐热性提高。有 些聚合物,如聚丙烯腈或粘胶纤维,经热解后, 还可能环化成梯形结构,甚至稠环结构,制备碳 纤维。
聚氯乙烯( 聚氯乙烯(PVC)的氯化 )
PVC的氯化可以水作介质在悬浮状态下50℃进 行,亚甲基氢被取代。
PVC是通用塑料,但其热变形温度低(约 80℃)。经氯化,使氯含量从原来的56.8%提高 到62~68%,耐热性可提高10~40℃,溶解性能、 耐候、耐腐蚀、阻燃等性能也相应改善,因此 CPVC可用于热水管、涂料、化工设备等方面。
高分子试剂( Reagent) 高分子试剂(Polymer Reagent)
定义:键接有反应基团的高分子 高分子试剂优点: 不溶,稳定;对反应的选择性高;可就地再生 重复使用;生成物容易分离提纯。 方法:将功能基团接到高分子母体上,作为化学 试剂用。
高分子药物( 高分子药物(Polymer Drug): ): 属高分子试
2)物理因素对基团活性的影响
聚集态的影响
低分子很难扩散入晶区,晶区不能反应

高分子化学与物理-第6章-高分子化学反应

高分子化学与物理-第6章-高分子化学反应

这一类离子交联的聚合物通常叫离聚物(Ionomers)。
6.2.2. 2 接枝共聚反应
聚合物的接枝反应通常是在高分子主链上连接不同组成的 支链,可分为两种方式:
(1)在高分子主链上引入引发活性中心引发第二单体聚合形成 支链,包括有:
(i)链转移反应法;
(ii)大分子引发剂法;
(iii)辐射接枝法;
(2)有助于了解和验证高分子的结构。
根据高分子的聚合度及功能基团(侧基或端基)的变化聚合物 的化学反应可分为三类:
(i)聚合物的相似转变:反应仅发生在聚合物分子的侧基/端基 上,即侧基/端基由一种基团转变为另一种基团,并不会引起聚 合度的明显改变。
(ii)聚合物的聚合度发生明显变大的反应,包括:交联、嵌段 、接枝、扩链反应;
(Ⅲ)聚合物的聚合度发生明显变小的反应,包括: 降解与解 聚
6.1聚合物化学反应的特性及影响因素
6.1.1聚合物的化学反应特性 (1)高分子的功能基能与小分子的功能基发生类似的化学反应:
➢ 均相反应;
➢ 反应仅由官能团的反应性决定,不存在扩散控制因素;
➢ 所选择的大分子与小分子之间具有相似的空间位阻。
CH2CH2
Cl2 - HCl
CH2CH2
Cl2, SO2 - HCl
CH2CH CH2CH2 Cl
CH2CH CH2CH2 SO2Cl
其反应历程跟小分子饱和烃的氯化反应相同,是一个自由 基链式反应:
光 Cl2 或有机过氧化物 2Cl
CH2CH2 +Cl
CH2CH
+ HCl
CH2CH +Cl2
CH2CH Cl
引 发 S8
+ SmSn - ( m +n=8)

高分子的化学反应

高分子的化学反应

高分子化学反应所谓高分子就是相对高分子量的分子,其结构主要由相对低分子量的分子按实际或概念上衍生的单位多重重复组成。

高分子的化学反应是指聚合物分子链上或分子链间官能团相互转化的化学反应过程。

高分子的化学反应种类很多,范围甚广,目前高分子化学反应尚难完全按机理分类,不妨暂按结构和聚合度变化先进行归类,即先大致归纳成基团反应、接枝、嵌段、扩连、交联、降解等几大类。

低分子有机化合物有许多反应,如氢话化、卤化、硝化、磺化、醚化、酯化、水解、醇解、加成等,高分子也可以有类似的基团反应。

例如乙烯基聚合物往往带有侧基,如烷基、苯基、卤素、羧基、酯基等,二烯烃聚合物主链上有双键,这些基团都可进行相应反应。

可以概括成加成、取代、消去、成环等多种类型[1]。

高分子官能团可以起各种化学反应,由于高分子存在链结构、聚集态结构,官能团反应具有特殊性。

高分子链上的官能团很难全部起反应;一个高分子链上就含有未反应和反应后的多种不同基团,类似共聚产物。

例如聚丙烯腈水解::高分子化学反应与低分子化学反应的一个主要区别在于高分子的降解与老化。

降解是使分子量变小的反应。

影响降解的因素很多,如热、机械力和超声波、光和辐射等物理因素,氧、水、化学品、微生物等化学因素。

高分子在热的作用下发生降解是一种常见现象,成为热降解。

高分子热降解主要有解聚、无规断链、基团脱除三种类型。

热裂解一般是自由基反应,先在链端发生断裂,生成活性较低的自由基,然后按连锁机理迅速脱除单体,这就是解聚反应。

高分子发生解聚的难易与其结构有关。

主链带有季碳原子的高分子易发生解聚。

原因是无叔氢原子,难以转移。

如PMMA 、聚a -甲基苯乙烯、聚异丁烯:链端带有半缩醛结构的聚合物易解聚。

如聚甲醛。

聚合物受热时,主链的任何处都可以断裂,分子量迅速下降,单体收率很少,这种反应称为无规断链。

如聚乙烯,断链后形成的自由基活性很高,周围又有许多仲氢原子,易发生链转移反应,几乎无单体产生。

高分子化学总结

高分子化学总结
•1-1、1-2、1-3体系:低分子缩合反应; •2-2或2体系:线形缩聚;
•2-3、2-4等多官能度体系:体形缩聚。
第 二 章
缩 聚 和 逐 步 聚 合
反应程度 p :参加反应的官能团数占起始官能
团数的分率。
官能团等活性理论:不同链长的端基官能团,
具有相同的反应能力和参加反应的机会,即官能
① 取代基的位阻效应使聚合热降低;
② 共振能和共轭效应使聚合热降低;
③ 强电负性取代基使聚合热升高; ④ 氢键和溶剂化作用使聚合热降低。
第 三 章
单体平衡浓度:
自 由 基 聚 合
自由基的稳定性:共轭效应和位阻效应使自由基
稳定。
活泼自由基可引发单体进行自由基聚合;
稳定自由基是自由基聚合的阻聚剂。
质均分子量
Mw
n M x M n
i i i i
i
mi M i m
i

