九年级数学反函数和二次函数
2023年沪科版九年级上册数学第21章二次函数与反比例函数易错题型专题 求二次函数的最值或取值范围
解:(1)∵抛物线y=(x+m)2+b经过A(-1,0),B(3,0)两点,
-1+3
∴抛物线的对称轴为直线x=
=1,
2
∴m=-1,∴抛物线y=(x-1)2+b,
把A(-1,0)代入,得4+b=0,∴b=-4,
∴抛物线的表达式为y=(x-1)2-4,顶点坐标为(1,-4).
(2)y的取值范围为-4≤y<0.
【易错题型专题】 求二次函数的最值
或取值范围
【易错题型专题】
求二次函数的最值或取值范围
求二次函数的最值或取值范围是本章的重要考
点,解题的关键是找出对称轴与自变量取值范围的
关系,画出大致图象,利用数形结合来解决问题.
-2-
【易错题型专题】
求二次函数的最值或取值范围
类型1 根据自变量的取值范围直接求二次函数的
值;当x=0时,y有最大值,
a2-1=24,
∴ቊ
解得a=-5.
2
9+6a+a -1=3,
综上所述,a的值为2或-5.
-19-
去),m2=-2(舍去).
综上所述,m的值为- 3.
-12-
【易错题型专题】
求二次函数的最值或取值范围
方法总结
已知二次函数y=ax2+bx+c,自变量的取值范围
为m≤x≤n(以a>0为例):
b
①若- ≥n,此时y随x的增大而减小,故当x=
2a
m时,y有最大值;当x=n时,y有最小值.
b
②若- ≤m,此时y随x的增大而增大,故当x=
-6-
【易错题型专题】
求二次函数的最值或取值范围
4.已知抛物线y1=x2+bx+c与直线y2=-2x+m相
交于A(-2,n),B(2,-3)两点.
九年级数学上册第21章二次函数与反比例函数21.4二次函数的应用(第一课时)课件(新版)沪科版
课堂小结
答:当矩形的宽为10m时,矩形面积最大为100m2.
[归纳总结] 求极值(或最值),是许多实际问题中需研究 和解决的课题,二次函数是一种解决此类问题的模型.
探究问题二 已知二次函数的表达式应用最值解决实际问题 例 2 [教材变式题] 我市某镇的一种特产由于运输原
因,长期只能在当地销售.当地政府对该特产销售每年的投 入资金 x 万元与所获利润 P 万元之间的函数表达式为 P=- 1100(x-60)2+41.当地政府拟在“十二五”规划中加快开发 该特产的销售,其规划方案为:在规划前后对该项目每年最 多可投入 100 万元的销售投资,在实施规划 5 年的前两年中, 每年都从 100 万元中拨出 50 万元用于修建一条公路,两年 修成,通车前该特产只能在当地销售;公路通车后的 3 年中, 该特产既在本地销售,也在外地销售.在外地销售的每年的 投资金额 x 万元与所获利润 Q 万元之间的函数表达式为 Q= -19090(100-x)2+2594(100-x)+160.
因此,当 40≤x≤70 时,y=-3x+240.
(2)当每箱售价为 x 元时,每箱利润为(x-40)元,平均每 天的利润 W=(240-3x)(x-40)=-3x2+360x-9600.
(3)W=-3x2+360x-9600 =-3(x2-120x+3600-3600)-9600 =-3(x-60)2+1200,
[分析] 首先根据题意建立数学模型,即写出题目中水面的面 积与其一边长所反映的函数关系式,然后配方,写出顶点坐 标,从而确定矩形水面的边长和面积.
解:设矩形的宽为xm,面积为Sm2,得 S=x(20-x)=-x2+20x=-(x2-20x+100-100) =-(x-10)2+100 ∵a=-1<0 ∴当x=10时,S最大=100.
二次函数及反比例函数知识点
二次函数及反比例函数知识点二次函数和反比例函数是初中和高中数学中经常涉及的函数。
它们在数学上有着重要的应用,同时也具有一定的难度。
下面我们来详细介绍二次函数和反比例函数的知识点。
一、二次函数1. 定义:二次函数是指形如y = ax^2 + bx + c的函数,其中a、b、c为实数,且a≠0。
2.二次函数的图像:二次函数的图像是一个开口朝上或开口朝下的抛物线。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
3.二次函数的性质:(1) 顶点坐标:二次函数的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)=ax^2 + bx + c。
(2)对称轴:顶点坐标为(-b/2a,f(-b/2a))的直线称为二次函数的对称轴,方程为x=-b/2a。
(3)开口方向:二次函数的开口方向取决于系数a的正负。
(4) 判别式:二次函数ax^2 + bx + c的判别式为Δ = b^2 - 4ac,当Δ > 0时,二次函数有两个不相等的实根;当Δ = 0时,有两个相等的实根;当Δ < 0时,无实根。
4.二次函数的平移:二次函数的横向平移和纵向平移可以通过对函数的自变量和因变量进行平移操作实现。
5.二次函数的解析式:通过给定的定点和顶点坐标,可以确定一条与x轴相交的二次函数。
6.二次函数的应用:二次函数在数学和物理等领域有着广泛的应用,如碰撞问题、抛物线运动等。
二、反比例函数1.定义:反比例函数是指形如y=k/x的函数,其中k为非零实数。
2.变化规律:反比例函数的特点是随着x的增大,y的值会逐渐减小;反之,随着x的减小,y的值会逐渐增大。
3.反比例函数的性质:(1)零点:当x≠0时,y=0称为反比例函数的零点。
(2)渐近线:反比例函数y=k/x的图像有两个渐进线x=0和y=0。
(3)对称性:反比例函数的图象关于坐标轴对称。
(4)奇函数:反比例函数是一个奇函数,满足f(-x)=-f(x)。
反函数基本公式大全
反函数基本公式大全反函数是指对于一个函数f(x),如果存在另一个函数g(x),使得f(g(x)) = x,且g(f(x)) = x成立,那么g(x)就是f(x)的反函数。
在数学中,反函数是一个非常重要的概念,它在解方程、求导、积分等数学问题中都有着重要的应用。
因此,了解反函数的基本公式是十分必要的。
1. 一次函数的反函数。
对于一次函数y = kx + b,它的反函数可以通过以下公式来求解:x = ky + b。
y = (x b) / k。
其中k为一次函数的斜率,b为截距。
通过这个公式,我们可以很容易地求出一次函数的反函数。
2. 二次函数的反函数。
对于二次函数y = ax^2 + bx + c,它的反函数的求解就稍微复杂一些。
我们可以通过以下步骤来求解二次函数的反函数:首先,将y = ax^2 + bx + c中的y替换为x,然后解出关于x的二次方程;接着,将得到的解中的x和y互换位置,得到的表达式就是二次函数的反函数。
3. 对数函数的反函数。
对数函数y = loga(x)的反函数是指数函数y = a^x。
其中,a为对数函数的底数。
这两个函数是互为反函数的关系,它们的图像关于y=x对称。
4. 指数函数的反函数。
指数函数y = a^x的反函数是对数函数y = loga(x)。
同样地,这两个函数也是互为反函数的关系,它们的图像关于y=x对称。
5. 三角函数的反函数。
对于三角函数y = sin(x)、y = cos(x)、y = tan(x)等,它们的反函数分别是反正弦函数y = arcsin(x)、反余弦函数y = arccos(x)、反正切函数y = arctan(x)等。
这些反函数在三角函数的求解中具有重要的作用。
6. 复合函数的反函数。
对于复合函数f(g(x)),它的反函数可以通过以下公式来求解:g(f(x)) = x。
f(g(x)) = x。
通过这些公式,我们可以求解复合函数的反函数,从而在数学问题中得到更加简洁的表达式。
九年级数学人教版第二十二章二次函数22.1.1二次函数定义(同步课本知识图文结合例题详解)
九年级数学第22章二次函数
问题3: 某工厂一种产品现在的年产量是20件,计划今后两
年增加产量.如果每年都比上一年的产量增加x倍,那么两
年后这种产品的产量y将随计划所定的x的值而确定,y与x
之间的关系应怎样表示?
