(完整word版)圆周运动中临界问题

合集下载

圆周运动模型中临界问题和功与能--2024年高考物理二轮热点模型及参考答案

圆周运动模型中临界问题和功与能--2024年高考物理二轮热点模型及参考答案

圆周运动模型中临界问题和功与能目录1.圆周运动的三种临界情况2.常见的圆周运动及临界条件3.竖直面内圆周运动常见问题与二级结论1.圆周运动的三种临界情况(1)接触面滑动临界:F f=F max。

(2)接触面分离临界:F N=0。

(3)绳恰好绷紧:F T=0;绳恰好断裂:F T达到绳子可承受的最大拉力。

2.常见的圆周运动及临界条件(1)水平面内的圆周运动水平面内动力学方程临界情况示例水平转盘上的物体F f=mω2r恰好发生滑动圆锥摆模型mg tanθ=mrω2恰好离开接触面(2)竖直面及倾斜面内的圆周运动轻绳模型最高点:F T+mg=m v2r恰好通过最高点,绳的拉力恰好为0轻杆模型最高点:mg±F=m v2r恰好通过最高点,杆对小球的力等于小球的重力带电小球在叠加场中的圆周运动等效法关注六个位置的动力学方程,最高点、最低点、等效最高点、等效最低点,最左边和最右边位置恰好通过等效最高点,恰好做完整的圆周运动倾斜转盘上的物体最高点:mg sin θ±F f =mω2r 最低点F f -mg sin θ=mω2r恰好通过最低点3.竖直面内圆周运动常见问题与二级结论【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A 和最低点记为C ,与原点等高的位置记为B 。

圆周的半径为R要使小球做完整的圆周运动,当在最高点A 的向心力恰好等于重力时,由mg =m v 2R可得v =gR ①对应C 点的速度有机械能守恒mg2R =12mv 2C −12mv 2A 得v C =5gR ②当小球在C 点时给小球一个水平向左的速度若小球恰能到达与O 点等高的D 位置则由机械能守恒mgR =12mv 2c 得v c =2gR ③小结:(1).当v c >5gR 时小球能通过最高点A 小球在A 点受轨道向内的支持力由牛顿第二定律F A +mg =m v 2A R④(2).当v c =5gR 时小球恰能通过最高点A 小球在A 点受轨道的支持力为0由牛顿第二定律mg =m v 2A R。

专题圆周运动的临界问题-

专题圆周运动的临界问题-
专题圆周运动的临界问题
情景创设:杂技演员表演“水流星”节目,我们发现不管 演员怎样抡,水都不会从杯里洒出,甚至杯子在竖直面内 运动到最高点时,已经杯口朝下,水也不会从杯子里洒出。 这就是为什么?
模型:绳球模型(无内轨支撑)
·O
·O
质点在细绳作用下在 竖直面内做圆周运动
质点沿竖直光滑轨道 内侧做圆周运动
当v
v0时,
杆对物有向下的拉力,
N
m
v2 L
mg
mg
m
v2 L

长度为0、5m得轻质细杆,A端有一质量为3kg得小
球,以O点为圆心,在竖直平面内做圆周运动,如图所示,小
球通过最高点时得速度为2m/s,取g=10m/s2,则此时
轻杆OA将( )B
A、受到6、0N得拉力
N
mA
B、受到6、0N得压力
应用:如图所示,质量为0、5kg得杯子里盛有1kg得水, 用绳子系住水杯在竖直平面内做“水流星”表演,转动 半径为1m,水杯通过最高点得速度为4m/s,求: (1)在最高点时,绳得拉力? (2)在最高点时水对杯底得压力?
最高点A: mg+N=m v2A
R
(1)当N 0, v gR (临界速度)
(2)当角速度ω为何值时,铁块在最高点与电机恰无作用
力?
(3)本题也可认为就是一电动打夯机得原理示意图。若
电机得质量为M,则ω多大时,电机可以“跳”起来m?此情
r
况下,对地面得最大压力就是多少?
O
半径为L得圆管轨道(圆管内径远小于轨道半径)竖直 放置,管内壁光滑,管内有一个小球(小球直径略小于管内 径)可沿管转动,设小球经过最高点P时得速度为v,则
2.脱离与不脱离得临界问题

圆周运动的临界问题

圆周运动的临界问题
√D.汽车能安全转弯的向心加速度不超过7.0 m/s2
汽车转弯时所受的力有重力、弹力、摩擦力,向
心力是由摩擦力提供的,A错误; 汽车转弯的速度为 20 m/s 时,根据 Fn=mvR2,得所需的向心力为 1.0×104 N,没有超过最大静摩擦力,所以汽车不会发生侧滑,B、C 错误; 汽车安全转弯时的最大向心加速度为 am=Fmf=7.0 m/s2,D 正确.
ω越大时,小物体在最高点处受到的摩擦力一定越大
√B.小物体受到的摩擦力可能背离圆心 √C.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 1.0 rad/s
D.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 3 rad/s
当物体在最高点时,也可能受到重力、支持力与 摩擦力三个力的作用,摩擦力的方向可能沿斜面 向上(即背离圆心),也可能沿斜面向下(即指向圆 心),摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受 到的摩擦力越小,故A错误,B正确; 当物体转到圆盘的最低点恰好不滑动时,圆盘的角速度最大,此时 小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向 圆心的摩擦力,由沿斜面的合力提供向心力,支持力FN=mgcos 30°, 摩擦力Ff=μFN=μmgcos 30°,又μmgcos 30°-mgsin 30°=mω2R,解 得ω=1.0 rad/s,故C正确,D错误.
例2 (多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在 水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘 间的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从 静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,且最大 静摩擦力等于滑动摩擦力,下列说法正确的是
竖直面内圆周运动的临界问题

圆周运动中的临界问题(全)

圆周运动中的临界问题(全)