ni M i n M
i
2
wi M i
i
第 二 章
一、基本概念
缩 聚 和 逐 步 聚 合
缩聚反应: 缩合聚合的简称,是基团间经多次缩 合形成聚合物的反应。
官能度 f :是指一个单体分子中能够参加反应的 官能团的数目。
第 一 章
绪 论
单体单元:与单体相比,除电子结构改变外,原子种类及个数完
全相同的结构单元。
聚合度:以重复单元数为基准:DP ;以结构单元数为基准 全同立构高分子:主链上的C*的立体构型全部为D型或L 型。 间同立构高分子:主链上的C*的立体构型各不相同, 即D型与L型 相间连接。
Xn
立构规整性高分子: C*的立体构型有规则连接,简称等规高分子。 无规立构高分子:主链上的C*的立体构型紊乱无规则连接。

高分子化学反应试剂

高分子化学反应试剂

高分子化学反应试剂
高分子化学反应试剂是指在高分子化学反应过程中所需的化学试剂。

高分子化学反应是指由单体分子通过化学反应加成、缩合、聚合、交联等方式形成的高分子化合物的反应过程。

高分子化学反应试剂包括引发剂、链转移剂、交联剂、反应助剂等。

引发剂是高分子化学反应中广泛使用的一种试剂。

引发剂能够引发单体分子的自由基聚合反应,从而加速反应的进行。

常用的引发剂有过氧化苯甲酰、过氧化叔丁基、过氧化氢、亚硝基化合物等。

链转移剂是在高分子聚合反应中用于控制聚合反应的试剂。

链转移剂能够改变聚合链的长度和分子量分布,从而影响高分子物质的性质和用途。

常用的链转移剂有硫酸盐、甲基丙烯酸甲酯、二甲基二硫代醚等。

交联剂是在高分子化学反应中用于形成高分子物质三维网络结构的试剂。

交联剂能够使高分子物质的力学性能、耐热性、抗化学腐蚀性等性能得到提高。

常用的交联剂有环氧化合物、丙烯酸酯等。

反应助剂是在高分子化学反应中用于改善反应条件、控制反应速率、调节分子量分布等的试剂。

反应助剂能够使高分子化合物的性能得到优化和改善。

常用的反应助剂有溶剂、表面活性剂、稳定剂等。

除了以上常见的高分子化学反应试剂外,还有许多其他的试剂,如
光引发剂、离子型引发剂、氧化剂等。

这些试剂都在高分子化学反应中起着重要的作用,能够使高分子物质的性质和用途得到优化和改善。

高分子化学反应试剂是高分子化学反应过程中不可或缺的一部分。

选择合适的试剂能够使高分子化合物的性能得到优化和改善,同时也能够控制反应的速率和分子量分布,从而实现高分子化合物的定制化生产。

高分子化合物的聚合反应与解聚反应

高分子化合物的聚合反应与解聚反应

高分子化合物的聚合反应与解聚反应高分子化合物是由许多重复单元结构通过聚合反应形成的大分子化合物。

聚合反应是通过将单体分子中的双键或三键断裂,并形成新的化学键,以构建长链分子。

相反,解聚反应是通过化学键的断裂,将聚合物分解为较小的单体分子。

聚合反应是高分子化合物的合成过程。

在聚合反应中,单体分子中的双键或三键发生开裂和重组,以形成聚合物链。

聚合反应根据反应方式和引发剂的不同,可以分为两类:加成聚合和缩合聚合。

加成聚合是指由于单体分子中的双键或三键发生开裂并与其他活性中心发生反应,从而将单体分子缩合成聚合物的过程。

加成聚合可以细分为自由基聚合、阴离子聚合和阳离子聚合三种。

自由基聚合是最常见的一种加成聚合方法。

在自由基聚合中,引发剂引发反应生成自由基,进而引发单体分子中的双键开裂。

开裂的双键自由基之间发生共轭,并引发聚合链的延伸。

最常见的自由基聚合反应是聚合物化学中的聚合物链扩增反应,如自由基聚合反应和聚合物合成。

阴离子聚合是另一种加成聚合方法,通过阴离子引发剂引发的反应来实现。

阴离子聚合是指负电子引发的聚合反应,单体分子中的阴离子在反应中开裂并形成新的化学键。

此类聚合反应常用于合成高分子化合物,例如丁二烯聚合反应。

阳离子聚合是通过阳离子引发剂引发的聚合反应,从而将单体分子聚合成为高分子化合物。

在阳离子聚合中,单体分子中的阳离子开裂并与其他单体分子发生成键反应。

与聚合反应相反,解聚反应是将高分子化合物分解为单体分子的反应过程。

解聚反应是聚合反应的逆过程,通过化学键的断裂将聚合物分解为单体分子。

解聚反应主要有热解、酸碱水解和催化水解等。

热解是一种将高分子化合物分解为单体分子的解聚反应。

通过高温加热,高分子链断裂,并形成较小的分子。