这种产品的原产量是20件,一年后的产量是_2_0_(_1_+_x_)件,
再经过一年后的产量是_____2_0_(_1_+_x_)_(_1件+x,) 即两年后的
2
是二次函数关系.
九年级数学第22章二次函数
4.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长 和宽相等,高比长多0.5m. (1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积 S(m2)如何表示? (2)如果涂漆每平米所需要的费用是5元,涂漆每个长方体所需 要费用用y(元)表示,那么y的表达式是什么? 解析:(1)S=2x2+x(x+0.5)×4=6x2+2x (2)y=5S=5×(6x2+2x)
2.如果函数y=(k-3)xk2 3k 2 +kx+1是二次函数,则k的值
一定是__0____.
九年级数学第22章二次函数
3.用总长为60m的篱笆围成矩形场地,场地面积S(m²)与矩 形一边长a(m)之间的关系是什么?是函数关系吗?是哪一 种函数? 解析:S=a( 60 -a)=a(30-a)=30a-a²=-a²+30a.
函 数
关系Leabharlann 一次函数y=kx+b(k≠0)
正比例函数 y=kx(k≠0)
反比例函数
y= k (k≠0)
x
二次函数
九年级数学第22章二次函数
问题1:
正方体六个面是全等的正方形,设正方体棱长为 x ,表 面积为 y ,则 y 关于x 的关系式为_y_=6_x2____.
沪科版九年级数学上第21章二次函数与反比例函数21
(2)若这个函数是二次函数, 则 m2-m≠0,即 m≠1 且 m≠0.
自主学习
基Hale Waihona Puke 夯实整合运用思维拓展
九年级 数学 上册 沪科版
14.如图,一块草地是长 80 m,宽 60 m 的矩形,欲在中间修筑两条互相 垂直的宽为 x m 的小路,这时草坪的面积为 y m2.求 y 与 x 的函数表达式, 并写出自变量 x 的取值范围.
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 沪科版
解:(1)S=12πr2+8r(r>0).
(2)当 r=2,π=3.14 时, S=12×3.14×22+8×2 =22.28 ≈22.3(m2).
自主学习
基础夯实
整合运用
思维拓展
(A )
C.y=(1-x)2+a D.y=x2+a
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 沪科版
6.已知正方形的周长是 x cm,面积为 y cm2,则 y 与 x 之间的函数表达
式为_y_=y=116x2(x>x02)(x>0)__.
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 沪科版
(C )
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 沪科版
9.下列关系中,是二次函数关系的是
(C )
A.当距离 s 一定时,汽车行驶的时间 t 与速度 v 之间的关系
B.在弹性限度内,弹簧的长度 y 与所挂物体的质量 x 之间的关系
C.圆的面积 S 与圆的半径 r 之间的关系
沪科9年级数学上册第21章 二次函数与反比例函数1 二次函数
知1-练
感悟新知
知1-练
解:① y=1- 2 x2 = - 2 x2 + 1,是二次函数; ②分母中含有自变量,不是二次函数; ③ y=3x(1-3x) = - 9x2+3x,是二次函数; ④ y=(1-2x)(1+2x) = - 4x2+1,是二次函数.
答案:C
感悟新知
知1-练
1-1. [ 月考·合肥 ] 下列各式中, y 是 x 的二次函数的 是( C ) A.y=3x - 1 B.y=x2 - ( x+1)( x - 5) C.y=x2 - 5x+13
感悟新知
特别提醒
知1-讲
(1)二次项系数、一次项系数和常数项包括它们前
面的符号,不要漏掉 .
(2) 二次函数y=ax2+bx+c( a ≠ 0)的特殊形式:
特殊形式 二次项 一次项 常数项
y=ax2(a≠0)
ax2
无
0
y=ax2+bx(a≠0) ax2
bx
0
y=ax2+c(a≠0) ax2
无
c
感悟新知
感悟新知
知2-练
2-1.某商品的进价为每件 40 元,如果售价为每件 50 元, 每个月可卖出210 件;如果售价超过 50元但不超过 80 元,每件商品的售价每上涨 1 元,则每个月少卖 1 件;如果售价超过 80 元后,若再涨价,则每涨 1 元每个月少卖 3 件 . 设每件商品的售价为x元( x为 整数),每个月的销售量为y 件.
感悟新知
知2-练
(1) 求 y 与 x 的函数关系式并直接写出自变量x 的取值 范围; 解:当 50<x≤80 时,y=210-(x-50),即 y=260-x; 当 80<x<140 时,y=210-(80-50)-3(x-80), 即 y=420-3x. 综上所述,y=246200- -x3( x(508<0<x≤x<801)40,).