圆周运动中的“临界问题”总结一、“绳”模型——“最高点处有临界,最低点时无选择”一轻绳系一小球在竖直平面内做圆周运动.小球“刚好”“恰好”过最高点的条件是:此时,只有小球的 提供向心力,即 =m rv 2,这时的速度是做圆周运动的最小速度,vmin = . V= 是“绳”模型中小球能否顺利通过最高点继续做圆周运动的临界速度。

类此模型:竖直平面内的内轨道巩固1:游乐园里过山车原理的示意图如图所示。

设过山车的总质量为m =60kg ,由静止从斜轨顶端A 点开始下滑,恰好过半径为r=2.5m 的圆形轨道最高点B 。

求在圆形轨道最高点B 时的速度大小。

巩固2:杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。

(2)水在最高点速率v =3 m /s 时,水对桶底的压力.巩固3:公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,也叫“过水路面”。

如图所示,汽车通过凹形桥的最低点时A .车的加速度为零,受力平衡B .车对桥的压力比汽车的重力大C .车处于超重状态D .车的速度越大,车对桥面的压力越小二、“杆”模型————“最高点处有临界,最低点时无选择” 一轻杆系一小球在竖直平面内做圆周运动,注意v=0和v=gr 两个速度。

①当v =0时,杆对小球的支持力 小球的重力;②当0<v <gr 时,杆对小球产生 力,且该力 于小球的重力;③当v =gr 时,杆对小球的支持力 于零;④当v >gr 时,杆对小球产生 力。

V= 是“杆”模型中杆对小球是“推”“拉”的临界。

类此模型:竖直平面内的管轨道.巩固4:如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度要大于0C.小球到达最高点受杆的作用力一定为拉力D.小球到达最高点受杆的作用力一定为支持力 三、“拱形桥”模型——“最高点处有临界”小球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点时,若小球与球面间弹力为零,则有 = ,v= 。

(完整版)圆周运动中的临界问题(最新整理)

(完整版)圆周运动中的临界问题(最新整理)

圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。

1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为的小球,kg m 1.0=上面绳长,两端都拉直时与轴的夹角分别为m l 2=与,问球的角速度在什么范围内,两绳始终张紧,o 30o45当角速度为时,上、下两绳拉力分别为多大?s rad /32、因静摩擦力存在最值而产生的临界问题例2 如图2所示,细绳一端系着质量为kg M 6.0=的物体,静止在水平面上,另一端通过光滑小孔吊着质量为的物体,的中心与圆孔距离为kg m 3.0=M m 2.0并知与水平面间的最大静摩擦力为,现让此平面M N 2绕中心轴匀速转动,问转动的角速度满足什么条件ω可让处于静止状态。

()m 2/10s m g =3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。

1、轻绳模型过最高点如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。

临界条件:假设小球到达最高点时速度为,此时绳子的拉力(轨道的弹力)0v C图1图2刚好等于零,小球的重力单独提供其做圆周运动的向心力,即,rvm mg 20=,式中的是小球过最高点的最小速度,即过最高点的临界速度。

gr v =00v (1) (刚好到最高点,轻绳无拉力)0v v =(2) (能过最高点,且轻绳产生拉力的作用)0v v >(3) (实际上小球还没有到最高点就已经脱离了轨道)0v v <例4、如图4所示,一根轻绳末端系一个质量为的小球,kg m 1=绳的长度, 轻绳能够承受的最大拉力为,m l 4.0=N F 100max =现在最低点给小球一个水平初速度,让小球以轻绳的一端为O 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件?(10m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。

平抛运动、圆周运动的临界问题 Word版含解析

平抛运动、圆周运动的临界问题 Word版含解析

[A组·基础题]1. 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2.则ω的最大值是( )A. 5 rad/s B. 3 rad/sC.1.0 rad/s D.5 rad/s2. 一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过( )A.μ(M-m)gml B.μ(M-m)gMlC.μ(M+m)gMl D.μ(M+m)gml3. (2019·河南中原名校考评)如图所示,半径分别为R、2R的两个水平圆盘,小圆盘转动时会带动大圆盘不打滑的一起转动.质量为m的小物块甲放置在大圆盘上距离转轴R处,质量为2m的小物块放置在小圆盘的边缘处.它们与盘面间的动摩擦因数相同,当小圆盘以角速度转动时,两物块均相对圆盘静止,设最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A .二者线速度大小相等B .甲受到的摩擦力大小为14mω2RC .在ω逐渐增大的过程中,甲先滑动D .在ω逐渐增大但未相对滑动的过程中,物块所受摩擦力仍沿半径指向圆心4. (2018·广东七校联考)如图所示,半径为R 的圆轮在竖直面内绕O 轴匀速转动,轮上A 、B 两点各粘有一小物体,当B 点转至最低位置时,此时O 、A 、B 、P 四点在同一竖直线上,已知:OA =AB ,P 是地面上的一点.此时A 、B 两点处的小物体同时脱落,最终落到水平地面上同一点.不计空气阻力,则OP 的距离是( )A.76RB .52RC .5RD .7R5.(多选) 水平面上有倾角为θ、质量为M 的斜面体,质量为m 的小物块放在斜面上,现用一平行于斜面、大小恒定的拉力F 作用于小物块上,绕小物块旋转一周,这个过程中斜面体和小物块始终保持静止状态.下列说法中正确的是( )A .小物块受到斜面的最大摩擦力为F +mg sin θB .小物块受到斜面的最大摩擦力为F -mg sin θC .斜面体受到地面的最大摩擦力为FD .斜面体受到地面的最大摩擦力为F cos θ6.(多选) (2018·山西省吕梁市期中)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( )A.小球通过最高点时的最小速度v min=g(R+r)B.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力7. 如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L =3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.[B组·能力题]8. (多选)如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到轴的距离为物块A到轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( )A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大后保持不变C.A受到的静摩擦力先增大后减小再增大D.B受到的合外力先增大后保持不变9. (多选)(2016·浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切.大、小圆弧圆心O、O′距离L=100 m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g=10 m/s2,π=3.14),则赛车( )A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2D.通过小圆弧弯道的时间为5.58 s10.如图为“快乐大冲关”节目中某个环节的示意图,参与游戏的选手会遇到一个人造山谷AOB,AO是高h=3 m的竖直峭壁,OB是以A点为圆心的弧形坡,∠OAB=60°,B点右侧是一段水平跑道.选手可以自A点借助绳索降到O点后再爬上跑道,但身体素质好的选手会选择自A点直接跃上跑道.选手可视为质点,忽略空气阻力,重力加速度g=10 m/s2.(1)若选手以速度v0水平跳出后,能跳在水平跑道上,求v0的最小值;(2)若选手以速度v1=4 m/s水平跳出,求该选手在空中的运动时间.11. (2017·河南开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角.板上一根长为l=0.60 m的轻细绳,它的一端系住一质量为m的小球P,另一端固定在板上的O点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0 m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=10 m/s2)。