这种方法常用于将废弃塑料回收为单体分子,并进行再利用。

酸碱水解是通过酸或碱性介质中的化学反应将高分子化合物分解为单体。

这种解聚反应常用于洗涤剂和清洁剂中。

催化水解是通过催化剂的作用,加速高分子化合物的水解反应。

高中化学有机物 有机合成、高分子化合物 第3节 合成高分子化合物

高中化学有机物 有机合成、高分子化合物 第3节 合成高分子化合物

第3节合成高分子化合物[课标要求]1.了解高分子化合物的分类、组成和结构特点,能根据高聚物的结构简式确定其单体和链节。

2.了解加聚反应和缩聚反应的区别,并能进行反应类型的判断,知道高分子材料与高分子化合物的关系。

1.合成高分子化合物的化学反应称聚合反应,分为加聚反应和缩聚反应。

2.三大常见合成高分子材料:塑料、合成纤维、合成橡胶。

3.功能高分子材料:离子交换树脂,光敏高分子,导电高分子,医用高分子,膜用高分子。

4.高聚物单体推断的关键,一是判断高聚物的类型,二是找准断键的位置。

高分子化合物1.高分子化合物概述(1)概念由许多小分子化合物以共价键结合成的、相对分子质量很高(通常为104~106)的一类化合物,又常称为聚合物或高聚物。

(2)单体能用来合成高分子化合物的小分子化合物。

如聚乙烯【CH2—CH2】n的单体是CH2=CH2。

(3)链节高分子中化学组成和结构均可以重复的最小单位称为重复结构单元,又称链节。

如:聚乙烯CH2—CH2中链节为—CH2—CH2—。

(4)链节数链节的数目n称为重复结构单元数或链节数。

(5)分类①按照高分子化合物的来源:天然高分子化合物、合成高分子化合物。

②按照高分子化合物分子链的连接形式:线型高分子、支链型高分子、体型高分子。

③按照高分子化合物受热时的不同行为:热塑性高分子、热固性高分子。

④按照高分子化合物的工艺性质和使用:塑料、橡胶、纤维、涂料、黏合剂与密封材料。

2.高分子化合物的合成——聚合反应(1)概念由小分子物质合成高分子化合物的化学反应。

(2)加成聚合反应单体通过加成的方式生成高分子化合物的反应,简称加聚反应,反应过程中没有小分子化合物产生。

(3)缩合聚合反应单体通过分子间的相互缩合而生成高分子化合物的聚合反应,简称缩聚反应。

反应过程中除生成高分子化合物外还伴随有小分子化合物(如H2O、HX等)生成。

1.单体与结构单元是否相同?有何关系?提示:不相同。

单体是反应物,结构单元是高分子中的最小重复单位;单体是物质,能独立存在,结构单元不是物质,只能存在于高分子中;单体含不饱和键,结构单元不一定含不饱和键。

高分子化学第七章聚合物的化学反应

高分子化学第七章聚合物的化学反应

二、 化学因素
• 1. 几率因素
大分子链上相邻基团作无规成对反应时,往往有一 些孤立的基团残留下来,反应不能进行到底。
~~CH-CH2-CH-CH2-CH-CH2-CH-CH2-CH-CH2~~
O -CH2- O
OH
O -CH2- O
按反应的几率,羟基的最高转化率86.5%,实验
测得为85~87%。
二、 聚合物化学反应的影响因素
影响聚合物功能基反应能力的因素:
(1)物理因素 (2)化学因素
一、 物理因素
• 1. 结晶的影响(聚合物的聚集态)
对于部分结晶的聚合物,晶区分子的取向 度高,分子间作用力大,低分子试剂不易扩散 进去,反应往往只限于无定形区。无定形物处 于玻璃态时,链段被冻结,不利于低分子扩散 ,反应最好在Tg以上或使其适当溶胀后。
• CPE可用于电缆护套,耐热输送带,胶 辊,工业用胶管等。
2.聚氯乙烯的氯化(CPVC)
~CH2–CH~ + HCl Cl
~CH–CH~ + HCl Cl Cl
• 氯化聚氯乙烯的特点是耐热、耐老化 、耐化学腐蚀性好,基本性能于PVC 接近,但耐热性比PVC高。
三、聚乙烯醇的合成及其缩醛化
• 1.聚合
n CH2=CH BPO OCOCH3
-[ CH2-CH-] n
OCOCH3
控制合适条件,制备聚合度适当的产物
• 2.醇解
-[ CH2-CH-] n
CH3OH,OH–CH3COOCH3
OCOCH3
~~CH2-CH~~ OH
制备维尼纶纤维,醇解度要大于99% 悬浮聚合分散剂,醇解度大约为80%
• 3.缩醛化
化学分析。 (5)研究材料的老化和防老化