沪科版数学九年级上册第21章《二次函数与反比例函数》复习教学设计
沪科版数学九年级上册第21章《二次函数与反比例函数》复习教学设计一. 教材分析《二次函数与反比例函数》是沪科版数学九年级上册第21章的内容,本章主要让学生掌握二次函数和反比例函数的性质、图象和应用。
内容涵盖了二次函数的定义、开口方向、对称轴、顶点坐标的求法,以及反比例函数的定义、图象、性质等。
这一章内容在初中数学中占有重要地位,对于学生来说,理解掌握二次函数和反比例函数的知识,对于高中阶段的学习有着重要的铺垫作用。
二. 学情分析九年级的学生已经学习过一次函数和二次函数的基础知识,对于函数的概念、图象和性质有一定的了解。
但是,对于二次函数和反比例函数的性质、图象和应用,部分学生可能还存在着一定的困难。
因此,在教学过程中,需要针对学生的实际情况,进行有针对性的教学设计,帮助学生理解和掌握二次函数和反比例函数的知识。
三. 教学目标1.知识与技能:使学生掌握二次函数和反比例函数的定义、性质、图象和应用,能够熟练运用二次函数和反比例函数解决实际问题。
2.过程与方法:通过自主学习、合作交流等方式,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的数学素养,使学生认识到数学在生活中的重要性。
四. 教学重难点1.重点:二次函数和反比例函数的定义、性质、图象和应用。
2.难点:二次函数和反比例函数的性质、图象和应用的理解和运用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解二次函数和反比例函数的定义和应用。
2.自主学习法:鼓励学生自主探究二次函数和反比例函数的性质、图象,培养学生的自主学习能力。
3.合作交流法:学生进行小组讨论,共同解决问题,培养学生的合作交流能力。
4.案例教学法:通过分析实际问题,引导学生运用二次函数和反比例函数解决问题,提高学生的应用能力。
六. 教学准备1.教学课件:制作精美的教学课件,辅助教学。
2.教学素材:准备相关的实际问题,作为教学案例。
九年级数学上册 第21章 二次函数与反比例函数21.5 反比例函数第1课时 反比例函数的概念教案(新
21.5 反比例函数第1课时反比例函数的概念【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积S一定时,长a和宽b成反比例,即ab=S(S是常数)2.电流I、电阻R、电压U之间满足关系式U=IR.当U=220V时,你能用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知问题1:某村有耕地200km2,人口数量x逐年发生变化,该村人均耕地面积y与人口数量x之间有怎样的函数关系?问题2:某市距省城248千米,汽车行驶全程所需的时间th与平均速度vkm/h之间有怎样的函数关系?问题3:在一个电路中,当电压U 一定时,通过电路的电流I 的大小与该电路的电阻R 的大小之间有怎样的函数关系?思考:观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?上面的函数关系式,都具有xk y =的形式,其中k 是常数. 【归纳结论】一般地,表达式形如x k y =(k 为常数且k ≠0)的函数叫作反比例函数. 【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.教师组织学生讨论,提问学生,师生互动.例:在压力不变的情况下,某物体承受的压强p/Pa 是它的受力面积Sm2的反比例函数,如图.(1)求p 与S 之间的函数表达式;(2)当S=0.5时,求物体承受的压强p 的值.解:(1)根据题意设Sk p =, 函数图象经过点(0.1,1000)代入上式,得k=100.所以p 与S 之间的函数表达式为S p 100=,(p >0,S >0) (2)当S=0.5时,5.0100=p ,解得,p=200. 三、运用新知,深化理解1.下列问题中,变量间的对应关系可用怎样的函数式表示?(1)一个游泳池的容积为2000m 3,注满游泳池所用的时间随注水速度u 的变化而变化;(2)某立方体的体积为1000cm 3,立方体的高h 随底面积S 的变化而变化; (3)一个物体重100牛顿,物体对地面的压力p 随物体与地面的接触面积S 的变化而变化.2.下列哪个等式中的y 是x 的反比例函数?解:只有xy=123是反比例函数.xk y =,当x =1时,y =-3,那么这个函数的解析式是( B )4.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( A )B.-4C.311-=m x y (m 是常数)是反比例函数,则m =2,解析式为xy 1=. 6.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为,是函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为,是函数.(3)设三角形的底边、对应高、面积分别为a 、h 、S.当a =10时,S 与h 的关系式为,是函数;当S =18时,a 与h 的关系式为,是函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为,是函数.7.已知y 是x 的反比例函数,当x=2时,y=6.(1)写出y 与x 的函数关系式;(2)求当x=4时,y 的值.【分析】因为y 是x 的反比例函数,所以xk y =,再把x=2和y=6代入上式就可求出常数k 的值. 解:(1)设x k y =,因为x=2时,y=6,所以有6=2k ,解得k=12,因此xy 12= (2)把x=4代入x y 12=,得y=412=3 【教学说明】学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题”中第1、2、3题.反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识.。
九年级上册知识点二次函数
九年级上册知识点二次函数九年级上册知识点:二次函数一、引言在九年级上册的数学课本中,我们将学习到许多重要的数学知识点,其中包括二次函数。
二次函数是代数学中的重要概念,它在各个领域中都有广泛的应用。
本文将对九年级上册的二次函数进行详细的介绍和解析。
二、二次函数的定义和特点二次函数是一种形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a ≠ 0。
它是一个二次多项式,其中的x^2项是最高次项,而x和常数项分别是一次和零次项。
二次函数的图像形状为抛物线,如果a>0,则抛物线开口向上,称为顶点向上;如果a<0,则抛物线开口向下,称为顶点向下。
顶点坐标可以通过求解二次函数的极值点来获得。
三、二次函数图像的性质1. 对称性二次函数的图像具有对称性。
对于函数f(x) = ax^2 + bx + c,对于任意的x值,f(x) = f(-x),即抛物线关于y轴对称。
2. 峰值与最小值如果二次函数的开口向上,顶点为最小值点;如果二次函数的开口向下,顶点为最大值点。
3. 零点二次函数的零点是指函数图像与x轴相交的点。
我们可以通过求解f(x) = 0来确定二次函数的零点。
4. 增减性如果二次函数的导数大于零,说明函数增加;如果二次函数的导数小于零,说明函数减少。
四、二次函数的应用二次函数在现实生活中有许多应用,下面我们来介绍其中两个典型的应用场景。
1. 抛物线的运动模拟我们知道,抛物线的运动轨迹可以用二次函数来模拟。
当一个物体被斜抛时,它的运动轨迹形状呈抛物线。
通过建立合适的二次函数模型,我们可以计算出抛物线的参数,从而预测物体的落点或者反向求解初始速度等。
2. 最优化问题二次函数在最优化问题中也有广泛的应用。
例如,我们希望以最小的成本建造一座桥梁,可以通过建立一个二次函数模型来求解最佳的桥梁设计方案。
同样,我们也可以利用二次函数来解决最大化收益或最小化风险的问题。
五、二次函数的解法与技巧在解题过程中,我们有一些常用的技巧和方法可以帮助我们更好地理解和解决二次函数相关的问题。
沪科版九年级数学上第21章二次函数与反比例函数21
大值为
(B)
A.6 cm2
B.9 cm2
C.12 cm2
D.15 cm2
自主学习
基础夯实
整合运用
思维拓展
第 14 页
九年级 数学 上册 沪科版
9.如图,矩形纸片 ABCD 中,AD=8,AB=10,点 F 在 AB 边上,分别以 AF,FB 为边裁出两个小正方形纸片,则这两个小正方形纸.
自主学习
基础夯实
整合运用
思维拓展
第 15 页
九年级 数学 上册 沪科版
【解析】设 AF=x,则 BF=10-x,由正方形的面积公式就可以得出 S 与 x 的关系,再由 x 的取值范围就可以确定 S 的取值范围.