圆周运动中的临界问题

圆周运动中的临界问题
m gmR 2 v临界 Rg (2)小球能过最高点条件: v rg
(当 v rg 时,绳对球产生拉力,轨道对球产生压力)
(3)不能过最高点条件: v rg
(实际上球还没有到最高点时,就脱离了轨道)
如图所示,固定在竖直平点为轨道最高点,DB为竖
特点
在最高点时,没有物体支 撑,只能产生拉力
轻杆对小球既能产生拉 力,又能产生支持力
圆周运动的临界问题
1.竖直平面内的圆周运动 ①轻绳模型 :
能过最高点的临界条件:
小球在最高点时绳子的拉力刚好 等于0,小球的重力充当圆周运 动所需的向心力。
m gmR 2 v临界 Rg
轻绳模型
(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没 有力的作用:
B、的压力 D、24N的压力
例3:长L=,质量可以忽略的的杆,其下端
固定于O点,上端连接着一个质量m=2kg的小 球A,A绕O点做圆周运动(同图5),在A通过 最高点,试讨论在下列两种情况下杆的受力:
①当A的速率v1=1m/s时:
②当A的速率v2=4m/s时:
变式训练
.一轻杆下端固定一质量为M的小球,上端连在轴 上,并可绕轴在竖直平面内运动,不计轴和空气阻 力,在最低点给小球水平速度v0时,刚好能到达最 高点,若小球在最低点的瞬时速度从v0不断增大,
2
双体转动模型
如图所示,轻细杆可绕光滑的水平轴O在竖直 面内转动,杆的两端固定有质量均为m=1kg的 小球A和B,球心到轴O的距离分别为,。已知 A球转到最低点时速度为vA=4m/s,问此时A、B 球对杆的作用力的大小和方向?
B
vB
vA
A
谢谢观赏
N
fA AB mg
变式训练

2020学年高一物理力学专题提升专题16圆周运动中的临界问题

2020学年高一物理力学专题提升专题16圆周运动中的临界问题

专题16 圆周运动中的临界问题【专题概述】物理中经常会出现一些词语,“物体恰好运动到最高点”;“恰好过最高点”“绳子刚好不拉断”等等这些词语,则表明有临界状况出现。

水平面内圆周运动的临界极值问题通常有两类,一类是与摩擦力有关的临界问题,一类是与弹力有关的临界问题.1. 与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。

2. 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。

【典例精讲】一、水平方向上的临界问题:水平面内的很多圆周运动都存在临界状态,解答此类问题的关键是发现临界状态,找到临界条件。

例如“刚好不发生相对滑动”的临界条件是静摩擦力等于最大静摩擦力、“刚好不离开”的临界条件是接触面间正压力等于零。

下面是火车拐弯问题分析。

在火车转弯处,让外轨高于内轨,如图所示,转弯时所需向心力由重力和弹力的合力提供。

设车轨间距为l ,两轨高度差为h ,车转弯半径为r ,质量为M 的火车运行时应当有多大的速度?据三角形边角关系知sin θ= ,对火车的受力情况分析得tan θ=。

因为θ角很小,所以sin θ≈tan θ,故 =,所以向心力F 合= Mg 。

又因为F 合=M ,所以车速v =。

由于铁轨建成后h 、L 、R 各量是确定的,故火车转弯时的车速应是一个定值,否则将对铁轨有不利影响,如:(1)火车在弯道处的速度大于时,重力和支持力的合力不足以充当火车做圆周运动需要的向心力,火车要挤压外侧车轨,外侧车轨受挤压发生形变产生弹力,补充不足的向心力。

