非负数的性质(含答案)
非负数的性质
非负数的性质(两小时)【知识要点】1.二次根式的基本性质(式子a (a ≥0),叫做二次根式)。
2 对于非负数a ,有(a )2=a (1)对于任意实数,则==a a 22、非负数即正数和0。
如果a 是实数,那么a ,)0(,2≥a a a 都是非负数,非负数主要的性质有: (1)非负数的和或积仍是非负数;(2)如果非负数的和等于0,那么每一个非负数都等于0。
【典型例题】例1、已知:25250x y x y +-+--=,(1)求x 与y 的值; (2)求y x +的平方根。
例2、若()2120a ab -+-=, 求()()()()1111119901990ab a b a b +++++++的值。
例3、若u,v 满足22343432u v v u v u v u v --=++++,求22u uv v -+的值。
a (a ﹥0)0 (a ﹦0)﹣a (a ﹤0)例4、已知a 、b 为实数,且224250a b a b +--+=,求1ab -的值。
例5、若m 适合关系式y x y x m y x m y x --∙+-=-++--+19919932253。
试确定m 的值。
思考题:设a 、b 为实数,求2072416178222+--+-=b a b ab a P 的最小值,并求P 取得最小值时a 、b 的取值。
【练习与拓展】1、m -是有理数时,一定有( )A .m 是完全平方数B .m 是负有理数C .m 是一个完全平方数的相反数D .m 是一个负整数 2、计算2-a +a -2等于( )A .0.B .4-2aC .4D .2a-4 3、若14+a 有意义,则a 能取的最小整数为( ) A.0. B.1. C.-1. D.-4.4、a 、b 、c 为三角形的三边长,化简a b c a b c a b c a b c ++-----+-+-的结果是( )A 、0B 、222a b c ++C 、4aD 、22b c -5、设等式()()a x a a y a x a a y -+-=---在实数范围内成立,其中a 、x 、y 是两两不同的实数,则22223x xy y x xy y+--+的值是( )A 、3B 、13 C 、2 D 、536、若式子2)4(a --有意义,则满足条件的a 有( )A 、0个B 、1个C 、4个D 、无数个7、若014)2003(2=++-y x ,则=+--y y x 3)2(102 。
非负数的性质及应用--华师大版
若a、b满足3 a 5 b 7,则S 2 a 3 b 的取值范围是_____
[一点就通]将条件和结论的两个等式看作关于 a, b 的方程组, 利用其有界性求出S的范围.
若a、b满足3 a 5 b 7,则S 2 a 3 b 的取值范围是_____
解:3 a 5 b 7
abx
c
ABX
C
已知a b c,求y x a x b x c 的最小值.
x
abx
c
ABX
C
显然,当X 点与B点重合时,
( B点在A、C之间), 该距离和y是最小.
这时,y= x-a x b x c
xa xc
xacx a c 所以, y的最小值等于c a.
原式 a (a b) c (b c)
aabcbc
2c
设实数x、y、z满足x y z 4( x 5 y 4 z 3), 则x _______, y ______, z _______
[一点就通]利用拆项或添项配方的办法将条件转化为几个非负数 之和为零的形式,即a2 b c 0,再由几个非负数之和为零则每 个非负数必须为零来解决.
设实数x、y、z满足x y z 4( x 5 y 4 z 3), 则x _______, y ______, z _______
解 :由原方程, 得 x yz4 x54 y44 z3 x4 x5 y4 y4z4 z30 [( x 5)2 4 x 5 4][( y 4)2 4 y 4 4][( z 3)2 4 z 3 4] 0 ( x 5 2)2 ( y 4 2)2 ( z 3 2)2 0 即 x 5 2 0, y 4 2 0, z 3 2 0, 解得 : x 9, y 8, z 7
2022-2023学年度第一学期七年级期中考试 (数学)(含答案)073522
2022-2023学年度第一学期七年级期中考试 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 的相反数是( )A.B.C.D.2. 下列各组代数式中,不是同类项的是( )A.与B.与C.与D.与3. 第六次全国人口普查公布的我国总人口数约为人,用科学记数法表示正确的是( )A.B.C.D.4. 下列各数: ,,,,,其中一定是负数的个数为( )A.B.C.D.5. 数轴上,到的距离等于个单位长度的点所表示的数是( )A.B.C.或D.或6. 两千多年前,中国就开始使用负数,若收入元记作,则支出元记作( )A.−2−2−122122−372y x 23yx 22abc 6ab−a a137********.37×1071.37×1081.37×1091.37×1010−a 2−|a|2–√−π0(−)3–√2432124−26−66−26100+10060−60B.C.D.7. 如果,,则( )A.B.C.D.8. 