基础练习71平方根与立方根

合集下载

人教版七年级下第六章实数“平方根、立方根"习题

人教版七年级下第六章实数“平方根、立方根"习题

人教版七年级下 第六章 实数 “平方根、立方根"习题学校:___________姓名:___________班级:___________考号:___________一、填空题1.计算:(1)=; (2= ; (3)|2.5= ;(4= ; (5)n =; (6)= .2的立方根是;的平方根是.3.28y x =-,且y 的立方根是2,求x 的值 .4=,其中x 的取值范围 ;=,其中y 的取值范围.5 1.289====462.6=,则x =;;= ;若 5.981=,则y =.6.已知21a -与5a -是m 的平方根,那么m =.二、单选题7.下列各式中,正确的是( )A B .C 3=-D 4=-8.下列等式不一定成立的是( ).A=B a=C a=D .3a=9.下列说法错误的是( ).A .4是16的算术平方根B .37-是949的一个平方根C .0的平方根与算术平方根都是0D .2(9)-的平方根是9-10.若一个数的算术平方根与它的立方根的值相同,则这个数是( )A .1B .0和1C .0D .非负数11.若01x <<,则2x 、x 这四个数中( ).A 2x 最小B .x 最小C .2x 小D .x 最大,2x 最小12xy的值为( ).A .23B .32C .23-D .32-三、解答题13.计算:(1- (214.(1)已知5b =,求35a b +的立方根;(2)已知2(3)0x -=,求4x y +的平方根.15.已知3既是5a +的平方根,也是721a b -+的立方根,解关于x 的方程()2290a x b --=.答案第1页,共1页参考答案:1. 6-0.2 2.54π- 1a-2. 2 2±3.4±4. 0任意数1y =5.214000 0.1463± 0.1289-2146.81或97.C 8.B 9.D 10.B 11.A 12.A 13.(1)558;(2)112-.14.(1)3;(2)4±15.72x =或12x =。

(完整版)平方根与立方根练习题

(完整版)平方根与立方根练习题

平方根立方根练习题一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7.12,那么另一个平方根是________.3.2-的相反数是 , 13-的相反数是 ;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;8.若一个数的平方根是8±,则这个数的立方根是 ;9.当______m 时,m -3有意义;当______m 时,33-m 有意义;10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;11.已知0)3(122=++-b a ,则=332ab ; 12.21++a 的最小值是________,此时a 的取值是________.13.12+x 的算术平方根是2,则x =________.二、选择题14.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、81-的平方根是9± 15.2)3(-的值是( ).A .3-B .3C .9-D .916.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、517.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(-D .11.118.计算3825-的结果是( ).A.3B.7C.-3D.-7 19.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a20.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .321.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( )A 、32210+B 、3425+C 、32210+或3425+D 、无法确定三、解方程22.0252=-x 23. 8)12(3-=-x 24.4(x+1)2=8 (2x-5)3=-27四、计算25.914414449⋅ 26.494 27.41613+-平方根与立方根能力提升一、选择题1. 若5x -能开偶次方,则x 的取值范围是( )A .0x ≥ B.5x > C. 5x ≥ D. 5x ≤2. 若n 为正整数,则2 )A .-1 B.1 C.±1 D.21n +3. 若正数a 的算术平方根比它本身大,则( )A.01a <<B.0a >C. 1a <D. 1a >四、解答题1.已知: 实数a 、b 满足条件0)2(12=-+-ab a 试求: )2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值2.已知:33-+-x x +5=y,求x+y的立方根.3.已知:(x-1)2+z y x y ++++3=0,求x+y2-z的立方根.4.若x2=(-3)2,y3=(-2)3,求x+y的所有可能值.5.(1)如果3x+12的立方根是3,求2x+6的平方根;(2)已知一个正数的平方根是2a -1与-a +2.求a 2009的值.6.在解答“判断由线段长分别为65,2,85组成的三角形是不是直角三角形”一题中,小明是这样做的:因为2263610013625252525⎛⎫+=+= ⎪⎝⎭,而222286468252555⎛⎫⎛⎫⎛⎫=+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以这个三角形不是直角三角形.小明的做法对吗?为什么?7.一辆卡车装满货物后,高4m ,宽3m ,这辆卡车能通过横截面如图(上方为半圆)的隧道吗?为什么?19.已知5+7的小数部分是a,5一7的小数部分是6,求(a+b)2008的值.20.已知2a一1的平方根是±3,3a+b一1的算术平方根是4,求a+2b的平方根.21.如图,在∆ABC中,∠C=90o,M是BC上的一点,MD⊥AB,垂足为点D,且AD2=AC2+BD2.试说明CM=MB.22.如图,铁路上A、B两站相距25 km,在铁显各附近有C、D两村,DA⊥AB于点A,CB⊥AB于点B.已知DA=15 km,CB=10 km,现要在铁路上建设一个土特产收购站E,要使得C、D两村到E站的距离相等,则E站应建在距A站多远处?23.如图,在正方形ABCD中,E是AD的中点,点F在DC上,且DF=14DC,试判断BE与EF的位置关系,并说明理由.。

平方根与立方根专题训练

平方根与立方根专题训练

1、什么叫做平方根?数学语言:如果a x =2,那么x 就叫做a 的平方根。

4的平方根是 ;149的平方根是 。

的平方是0.81。

如果225x =,那么x = 。

2的平方根是 ? 2、平方根的表示方法:一个正数a 的正的平方根,记作“a ”,正数a 的负的平方根记作“a -”。

这两个平方根合起来记作“a ±”,读作“正,负根号a ”.表示 ,= 。

2的平方根是 ;如果22x =,那么x = 。

3、平方根的概念:一个正数的平方根有2个,它们 ;0只有1个平方根,它是 ; 没有平方根。

求一个数的平方根的运算叫做 。

4、算术平方根: 正数有两个平方根,其中 平方根,叫的算术平方根.0的算术平方根是5、算术平方根的性质:⑴ 0≥中被开方数0a ≥。

⑵=2a =2)(a (a 0)(3= (a 0,b 0) 6、什么叫做立方根? 即如果a x =3,那么x 就叫做a 的立方根。

记为3a ,读作“三次根号a ”.1)若x 3=a (a >0),那么a 叫做x 的 ,记为 ;2)一个正数 的立方根有 个,0的个立方根为 ,负数有 个立方根。