圆周运动中的临界问题

圆周运动中的临界问题

圆周运动中的临界问题一.竖直面内的临界问题: a 无支撑模型:1、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即mg=rmv 2临界上式中的v 临界是小球通过最高点的最小速度,通常叫临界速度,v 临界=rg .②能过最高点的条件:v ≥v 临界. 此时小球对轨道有压力或绳对小球有拉力mg rv m N -=2③不能过最高点的条件:v<v 临界(实际上小球还没有到最高点就已脱离了轨道). b 有支撑模型:2、如图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况:①临界条件:由于硬杆和管壁的支撑作用,小球恰能达到最高点的临界速度 v 临界=0.②图(a )所示的小球过最高点时,轻杆对小球的弹力情况是当v=0时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N=mg ;当0<v<rg 时,杆对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小;其取值范围是mg>N>0. 当v=rg 时,N=0;当v>rg 时,杆对小球有指向圆心的拉力mg rv m N -=2,其大小随速度的增大而增大. ③图(b )所示的小球过最高点时,光滑硬管对小球的弹力情况是当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N=mg.当0<v<rg 时,管的下侧内壁对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小,其取值范围是mg>N>0. 当v=gr 时,N=0.当v>gr 时,管的上侧内壁对小球有竖直向下指向圆心的压力mg rv m N -=2,其大小随速度的增大而增大.④图(c)的球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点的v 临界=gr .当v>gr 时,小球将脱离轨道做平抛运动.c 类似问题扩展如图所示,在倾角为θ的光滑斜面上,有一长为l 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O 点到斜面底边的距离s OC =L ,求:小球通过最高点A 时的速度v A .二.平面内的临界问题 如图所示,用细绳一端系着的质量为M=0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m=0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f=2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g=10m/s 2)三.绳的特性引发的临界问题如图所示,质量为m =0.1kg 的小球和A 、B 两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求: (1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终张紧? (2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大?模型一 圆周运动中的渐变量和突变量例1:如图所示,细线栓住的小球由水平位置摆下,达到最低点的速度为v ,当摆线碰到钉子P 的瞬时( )A .小球的速度突然增大B .线中的张力突然增大P 小球C O B A θ θ ωAB 30°45°CC .小球的向心加速度突然增大D .小球的角速度突然增大模型二 圆周运动与平抛运动相结合例2:如图所示,竖直平面内的3/4圆弧形光轨道半径为R ,A 端与圆心O 等高,AD 为水平面,B 点在O 的正上方,一个小球在A 点正上方由静止释放,自由下落至A 点进入圆轨道并恰能到达B 点。

圆周运动中的临界问题

圆周运动中的临界问题

归纳:软轨道模型 没有支撑物的小球在竖直平面作圆周运动 过最高点的情况 1临界条件( v gr ) 此时绳或轨道对 球(没有 )作用力(填有或没有) 2若 ( v gr ),球能过最高点,此时绳 或轨道对球( 有 )作用力 3不能过最高点的条件 ( V gr )
竖直平面内圆周运动中的临界问题
第六章
曲线运动
圆周运动中的临界问题
水平面内的圆周运动的临界
如图所示水平转盘上放有质量为m的物快, 当物块到转轴的距离为r时,若物块始终相对 转盘静止,物块和转盘间最大静摩擦力是正 压力的µ倍,求转盘转动的最大角速度是多 ω g 大?
r
拓展:如o点与物块连接一细线, 求当①ω 1= g 时,细线的拉力T
2r
O② ω 2=Fra bibliotek3g 2r
时,细线的拉力T
质量为m的小球用长为L的轻绳拴 着可绕着O点在圆锥表面转动,球 静止时绳与圆锥表面平行,且与竖 2g 直方向的夹角为θ 求:当ω 1= L cos g 时和ω 2= 2L cos ,圆锥表面对小球 的支持力
o
竖直平面内圆周运动中的临界问题
1 软轨道模型 质量为m的小球在轻 绳的牵引下在竖直平 面做圆周运动,当小 球在最高点时的速度 为 2gr 求此时绳的拉 力的大小
2 硬轨道模型 轻杆的一端拴着一个 质量为m的小球的杆 可在竖直平面做圆周 运动,当小球在最高 gr 点时的速度为 时 2 杆对小球的作用的大 小
归纳:硬轨道模型
1能过最高点的条件 V≥0 2当0<V< gr 时,杆对小球是 支持 力, 其大小 FN=mg-F向
当v= gr 时,杆对小球 没有 作用力 当v> gr 时,杆对小球是 拉 力 其大小为 F =F -mg
T

物理-2.3.3 圆周运动中的临界问题

物理-2.3.3 圆周运动中的临界问题
,物块受到的最大静摩擦力不足以提供所需的向心力,此时绳对 物块有拉力,由μmg+T3=mω32r 得此时绳对物块拉力的大小为 T3=23μmg.
例2.如图所示,A、B、C三个物体放在旋转的水平圆盘面上,物体与盘面间的最大
静摩擦力均是其重力的k倍,三物体的质量分别为2m、m、m,它们离转轴的距离分 别为R、R、2R.当圆盘旋转时,若A、B、C三物体均相对圆盘静止,则下列说法正确
(1)若要小球刚好离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角α=60°,则小球的角速度ω′为多 大?
【练习】如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对 称轴以恒定的角速度转动,盘面上离转轴距离r=0.1 m处有一质 量为0.1 kg的小物体恰好能与圆盘始终保持相对静止.物体与盘 面间的动摩擦因数为0.8(设最大静摩擦力等于滑动摩擦力),盘面 与水平面的夹角为37°(g=10 m/s2,sin 37°=0.6),求:
B.只有A仍随圆盘一起转动,不会发生滑动
C.两物体均沿半径方向滑动,A靠近圆心、B远离圆心
D.两物体均沿半径方向滑动,A、B都远离圆心
分析过程
【练习】如图所示,水平转盘的中心有一个光滑的竖直小圆孔,质量为m的物体A 放在转盘上,物体A到圆孔的距离为r,物体A通过轻绳与物体B相连,物体B的质量 也为m.若物体A与转盘间的动摩擦因数为μ,则转盘转动的角速度ω在什么范围内, 才能使物体A随转盘转动而不滑动?(已知最大静摩擦力等于滑动摩擦力,重力加 速度为g)
(1)圆盘转动的角速度ω的大小; (2)小物体运动到最高点时受到的摩擦力.
所需向心力恰好只由最大静摩擦力提供,则μmg=mrω12
解得:ω1=
μg r
(2)如图乙所示,将物块和转轴用细绳相连,当转盘的角速度ω2=

专题 圆周运动临界问题

专题     圆周运动临界问题

专题 圆周运动的临界问题一.水平转台上与静摩擦力有关的临界问题在转台上做圆周运动的物体,若有静摩擦力参与,当转台的转速变化时,静摩擦力也会随之变化。

关键:(1)找出与最大静摩擦力对应的临界条件 (2)牢记“静摩擦力大小有个范围,方向可以改变1.单个物体做圆周运动【例1】如图所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其下压力的μ倍。