自主学习
基础夯实
整合运用
思维拓展
第 16 页
九年级 数学 上册 沪科版
10.如图,利用两面夹角为 135°且足够长的墙,围成四边形围栏 ABCD, ∠C=90°,AD∥BC,新建墙 BCD 的总长为 15 m,当 CD 多长时,四边形 围栏的面积最大,最大面积是多少?
自主学习
基础夯实
整合运用
思维拓展
第 18 页
九年级 数学 上册 沪科版
11.(泉州中考)某校在基地参加社会实践活动中,带队老师考问学生: 基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边 用总长 69 m 的不锈钢栅栏围成,与墙平行的一边留一个宽为 3 m 的出入 口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议 的情境:
基础夯实
整合运用
思维拓展
第 22 页
九年级 数学 上册 沪科版
12.某广告公司设计一幅周长为 16 m 的矩形广告牌,广告设计费为每平 方米 2 000 元,设矩形的一边长为 x m,面积为 S m2. (1)求 S 与 x 之间的函数表达式,并写出自变量 x 的取值范围; (2)设计费能达到 24 000 元吗?为什么? (3)当 x 是多少时,设计费最多?最多是多少元?
初中数学(4)--函数(2)--反比例函数与二次函数
6.(2005 徐州) 已知正比例函数 1).求这两个函数关系式.
y k1 x 与反比例函数 y
k2 x
的图象都经过点(2,
7. (2004 贵阳)如图,一次函数
y ax b 的图象与反比例函数 y
k 的图象交于 M 、 N 两点 . x
17 已知关于x的一次函数y=(m-1)x+7,如果y随x的增大而减小,则m的取值范围是 18 某乡粮食总产值为m吨,那么该乡每人平均拥有粮食y(吨) ,与该乡人口数x的函数关系式是 19、函数y= x-5 中,自变量x的取值范围 (A)x>5 (A)第一象限 (A)0 (B)x<5
2
( (
) (D)x≥5 ) (D) 第四象限 ( ) ) (D) (3,-5)
y O
3/5
y x O x
y O x
y O x
数学复习
版权所有,翻版必究
By fangjiyong
y 4. (2005 安徽)任意写出一个图象经过二、 四象限的反比例函数的解析式:__________ M(2,m) O N(-1,-4) x
k 2 5. (2005 苏州)已知反比例函数 y ,其图象在第一、第三象限内,则 k 的值 x
28.某幢建筑物,从 10 米高的窗口 A 用水管和向外喷水,喷的水流呈抛物线(抛物线所在平 面与墙面垂直, (如图)如果抛物线的最高点 M 离墙 1 米,离地面 距离 OB 是( (A)2 米 ) (B)3 米 (C)4 米 (D)5 米 40 米,则水流下落点 B 离墙 3
29.求下列函数的最大值或最小值. (1)
x1 x2 2 y1 y2 2
2、函数平移规律(中考试题中,只占 3 分,但掌握这个知识点,对提高答题速度有很大帮 助,可以大大节省做题的时间)左加右减、上加下减 随堂练习:
九年级数学反比例函数三角函数二次函数北师大版知识精讲
初三数学反比例函数、三角函数、二次函数北师大版【同步教育信息】 一. 本周教学内容:反比例函数、三角函数、二次函数 二. 重点、难点:这三部分涉及的知识非常灵活,学生掌握起来特别困难。
在这里建议大家在复习中注意以下几点:1. 深入理解概念。
反比例函数和二次函数都有自己的一般形式。
它们都有较灵活的变形。
如反比例函数y kx=可写成y =kx -1的形式,二次函数除了一般形式y=ax 2+bx+c 外,还可有顶点式y =a(x -h)2+k ,在具体的题目中,应用起来也很方便。
研究三角函数的前提是在直角三角形中,正弦、余弦、正切的概念必须记牢,才能在计算中灵活应用。
2. 注意数形结合,函数之所以被大部分同学认为较难,是函数可以从“数”和“形”两个方面进行研究,有的题目给出的“数”的形式,让你找到“形”的变化。
当然,有的题目反之,如果同学们不能使“数”和“形”两方面顺利地相互转化,自然驾驭不了知识。
在后面的讲解中,我将结合例题具体讲解。
【例题分析】例1. 小山上有一电视塔CD ,由地面一点A ,测得塔顶C 的仰角为30°,由A 向小山前进100米,到B 点,由塔顶C 测得B 的俯角为60°,已知CD=20米,求小山的高度DE 。
分析:解决本题的关键只要分清仰角和俯角的概念,仰角和俯角都是视线与水平线的夹角,视线在水平线上方的叫仰角,视线与水平线下方的叫俯角,然后用转化的数学思想,将解:︒=∠∴︒=∠12060ABC CBE ,︒=∠∴︒=∠3030ACB A ,又米即100==∴∠=∠AB BC ACBA ︒=∠∴︒=∠∆3060BCE CBE BEC Rt ,中,在 (米)501002121=⨯==∴BC BE 在中,,即Rt BCE CBE CE BE DE∆ tan tan ∠=+=︒=2050603 3500=+2∴DE 米)20350(-=∴DE答:米为小山的高度)20350(-DE例2. 已知,如图,二次函数y =ax 2-5x +c 的图象如下:(1)求这个二次函数的解析式和它的图象的顶点坐标。
九年级数学上册第二十二章二次函数知识点总结归纳(带答案)
九年级数学上册第二十二章二次函数知识点总结归纳单选题1、定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x −m )2−m 与正方形OABC 有交点时m 的最大值和最小值分别是( )A .4,-1B .5−√172,-1C .4,0D .5+√172,-1 答案:D分析:分别讨论当对称轴位于y 轴左侧、位于y 轴与正方形对称轴x =1之间、位于直线x =1和x =2之间、位于直线x =2右侧共四种情况,列出它们有交点时满足的条件,得到关于m 的不等式组,求解即可. 解:由正方形的性质可知:B (2,2);若二次函数y =(x −m )2−m 与正方形OABC 有交点,则共有以下四种情况:当m ≤0时,则当A 点在抛物线上或上方时,它们有交点,此时有{m ≤0m 2−m ≤2, 解得:−1≤m <0;当0<m ≤1时,则当C 点在抛物线上或下方时,它们有交点,此时有{0<m ≤1(2−m )2−m ≥0, 解得:0<m ≤1;当1<m ≤2时,则当O 点位于抛物线上或下方时,它们有交点,此时有{1<m ≤2m 2−m >0, 解得:1<m ≤2;当m >2时,则当O 点在抛物线上或下方且B 点在抛物线上或上方时,它们才有交点,此时有{m >2m 2−m ≥0(2−m )2−m ≤2 ,解得:2<m≤5+√17;2,−1.综上可得:m的最大值和最小值分别是5+√172故选:D.小提示:本题考查了抛物线与正方形的交点问题,涉及到列一元一次不等式组等内容,解决本题的关键是能根据图像分析交点情况,并进行分类讨论,本题综合性较强,需要一定的分析能力与图形感知力,因此对学生的思维要求较高,本题蕴含了分类讨论和数形结合的思想方法等.2、如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点,若−2< x1<−1,则下列四个结论:①3<x2<4,②3a+2b>0,③b2>a+c+4ac,④a>c>b.正确结论的个数为()A.1个B.2个C.3个D.4个答案:B分析:根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点已经x=-1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a-b+c<0,即可判断④.