3)立方根的性质:(1)3= ,(2= .平方根 一、填空题1.1的平方根是 , 的平方根是0, 的平方根是它本身。

2.=36 ;=-2)9( ;=--2)3( 。

3. 当0≥a 时,a ±表示的意义是 ,其中被开方数是 .225的算术平方根用符号表示为 ,它的结果是 。

4. -7的平方的算术平方根是 ,3的平方的平方根是 。

二、选择题1.下列语句写成数学式子正确的是( )A. 9是81的算术平方根:981=± B .5是()25-的算术平方根:()552=-C .6±是36的平方根:636±=D .-2是4的负的平方根:24-=-2.下列说法正确的是 ( )A. 只有正数才有平方根B. 一个数的算术平方根一定是正数C. 一个非负数的算术平方根一定是非负数D. 81的平方根是9±三、求下列各数的平方根1. 0.64 2.94 3.2500 4.2)3(- 四、求下列各数的算术平方根 1. 4 2. 8164 3.2.56 4.2)3(-立方根一、填空题1. 数a 的立方根,记作 ,其中被开方数是 ,根指数是 。

七年级数学开平方、平方根、算术平方根、开立方、立方根及实数的综合练习人教四年制版知识精讲

七年级数学开平方、平方根、算术平方根、开立方、立方根及实数的综合练习人教四年制版知识精讲

七年级数学开平方、平方根、算术平方根、开立方、立方根及实数的综合练习人教四年制【同步教育信息】一. 本周教学内容:开平方、平方根、算术平方根、开立方、立方根及实数的综合练习二. 教学重点、难点:1. 重点:平方根、算术平方根和实数概念2. 难点:运用平方根、算术平根、立方根及实数的有关概念进行计算,求值,化简。

三. 教学知识要点:1. )0(2≥=a a x ,x 叫a 的平方根,即a x ±=)0(≥a(1)正数有两个平方根。

(2)0有一个平方根是0(3)负数没有平方根2. )0(>a a 叫做a 的算术平方根,00= ∴0≥a 且0≥a3. a x =3,x 叫做a 的立方根。

3a x =(1)正数有一个正的立方根(2)负数有一个负的立方根(3)0的立方根是04. 有理数和无理数统称为实数,无理数≠有理数【典型例题】[例1] 计算32223510)312(27351----+- 解:原式32325100)37(278---+-=3265355373212537323333=+=++-=++-= [例2] 若x 、y 为实数,2111+-+-<x x y ,化简12|12|2+---y y y 。

解:∵11≥-x x 11≤-x x∴1=x ∴21<y 即021<-y 12<y 原式2)1(21---=y y)1(21|1|21y y y y ---=---==y y y -=+--121[例3] 已知0<x ,化简22)(x x -解:∵0<x ∴x x x -==||2 ∴x x x x x x x 2|2|4)()(2222-===+=-[例4] 求满足条件y x a -=-62的自然数,a 、x 、y 。

解:将条件两边平方得 xy y x a 262-+=-∵x 、y 、a 为自然数 ∴xy 只能是无理数,否则与左边是无理数矛盾故有y x y x a ⋅=+=6,,又显然y x >x 、y 为自然数所以当6=x 时,1=y ,得7=a当3=x ,2=y ,5=a即7,1,6===a y x 或5,2,3===a y x【模拟试题】一. 填空题:的平方根是,算术平方根是。

平方根立方根计算题50道计算题

平方根立方根计算题50道计算题

平方根立方根计算题50道计算题一、平方根计算题(25道)1. √(4)- 解析:因为2^2 = 4,所以√(4)=2。

2. √(9)- 解析:由于3^2 = 9,所以√(9)=3。

3. √(16)- 解析:4^2 = 16,则√(16)=4。

4. √(25)- 解析:因为5^2 = 25,所以√(25)=5。

5. √(36)- 解析:6^2 = 36,故√(36)=6。

6. √(49)- 解析:7^2 = 49,所以√(49)=7。

7. √(64)- 解析:8^2 = 64,则√(64)=8。

8. √(81)- 解析:9^2 = 81,所以√(81)=9。

9. √(100)- 解析:10^2 = 100,故√(100)=10。

10. √(121)- 解析:11^2 = 121,所以√(121)=11。

11. √(144)- 解析:12^2 = 144,则√(144)=12。

12. √(169)- 解析:13^2 = 169,所以√(169)=13。

13. √(196)- 解析:14^2 = 196,故√(196)=14。

14. √(225)- 解析:15^2 = 225,所以√(225)=15。

15. √(0.04)- 解析:0.2^2 = 0.04,所以√(0.04)=0.2。

16. √(0.09)- 解析:0.3^2 = 0.09,则√(0.09)=0.3。

17. √(0.16)- 解析:0.4^2 = 0.16,所以√(0.16)=0.4。

18. √(0.25)- 解析:0.5^2 = 0.25,故√(0.25)=0.5。

19. √(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16),因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。

20. √(2frac{1){4}}- 解析:把带分数化为假分数,2(1)/(4)=(9)/(4),由于((3)/(2))^2=(9)/(4),所以√(2frac{1){4}}=(3)/(2)。

平方根与立方根练习题及答案

平方根与立方根练习题及答案

平方根与立方根练习题及答案平方根与立方根练习题及答案数学作为一门基础学科,对于我们的日常生活和学习都有着重要的作用。

而在数学中,平方根和立方根是我们常常会遇到的概念。

它们不仅有着实际应用,还能够锻炼我们的逻辑思维和计算能力。

下面,我们将给大家提供一些平方根和立方根的练习题及答案,希望能够帮助大家更好地理解和掌握这两个概念。

一、平方根练习题1. 计算下列各数的平方根:a) 9b) 16c) 25d) 36e) 49答案:a) √9 = 3b) √16 = 4c) √25 = 5d) √36 = 6e) √49 = 72. 计算下列各数的平方根(保留两位小数):a) 2b) 5c) 8d) 10e) 13答案:a) √2 ≈ 1.41b) √5 ≈ 2.24c) √8 ≈ 2.83d) √10 ≈ 3.16e) √13 ≈ 3.613. 判断下列各数是否为完全平方数:a) 16b) 21c) 36d) 42e) 49答案:a) 是b) 否c) 是d) 否e) 是二、立方根练习题1. 计算下列各数的立方根:a) 8b) 27c) 64d) 125e) 216答案:a) ∛8 = 2b) ∛27 = 3c) ∛64 = 4d) ∛125 = 5e) ∛216 = 62. 计算下列各数的立方根(保留两位小数):a) 1b) 10c) 25d) 50e) 100答案:a) ∛1 = 1b) ∛10 ≈ 2.15c) ∛25 ≈ 2.92d) ∛50 ≈ 3.68e) ∛100 ≈ 4.643. 判断下列各数是否为完全立方数:a) 8b) 27c) 36d) 49e) 64答案:a) 否b) 是c) 是d) 否e) 是通过以上的练习题,我们可以更好地理解和掌握平方根和立方根的概念。