求:⑴当转盘角速度ω1=μg 2r 时,细绳的拉力T 1 ⑵当转盘角速度ω2=3μg 2r时,细绳的拉力T 22.绳子连接两个物体在圆心的一侧做圆周运动【例2】一圆盘可以绕其竖直轴在图所示水平面内转动,A 、B 物体质量均为m ,它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为L 的轻绳连在一起。

若将A 放在距轴心为L 的位置,A 、B 之间连线刚好沿半径方向被拉直,随着圆盘角速度ω的增加,摩擦力或绳子拉力会出现不同的状态,(两物体均看作质点)求:(1)ω1=Lg 3μ时,细绳的拉力T 1和A 所受的摩擦力f 1(2)ω1=Lg 53μ时,细绳的拉力T 2和A 所受的摩擦力f 23.绳子连接两个物体分别在圆心的两侧做圆周运动【例3】(多选)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m 的两个物体A 和B ,它们分居圆心两侧,与圆心距离分别为R A =r ,R B =2r ,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是( )A .此时绳子张力为3μmgB .此时A 所受摩擦力方向沿半径指向圆内C .此时圆盘的角速度为2μg rD .此时烧断绳子,A 仍相对盘静止,B 将做离心运动【针对训练1】如图所示,水平转台上的小物体A 、B 通过轻绳连接,转台静止时绳中无拉力,A 、B 的质量分别为m 、2m ,A 、B 与转台间的动摩擦因数均为μ, A 、B 离转台中心的距离分别为1.5r 、r ,当两物体随转台一起匀速转动时,设最大静摩擦力等于滑动摩擦力,下列说法中正确的是( )A .绳中无拉力时,A 、B 物体受到的摩擦力大小相等B .当绳中有拉力时,转台转动的角速度应大于√μg rC .若转台转动的角速度为√6μg r ,则A 、B 一起相对转台向B 离心的方向滑动D .物体A 所受的摩擦力方向一定指向圆心【针对训练2】(多选)如图所示,圆盘可以绕其竖直轴在水平面内转动。

圆周运动中的临界问题

圆周运动中的临界问题

圆周运动中的临界问题圆周运动中的临界问题的分析方法:首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值. 一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界=(可理解为恰好转过或恰好转不过的速度)即此时小球所受重力全部提供向心力 注意1能过最高点的条件:v ≥,当v >时,绳对球产生拉力,轨道对球产生压力.2不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 【例题1】如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤,则有关小球能够上升到最大高度(距离底部)的说法中正确的是( )A、一定可以表示为 B 、可能为 C 、可能为R D 、可能为R答案:BC【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动, 因为桥面不能对汽车产生拉力.【例5】如图所示,赛车在水平赛道上作900转弯,其内、外车道转弯处的半径分别为r1和r2,车与路面间的动摩擦因数和静摩擦因数都是μ.试问:竞赛中车手应选图中的内道转弯还是外道转弯?在上述两条弯转路径中,车手做正确选择较错误选择所赢得的时间是多少?分析:赛车在平直道路上行驶时,其速度值为其所能达到的最大值,设为v m。

转弯时,车做圆周运动,其向心力由地面的静摩擦力提供,则车速受到轨道半径和向心加速度的限制,只能达到一定的大小.为此,车在进入弯道前必须有一段减速过程,以使其速度大小减小到车在弯道上运行时所允许的速度的最大值,走完弯路后,又要加速直至达到v m。

圆周运动中的临界问题(最新整理)

圆周运动中的临界问题(最新整理)
BFra bibliotek6.0N 的压力
C、24N 的拉力
D、24N 的压力
m
A L O
例 3 长 L=0.5m,质量可以忽略的的杆,其下端固定于 O 点, 上端连接着一个质量 m=2kg 的小球 A,A 绕 O 点做圆周运动(同 图 5),在 A 通过最高点,试讨论在下列两种情况下杆的受力:
①当 A 的速率 v1=1m/s 时 ②当 A 的速率 v2=4m/s 时
离圆心,大小等于最大静摩擦力 2N。 此时,对 M 运用牛顿第二定律。
M
ro

T-fm=Mω12r
且 T=mg
解得 ω1=2.9 rad/s
m
第5页
图 7
当ω为所求范围最大值时,M 有背离圆心运动的趋势,水平面对 M 的静摩擦力的方向向着圆
心,大小还等于最大静摩擦力 2N。
再对 M 运用牛顿第二定律。

T+fm=Mω22r
解得 ω2=6.5 rad/s
所以,题中所求ω的范围是: 2.9 rad/s<ω<6.5 rad/s
第6页
注意:解题时注意圆心的位置(半径的大小)。
如果ω<2.4 rad/s 时,TBC=0,AC 与轴的夹角小于 30°。 如果ω>3.16rad/s 时,TAC=0,BC 与轴的夹角大于 45
例 5 解析:要使 m 静止,M 也应与平面相对静止。而 M 与平面静止时有两个临界状态:
当ω为所求范围最小值时,M 有向着圆心运动的趋势,水平面对 M 的静摩擦力的方向背
①当 v1=1m/s< 5m/s 时,小球受向下的重力 mg 和向上的支持力 N v2
由牛顿第二定律 mg-N=m L v2
N=mg-m =16N L

(精校版)高中物理圆周运动的临界问题(含答案)

(精校版)高中物理圆周运动的临界问题(含答案)