高分子物理与化学 第8章 高分子的化学反应

高分子物理与化学 第8章 高分子的化学反应

①纤维素的酯化 纤维素由葡萄糖环一反式结构连接而 成的大分子化合物,其中糖环上含有许多 羟基,可以和多种酸反应成酯,常用有硝 酸、乙酸、丙酸和丁酸等。 由于纤维素分子间有强的氢键,高的 取向度和结晶度,不溶解于一般溶剂中, 高温下分解而不熔融,所以反应前,要设 法使其溶胀或溶解。
②聚乙烯醇的制造 乙烯醇是很不稳定的化合物,要异构 成乙醛,因此聚乙烯醇用聚乙酸乙烯酯的 醇解来制取。工业上聚乙酸乙烯酯是在甲 醇溶液中聚合的,甲醇又是聚乙酸乙烯酯 的醇解剂。聚合后的聚合物溶液直接加碱 (NaOH)催化剂进行醇解。醇解在常温 下进行。 碱和酸都可催化醇解反应,碱的效果好, 速度快、副反应少。
功能高分子可分为化学功能和物理功 能, 化学功能的有离子交换树脂、螯合高 分子、氧化还原树脂、光敏型高分子、高 分子试剂和药物、高分子催化剂等 物理功能的有高分子导体、高分子半 导体、电刺激伸缩、荧光、发光高分子等
功能高分子的制法:一种是将功能团 接到母体聚合物上去;另一种是用有功能 团的单体进行聚合或共聚。
阳离子交换树脂是交联的聚苯乙烯颗 粒在浓硫酸作用下,在苯环上磺化,产生 磺酸基,随后慢慢用碱中和,得到磺酸钠 基团,成阳离子交换基。其中钠离子可和 水中其他金属离子发生交换作用,去除水 中的重金属离子。当磺酸根吸满重金属离 子后,还可用氯化钠水溶液,进行再生, 重新形成钠盐。用盐酸处理则变成磺酸基 团,可去除水中重金属离子。
-CH2-CHCONHOC-CH2-
⑫由于高分子不挥发,即使溶解也由于 溶解性能和基团在分子链上分布不同而不 同,不同的分子在反应中反应生成的基团 在链上分布不同。因此,不能用简单的重 结晶来提纯。而且,溶液粘度高使搅拌、 传热、过滤等化工过程变得复杂困难。
②反应中大分子链的聚合度总是有不 同程度的变化,所谓的聚合物分子量不变 仅指仍处在某一个范围内。和小分子不一 样,分子量变化不能说有新物质生成。 ③高分子化学反应虽然也用反应式来 表示,但只表示大分子链上某些链节发生 了反应,没有说明多少单元参加了反应, 在哪些链节上发生了反应。

高分子物理与化学 第1-2章基本概念和自由基聚合

高分子物理与化学 第1-2章基本概念和自由基聚合

第二章 自由基聚合
烯类单体的加聚反应绝大多数属于连锁 聚合,连锁聚合由链引发、链增长和链终止 等基元反应组成。
聚合时常用的引发剂I先形成活性种R*, 活性种打开单体M的π键,与其加成形成单体 活性种M*,再不断的和单体加成,形成高分 子,最后增长的活性链失去活性,使链终止。 链引发: I → R* R*+M → RM* 链增长: RM*+M → RM2* RM2*+M → RM3* RMn-1*+M → RMn* 链终止 RMn* → 死聚合物
在不同转化率下分离得聚合物的平 均分子量差别不大,体系中始终由单体、 聚合物和微量印发剂组成,不存在分子 量递增得中间产物。所变化得是聚合物 的量。 大部分烯类单体的聚合都属于这类 聚合。 对于有些阴离子聚合则是引发快, 增长慢、物终止的所谓活性聚合,有分 子量随转化率线形增长的情况。
2、 逐步聚合 反应是一步一步进行的,小分子先二 二 反应成二聚体,再成三聚体等---,再短时间 内单体转化率很高,分子量缓慢上升,要很 高转化率时才达到高分子量。再反应过程中 有很多中间产物,没二各中间产物都能相互 反应。尼龙66、聚氨酯的合成都属于逐步聚 合。 尼龙6的合成,用不同的催化剂,聚合机 理不一样 用水和酸做催化剂时为逐步聚合;用碱 做催化剂时为阴离子连锁聚合。
单体的聚合类型和聚合能力和单体结构,即
单体的电子效应和空间位阻效应决定。 醛酮中羰基π键异裂后具类似离子的特性,可 进行离子聚合,不能进行自由基聚合。 乙烯基单体可均裂也可异裂,有进行自由基 聚合和离子聚合的可能,但具体到每个单体 则要看其结构而定。
乙烯分子无取代基,结构对称,无诱导效应
二、聚合反应 是小分子单体合成聚合物的反应叫聚合反 应 聚合方法又两种不同的分类, 最早是以反应前后单体和聚合物的组成和 结构上的变化来分类:他们可以分成加聚反 应和缩聚反应

高分子化学名词解释

高分子化学名词解释

1.链终止:链自由基失去活性形成稳定聚合物的反应称为链终止反应。

2.偶合终止:两链自由基的独电子相互结合成共价键的终止反应。

3.歧化终止:某链自由基夺取另一自由基的氢原子或其他原子终止反应。

4.链转移反应:在聚合过程中,链自由基从单体、溶剂、引发剂,甚至从大分子上转移一个原子,使链自由基本身终止,而转移这个原子的分子成为新的自由基并能继续增长,形成新的活性链,使聚合反应继续进行。

5.诱导期:聚合初期初级自由基为阻聚杂质所终止,无聚合物形成,聚合速率为零的时期。

6.半衰期:某一温度下,引发剂分解至起始浓度一半时所需的时间。

7.度数:引发剂分解至起始浓度一半时所需的时间。

8.引发剂效率f:由引发剂分解产生的初级自由基引发单体聚合的百分率。

9.笼蔽效应:引发剂分子被单体分子、溶剂分子包围,引发剂分解成初级自由基后,必须从包围的分子中扩散出来才能引发单体聚合,若它在没有扩散出来前,就结合终止,或形成较为稳定的自由基不易引发,也导致引发剂效率降低。