同时,这些练习题也能够帮助我们提高计算能力和逻辑思维能力。

在实际生活中,平方根和立方根的运用也非常广泛,比如在测量、建模和解决实际问题时,我们常常需要用到这些概念。

平方根与立方根练习题及答案

平方根与立方根练习题及答案

平方根与立方根练习题及答案平方根与立方根练习题及答案数字是数学世界中最基本的元素,它们无处不在,无论是日常生活还是学术研究都离不开数字的存在。

其中,平方根和立方根是我们常见的数学概念之一。

平方根表示一个数的平方等于该数的正平方根,而立方根则表示一个数的立方等于该数的正立方根。

在这篇文章中,我们将介绍一些关于平方根和立方根的练习题,并提供相应的答案。

练习题一:求平方根1. 求下列数的平方根:a) 4b) 9c) 16d) 25e) 36答案:a) 2b) 3c) 4d) 5e) 6解析:对于一个数的平方根,我们需要找到一个数,使得这个数的平方等于给定的数。

例如,对于4来说,2的平方等于4,所以4的平方根为2。

同样地,9的平方根为3,16的平方根为4,25的平方根为5,36的平方根为6。

练习题二:求立方根2. 求下列数的立方根:a) 8b) 27c) 64d) 125e) 216答案:a) 2b) 3c) 4d) 5e) 6解析:与求平方根类似,对于一个数的立方根,我们需要找到一个数,使得这个数的立方等于给定的数。

例如,对于8来说,2的立方等于8,所以8的立方根为2。

同样地,27的立方根为3,64的立方根为4,125的立方根为5,216的立方根为6。

练习题三:混合练习3. 求下列数的平方根和立方根:a) 1b) 64c) 100d) 729e) 1000答案:a) 平方根为1,立方根为1b) 平方根为8,立方根为4c) 平方根为10,立方根为5d) 平方根为27,立方根为9e) 平方根为31.62(保留两位小数),立方根为10解析:有些数既有平方根又有立方根,我们可以通过前面的求解方法得到它们的值。

例如,对于1来说,1的平方根和立方根都为1;对于64来说,64的平方根为8,立方根为4;对于100来说,100的平方根为10,立方根为5;对于729来说,729的平方根为27,立方根为9;对于1000来说,1000的平方根为31.62(保留两位小数),立方根为10。

平方根与立方根计算练习题

平方根与立方根计算练习题

平方根与立方根计算练习题在数学中,平方根和立方根是常见的数学运算。

它们用于计算给定数的平方和立方根。

本文将为您提供一些关于平方根和立方根的计算练习题,帮助您巩固和提升这两个运算的能力。

一、平方根计算练习题1. 计算以下数的平方根:a) 25b) 36c) 81d) 1002. 请计算下列数的平方根,并保留两位小数:a) 2b) 5c) 10d) 133. 判断以下数是否是完全平方数(即存在整数的平方根):a) 16b) 17c) 254. 请计算下列数的平方根,并详细说明计算步骤:a) 64b) 121c) 196d) 289二、立方根计算练习题1. 计算以下数的立方根:a) 8b) 27c) 64d) 1252. 请计算下列数的立方根,并保留两位小数:a) 2b) 5c) 10d) 153. 判断以下数是否是完全立方数(即存在整数的立方根):a) 64c) 100d) 1204. 请计算下列数的立方根,并详细说明计算步骤:a) 216b) 343c) 512d) 729三、平方根与立方根混合计算练习题1. 计算以下数的平方根和立方根的乘积:a) 4b) 9c) 16d) 252. 计算以下数的平方根的立方:a) 2b) 3c) 5d) 73. 计算以下数的立方根的平方:a) 8b) 27c) 64d) 125四、实际问题求解练习题1. 根据以下信息,请计算一个正方形的边长:正方形的面积等于64平方厘米。

2. 根据以下信息,请计算一个立方体的边长:立方体的体积等于512立方厘米。

3. 根据以下信息,请计算一个球的半径:球的体积等于314立方厘米。

练习题答案:一、平方根计算练习题答案:1. a) 5 b) 6 c) 9 d) 102. a) 1.41 b) 2.24 c)3.16 d) 3.613. a) 是 b) 否 c) 是 d) 否4. a) 8 = √64 b) 11 = √121 c) 14 = √196 d) 17 = √289二、立方根计算练习题答案:1. a) 2 b) 3 c) 4 d) 52. a) 1.26 b) 1.71 c) 2.15 d) 2.473. a) 是 b) 是 c) 否 d) 否4. a) 6 = ∛216 b) 7 = ∛343 c) 8 = ∛512 d) 9 = ∛729三、平方根与立方根混合计算练习题答案:1. a) 8 b) 27 c) 64 d) 1252. a) 2^3 = 8 b) 3^3 = 27 c) 5^3 = 125 d) 7^3 = 3433. a) √8 = 2 b) √27 = 3 c) √64 = 8 d) √125 = 5四、实际问题求解练习题答案:1. 正方形的边长为8厘米。

算术平方根、平方根与立方根练习题

算术平方根、平方根与立方根练习题

算术平方根、平方根与立方根练习题 姓名:‗‗‗‗‗‗‗‗‗1、一般地,如果一个正数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个正数x 叫做a 的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗,读作‗‗‗‗‗‗‗‗‗‗,a 叫做‗‗‗‗‗‗‗‗‗,如3²=9,则3是9的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

0的算术平方根是‗‗‗‗‗‗;1的算术平方根是‗‗‗‗‗。

‗‗‗‗‗‗‗‗数没有算术平方根;被开方数是‗‗‗‗‗‗‗数;算术平方根是‗‗‗‗‗‗‗数。

2、算术平方根等于它本身的数是‗‗‗‗‗‗‗‗‗。

被开方数越大,对应的算术平方根也‗‗‗‗‗。

3、(-5)²的算术平方根是‗‗‗‗‗;0.49的算术平方根的相反数是‗‗‗‗‗‗。

4、81的算术平方根是‗‗‗‗‗。

16的算术平方根是‗‗‗‗‗。

5、求下列各数的算术平方根。

(1)0.0625; (2)0; (3)2)41(-; (4)16、计算(1)41.4 (2)25111(3)151722-7、已知35.14=3.788,x =378.8,则x=‗‗‗‗‗‗‗‗‗。

8、已知a ,b 为两个连续整数,且a <7<b ,则a+b=‗‗‗‗‗。

比较大小:215-‗‗‗21。

9、(1)(-3)²=‗‗‗‗‗;(2))3(2π-=‗‗‗‗‗‗‗‗‗‗;(3)若4-x =3,则x=‗‗‗‗‗。

10、若x ,y 为实数,且2+x +2-y =0,则)2016(y x 的值为‗‗‗‗‗‗‗‗。

平方根:1、一般地,如果一个数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个数x 叫做a 的‗‗‗‗‗‗‗‗‗或‗‗‗‗‗‗‗‗‗,数a 的平方根可记作‗‗‗‗‗‗,如)3(2±=9,所以‗‗‗‗‗是9的平方根,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