∵对称轴为直线x=1,-2<x1<-1,∴3<x2<4,①正确,∵−b= 1,2a∴b=- 2а,∴3a+2b= 3a-4a= -a,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2 - 4ac > 0,根据题意可知x=-1时,y<0,∴a-b+c<0,∴a+c<b,∵a>0,∴b=-2a<0,∴a+c<0,∴b2 -4ac > a+ c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a-b+c<0,b=-2a,∴3a+c<0,∴c<-3a,∴b=–2a,∴b>c,以④错误;故选B小提示:本题主要考查图象与二次函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.3、抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是( )A.0≤x1<x2B.x2<x1≤0C.x2<x1≤0或0≤x1<x2D.以上都不对答案:D分析:根据二次函数图象及性质,即可判定.∵抛物线y=x2+3开口向上,在其图象上有两点A(x1,y1),B(x2,y2),且y1<y2,∴|x1|<|x2|,∴0≤x1<x2,或x2<x1≤0,或x2>0,x1≤0且x2+x1>0,或x2<0,x1>0且x2+x1<0,故选:D.小提示:本题考查了二次函数的图象及性质,熟练掌握和运用二次函数的图象及性质是解决本题的关键.4、如图,某公司准备在一个等腰直角三角形ABC的绿地上建造一个矩形的休闲书吧PMBN,其中点P在AC上,点NM分别在BC,AB上,记PM=x,PN=y,图中阴影部分的面积为S,若NP在一定范围内变化,则y与x,S与x满足的函数关系分别是()A.反比例函数关系,一次函数关系B.二次函数关系,一次函数关系C.一次函数关系,反比例函数关系D.一次函数关系,二次函数关系答案:D分析:先求出AM=PM,利用矩形的性质得出y=﹣x+m,最后利用S=S△ABC-S矩形PMBN得出结论.设AB=m(m为常数).在△AMP中,∠A=45°,AM⊥PM,∴△AMP为等腰直角三角形,∴AM=PM,又∵在矩形PMBN中,PN=BM,∴x+y=PM+PN=AM+BM=AB=m,即y=﹣x+m,∴y与x成一次函数关系,∴S =S △ABC -S 矩形PMBN =12m 2-xy =12m 2-x (﹣x +m )=x 2-mx +12m 2, ∴S 与x 成二次函数关系.故选D .小提示:本题考查了一次函数的实际应用及二次函数的实际应用,解题的关键是掌握根据题意求出y 与x 之间的函数关系式.5、二次函数y =x 的图象经过的象限是( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限答案:A分析:由抛物线解析式可得抛物线开口方向及顶点坐标,进而求解.∵y =x 2, ∴抛物线开口向上,顶点坐标为(0,0),∴抛物线经过第一,二象限.故选:A .小提示:本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.6、关于x 的方程ax 2+bx +c =0有两个不相等的实根x 1、x 2,若x 2=2x 1,则4b −9ac 的最大值是( )A .1B .√2C .√3D .2答案:D分析:根据一元二次方程根与系数的关系,求得两根之和和两根之积,再根据两根关系,求得系数的关系,代入代数式,配方法化简求值即可.解:由方程ax 2+bx +c =0有两个不相等的实根x 1、x 2可得,a ≠0,x 1+x 2=−b a ,x 1x 2=c a ∵x 2=2x 1,可得3x 1=−b a ,2x 12=c a ,即2(−b 3a )2=c a 化简得9ac =2b 2 则4b −9ac =−2b 2+4b =−2(b 2−2b)=−2(b −1)2+2故4b −9ac 最大值为2故选D小提示:此题考查了一元二次方程根与系数的关系,涉及了配方法求解代数式的最大值,根据一元二次方程根与系数的关系得到系数的关系是解题的关键.7、已知抛物线y=x2+kx−k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.−5或2B.−5C.2D.−2答案:B分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可.解:函数y=x2+kx−k2向右平移3个单位,得:y=(x−3)2+k(x−3)−k2;再向上平移1个单位,得:y=(x−3)2+k(x−3)−k2+1,∵得到的抛物线正好经过坐标原点∴0=(0−3)2+k(0−3)−k2+1即k2+3k−10=0解得:k=−5或k=2∵抛物线y=x2+kx−k2的对称轴在y轴右侧∴x=−k>02∴k<0∴k=−5故选:B.小提示:此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.8、在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是( )A.B.C.D.答案:D分析:根据二次函数与一次函数的图象与性质进行判断即可.解:当a>0,b>0时,y=ax2+bx的开口上,与x轴的一个交点在x轴的负半轴,y=ax+b经过第一、二、三象限,且两函数图象交于x的负半轴,无选项符合;当a>0,b<0时,y=ax2+bx的开口向上,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、三、四象限,且两函数图象交于x的正半轴,故选项A正确,不符合题意题意;当a<0,b>0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、二、四象限,且两函数图象交于x的正半轴,C选项正确,不符合题意;当a<0,b<0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的负半轴,y=ax+b经过第二、三、四象限,B选项正确,不符合题意;只有选项D的两图象的交点不经过x轴,故选D.小提示:本题考查二次函数与一次函数图象的性质,解题的关键是根据a、b与0的大小关系进行分类讨论.9、已知二次函数y=mx2−4m2x−3(m为常数,m≠0),点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,则m的取值范围是()A.m≥1或m<0B.m≥1C.m≤−1或m>0D.m≤−1答案:A分析:先求出抛物线的对称轴及抛物线与y轴的交点坐标,再分两种情况:m>0或m<0,根据二次函数的性质求得m的不同取值范围便可.解:∵二次函数y=mx2−4m2x−3,∴对称轴为x=2m,抛物线与y轴的交点为(0,−3),∵点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,∴①当m>0时,对称轴x=2m>0,此时,当x=4时,y≤−3,即m⋅42−4m2⋅4−3≤−3,解得m≥1;②当m<0时,对称轴x=2m<0,当0≤x≤4时,y随x增大而减小,则当0≤x p≤4时,y p≤−3恒成立;综上,m的取值范围是:m≥1或m<0.故选:A.小提示:本题考查了二次函数的性质,关键是分情况讨论.10、如图,某涵洞的截面是抛物线形,现测得水面宽AB=1.6m,涵洞顶点O与水面的距离CO是2m,则当水位上升1.5m时,水面的宽度为()A.0.4mB.0.6mC.0.8mD.1m答案:C分析:根据题意可建立平面直角坐标系,然后设函数关系式为y=ax2,由题意可知A(−0.8,−2),代入求解函数解析式,进而问题可求解.解:建立如图所示的坐标系:设函数关系式为y=ax2,由题意得:A(−0.8,−2),∴−2=0.8×0.8×a,,解得:a=−258∴y=−25x2,8x2,当y=-0.5时,则有−0.5=−258解得:x=±0.4,∴水面的宽度为0.8m;故选C.