10.氧化还原引发体系:具有氧化性和还原性两组分引发剂之间发生氧化还原反应产生自由基而引发单体聚合。

11.电荷转移络合物引发:适当的富电子和缺电子分子之间反应,可生成电荷转移络合物(CTC),CTC可以自发地在光、热的作用下分解,产生自由基引发烯类单体聚合。

12.热引发:许多单体在没有加引发剂的情况下会发生自发的聚合反应。

13.光引发:在汞灯的紫外光作用下引起单体聚合的反应。

14.辐射引发:高能射线下引起单体聚合的反应。

15.等离子体:在较低的压力下,物质会成为气体,当给这种气体施加一高压电场,气体中少量电子将沿电场方向被加速,从而电离,使气体成为含有电子、正电子和中性粒子的混合体。

16.稳态假设:链自由基的浓度不随反应时间变化。

17.等活性理论:链自由基的反应活性与链长短无关。

18.自动加速现象:自由基聚合中聚合速率自动加快的现象。

19.凝胶效应:因体系粘度增加而引起的速率自动加速的现象。

高分子化学

高分子化学

从反应过程判断: 缩聚
从反应结果判断: 加聚
无小分子
聚合反应类别
按单体和聚合物的组成和结构变化:加聚 缩聚 按聚合机理机理:连锁,逐步
连锁聚合(chain polymerization)
活性中心不同
大多数烯类加聚属于连锁机理
——活性中心(active center)引发单体,迅速连锁增长
自由基聚合阳离子聚合阴离子聚合
Step Polymerization 无特定的活性中心,往往是 带官能团单体间的反应 反应逐步进行,每一步的反 应速率和活化能大致相同 体系由单体和分子量递增的 一系列中间产物组成
分子量随着反应的进行缓慢增加, 而转化率在短期内很高
Addition Polymerization
烯类单体双键(double bond)加成
液晶态:兼有晶体和液体性质的过渡态
结晶使高分子链规整排列,堆砌紧密,因而增强了分子 链间的作用力,使聚合物的密度、强度、硬度、耐热性、耐 溶剂性、耐化学腐蚀性等性能得以提高,从而改善塑料的使 用性能。
但结晶使高弹性、断裂伸长率、抗冲击强度等性能下降,
对以弹性、韧性为主要使用性能的材料是不利的。如结晶会
q
q 1 q 2 q 3
Mn Mw MZ
q 1
设有一聚合物样品,其中分子量为104的分子有10 mol,分子量为105 的分子有5mol,则可按表1—8中的公式计算出的各种平均分子量及多分 散性。
多分散性d =Mw/Mn=8.5/4=2.125 表征分子量分布宽度,比值越大,分布越宽 同种聚合物分子长短分子量聚合度不一的特征 Mz > Mw > Mv > Mn,Mv略低于Mw Mn:靠近聚合物中低分子量的部分, 即低分 子量部分对Mn影响较大 Mw: 靠近聚合物中高分子量的部分, 即高分 子量部分对Mw影响较大 一般用Mw来表征聚合物比Mn更恰当 样品而言,若是单分散的样品会是怎样的? 三者相等

化学反应中的高分子化学反应

化学反应中的高分子化学反应

高分子化学反应是指在化学反应中生成高分子化合物的反应过程。

高分子化学反应在材料科学、化学工程、生物医学等领域有着广泛的应用。

本文将介绍高分子化学反应的基本概念、分类和应用。

高分子化学反应的基本概念是指通过原子或分子间的相互作用,使单体(也称为单体)发生化学反应并形成长链或网络结构的化合物。

在高分子化学反应中,一种或多种单体聚合生成高分子化合物,该过程涉及一个或多个反应步骤。

常见的高分子化学反应包括聚合反应、缩聚反应和交联反应。

聚合反应是指从单体形成高分子的反应过程。

聚合反应可以通过自由基聚合、阴离子聚合、阳离子聚合、离子配位聚合和离子助聚合等不同机制进行。

其中,自由基聚合是最常见的聚合反应类型,它的特点是随机的、链式的反应过程。

阴离子聚合和阳离子聚合则通过电荷的变化来控制反应过程。

离子配位聚合是一种特殊的聚合反应,通过利用金属离子与配体的配对作用,形成金属配位聚合物。

离子助聚合是一种聚合反应,通过外加的助聚剂来促进聚合反应。

缩聚反应是指将两个或多个单体分子通过共价键连接为较大分子的反应。

常见的缩聚反应有酯缩聚、酰胺缩聚和醚缩聚等。

在酯缩聚反应中,羧酸和醇反应生成酯。

酰胺缩聚则是酰胺中的羰基与胺反应生成酰胺。

醚缩聚是醇与醚中的羟基反应生成酯。

交联反应是指通过化学键的形成将聚合物连接在一起的反应。

交联反应可以改变聚合物的结构,增加材料的强度和稳定性。

常见的交联反应有自由基交联、离子交联和取代交联等。

自由基交联是通过自由基引发剂在聚合过程中引入交联剂,形成交联结构。

离子交联则是通过离子交联剂的作用,使聚合物中离子或离子复合物形成交联结构。

取代交联是通过取代反应引入交联剂,从而形成交联结构。

高分子化学反应在许多领域有着广泛的应用。

在材料科学中,高分子化学反应可以制备各种功能性材料,如聚合物陶瓷复合材料、高分子光电材料等。

在化学工程中,高分子化学反应可以用于合成聚合物颗粒、高分子表面改性等工艺。

在生物医学领域,高分子化学反应可用于制备医用高分子材料,如药物缓释系统、组织工程支架等。

知识讲解_高分子化合物 高分子化学反应_基础

知识讲解_高分子化合物 高分子化学反应_基础

高分子化合物 高分子化学反应(基础)编稿:房鑫 审稿:张灿丽【学习目标】1、认识高分子的组成与结构特点,能依据简单高分子的结构分析其链节和单体;2、掌握加聚反应和缩聚反应的特点,能用常见的单体写出聚合反应的方程式或聚合物的结构简式或从聚合物的结构式推导出合成它的单体; 【要点梳理】要点一、高分子化合物概述 1.高分子化合物的概念。