正数有‗‗‗‗个平方根,它们‗‗‗‗‗‗‗‗‗,0的平方根是‗‗‗。

平方根》《立方根》习题精选精练

平方根》《立方根》习题精选精练

《平方根》精练【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ; (2)0 平方根,它是 ; (3) 没有平方根. 4、重要公式:(1)=2)(a (2){==a a 25、平方表:【典型例题】例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0; ④ 是的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、36的平方根是( ) A 、6 B 、6± C 、 6 D 、 6±例3、下列各式中,哪些有意义(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C.12+a D.12+±a 例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】 一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .81 2.下列计算正确的是( )A ±2B C.636=± D.992-=- 3.下列说法中正确的是( )A .9的平方根是3B 2 C. 4 D.24. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、7是2)7(-的平方根,即7)7(2=- C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±= 8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个B .2个C .1个D .4个 10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ± 12.下列叙述中正确的是( ) A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 13.25的平方根是( )A 、5B 、5-C 、5±D 、5± 14.36的平方根是( ) A 、6 B 、6± C 、 6 D 、 6±15.当≥m 0时,m 表示( ) A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数16.用数学式子表示“169的平方根是43±”应是( )A .43169±= B .43169±=±C .43169= D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0 18.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0± 19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±620.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1 A .3个 B .4个 C .5个 D .6个 21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5± 22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根23.下列命题正确的是( ) A .49.0的平方根是 B .是49.0的平方根 C .是49.0的算术平方根 D .是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .a B .a -C .2a - D .3a25.3612892=x ,那么x 的值为( )A .1917±=xB .1917=xC .1817=xD .1817±=x26.下列各式中,正确的是( ) A.2)2(2-=-B. 9)3(2=-C. 39±=±D. 393-=-27.下列各式中正确的是( ) A .12)12(2-=- B .6218=⨯ C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( )(A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-30.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 31.满足的整数x 是 32.已知一个正方形的边长为a ,面积为S ,则( ) A.a S =B.S 的平方根是aC.a 是S 的算术平方根D.S a ±=33. 若a 和a -都有意义,则a 的值是( ) A.0≥a B.0≤a C.0=a D.0≠a 34.22)4(+x 的算术平方根是( ) A 、 42)4(+x B 、22)4(+x C 、42+x D 、42+x35.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±36.下列各式中,正确的是( ) A.2)2(2-=- B. 9)3(2=-C. 39±=±D. 393-=-37.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±38.下列各组数中互为相反数的是( )A 、2)2(2--与 B 、382--与 C 、2)2(2-与 D 、22与-二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是 2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是 6.非负的平方根叫 平方根 7.2)8(-= , 2)8(= 。

练习题平方根与立方根的运算

练习题平方根与立方根的运算

练习题平方根与立方根的运算练习题:平方根与立方根的运算平方根和立方根是数学中常见的运算,它们是求一个数的平方根和立方根的操作。

在数学中,平方根指的是一个数的平方等于该数的操作,而立方根则是一个数的立方等于该数的操作。

本文将介绍如何进行平方根与立方根的运算,以及一些练习题来巩固理解。

一、平方根的运算:平方根的运算可以通过使用数学公式来进行。

对于一个非负数a来说,它的平方根可以表示为√a,其中√表示根号。

具体的运算方法如下:1. 确定被开方数a的值;2. 判断被开方数a是否为正数或零。

如果a小于零,则无实数解;3. 利用平方根的定义来求解平方根值。

练习题1:求下列数的平方根1) 25解答:√25 = 52) 144解答:√144 = 123) 7解答:√7 ≈ 2.646二、立方根的运算:立方根的运算也可以通过使用数学公式来进行。

对于一个数a来说,它的立方根可以表示为³√a,其中³√表示三次方根。

具体的运算方法如下:1. 确定被开方数a的值;2. 判断被开方数a的类型。

正数有一个实数解,负数有一个虚数解;3. 利用立方根的定义来求解立方根值。

练习题2:求下列数的立方根1) 64解答:³√64 = 42) -125解答:³√(-125) = -53) 216解答:³√216 = 6练习题3:求下列数的近似立方根(保留两位小数)1) 5解答:³√5 ≈ 1.712) 28解答:³√28 ≈ 3.043) 1000解答:³√1000 ≈ 10通过以上的练习题,我们可以对平方根与立方根的运算有一个更深入的理解。

当然,在实际的数学运算中,我们可以利用计算器或者电脑软件来快速求解平方根和立方根。

然而,掌握这些基本的运算方法和练习题的求解,对于加深对平方根和立方根的认识仍然是十分有益的。

总结:本文介绍了平方根和立方根的运算方法,并给出了相关的练习题来巩固理解。

(完整版)平方根与立方根测试题

(完整版)平方根与立方根测试题

平方根与立方根测试题时间:120分 满分:150分一、选择(每题2分,共40分)1.若a x =2,则( )A 、x>0B 、x≥0C 、a>0D 、a≥02.一个数若有两个不同的平方根,则这两个平方根的和为( ) A 、大于0 B 、等于0 C 、小于0 D 、不能确定 3.一个正方形的边长为a ,面积为b ,则( )A 、a 是b 的平方根B 、a 是b 的的算术平方根C 、b a ±=D 、a b =4.若a≥0,则24a 的算术平方根是( )A 、2aB 、±2aC 、a 2D 、| 2a | 5.若正数a 的算术平方根比它本身大,则( ) A 、0<a<1 B 、a>0 C 、a<1 D 、a>1 6.若n 为正整数,则121+-n 等于( )A 、-1B 、1C 、±1D 、2n+17.若a<0,则aa 22等于( )A 、21 B 、21- C 、±21 D 、0 8.若x-5能开偶次方,则x 的取值范围是( ) A 、x≥0 B 、x>5 C 、x≥5 D 、x≤59.下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有( )A 、 0个B 、1个C 、2个D 、3个 10.若一个数的平方根与它的立方根完全相同,则这个数是()A 、 1B 、 -1C 、 0D 、±1, 011.若x使(x-1)2=4成立,则x的值是( )A 、3B 、-1C 、3或-1D 、±212.如果a 是负数,那么2a 的平方根是( ).A .a B .a - C .a ± D.13a 有( ).A 、0个B 、1个C 、无数个D 、以上都不对 14.下列说法中正确的是( ).A 、若0a <0< B 、x 是实数,且2x a =,则0a >C有意义时,0x ≤ D 、0.1的平方根是0.01± 15.若一个数的平方根是8±,则这个数的立方根是( ).A 、2B 、±2C 、4D 、±416.若22(5)a =-,33(5)b =-,则a b +的所有可能值为( ).A 、0B 、-10C 、0或-10D 、0或±10 17.若10m -<<,且n =,则m 、n 的大小关系是( ).A 、m n >B 、m n <C 、m n =D 、不能确定 18.27-).A 、0B 、6C 、-12或6D 、0或-619.若a ,b满足2|(2)0b +-=,则ab 等于( ).A 、2B 、12 C 、-2 D 、-1220.下列各式中无论x 为任何数都没有意义的是( ).ABCD二、填空(每题2分,共34分)21的平方根是 ,35±是 的平方根.22.在下列各数中0,254,21a +,31()3--,2(5)--,222x x ++,|1|a -,||1a -方根的个数是 个.23. 144的算术平方根是 ,16的平方根是 ; 24.327= , 64-的立方根是 ; 25.7的平方根为 ,21.1= ;26.一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ; 27.平方数是它本身的数是 ;平方数是它的相反数的数是 ; 28.当x= 时,13-x 有意义;当x= 时,325+x 有意义;29.若164=x ,则x= ;若813=n ,则n= ;30.若3x x =,则x= ;若x x -=2,则x ;31.若0|2|1=-++y x ,则x+y= ;32.计算:381264273292531+-+= ; 33.代数式3-的最大值为 ,这是,a b 的关系是 .3435=-,则x =,若6=,则x = .354k =-,则k 的值为 .36.若1n n <<+,1m m <<+,其中m 、n 为整数,则m n += .37.若m 的平方根是51a +和19a -,则m = .三、解答题(共76分)38、(40分)解方程:0324)1(2=--x (2) 125-8x3=0(3 ) 264(3)90x --= (4) 2(41)225x -=(5 )31(1)802x -+= ( 6 )3125(2)343x -=-(7)|1 (8(9(1039.(6互为相反数,求代数式12xy+的值.40.(6分)已知ax=M的立方根,y=x的相反数,且37M a=-,请你求出x的平方根.41.(6分)若y=,求2x y+的值.42.(64=,且2(21)0y x-++=,求x y z++的值.43.(6分)已知:x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.44.(6分)若12112--+-=xxy,求x y的值。