擦力不同,B 项错;b 开始滑动时有 kmg=mω2·2l,其
3
3
临界角速度为 ωb=
kg 2l
,选项 C 正确;当 ω =
2kg 3l
C.AB 绳的拉力范围为 3 mg ~ 2 3 mg
3
3
时,a 所受摩擦力大小为 Ff=mω2 r= 2 kmg,选项 D 错误
3
D.AB 绳的拉力范围为 0~ 2 3 mg
μ1,M 与圆盘面间的动摩擦因数为 μ2,最大静摩擦力等 于滑动摩擦力.μ1 与 μ2 应满足的关系式为( )
将已知条件代入上式解得 ω2=3。16 rad/s
所以 当 ω 满足 2.4 rad/s≤ω≤3.16 rad/s,AC、
BC 两绳始终张紧。 本题所给条件 ω=3 rad/s,此时两绳拉力 TAC 、TBC 都存在。 TACsin30°+TBCsin45°=mω2Lsin30° TACcos30°+TBCcos45°=mg
离转轴 L 处,整个装置能绕通过转盘中心的转轴 O1O2转动, 不变,C 项错误;0<ω≤ 2L)时,A 所受摩擦力提供 开始时,绳恰好伸直但无弹力,现让该装置从静止开始 向心力,即 Ff=mω2L,静摩擦力随角速度增大而增大,
转动,使角速度缓慢增大,以下说法正确的是( ) 当 Error!<ω< 时,以 AB 整体为研究对象,FfA+Kmg=
A.b 一定比 a 先开始滑动 B.a、b 所受的摩擦力始终相等 C.ω= kg 是 b 开始滑动的临界角速度
2l
二 与弹力有关的临界极值问题
D.当 ω= 2kg 时,a 所受摩擦力的大小为 kmg
压力、支持力的临界条件是物体间的弹力恰好为零;
3l
绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上 答案 AC

专题七 圆周运动的临界问题

专题七 圆周运动的临界问题
水平面内圆周运动临界问题的分析方法
几何分析
目的是确定圆周运动的圆心、半径等
运动分析
目的是确定圆周运动的线速度、角速度、向心加速度等
受力分析
目的是通过力的合成与分解,表示出物体做圆周运动时,外界所提供的向心力
条件分析
①绳的临界:张力 ;②接触面滑动的临界: ;③接触面分离的临界: .分析时一般先假设达到临界状态后,再分析结论.
C
A.小球通过最高点时的最小速度 B.小球通过最高点时的最小速度 C.小球在水平线 以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线 以上的最高点的速度可以为零,故A、B错误;小球在水平线 以下的管道中运动时,由外侧管壁对小球的作用力 与小球重力在背离圆心方向的分力 的合力提供向心力,即 ,因此外侧管壁对小球一定有作用力,而内侧管壁对小球一定无作用力,C正确;小球在水平线 以上的管道中运动时,小球受管壁的作用力情况与小球速度大小有关,D错误.
考向二 “杆-球”模型
例4 如图甲所示,轻杆一端固定在 点,另一端固定一小球,现让小球在竖直平面内做半径为 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为 ,小球在最高点的速度大小为 ,其 图像如图乙所示.则( )
A.小球的质量为 B.当地的重力加速度大小为 C. 时,在最高点杆对小球的弹力方向向上D. 时,在最高点杆对小球的弹力大小为



变式2 如图所示,相同的物块 、 用沿半径方向的细线相连放置在水平圆盘上.当圆盘绕转轴转动时,物块 、 始终相对圆盘静止.下列关于物块 所受的摩擦力 随圆盘角速度的平方 的变化关系正确的是( )
D
A. B. C. D.
[解析] 角速度慢慢增大,一定是长绳挂着的那个球先离开圆锥筒,选项A正确,B错误;设小球离开圆锥筒后,绳子的拉力为 ,绳子长度为 ,与竖直方向的夹角为 ,由 , ,联立解得 ,而 ,为小球到圆锥筒顶点的高度,所以两个球都离开圆锥筒后,它们的高度一定相同,选项C正确;而细绳中拉力 ,即两个球都离开圆锥筒时两端绳子的拉力不一定相同,选项D错误.

圆周运动中的临界问题

圆周运动中的临界问题
车沿弯道到达A点后,由对称关系不难看出, 它又要在一段长为x2的路程上加速,才能达 到速度vm。上述过程所用的总时间为 r2 vm v2 vm v2 t2=t 减速+t圆弧+t加速= + + a 2v m r a 2v 2 = -(2- ) 2 2 g g
v2
vm
同样的道理可以推得车走内车道所用的总 时间为 r 2v m t1= g -(2- 2) g 另一方面,对内车道和外车道所历路程的 直线部分进行比较,由图可见,车往内车 道多走了长度 ΔL= r2- rl 同时,在直线道上车用于加速和减速的行 程中,车往内道也多走了长度 Δx=2x1-2x2= r2- rl 由ΔL和Δx相等,可知车在内道多走得直线距离ΔL 即为加减速通过的距离,两车vm匀速行驶的距离的 距离相同.只需要比较t1和t2知道谁用时较少。显然, 车手应选择走外道,由此赢得的时间为 Δt=t1-t2= (2 ) r r
某兴趣小组设计了如图所示的玩具轨道,其中“2008” 四个等高数字用内壁光滑的薄壁细圆管弯成,固定在竖 直平面内(所有数字均由圆或半圆组成,圆半径比细管 的内径大得多),底端与水平地面相切.弹射装置将一个 小物体(可视为质点)以va=5 m/s的水平初速度由a 点弹出,从b点进入轨道,依次经过“8002”后从p点水 平抛出.小物体与地面ab段间的动摩擦因数μ =0.3,不 计其它机械能损失.已知ab段长L=1.5 m,数字“0”的 2.求: 半径R=0.2m,小物体质量m=0.01kg,g=10 m/s 0.8
h=1.5R
F (6 2 3)mg
N
如图,长r的细绳系一质量为m小球在竖直平 面内做圆周运动 (1)若加一竖直方向匀强电场E,小球带电 量+q,则小球要在竖直平面内做圆周运动, 其在最高点时的速度有什么要求? (2)若将电场改成水平方向,情况又如何?