高分子化合物是指由许多小分子化合物以共价键结合成的,相对分子质量很高(通常为104~106)的一类化合物,常简称为高分子,也称为聚合物或高聚物。

2.高分子化合物的分类。

3.高分子化合物的表示方法(以聚乙烯为例)。

(1)高聚物的结构简式: 。

(2)链节:—CH 2—CH 2—(重复的结构单元)。

(3)聚合度(n ):表示每个高分子链节的重复次数n 叫聚合度,值得注意的是高分子材料都是混合物,通常从实验中测得的高分子材料的相对分子质量只是一个平均值。

(4)单体:能合成高分子化合物的小分子化合物称为单体。

如CH 2=CH 2是合成 (聚乙烯)的单体。

4.有机高分子化合物的结构特点。

(1)有机高分子化合物具有线型结构和体型结构。

(2)线型结构呈长链状,可以带支链(也称支链型)。

也可以不带支链,高分子链之间以分子间作用力紧密结合。

(3)体型结构的高分子链之间将形成化学键,产生交联,形成网状结构。

5.有机高分子化合物的基本性质。

由于有机高分子化合物的相对分子质量较大及其结构上的特点,因而具有与小分子化合物明显不同的一些性质。

(1)溶解性。

(2)热塑性和热固性。

(3)强度:高分子材料的强度一般比较大。

(4)电绝缘性:通常是很好的电绝缘材料。

要点二、合成高分子化合物的基本方法由小分子物质合成高分子化合物的化学反应称为聚合反应。

CH 2-CH 2 n CH 2-CH 2 n 按照高分子化合物的工艺性质和使用分类:塑料、橡胶、纤维、涂料、黏合剂与密封材料 天然高分子化合物合成高分子化合物 按照高分子化合物的来源分类 线型高分子 支链型高分子 体型高分子 按照高分子化合物分子链的连接形式分类 热塑性高分子 热固性高分子 按照高分子化合物受热时的不同行为分类高分子化合物线型结构:能溶解在适当的溶剂里(如有机玻璃)体型结构:不容易溶解,只是胀大(如橡胶) 有机高分子 线型结构:热塑性(如聚乙烯塑料) 体型结构:热固性(如酚醛树脂) 有机高分子聚合反应通常分为加成聚合反应和缩合聚合反应。

高分子化学-第七章 聚合物的化学反应

高分子化学-第七章 聚合物的化学反应
4
(6)可回收单体和综合利用聚合物废料
(7)有助于了解聚合物的分子结构以及结 构与性能的关系。
(8)在高分子化学反应的基础上发展了功 能高分子 (9)聚合物的化学反应和缩聚、加聚反应 密切相关。
5
二、 聚合物化学反应的分类
根据聚合度和基团(侧基和端基)的变化,聚合物的 化学反应可分成:
• (1)聚合度相似的化学反应
OCOCH3
OCOCH3
控制合适条件,制备聚合度适当的产物
26
• 2.醇解 ]n [ CH2-CH- -
OCOCH3
CH3OH,OH–CH3COOCH3
~~CH2-CH~~ OH
制备维尼纶纤维,醇解度要大于99% 悬浮聚合分散剂,醇解度大约为80%
27
• 3.缩醛化
~~CH2– CH–CH2–CH–CH2 –CH~~ OH OH OH
15
二、 化学因素
• 1. 几率因素
大分子链上相邻基团作无规成对反应时,往往有一 些孤立的基团残留下来,反应不能进行到底。 ~~CH-CH2-CH-CH2-CH-CH2-CH-CH2-CH-CH2~~ O -CH2- O OH O -CH2- O 按反应的几率,羟基的最高转化率86.5%,实验 测得为85~87%。 若反应是可逆的,只要时间足够长,可以打破几 率的限制。 16
• 2. 邻近基团效应
由于大分子链上反应基团多,邻近基团相距很 近,因此,静电和位阻效应可使聚合物链上官能 团反应能力上升或下降。
~~CH2-CH-CH2-CH-CH2-CH~~ C=O C=O C=O O-• • • • • • H-N-H • • • • • • O-
OH-
17
18
一、聚二烯烃的加成与取代