平方根与立方根同步练习及易错题

平方根与立方根同步练习及易错题

《平方根与立方根》同步试卷
姓名:
一、基础训练
1.9的算术平方根是( )
A .-3
B .3
C .±3
D .81
2.下列计算不正确的是( )
A =±2
B =
C = D
3.下列说法中不正确的是( )
A .9的算术平方根是3
B 2
C .27的立方根是±3
D .立方根等于-1的实数是-1
4 )
A .±8
B .±4
C .±2 D
5.-18
的平方的立方根是( ) A .4 B .18 C .-14 D .14
6_____ __;9的立方根是__ _____. 7.-4是 的平方根
8.化简:______)3(2=- , _______)5(2=
9.计算:
(1) (2 (3 (4
二、能力训练
10.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( )
A .x+1
B .x 2+1 C
11.若一个数的平方根是2m-4与3m-1,则m 的值是( )
A .-3
B .1
C .3
D .-1
12.已知x ,y (y-3)2=0,则xy 的值是( )
A .4
B .-4
C .94
D .-94
132-的相反数是 ;绝对值是 。

14.在数轴上表示的点离原点的距离是 。

15.比较大小,并说理由。

(1与6; (2)1与1-。

16.利用平方根、立方根求x 的值.
(1)x 2 = 17; (2)812=-x
(3)5322=-x
(4)12(x+3)2=8.。

平方根立方根练习题及答案

平方根立方根练习题及答案

平方根立方根练习题及答案1. 求 \( \sqrt{16} \) 的值。

2. 求 \( \sqrt{81} \) 的值。

3. 求 \( \sqrt[3]{27} \) 的值。

4. 求 \( \sqrt[3]{64} \) 的值。

5. 求 \( \sqrt{0.36} \) 的值。

6. 求 \( \sqrt[3]{-27} \) 的值。

7. 判断 \( \sqrt{64} \) 是否等于 \( \sqrt{16} \times \sqrt{4} \)。

8. 求 \( \sqrt[3]{8} \) 并将其与 \( \sqrt[3]{2} \) 进行比较。

答案1. \( \sqrt{16} = 4 \),因为 \( 4^2 = 16 \)。

2. \( \sqrt{81} = 9 \),因为 \( 9^2 = 81 \)。

3. \( \sqrt[3]{27} = 3 \),因为 \( 3^3 = 27 \)。

4. \( \sqrt[3]{64} = 4 \),因为 \( 4^3 = 64 \)。

5. \( \sqrt{0.36} = 0.6 \),因为 \( 0.6^2 = 0.36 \)。

6. \( \sqrt[3]{-27} = -3 \),因为 \( (-3)^3 = -27 \)。

7. \( \sqrt{64} \) 等于 \( 8 \),而 \( \sqrt{16} \times\sqrt{4} \) 也等于 \( 4 \times 2 = 8 \),所以判断正确。

8. \( \sqrt[3]{8} \) 等于 \( 2 \)(因为 \( 2^3 = 8 \)),而\( \sqrt[3]{2} \) 约等于 \( 1.26 \),所以 \( \sqrt[3]{8} \) 大于 \( \sqrt[3]{2} \)。

这些练习题和答案可以帮助学生更好地理解和掌握平方根和立方根的概念。

通过这些练习,学生可以提高他们的计算能力和对数学概念的理解。

完整版)平方根与立方根典型题大全

完整版)平方根与立方根典型题大全

完整版)平方根与立方根典型题大全平方根与立方根典型题大全一、填空题1.如果$x=9$,那么$x=$ 3;如果$x^2=9$,那么$x=$ 3 或$-3$。

2.若一个实数的算术平方根等于它的立方根,则这个数是1.3.算术平方根等于它本身的数有 1,立方根等于本身的数有 1.4.若$x=3\sqrt{x}$,则$x=0$ 或 $x=9$;若$x^2=-x$,则$x=0$ 或 $x=-1$。