(完整word版)圆周运动绳杆模型

(完整word版)圆周运动绳杆模型

圆周运动中的临界问题一.两种模型:(1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆周运动)的条件是小球的重力恰好提供向心力,即mg =m rv 2,这时的速度是做圆周运动的最小速度v min = . (绳只能提供拉力不能提供支持力). 类此模型:竖直平面内的内轨道(2)轻杆模型:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度 . (杆既可以提供拉力,也可提供支持力或侧向力.) ①当v =0 时,杆对小球的支持力 小球的重力; ②当0<v <gr 时,杆对小球的支持力于小球的重力;③当v=gr 时,杆对小球的支持力 于零; ④当v >gr 时,杆对小球提供 力. 类此模型:竖直平面内的管轨道.1、圆周运动中绳模型的应用 【例题1】长L =0.5m 的细绳拴着小水桶绕固定轴在竖直平面内转动,筒中有质量m =0.5Kg 的水,问:(1)在最高点时,水不流出的最小速度是多少?(2)在最高点时,若速度v =3m/s ,水对筒底的压力多大?【训练1】游乐园里过山车原理的示意图如图所示。

设过山车的总质量为m ,由静止从高为h 的斜轨顶端A 点开始下滑,到半径为r 的圆形轨道最高点B 时恰好对轨道无压力。

求在圆形轨道最高点B 时的速度大小。

【训练2】.杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。

(2)水在最高点速率v =3 m /s 时,水对桶底的压力.2、圆周运动中的杆模型的应用【例题2】一根长l =0.625 m 的细杆,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v 1=3.0m /s 通过圆周最高点时,杆对小球的作用力拉力多大?方向如何?vR 【训练3】如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( ) A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度可能为0 C.小球到达最高点受杆的作用力一定为拉力 D.小球到达最高点受杆的作用力一定为支持力【训练4】如图所示,在竖直平面内有一内径为d 的光滑圆管弯曲而成的环形轨道,环形轨道半径R 远远大于d ,有一质量为m 的小球,直径略小于d ,可在圆管中做圆周运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动中的临界问题教学目的:会运用受力分析及向心力公式解决圆周运动的临界问题 教学重点:掌握解决圆周运动的两种典型的临界问题 教学难点:会分析判断临界时的速度或受力特征 教学内容一、 有关概念1、向心加速度的概念2、向心力的意义 (由一个力或几个力提供的效果力) 二、内容1、在竖直平面内作圆周运动的临界问题(1)如图4-2-2和图4-2-3所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:v 0图4-2-2 图4-2-3①临界条件:绳子或轨道对小球没有力的作用:mg =m Rv 2v 临界=Rg ; ②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力; ③不能过最高点的条件:v <v 临界(实际上球还没到最高点时就脱离了轨道). (2)如图4-2-4的球过最高点时,轻质杆对球产生的弹力情况: ①当v =0时,F N =mg (F N 为支持力);②当0<v <Rg 时,F N 随v 增大而减小,且mg >F N >0,F N 为支持力; ③当v =Rg 时,F N =0; ④当v >Rg 时,F N 为拉力,F N 随v 的增大而增大.v杆图4-2-4图4-2-5若是图4-2-5的小球在轨道的最高点时,如果v ≥Rg ,此时将脱离轨道做平抛运动,因为轨道对小球不能产生拉力.例1 长L =0.5m ,质量可以忽略的的杆,其下端固定于O 点,上端连接着一个质量m =2kg 的小球A ,A 绕O 点做圆周运动(同图5),在A 通过最高点,试讨论在下列两种情况下杆的受力:①当A 的速率v 1=1m /s 时 ②当A 的速率v 2=4m /s 时 解析: V 0=gL =10×0.5 m /s = 5 m /s小球的速度大于 5 m /s 时受拉力,小于 5 m /s 时受压力。

解法一:①当v 1=1m /s < 5 m /s 时,小球受向下的重力mg 和向上的支持力Na图 4由牛顿第二定律 mg -N =mv 2LN =mg -m v 2L =16N即杆受小球的压力16N 。

②当v 2=4m /s > 5 m /s 时,小球受向下的重力mg 和向下的拉力F ,由牛顿第二定律 mg +F =m v 2LF =m v 2L-mg =44N即杆受小球的拉力44N 。

解法二:小球在最高点时既可以受拉力也可以受支持力,因此杆受小球的作用力也可以是拉力或者是压力。

我们可不去做具体的判断而假设一个方向。

如设杆竖直向下拉小球A ,则小球的受力就是上面解法中的②的情形。

由牛顿第二定律 mg +F =m v 2L得 F =m (v 2L-g )当v 1=1m /s 时,F 1=-16N F 1为负值,说明它的实际方向与所设的方向相反,即小球受力应向上,为支持力。

则杆应受压力。

当v 2=4m /s 时,F 2=44N 。

F 2为正值,说明它的实际方向与所设的方向相同,即小球受力就是向下的,是拉力。

则杆也应受拉力。

例2 如图4所示,在倾角θ=30°的光滑斜面上,有一长l =0.4m 的细绳,一端固定在O 点,另一端拴一质量为m =0.2 kg 的小球,使之在斜面上作圆周运动,求:(1)小球通过最高点A 时最小速度;(2)如细绳受到9.8N 的拉力就会断裂,求小球通过最低点B 时的最大速度.2、在水平面内作圆周运动的临界问题在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的(半径有变化)趋势。

这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等)。

例3 如图9所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线之间的夹角为θ=30°,一条长度为L 的绳(质量不计),一端的位置固定在圆锥体的顶点O 处,另一端拴着一个质量为m 的小物体(物体可看质点),物体以速率v 绕圆锥体的轴线做水平匀速圆周运动。