小提示:本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.填空题11、已知抛物线y=x2−x−1与x轴的一个交点为(m,0),则代数式−3m2+3m+2022的值为______.答案:2019分析:先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果.解:将(m,0)代入函数解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.所以答案是:2019.小提示:本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值.12、如图,在平面直角坐标系中,抛物线y=−x2+2mx+m−2(m为常数,且m>0)与直线y=2交于A、B两点.若AB=2,则m的值为______.答案:√21−12分析:设A(x1,2),B(x2,2),抛物线y=−x2+2mx+m−2中,令y=2,得x2−2mx−m+4=0,利用根与系数关系求得AB,可建立关于m的方程并解出即可.解:设A(x1,2),B(x2,2),抛物线y=−x2+2mx+m−2中,令y=2,得:−x2+2mx+m−2=2,即:x2−2mx−m+4=0∴x1+x2=2m,x1x2=−m+4,∴AB=|x2−x1|=√(x2+x1)2−4x1x2=√(2m)2−4(−m+4)=2,∴m2+m−5=0,解得:m1=√21−12,m2=−√21−12(舍去),所以答案是:√21−12.小提示:本题考查了抛物线与x轴的交点、二次函数与一元二次方程的关系、二次函数图象上点的坐标特征,熟练掌握这三个知识点的综合应用是解题关键.13、平移二次函数的图象,如果有一个点既在平移前的函数图象上,又在平移后的函数图象上,我们把这个点叫做“关联点”.现将二次函数y=x2+2x+c(c为常数)的图象向右平移得到新的抛物线,若“关联点”为(1,2),则新抛物线的函数表达式为_______.答案:y=(x−3)2−2分析:将(1,2)代入y=x2+2x+c,解得c=-1,设将抛物线y=x2+2x-1=(x+1)2-2,向右平移m个单位,则平移后的抛物线解析式是y=(x+1-m)2-2,然后将(1,2)代入得到关于m的方程,通过解方程求得m的值即可.解:将(1,2)代入y=x2+2x+c,得12+2×1+c=2,解得c=-1.设将抛物线y=x2+2x-1=(x+1)2-2,向右平移m个单位,则平移后的抛物线解析式是y=(x+1-m)2-2,将(1,2)代入,得(1+1-m)2-2=2.整理,得2-m=±2.解得m1=0(舍去),m2=4.故新抛物线的表达式为y=(x-3)2-2.故答案是:y=(x−3)2−2.小提示:本题主要考查了二次函数图象与几何变换,二次函数图象上点的坐标特征以及待定系数法确定函数关系式,解题的关键是理解“关联点”的含义.14、如图是一个横断面为抛物线形状的拱桥,当水面在正常水位的情况下,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.则当水位下降m=________时,水面宽为5m?答案:1.125分析:以抛物线的顶点为原点建立坐标系,则可以设函数的解析式是y=ax2,然后求得水面与抛物线的交点坐标,利用待定系数法求解抛物线的解析式,再利用点的坐标特点即可求解.解:如图,建立如下的坐标系:水面与抛物线的交点坐标是(-2,-2),(2,−2),设函数的解析式是y=ax2,则4a=-2,解得a=−12,则函数的解析式是y=−12x2.当水面宽为5米时,把x=52代入抛物线的解析式可得:y=12×(52)2=258=3.125,∴3.125−2=1.125(米),所以答案是:1.125.小提示:本题考查了待定系数法求二次函数的解析式,二次函数的性质,建立合适的平面直角坐标系,求得水面与抛物线的交点是解题的关键.15、根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是ℎ=−5t2+20t,当飞行时间t为___________s时,小球达到最高点.答案:2分析:将函数关系式转化为顶点式即可求解.根据题意,有ℎ=−5t2+20t=−5(t−2)2+20,当t=2时,ℎ有最大值.所以答案是:2.小提示:本题考查二次函数解析式的相互转化及应用,解决本题的关键是熟练二次函数解析式的特点及应用.解答题16、某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.答案:(1)y=−3x+300;(2)售价60元时,周销售利润最大为4800元;(3)m=5分析:(1)①依题意设y=kx+b,解方程组即可得到结论;(2)根据题意得W=(−3x+300)(x−a),再由表格数据求出a=20,得到W=(−3x+300)(x−20)=−3(x−60)2+4800,根据二次函数的顶点式,求出最值即可;(3)根据题意得W=−3(x−100)(x−20−m)(x⩽55),由于对称轴是直线x=60+m2>60,根据二次函数的性质即可得到结论.解:(1)设y=kx+b,由题意有{40k+b=180 70k+b=90,解得{k=−3b=300,所以y关于x的函数解析式为y=−3x+300;(2)由(1)W=(−3x+300)(x−a),又由表可得:3600=(−3×40+300)(40−a),∴a=20,∴W=(−3x+300)(x−20)=−3x2+360x−6000=−3(x−60)2+4800.所以售价x=60时,周销售利润W最大,最大利润为4800;(3)由题意W=−3(x−100)(x−20−m)(x⩽55),其对称轴x=60+m2>60,∴0<x⩽55时上述函数单调递增,所以只有x=55时周销售利润最大,∴4050=−3(55−100)(55−20−m).∴m=5.小提示:本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.17、“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量y1(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y1=ax2+ c,部分对应值如表:221.③1~7月份该蔬菜售价x1(元/千克),成本x2(元/千克)关于月份t的函数表达式分别为x1=12t+2,x2=1 4t2−32t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.答案:(1)a=−15,c=9(2)在4月份出售这种蔬菜每千克获利最大,见解析(3)该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元分析:(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w元,根据w=x售价−x成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x的值,再求出总利润即可.(1)把{x=3,y=7.2,{x=4,y=5.8代入y需求=ax2+c可得{9a+c=7.2,①16a+c=5.8.②②-①,得7a=−1.4,解得a=−15,把a=−15代入①,得c=9,∴a=−15,c=9.(2)设这种蔬菜每千克获利w元,根据题意,有w=x售价−x成本=12t+2−(14t2−32t+3),化简,得w=−14t2+2t−1=−14(t−4)2+3,∵−14<0,t=4在1≤t≤7的范围内,∴当t=4时,w有最大值.