5.当$m3$时,$3m-3$有意义。

6.若一个正数的平方根是$2a-1$和$-a+2$,则$a=2$,这个正数是 3.7.$a+1+2$的最小值是 2,此时$a$的取值是 $-1$。

二、选择题8.若$x^2=a$,则 $|x|\geq 0$,即$x$可以是正数或零,选项B。

8.$(-3)^2=9$,选项D。

9.$y=4+5-x+x-5=-1$,$x-y=x+1$,选项A。

10.当$3x-5>0$时,$x>\frac{5}{3}$,最小整数为2,选项C。

11.一个等腰三角形的周长是 $2\times 5+3\sqrt{2}$,选项D。

12.若$x-5$能开偶次方,则$x\geq 5$,选项C。

13.$2n+1-1=2n$,选项D。

14.正数$a$的算术平方根比它本身大,即$\sqrt{a}>a$,移项得$\sqrt{a}-a>0$,两边平方得$a>1$,选项D。

三、解方程12.$(2x-1)=-8$,解得$x=-\frac{7}{2}$。

13.$4(x+1)^2=8$,解得$x=\pm\sqrt{2}-1$。

14.$(2x-3)^2=25$,解得$x=2$ 或 $x=-\frac{1}{2}$。

四、解答题15.已知:实数$a$、$b$满足条件$a-1+(ab-2)^2=$试求$$\frac{1}{ab(a+1)(b+1)}+\frac{1}{ab(a+2)(b+2)}+\cdots+\frac{ 1}{ab(a+2004)(b+2004)}$$解:将$a-1$移到等式右边,得$$(ab-2)^2=-a+1+(ab-2)^2$$两边同时除以$(ab-2)^2$,得$$1=\frac{-a+1}{(ab-2)^2}+1$$移项得$$\frac{1}{ab-2}=\frac{-a+1}{(ab-2)^2}$$两边同时乘以$\frac{1}{ab}$,得$$\frac{1}{ab(ab-2)}=\frac{-1}{ab-2}+\frac{1}{ab}$$移项得$$\frac{1}{ab}=\frac{1}{ab-2}+\frac{1}{ab(ab-2)}$$将右边的式子通分,得$$\frac{1}{ab}=\frac{ab-2+1}{ab(ab-2)}+\frac{1}{ab(ab-2)}$$化简得$$\frac{1}{ab}=\frac{ab-1}{ab(ab-2)}$$两边同时乘以$\frac{1}{a+1}$,得$$\frac{1}{ab(a+1)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(ab-2)}$$将右边的式子通分,得$$\frac{1}{ab(a+1)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(a+2)(ab-2)}$$化简得$$\frac{1}{ab(a+1)(a+2)}=\frac{b(ab-1)}{ab(a+2)(ab-2)(a+1)}$$同理,将左边的式子乘以$\frac{1}{a+2}$,得$$\frac{1}{ab(a+1)(a+2)}=\frac{b}{a+2}\cdot\frac{ab-1}{ab(a+1)(ab-2)}$$将两个式子相加,得$$\frac{2}{ab(a+1)(a+2)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(ab-2)(a+2)}+\frac{b}{a+2}\cdot\frac{ab-1}{ab(a+1)(ab-2)}$$通分并化简得$$\frac{2}{ab(a+1)(a+2)}=\frac{(ab-1)(a+b+3)}{ab(a+1)(a+2)(ab-2)}$$移项得$$\frac{1}{ab(a+1)(a+2)}=\frac{(ab-1)(a+b+3)}{2ab(a+1)(a+2)(ab-2)}$$所以$$\frac{1}{ab(a+1)(b+1)}+\frac{1}{ab(a+2)(b+2)}+\cdots+\frac{ 1}{ab(a+2004)(b+2004)}=\frac{1}{ab}\left(\frac{1}{a+1}+\frac{ 1}{a+2}+\cdots+\frac{1}{a+2004}\right)\left(\frac{1}{b+1}+\frac {1}{b+2}+\cdots+\frac{1}{b+2004}\right)$$$$=\frac{1}{ab(a+1) (a+2)}\left(\frac{1}{b+1}+\frac{1}{b+2}+\cdots+\frac{1}{b+200 4}\right)$$$$=\frac{(ab-1)(a+b+3)}{2ab(a+1)(a+2)(ab-2)}\left(\frac{1}{b+1}+\frac{1}{b+2}+\cdots+\frac{1}{b+2004}\r ight)$$。