⑴当v =16gL 时,求绳对物体的拉力; ⑵当v =32gL 时,求绳对物体的拉力。

解析:设小球刚好对锥面没有压力时的速率为0υ,则有)2(30sin 3020分Λοοl mmgtcm υ= 解得gl 630=υ (1)当)2(03.16331)2(30sin 30cos )2(30sin 30cos 30sin ,6120分解得分分有时ΛΛΛοοοοοmg mg T mg N T l m N T gl ≈+==+=-<=υυυ(2)当023υυ>=gl 时,小球离开锥面,设绳与轴线夹角为ϕ,则mgmgNTθ图 9N)2(2)2(30sin sin )2(cos 2分解得分分ΛΛΛοmg T l mT mg T ===υϕϕ例4 如图6所示,两绳系一质量为m =0.1kg 的小球,上面绳长L =2m ,两端都拉直时与轴的夹角分别为30°与45°, 问球的角速度在什么范围内,两绳始终张紧,当角速度为 3 rad /s 时,上、下两绳拉力分别为多大?解析:①当角速度ω很小时,AC 和BC 与轴的夹角都很小,BC 并不张紧。

当ω逐渐增大到30°时,BC但BC 绳中的张力仍然为零。

设这时的角速度为ω1,则有:T AC cos30°=mgT AC sin30°=m ω12Lsin30°将已知条件代入上式解得ω1=2.4 rad /s ②当角速度ω继续增大时T AC 减小,T BC 增大。

设角速度达到ω2时,T AC =0(这又是一个临界状态),则有: TBC cos45°=mgT BC sin45°=m ω22Lsin30°将已知条件代入上式解得 ω2=3.16 rad /s所以 当ω满足 2.4 rad /s ≤ω≤3.16 rad /s ,AC 、BC 两绳始终张紧。

本题所给条件 ω=3 rad /s ,此时两绳拉力T AC 、T BC 都存在。

T AC sin30°+T BC sin45°=m ω2Lsin30° T AC cos30°+T BC cos45°=mg将数据代入上面两式解得 T AC =0.27N , T BC =1.09N 注意:解题时注意圆心的位置(半径的大小)。

如果ω<2.4 rad /s 时,T BC =0,AC 与轴的夹角小于30°。

如果ω>3.16rad /s 时,T AC =0,BC 与轴的夹角大于45°。

例5 如图7所示,细绳一端系着质量M =0.6kg 的物体,静止在水平面上,另一端通过光滑的小孔吊着质量m =0.3kg 的物体,M 的中与圆孔距离为0.2m ,并知M 和水平面的最大静摩擦力为2N 。

现使此平面绕中心轴线转动,问角速度ω在什么范围m 会处于静止状态?(g =10m /s 2) [ 先以m =0为题引入,由浅入深 ]解析:要使m 静止,M 也应与平面相对静止。

而M 与平面静止时有两个临界状态:当ω为所求范围最小值时,M 有向着圆心 运动的趋势,水平面对M 的静摩擦力的方向 背离圆心,大小等于最大静摩擦力2N 。

此时,对M 运用牛顿第二定律。

有 T -f m =M ω12r 且 T =mg解得 ω1=2.9 rad /s当ω为所求范围最大值时,M 有背离圆心运动的趋势,水平面对M 的静摩擦力的方向向着圆心,大小还等于最大静摩擦力2N 。

再对M 运用牛顿第二定律 有 T +f m =M ω22r 解得 ω2=6.5 rad /s 所以,题中所求ω的范围是: 2.9 rad /s <ω<6.5 rad /s例6 如图8所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其下压力的μ倍。

求:⑴当转盘角速度ω1=μg2r时,细绳的拉力T 1。

C图 6图 7 图 8⑵当转盘角速度ω2=3μg2r时,细绳的拉力T 2。

解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为,则,解得。

(1)因为,所以物体所需向心力小于物体与盘间的最大摩擦力,则物与盘间还未到最大静摩擦力,细绳的拉力仍为0,即。

(2)因为,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力,由牛顿的第二定律得:,解得。

3、连接体的临界问题例1、如图所示,匀速转动的水平圆盘上,放有质量均为m 的小物体A 、B , A 、B 间用细线沿半径方向相连,它们到转轴距离分别为R A =20cm ,R B =30cm 。

A 、B 与盘面间的最大静摩擦力均为重力的0.4倍,试求: (1)当细线上开始出现张力时,圆盘的角速度ω0; (2)当A 开始滑动时,圆盘的角速度ω; (3)当即将滑动时,烧断细线,A 、B 状态如何?答案: (1)当细线上开始出现张力时,表明B 与盘间的静摩擦力已达到最大,设此时圆盘角速度为ω0,则是kmg=mr B ω02解得: B 0r /kg =ω =3.7rad/s(2)当A 开始滑动时,表明A 与盘的静摩擦力也已达到最大,设此时盘转动角速度为ω,线上拉力为F T 则,对A :F fAm -F T =mr A ω2对B :F fBm +F T =mr B ω2又:F fAm =F fBm =kmg 解得ω=4rad/s 。

(3)烧断细线,A 与盘间的静摩擦力减小,继续随盘做半径为r A =20cm 的圆周运动,而B 由于F fBm 不足以提供必要的向心力而做离心运动。

答案:(1) 3.7rad/s (2) 4rad/s (3)A 做圆周运动,B 做离心运动分析:1、利用极限分析法的“放大”思想分析临界状态。

认清临界情景和条件,建立临界关系是解决此类问题的关键。

2、圆周运动中的连接体加速度一般不同,所以,解决这类连接体的动力学问题时一般用隔离法。

但也可用整体法来求解。

三、巩固练习1、汽车通过拱桥颗顶点的速度为10 m /s 时,车对桥的压力为车重的34 。

如果使汽车驶至桥顶时对桥恰无压力,则汽车的速度为 ( )A 、15 m /sB 、20 m /sC 、25 m /sD 、30m /s2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的质量为,离轴心,B 的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求(1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()解析:(1)较小时,A、B均由静摩擦力充当向心力,增大,可知,它们受到的静摩擦力也增大,而,所以A受到的静摩擦力先达到最大值。

相关文档
最新文档