答:在4月份出售这种蔬菜每千克获利最大.(3)由y供给=y需求,得x−1=−15x2+9,化简,得x2+5x−50=0,解得x1=5,x2=−10(舍去),∴售价为5元/千克.此时,y供给=y需求=x−1=4(吨)=4000(千克),把x=5代入x售价=12t+2,得t=6,把t=6代入w=−14t2+2t−1,得w=−14×36+2×6−1=2,∴总利润=w⋅y=2×4000=8000(元).答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.小提示:此题主要考查了函数的综合应用,结合函数图象得出各点的坐标,再利用待定系数法求出函数解析式是解题的关键.18、一隧道内设双行公路,隧道的高MN为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF的三条边围成的,矩形的长DE是8米,宽CD是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ (居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG ,使H 、G 两点在抛物线上,A 、B 两点在地面DE 上,设GH 长为n 米,“脚手架”三根木杆AG 、GH 、HB 的长度之和为L ,当n 为何值时L 最大,最大值为多少? 答案:(1)y=-14x 2+4;(2)能安全通过,见解析;(3)n=4时,L 有最大值,最大值为14分析:(1)根据题意和函数图象,可以设出抛物线的解析式,然后根据抛物线过点F 和点M 即可求得该抛物线的解析式;(2)先求出抛物线的解析式,再根据题意判断该隧道能通过的车辆的最高高度,便可判断该车辆能安全通过.(3)射出H 的坐标,用n 表示出L ,利用二次函数的性质求解即可.解:(1)由题意得M (0,4),F (4,0)可设抛物线的解析式为y=ax 2+4,将F (4,0)代入y=ax 2+4中,得a=-14, ∴抛物线的解析式为y=-14x 2+4; (2)当x=3,y=74, 74+2-12=3.25>3.2,∴能安全通过; (3)由GH=n ,可设H (n 2,−n 216+4),∴GH+GA+BH=n+(−n 216+4)×2+2×2=−18n 2+n +12,∴L=−18n 2+n +12,∵a <0,抛物线开口向下,∴当n=-b=4时,L有最大值,最大值为14.2a小提示:本题考查了二次函数的实际应用,解题的关键是要注意自变量的取值范围必须使实际问题有意义.。
沪科版九年级数学上第21章二次函数与反比例函数21
平移 3 个单位,那么在新坐标系下抛物线的表达式为
(C )
A.y=2(x-3)2
B.y=2x2-3
C.y=2(x+3)2
D.y=2x2+3
自主学习
基础夯实
整合运用
思维拓展
第 16 页
九年级 数学 上册 沪科版
9.平行于 x 轴的直线与抛物线 y=a(x+2)2 的一个交点坐标为(1,2),
则另一个交点坐标为
自主学习
基础夯实
整合运用
思维拓展
第 22 页
九年级 数学 上册 沪科版
解:∵S▱ ABCD=12,∴BC·OA=12,即 6OA=12,∴OA=2, ∵AD=BC=6,∴A(0,2),D(6,2), 由抛物线的对称性,得点 C(3,0), ∴设函数表达式为 y=a(x-3)2,将 A(0,2)代入,得 a=29, ∴函数表达式为 y=29(x-3)2.
自主学习
基础夯实
整合运用
思维拓展
第 13 页
九年级 数学 上册 沪科版
6.将抛物线 y=x2 平移得到抛物线 y=(x+2)2,则这个平移过程正确的
是
(A )
A.向左平移 2 个单位
B.向右平移 2 个单位
C.向上平移 2 个单位
D.向下平移 2 个单位
自主学习
基础夯实
整合运用
思维拓展
第 14 页
自主学习
基础夯实
整合运用
思维拓展
第 23 页
九年级 数学 上册 沪科版
15.如图所示,抛物线 y1= 3(x+1)2 的顶点为 C,与 y 轴的交点为 A, 过点 A 作 y 轴的垂线,交抛物线于另一点 B. (1)求直线 AC 的表达式 y2=kx+b; (2)求△ABC 的面积; (3)当自变量 x 满足什么条件时,有 y1>y2?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反函数和二次函数 反比例函数知识梳理知识点l. 反比例函数的概念重点:掌握反比例函数的概念 难点:理解反比例函数的概念一般地,如果两个变量x 、y 之间的关系可以表示成xk y =或y=kx -1(k 为常数,0k ≠)的形式,那么称y 是x 的反比例函数。
反比例函数的概念需注意以下几点:(1)k 是常数,且k 不为零;(2)x k中分母x 的指数为1,如22y x=不是反比例函数。
(3)自变量x 的取值范围是0x ≠一切实数.(4)自变量y 的取值范围是0y ≠一切实数。
知识点2. 反比例函数的图象及性质重点:掌握反比例函数的图象及性质 难点:反比例函数的图象及性质的运用反比例函数xky =的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。
它们关于原点对称、反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。
画反比例函数的图象时要注意的问题: (1)画反比例函数图象的方法是描点法;(2)画反比例函数图象要注意自变量的取值范围是0x ≠,因此不能把两个分支连接起来。
(3)由于在反比例函数中,x 和y 的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y 轴的变化趋势。
反比例函数的性质xky =)0k (≠的变形形式为k xy =(常数)所以: (1)其图象的位置是:当0k >时,x 、y 同号,图象在第一、三象限; 当0k <时,x 、y 异号,图象在第二、四象限。
(2)若点(m,n)在反比例函数xky =的图象上,则点(-m,-n )也在此图象上,故反比例函数的图象关于原点对称。
(3)当0k >时,在每个象限内,y 随x 的增大而减小; 当0k <时,在每个象限内,y 随x 的增大而增大; 知识点3. 反比例函数解析式的确定。
重点:掌握反比例函数解析式的确定 难点:由条件来确定反比例函数解析式(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式xky =中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入xky =中即可求出k 的值,从而确定反比例函数的关系式。
(2)用待定系数法求反比例函数关系式的一般步骤是: ①设所求的反比例函数为:xky =(0k ≠); ②根据已知条件,列出含k 的方程; ③解出待定系数k 的值; ④把k 值代入函数关系式xky =中。
知识点4. 用反比例函数解决实际问题 反比例函数的应用须注意以下几点:①反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题。
②针对一系列相关数据探究函数自变量与因变量近似满足的函数关系。
③列出函数关系式后,要注意自变量的取值范围。
知识点5.反比例函数综合最新考题综观2009年全国各地的中考数学试卷,反比例函数的命题放在各个位置都有,突出考查学生的数形结合思想、学科内综合、学科间综合、实际应用题、新课程下出现的新题等方面,在考查学生的基础知识和基本技能等基本的数学素养的同时,加强对学生数学能力的考查,突出数学的思维价值。
函数题型富有时代特征和人文气息,很好地践行了新课程理念,“学生的数学学习内容应当是现实的,有意义的,富有挑战性的。