平方根立方根练习题及答案

平方根立方根练习题及答案

平方根立方根练习题及答案平方根立方根练习题及答案【篇一:平方根立方根练习题】一、填空题1.如果x?9,那么x=________;如果x?9,那么x?________2.如果x的一个平方根是7.12,那么另一个平方根是________. 3.?的相反数是, 3?1的相反数是;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7的平方根是_______的算术平方根是_________,10?2的算术平方根是;8.若一个数的平方根是?8,则这个数的立方根是;9.当m______时,?m有意义;当m______时,m?3有意义;10.若一个正数的平方根是2a?1和?a?2,则a?____,这个正数是;11.已知2a?1?(b?3)2?0,则2ab? ; 312.a?1?2的最小值是________,此时a的取值是________.13.2x?1的算术平方根是2,则x=________.二、选择题14.下列说法错误的是()a(?1)2?1b3?13??1 c、2的平方根是?2d、?81的平方根是?9215.(?3)的值是(). 2a.?3 b.3 c.?9 d.916.设x、y为实数,且y?4??x?x?5,则x?y的值是()a、1b、9c、4d、517.下列各数没有平方根的是().a.-﹙-2﹚ b.(?3)3 c.(?1)2 d.11.118.计算25?8的结果是().a.3b.7c.-3d.-719.若a=?32,b=-∣-2∣,c=?(?2)3,则a、b、c的大小关系是().a.a>b>cb.c>a>bc.b>a>cd.c>b>a20.如果3x?5有意义,则x可以取的最小整数为().a.0b.1 c.2 d.321.一个等腰三角形的两边长分别为52和2,则这个三角形的周长是()a、2?2b、52?4c、2?2或52?43d、无法确定三、解方程22.x?25?023. (2x?1)3??8 24.4(x+1)=8 22四、计算25.1.25的算术平方根是;平方根是 .2.3的平方根是,它的平方根的和是 .3.49?14426.4144949 27.?31 ?1625的平方根是;的算术平方根是 . 644. -27的立方根是,的立方根是-4.5.21?, ??,4?62?6.318? , ?3? ,?3?0.008?827;绝对值是 .8.若x2?64,则x=.9.若无理数a满足:1a4,请写出两个你熟悉的无理数:,? .10.一个数的算术平方根是8,则这个数的立方根是 .11.一个正数的平方根是3a+1和7+a,则a =.12.化简(1)2?5 =; (2)3??=.13.满足?3?x?6的所有整数的和.14..15.比较大小:(2)-6; (3)? ?3(4)1?.16a和b之间,a?b,那么a=___ ,b= .17.已知坐标平面内一点a(-2,3),将点a,,得到a′,则a′的坐标为.二、选择题20.下列各式中,无意义的是( )a.21.下列说法错误的是( ) ..a.无理数没有平方根; b.一个正数有两个平方根;c.0的平方根是0;d.互为相反数的两个数的立方根也互为相反数.22.下列命题中,正确的个数有( )①1的算术平方根是1;②(-1)2的算术平方根是-1;③一个数的算术平方根等于它本身,这个数只能是零;④-4没有算术平方根.a.1个b.2个c.3个d.4个23. 若a为实数,下列式子中一定是负数的是( )a.?ab.??a?1?c. ?ad.??a?1 21; 6112b.(?2) c.?44 d.?2 22?24.a,则下列结论正确的是()a. 4.5?a?5.0b. 5.0?a?5.5c. 5.5?a?6.0d. 6.0?a?6.525. 下列各式估算正确的是( )a30 b250 c5.2d4.126. 面积为10的正方形的边长为x,那么x的范围是( )a.1?x?3 b.3?x?4 c.5?x?10d.10?x?10027.下列等式不一定成立的是( )a?a c.a?a d.(a)3?a28. 实数a,b在数轴上对应点的位置如图所示,则必有()a.a?b?0 b.a?b?0 c.ab?00 d.23a?0 b29. 如图所示,以数轴的单位长线段为边作一个正方形,以数轴的原点为圆心、正方形对角线长为半径画弧,交数轴正半轴于点a,则点a表示的数是() a. 11 2 b. 1.4 c. 3 d. 230. 在?,2,732.121121112中,无理数的个数是()a.1b.2c.3d.431. 如图,数轴上表示1a、点b.若点b关于点a的对称点为点c,则点c所表示的数为()a1 b.1.2 d.2三、解答题32. 求的算术平方根、平方根、立方根.33. 求下列各式的值(?3)235. 将下列各数按从小到大的顺序重新排成一列,并用“”连接:22,,?2,0,36. 已知m,n为实数,且m?0,求m?n的值.37. 已知2?x??y?0,且x?y?y?x,求x?y的值.38. 求下列各式中的x.(1)x2?25(2)(x?1)2?9(3)x3??64(4)(2x?1)2?216?0.1.6【篇二:平方根立方根练习题】一、填空题1、 121的平方根是____,算术平方根_____.3、(-2)的平方根是_____,算术平方根是____.4、 0的算术平方根是___,立方根是____.5、-是____的平方根. 26、64的平方根的立方根是_____.2x?9x?9,那么7、如果,那么x=________;如果x?________9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.10、若一个实数的算术平方根等于它的立方根,则这个数是________;11、的平方根是_______,4的算术平方根是_________,10?2的算术平方根是;12、若一个数的平方根是?8,则这个数的立方根是;13、当m______时,3?m有意义;当m______时,m?3有意义;14、若一个正数的平方根是2a这个正数是; ?1和?a?2,则a?____,2ab?2a?1?(b?3)?015、已知,则;3216、a?1?2的最小值是________,此时a的取值是________.17、2x?1的算术平方根是2,则x=________.二、选择题1、 169的平方根是()2、0.49的算术平方根是()a,0.49 b,-0.7 c,0.7 d,0.73、81的平方根是()4、下列等式正确的是()15、-8的立方根是()111a,-16、当x=-8时,则x2的值是()7、下列语句,写成式子正确的是()a,3是9的算术平方根,即9??3c,2是2的算术平方根,即2=2d,-8的立方根是-2,即?8=-28、下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()a, 0个b,1个c,2个 d,3个10、下列说法错误的是()a、(?1)2?1b、?13??1c、2的平方根是?2d、?81的平方根是?901、2(?3)11、的值是().a.?3 b.3 c.?9 d.912、如果3x?5有意义,则x可以取的最小整数为().a.0b.1 c.2 d.313、下列各数没有平方根的是().32(?1)(?3)a.-﹙-2﹚ b. c. d.11.125?的结果是(). 14、计算a.3b.7c.-3d.-73?(?2)15、若a=?3,b=-∣-2∣,c=,则a、b、c 2的大小关系是().a.a>b>cb.c>a>bc.b>a>cd.c>b>a16、设x、()a、1b、9c、4d、5三、解方程1、x2y为实数,且y?4??x?x?5,则x?y的值是?25?02、(2x?1)??8233、4(x+1)=8四、计算491441、? 2、4149 3、?316?4 14494、求下列各数的平方根和算术平方根:(1)121;(2)(-3)2;(3)1(4)?36;(5)625.5、求下列各数的立方根:(1)-127;(2)0.064;(3)169(4) 64;(5)512-1.116;-78; 31【篇三:平方根;立方根经典练习题(非常好)】p> 2.已知x?3?3,则7x?73.若|3x-y-1|和2x?y?4互为相反数,求x+4y的算术平方根。

人教版七年级数学下册《平方根和立方根》同步练习含答案

人教版七年级数学下册《平方根和立方根》同步练习含答案

第4讲 算术平方根、平方根、立方根Ⅰ、算术平方根如果一个正数x 的平方等于a ,那个这个正数x 叫做a 的算术平方根,记作_________;0的算术平方根是________Ⅱ、平方根如果一个数的平方等于a ,那个这个数叫做a 的平方根或者二次方根,记作_________;求一个数的________的运算,叫做开平方。

公式补充:①a )a (2= ②|a |a 2=一.练习:(预习自主完成)1. 81的算术平方根是( ) A .9± B .9 C .-9 D .32) A. 49- B. 23 C. 49 D. 23- 3.下列说法不正确的是( )A 、9的算术平方根是3B 、0的算术平方根是0C 、负数没有算术平方根D 、 因为2x a =,所以x 叫做a 的算术平方根4. 如果5.1=y ,那么y 的值是( ) A .2.25 B .22.5 C .2.55 D .25.55. 计算()22-的结果是( ) A .-2 B .2 C .4 D .-46. 下列各式中正确的是( )A .525±=B .()662-=-C .()222-=D .()332=-7. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 的算术平方根是a ;④(π-4)的算术平方根是π-4;⑤算术平方根不可能是负数。

其中,不正确的有( )A. 2个B. 3个C. 4个D. 5个228. 已知5x 2=,则x 为( )A. 5B. -5C. ±5D. 以上都不对9.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .a+1 B .a2+1 C .a +1 D .1a 2+二、填空题:1. 一个数的算术平方根是25,这个数是______; 算术平方根等于它本身的数有______;81的算术平方根是__________。

2. 144=_____4925=________ 0025.0=_______()=2196________()=-28________3. 当______m 时,m -3有意义; 4.已知0)3b (1a 22=+++,则=32ab ________。

(2021年整理)平方根和立方根知识点总结及练习

(2021年整理)平方根和立方根知识点总结及练习

平方根和立方根知识点总结及练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(平方根和立方根知识点总结及练习)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为平方根和立方根知识点总结及练习的全部内容。

【基础知识巩固】一、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3 (4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 〈-> a x ±=a 是x 的平方 x 的平方是a x 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0。

也就是,在等式a x =2 (x≥0)中,规定a x =。

(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数.(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