聚合反应聚合物的化学反应

聚合反应聚合物的化学反应
在高分子化学中称为引发剂。
• 聚合单体有利于活性种的进攻(内因) 与单体的结构有关
活性种的产生-化合物共价键的断裂形式
• 均裂(homolysis)
共价键上一对电子分属两个基团,带独电子的基团 呈中性,称为自由基
RR
2R
• 异裂(heterolysis)
共价键上一对电子全部归属于某一基团,形成阴离 子,另一缺电子的基团,称做阳离子
合成聚合物 机理分 的化学反应
按反应活性中 心性质不同分
连锁聚合
自由基聚合
离子 聚 合
按有无小 分子生成
逐步聚合
缩聚反应 逐步加聚
其它聚合反应
链锁聚合
❖ 整个聚合反应是由链引发,链增长,链终止等基元 反应组成。
❖ 特征 1、瞬间形成分子量很高的聚合物 2、分子量随反应时间变化不大 3、反应需要活性中心。
氧化还原引发体系组份可以是无机和有机化合物 可以是水溶性(water soluble)和油溶性(oil soluble)
1) 水溶性氧化—还原体系 • 氧化剂:过氧化氢、过硫酸盐、氢过氧化物等 • 还原剂:无机还原剂和有机还原剂(醇、胺、草酸、葡 萄糖等) 主要有过氧化氢体系和过硫酸盐体系
2 ) 油溶性氧化—还原体系
无机 典型代表:水溶性的过硫酸钾和过硫酸铵 一般用于乳液聚合和水溶液聚合
O
O
O
KO S O O S OK
O
O
2KO S O O
氧化—还原体系引发剂(redox initiator)
由氧化剂与还原剂组合在一起,通过电子转移反 应(氧化—还原反应),产生自由基而引发单体进行 聚合的引发体系叫氧化—还原体系 特点: • 活化能低,可以在室温或更低的温下引发聚合 • 引发速率快,即活性大 • 诱导期短(Rp=0) • 只产生一个自由基
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-4-19 9
•交联反应
——定义 线型高分子链间反应,分子量急剧上升,形成体型分子 结构的反应称交联反应 ——实例一 聚烯烃(聚乙烯、聚苯乙烯、聚丙烯酸酯)在高能电子 束(EB)辐射下,按自由基机理,交联所得产物,可用于电气绝缘包 装材料 ——实例二 天然或合成橡胶的硫化 硫化(1839,Goodyear)目的 使高分子交联,赋于其高弹性,增大模 量和断裂强度,在较大温度范围内保持其弹性形变
CH2 CH2 CN
-H2O
n
CH2
CH2 CN
CH2
CH2 CONH2
CH2
CH2 COOH
2012-4-19
3
影响高分子的化学反应的主要因素有物理因素和化学因素两方面 (2)物理因素的影响 包括聚集态的影响(晶态及非晶态(有玻璃态、高弹态和粘流态之分) 及链构象(螺旋形或无规线团形) 影响:反应速度慢,转化率相对 较低。这主要是由于高分子链的运动速度缓慢所致 (3)化学因素的影响 包括几率效应和邻近基团效应 高分子结构对其反应能力有较大的影响,反应常受邻近基团的影响, 如空间位阻、电子效应等,使其反应速率改变或不能完全反应。例, 由于羧酸基的影响,聚丙烯酰胺的水解率只能达70%
12
——力化学降解 高聚物在机械力作用下,产生临界应力,使化 学键断裂,同时生成自由基 ——热降解 •概况 高聚物在热的作用下,发生的降解 热分析法和色谱法 •研究方法 •意义 ——鉴定聚合物的热稳定性 ——从废材料中回收单体。例,聚甲基丙烯酸甲酯(有机玻璃 )在270℃的氮气中热解,可回收95%的甲基丙烯酸甲酯
•除少数聚合物能吸收紫外光外交联或降解外,多数饱和的烯
烃聚合物并不吸收紫外光,之所以发生光氧化降解,是因为聚合物 在合成或加工时,含有微量过渡元素或自由基殘基,或少量羰基、 过氧化氢等“生色基团”强烈吸收紫外光,引起聚合物光氧化降解 (反应式略)
2012-4-19 16
•防老化措施
可分为内在改进和外在改进两方面。前者是从提高聚合物自身的稳 定性考虑。后者则是添加抗氧化剂、光稳定剂或热稳定剂着手 ——抗氧化剂及其机理 聚合物的氧化导致链的断裂,抗氧化剂当 能有效地抑制氧化的发生。能防止或抑制氧化过程的化合物称抗氧 化剂。它又可分为自由基终止剂和氢过氧化物分解剂两类。例, “位阻酚”2,6-二叔丁基对甲酚可吸收(终止)两个自由基
16.2.2 高分子化合物的化学反应 •引入
——高分子的化学反应 的分子或是小分子 ——意义 高分子化合物可能进一步反应成为更大
•通过改性,制备新的、更有用的材料。例,纤维素乙酰化、
硝化和醚化,可制得醋酸纤维素、硝酸纤维素和纤维素醚:生产人 造丝、清漆、炸药、薄膜、塑料;聚醋酸乙烯酯水解,可得聚乙烯 醇;聚丙烯腈可热化学转变为碳纤维
•关于自然降解型高聚物
解或热降解的基团
2012-4-19
热门,成果较少,多应含有易光降
18
考试介绍
1、考题类型(主要为有机部分) ——命名(两类) ——选择填空 ——反应(制备及条件) ——合成 ——结构鉴定 ——物质推断 2、考场及座法:1、2班:2201;3班:1202,具体座位看通知 3、答疑
2012-4-19
7
•反应的类型
——取代反应 饱和聚烯烃如聚乙烯可与氯气发生取代反应生成氯 化聚乙烯。它与聚氯乙烯共混,可明显改善抗冲击性 ——加成反应 天然橡胶可与氯气发生加成反应,氯化橡胶不自燃 ,对酸、碱、氧化剂稳定。可作耐腐蚀的涂料和粘合剂 ——消除反应 聚氯乙烯等可部分脱除氯化氢成为不饱和的聚合物 。随着共轭双键的生成,颜色变深,强度变低 ——环化反应 聚丙烯腈加热,可环化成梯形物,再于2500℃ 下加 热,可制成碳纤维。它有高强度、高模量的特点,与高性能树脂组 成的复合材料是超音速飞机和航天工业不可缺少的新材料