” 2010年中考反比例函数复习策略: 1. 抓实双基,掌握常见题型; 2. 重视函数的开放性试题; 考查目标一.反比例函数的基本题 例1在函数12y x =-中,自变量x 的取值范围是( )。
A 、x ≠0 B 、x ≥2 C 、x ≤2 D 、x ≠2 例2.反比例函数6y x=-图象上一个点的坐标是 。
考查目标二. 反比例函数的图象例1.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p (p a )与它的体积v (m 3)的乘积是一个常数k ,即pv =k (k 为常数,k >0),下列图象能正确反映p 与v 之间函数关系的是( )。
例2已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是 ( )A 、正数B 、 负数C 、非正数D 、不能确定 考查目标三、反比例函数图象的面积与k 问题例1、反比例函数xky =(k >0)在第一象限内的图象如图1所示,P 为该图象上任一点,PQ ⊥x 轴,设△POQ 的面积为S ,则S 与k 之间的关系是( )A .4k S =B .2kS = C .S =k D .S >k 例2.设P 是函数4p x=在第一象限的图像上任意一点,点P 关于原点的对称点为P’,过P 作PA 平行于y 轴,过P’作P’A 平行于x 轴,PA 与P’A 交于A 点,则PAP '△的面积( )A .等于2B .等于4C .等于8D .随P 点的变化而变化 考查目标四.利用图象,比较大小 例1.已知三点111()P x y ,,222()P x y ,,3(12)P -,都在反比例函数ky x =的图象上,若10x <,20x >,则下列式子正确的是( )A .120y y << B .120y y <<C .120y y >> D .120y y >>考查目标五.反比例函数经常与一次函数、二次函数、圆等知识相联系例1.如图,A 、B 是反比例函数y =2x的图象上的两点。
AC 、BD 都垂直于x 轴,垂足分别为C 、D 。
AB 的延长线交x 轴于点E 。
若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是( )A .21B .41 C.81 D .161例2.如图,二次函数mx mx y +++=)14(412(m <4)的图象与x 轴相交于点A 、B 两点.(1)求点A 、B 的坐标(可用含字母m 的代数式表示);(2)如果这个二次函数的图象与反比例函数9y x=的图象相交于点C ,且∠BAC 的余弦值为45,求这个二次函数的解析式.过关测试一、选择题:1、若反比例函数22)12(--=m x m y 的图像在第二、四象限,则m 的值是( )A 、-1或1B 、小于21的任意实数 C 、-1 D、不能确定 2、正比例函数kx y =和反比例函数xky =在同一坐标系内的图象为( )A BCD3、在函数y=xk(k<0)的图像上有A(1,y 1)、B(-1,y 2)、C(-2,y 3)三个点,则下列各式中正确的是( )(A) y 1<y 2<y 3 (B) y 1<y 3<y 2 (C) y 3<y 2<y 1 (D) y 2<y 3<y 1 4、在同一直角坐标平面内,如果直线x k y 1=与双曲线xk y 2=没有交点,那么1k 和2k 的关系一定是( ) A 1k <0,2k >0B 1k >0,2k <0C 1k 、2k 同号D 1k 、2k 异号5、若点(x 1,y 1)、(x 2,y 2)是反比例函数xy 1-=的图象上的点,并且x 1<x 2<,则下列各式中正确的是 ( )A 、y 1<y 2B 、y 1 >y 2C 、y 1= y 2D 、不能确定 二、填空题:1、反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点, MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是 ;2、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;3、在体积为20的圆柱体中,底面积S 关于高h 的函数关系式是 ;4、对于函数2y x=,当2x >时,y 的取值范围是______y <<______;当2x ≤时且0x ≠时,y 的取值范围是y ______1,或y ______。
(提示:利用图像解答) 三解答题1、如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A 、B 两点 (1)根据图象,分别写出A 、B 的坐标; (2)求出两函数解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值y oy oy o y oy O PM2、如图,Rt △ABO 的顶点A 是双曲线xky =与直线)1(+--=k x y 在第二象限的交点, AB ⊥x 轴于B 且S △ABO=23 (1)求这两个函数的解析式(2)A ,C 的坐标分别为(-,3)和(3,1)求△AOC 的面积。
3、如图,已知反比例函数y =xm的图象经过点A (1,- 3),一次函数y = kx + b 的图象经过点A 与点C (0,- 4),且与反比例函数的图象相交于另一点B. 试确定这两个函数的表达式;4、如图,已知点A (4,m),B (-1,n)在反比例函数x y 8=的图象上,直线AB 与x轴交于点C , (1)求n 值(2)如果点D 在x 轴上,且DA =DC ,求点D 的坐标.5、如图正方形OABC 的面积为4,点O 为坐标原点,点B 在函数ky x=(k ﹤0,x ﹤0)的图象上,点P(m,n)是函数ky x=(k ﹤0,x ﹤0)的图象上异于B 的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F 。
(1)设长方形OEPF 的面积为S 1,判断S 1与点P 的位置是否有关(不必说理由)Oy xB ACC BO 4-1Ayx(2)从长方形OEPF 的面积中减去其与正方形OABC 重合的面积,剩余的面积为S 2,写出S 2与m 的函数关系,并标明m 的取值范围。
答 案一、1、B 2、A 3、C 4、C 5、B 6、B 7、A 8、D 9、B 10、B 11、D 12、C二、1、﹥ 2、6 3、2 4、32y x =-+ 5、20S h=( h ﹥0) 6、0 1 ≥ ﹤ 三、1、(1)A (-6,-2) B (4,3)(2)y =0.5x +1,y =x12(3)-6<x <0或x >42、(1)3y x =- y=-x+2 (2)43、3y x-= 4y x =-4、(1)2y x-= 1y x =-- (2)x ﹤-2或0﹤x ﹤15、(1) n=-8 (2) D(4,0)6、(1)没有关系(2)由题意OC=OA=2 B (-2,2)函数关系式为4y x=- ∵P (m,n )在4y x =-的图象上 ∴4n m=- ① P 点在B 点的上方时24()2()42s m m m m=-⋅--⋅-=+(-2﹤m ﹤0) ② P 点在B 点的下方时2448()2()4s m m m m=-⋅--⋅-=+( m ﹤-2)2二次函数的图象和性质基础训练一1.在下表空格内填入相关的内容二次函数2ax y =(a 是常数且0≠a )B2.写出下列函数图象的对称轴、开口方向、顶点坐标: (1)抛物线223y x =-的对称轴是 ;开口方向是 ;顶点坐标是 . (2)抛物线26y x =的对称轴是 ;开口方向是 ;顶点坐标是 ; 3.若抛物线2(1)mmy m x -=-开口向下,则______=m4.抛物线24x y =,当0x < 时,y 随x 的增大而 ;当0x >时,y 随x 的增大而 。