平方根立方根基础训练及答案.doc

平方根立方根基础训练及答案.doc

(D) ±Va2 + l(D) 0. 00172(D) ±2D.以上都不对1个 B ・2个 10. 8的立方根是( A. 2B. -2下列运算正确的是(A.C. ±2D. 4个心=-『B ,代侦A. C. D.—.判断正误 (I )5是25的算术平方根.()(3)6是J 话的算术平方根.()5 25(5) -三是—的一个平方根.( )636(7) 9的平方根是3 ()(9)-0. 027的立方根是-0.3 ( )(II ) -9的平方根是-3 () 二.选择题1. 后"的值为 ().(A ) -6 (B ) 6 (C ) ±8(2)4是2的算术平方根.()3 f 3 丫(4)-是―己 的算术平方根.(7 I(6)81的平方根是9.( ) (8)8的立方根是2 ()(10)上的立方根是土!()27 3(12)-3是9的平方根()(D ) 362. 一个正数的平方根是a,那么比这个数大1的数的平方根是()・ (A) a 2-l (B) ±Va+T (C) Ja? + 13.如果 VL72 = l.3II ,Vx =0.1311,则 x 等于().(A) 0.0172 (B) 0. 172 (C) 1.72 4. 若Jm + 2 = 2,贝i](m + 2)2的平方•根是( )(A) 16(B) ±16(C) ±45. 立方根等于本身的数是 ( ) A. ±1 B. 1, 0 C. ±1, 06.若一个数的算术平方根等于这个数的立方根,则这个数是( )7. 下列说法正确的是( )A. 1的立方根与平方根都是IB. = 扼的平方根是土扬 D. 3 8 + 1=2 + 1 =-V 82 28. 一个数的算术平方根是Q,则比这个数大2的数是( )A.。

+ 2B. yfd ―2C.4-2D. Q ,+29. 下列运算中,错误的是()— = 1 —,② J(-4)2 = ±4 ,③ J- 2〉= -V?" = -2 , @A | — + — = — + —=— V 144 12 * V16 25 4 5 20平方根立方根基础训练姓名:速度:A. ±1B. ±1, 0C. 0D. 0, 1Ja2—9 ^\l9 — cr15.若。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础练习71平方根与立方根
【知识归纳】
1.平方根:
(1)若x 2
=a (a >0),那么a 叫做x 的 , 我们把 称为算术平方根, 记为 。

规定,0的算术平方根为 。

(2)一个 的平方根有2个,它们互为 ; 只有1个平方根,它是0本身; 没有平方根。

(3)两个公式:(a )2= ( ); =2a 2.立方根:
1)若x 3=a (a >0),那么a 叫做x 的 ,记为 ;
2)一个正数 的立方根有 个,0的个立方根为 ,负数有 个立方根。

3)立方根的性质:(1)
3
= ,(2= . 一、填空题:
1.1的平方根是 , 的平方根是0
2.=36 ;=-2)9( ;=--2)3( 。

3. 当0≥a 时,a ±表示的意义是 ,其中被开方数是 .
225的算术平方根用符号表示为 ,它的结果是 。

4. -7的平方的算术平方根是 ,3的平方的平方根是 。

5.数a 的立方根,记作 ,其中被开方数是 ,根指数是 。

6.. 计算:=38 ,=-38 。

7. 53,81)(33=
-=)( 8、144的算术平方根是 ,16的平方根是 ; 8、327= , 64-的立方根是 ;
10、7的平方根为 ,21.1= ; 11、一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ;
12、平方数是它本身的数是 ;平方数是它的相反数的数是 ;
13、当x= 时,13-x 有意义;当x= 时,325+x 有意义;
14、若164=x ,则x= ;若813=n
,则n= ;
15、若3x x =,则x= ;若x x -=2,则x ;
16、若0|2|1=-++y x ,则x+y= ;
17、计算:381264
273292531+-+= ; 18.如果9=x ,那么x =________;如果92=x ,那么=x ________;
19.若一个实数的算术平方根等于它的立方根,则这个数是_________;
20.算术平方根等于它本身的数有________,立方根等于本身的数有________.
21. x ==则 ,若,x x =-=则 。

22.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;
23.当______m 时,m -3有意义;当______m 时,33-m 有意义;
24.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 25.21++a 的最小值是________,此时a 的取值是________.
二、选择题
1.下列语句写成数学式子正确的是( )
A. 9是81的算术平方根:981=± B .5是()25-的算术平方根:()552=-
C .6±是36的平方根:636±=
D .-2是4的负的平方根:24-=-
2.下列说法正确的是 ( )
A. 只有正数才有平方根
B. 一个数的算术平方根一定是正数
C. 一个非负数的算术平方根一定是非负数
D. 81的平方根是9±
3.下列说法正确的是 ( )
A. 如果一个数的立方根等于这个数本身,那么这个数一定是零。

B. 一个数的立方根和这个数同号,零的立方根是零。

C. 一个数的立方根不是正数就是负数。

D. 负数没有立方根。

4.2)3(-的值是( ).
A .3-
B .3
C .9-
D .9
5.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )
A 、1
B 、9
C 、4
D 、5
6.如果53-x 有意义,则x 可以取的最小整数为( ).
A .0
B .1
C .2
D .3
7.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( )
A 、32210+
B 、3425+
C 、32210+或3425+
D 、无法确定
8. 若5x -能开偶次方,则x 的取值范围是( )
B.5x >
C. 5x ≥
D. 5x ≤
9. 若n 为正整数,则2 )
A .-1 B.1 C.±1 D.21n +
10. 若正数a 的算术平方根比它本身大,则( )
A.01a <<
B.0a >
C. 1a <
D. 1a >
11、若a x =2,则( )
A 、x>0
B 、x ≥0
C 、a>0
D 、a ≥0
12、一个数若有两个不同的平方根,则这两个平方根的和为( )
A 、大于0
B 、等于0
C 、小于0
D 、不能确定
13、一个正方形的边长为a ,面积为b ,则( )
A 、a 是b 的平方根
B 、a 是b 的的算术平方根
C 、b a ±=
D 、a b = 14、若a ≥0,则24a 的算术平方根是( )
A 、2a
B 、±2a
C 、a 2
D 、| 2a |
15、若正数a 的算术平方根比它本身大,则( )
A 、0<a<1
B 、a>0
C 、a<1
D 、a>1
16、若a<0,则a a 22
等于( )
A 、21
B 、21
- C 、±21
D 、0
三、计算题
1.求下列各数的平方根 0.64 94
2500 2)3(- 100; 25
121 0.25
2.求下列各数的算术平方根 4
8164 2.56 2)3(-
3、求下列各数的立方根 343 2168-
-0.0064 -729
4.求下列各式的值:
(1(2)2516-
(3(4)()27±
5.、解方程:(1). 4x 2=16 (2). 0324)1(2
=--x
当堂检测
1、16的算术平方根是_______,平方根是_______;
2、若x 2=16,则5-x 的算术平方根是 ;
3、3664-的平方根是 ,算术平方根是 ;
4、若4a +1的平方根是±5,则a 2的算术平方根是 ;
5、0)2(12=-+-b a ,则b a +的平方根为 .
6.下列说法中正确的是( )
A .-4没有立方根
B .1的立方根是±1
C .361的立方根是6
1 D.-5的立方根是35- 7.下列说法中,正确的是( )
A .一个有理数的平方根有两个,它们互为相反数
B .一个有理数的立方根,不是正数就是负数
C .负数没有立方根
D .如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1。

相关文档
最新文档