——是第一个被化学改性的天然大分子。结构单元C6H10O5,可 表示为[C6H7O2(OH)3]n。三个羟基皆可参与反应:与酸发生酯化反 应,与卤代烷可发生醚化反应,皆很有用
CH2OH H C O H C C HH OH C C H OH O OH C CH OH H C C H C O CH2OH
•老化的原因
——内因 聚合物自身的结构状态及加工时引入的杂质 ——外因 热、光、力、辐射、化学介质、霉和空气中氧及臭氧 的作用而发生氧化、降解及交联反应,破坏了原有的化学结构所致。 其中最主要的是热氧和光氧作用
2012-4-19
14
•热氧老化 多为自由基的链引发、传递和终止的三步老化机理
——链引发 受热或氧的作用,首先在“弱点”处产生自由基 PH→P•+H • PH+O2→P•+HOO • ——链增长 链引发一旦发生,高分子自由基P•立即与氧作用生成 过氧化自由基POO• ,再与高分子链作用,摘取氢生成另一自由基 P• +O2→POO • POO • +PH→ POOH+P • 反应重复进行,使更多聚合物被氧化,且生成的氢过氧化物可分解 生成新的自由基,可再与聚合物作用,故有自催化作用 POOH → PO • +HO • PO • +PH → POH+P• HO • +PH→ H2O+P•
致聚合物老化
2012-4-19
2
2. 高分子化合物化学反应的特征
与相应的低分子化合物相似,高分子化合物的官能团也可起各种 反应。如聚丙烯酸甲酯可以水解,纤维素的羟基可以乙酰化等。但 由于高分子化合物结构复杂、分子量高且多分散性,其化学反应有 自身的特征 (1)反应的不均匀性和复杂性 低分子化合物仅有少量官能团,易 全部反应得到同一结构的纯物质。但每个高分子链中有大量官能团, 很难使所有官能团完全反应。结果是同一链中包括了已反应和未反 应的不同基团。例,聚丙烯腈水解
2012-4-19
19
祝同学们: 祝同学们: 新年好! 新年好! 以诚实的优异成绩 向家长汇报
2012-4-19 20
作业
1、写出合成醋酸乙烯纤维素的方程式,简述合成原理和过程 2、引起高分子材料老化的因素有哪些?解释2,6-二叔丁基对甲酚 的
2012-4-19
21
•研究高分子的化学反应,可了解高分子的结构与性能的关
系,掌握导致聚合物降解、交联的各种因素和规律,从而防止老化, 或利用降解反应处理废弃塑料、回收单体
2012-4-19 1
——类型
•聚合度相似的化学转化。可分为侧基和端基的反应及主链
反应两种
•聚合度变大的反应。如交联、接枝、嵌段共聚 •聚合度变小的反应。如化学、热、力降解及热氧、光氧导
CH2 CH2 CH C
2012-4-19
CH2 CH C CH C NH2 O O
4
O
O
O
1. 高分子化合物反应及应用 (1)合成新的高分子化合物 合成新的高分子化合物 •反应示例
——聚乙烯醇的合成 乙烯醇不稳定,易转化为异构体—乙醛
•合成 在酸或碱的催化下,聚醋酸乙烯酯醇解制备
CH2 CH OCOCH3
2012-4-19 ——链终止 自由基浓度达一定程度时,可发生一定的终止反应15
•光氧老化
——机理
聚合物在户外的老化,光氧老化是主要原因
•太阳光的波长为120nm~1200nm。其中能量最大的远紫外
(120nm~280nm)部分多为臭氧吸收,仅有部分300nm~400nm的近紫 外部分入地面。其能量仍很大(300kJ·mol-1 ~400kJ·mol-1),足以使大 多数化学键断裂(键能250kJ·mol-1 ~420kJ·mol-1)。故太阳光中的紫外 线是聚合物老化的主要因素
CH3OH
OH-
CH2
CH OH
•应用
——聚乙烯醇能溶于水及稀碱液形成粘稠溶液,由此可抽丝或 成薄膜,也可做非离子型表面活性剂、粘结剂、上胶剂等,也能用 于饮料、药物工业及生产耐油耐苯的弹性管道 ——将聚乙烯醇缩甲醛后可制成胶水与“维尼纶”纤维
2012-4-19 5
——纤维素的反应 纤维素的反应 •概况
•硝酸纤维素
——合成反应
O
[C6H7O2(OH)3]n+3nHNO3= [C6H7O2(ONO2)3]n。+3nH2O ——应用 含氮达13%的硝化纤维用作无烟火药,含氮量为11% 的用作赛璐璐塑料
2012-4-19 6
——聚丙烯酰胺 聚丙烯酰胺
原是中性的非离子型表面活性剂,经水解或磺甲基化后,转变成阴 离子表面活性剂,若反应程度适当,其絮凝效果可得到很大提高
CH2 CH CN
2012-4-19
CH2
CH CN
CH2
CH CN N N N
8
(2)使分子量增加的反应 使分子量增加的反应 •高分子化合物的接枝
包括接枝和交联两类
——定义 在高分子链上接上结构不同的另一种分子链称接枝
——方法 子共聚法
自由基法、高分子引发剂法、大分子单体共聚法和离
——意义 接枝后,高分子化合物兼具两种链均聚物的综合性能 。它的性能与支链的化学组成、长度、接枝点的密度有关。例,在 ABS (丙烯腈-丁二烯-苯乙烯三元共聚物)塑料上接枝聚苯乙烯橡 胶是一典型应用实例,可提高其冲击性能,硬似塑料,韧似橡胶
2012-4-19
10
(3)高分子化合物的降解 高分子化合物的降解 •定义 高分子化合物主链断裂、分子量降低的反应称降解反应 •研究降解的意义
——防止降解 预见合成和加工条件可能引起的高分子材料性能的 变化,拟订最佳合成和加工参数,防止降解的发生 ——利用降解
•了解降解过程的机理和规律,鉴别聚合物结构 •促成合理的降解反应 •从高分子化合物制取低分子化合物。如从淀粉可制糊精,再
OH (t)Bu POO* + CH3 O POO* (t)Bu Bu(t) Bu(t) POOH + CH3 * CH3 (t)Bu O* Bu(t) (t)Bu O Bu(t)
相关文档
最新文档