在如图所示的数轴上,点是线段的中点,,两点对应的实数分别为和,则点所对应的实数是( )A.B.C.D.9. 下列计算正确的是( )A.=B.=C.=D.=10. 观察一列单项式:, ,,,,,…,则第个单项式是( )A.B.C.D.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 的倒数是________.12. 多项式的次数是________.13. 若与是同类项,则________.14. 若,为实数,且,则的值是________. −40+40+60a −b =3c +d =4(a +c)+(d −b)=71−112B AC A B −13–√C 1+3–√2+3–√2−13–√2+13–√4a −9a 5aa −b 13130−+a 2a 20−a 3a 2ax 3x 25x 27x 9x 211x 220204040x4040x 24039x4039x 2−35−3+2y+1x 4x 3y 2x 25ab 2n+1a m b 5m+n =x y |x−2|+(y+1=0)2x−y−−−−−√15. 用火柴棍按如图所示的方式摆大小不同的“”,依此规律,摆出第个“”需要火柴棍的根数是________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16. 计算:17. 合并同类项:.18. 先化简,再求值:已知,满足,求代数式的值.19. 快递员开摩托车从总部点出发,在一条南北走向的公路上来回收取包裹.现在记录下他连续行驶的情况如下(以向南为正方向,单位:千米):,,,,,,.请问:他最后一次收取包裹后在出发点的什么位置?如果摩托车每千米耗油毫升,出发前摩托车有油毫升,快递员在收完包裹后能回到出发点吗? 20. 某市出租车收费标准是:起步价元,可乘千米,千米到千米,每千米元,超过千米,每千米元.若小李乘坐了千米的路程,则小李所支付的费用是多少(用代数式表示)?若小马乘坐的路程为千米,则小马应付的费用是多少?21. 已知:关于的多项式的值与无关.求,;化简求值:.22. 计算:) 23. 如图,一只蚂蚁从点沿数轴向右直爬个单位到达点,再从点沿数轴向左直爬个单位到达点,点表示,设点所表示的数为,点所表示的数为.求和的值;这只蚂蚁所走的路程一共是多少;点,,开始在数轴上运动,若点以每秒个单位长度的速度向左运动,同时,点和点分别以每秒个单位长度和个单位长度的速度向右运动.假设秒钟过后,点与点之间的距离表示为,点与点之间的距离表示为.①当时,________,________,________;②用含的代数式表示:________,________,请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.E n E (1)|−7|−4+(−2)−|+4|+(−9)(2)9.25−(+)+2−(−4)1418384−2x+3+4x−2−1x 2x 2a b b −a =−2015[(a +b)(a −b)−−2b(b −a)]÷4b (a −b)2A 52−4−3.53−2.56(1)A (2)30100010335 1.352.4(1)x(x >5)(2)15x +mx+n −3x+1x 2x 2x (1)m n (2)−2(mn−)−[2−(4m+)+2mn]m 2n 2n 2−−[(−3−×23)222−8.5]÷(−2A 3B B 4C A −1B m C n (1)m n (2)(3)A B C C 1A B 25t A C AC A B AB t =4AC =AB =AB−AC =t AC =AB =AB−AC t参考答案与试题解析2022-2023学年度第一学期七年级期中考试 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】C【考点】相反数【解析】本题考查相反数的定义.【解答】解:∵,∴的相反数是.故选.2.【答案】C【考点】同类项的概念【解析】根据同类项是字母相同且相同字母的指数也相同,常数项也是同类项,可得答案.【解答】、与,常数也是同类项,故不合合题意;、与是同类项,因为字母相同且相同字母的指数也相同,故不合题意;、与不是同类项,因为所含字母不尽相同,故符合题意;、与,是同类项,因为字母相同且相同字母的指数也相同,故不合题意;3.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】−2+2=0−22C A 2−37A B 2y x 23yx 2B C 2abc 6ab C D a a DB a ×10n 1≤|a |<10n n a n >1n <1n 1.37×9将用科学记数法表示为:.4.【答案】D【考点】正数和负数的识别【解析】此题考查了正数与负数,判断一个数是正数还是负数,要把它化简成最后形式再判断.先将这些数化简,然后根据负数就是小于0的数,依据定义即可求解.【解答】解:,,当时,,不是负数,所以一定是负数的有:.故选.5.【答案】D【考点】数轴【解析】设该点表示的数是,再根据数轴上两点间的距离公式求出的值即可.【解答】解:设该点表示的数是,则,解得或.故选.6.【答案】A【考点】正数和负数的识别【解析】因为收入与支出相反,所以由收入元记作元,可得到支出元记作元.【解答】解:如果收入元记作元,那么支出元应记作元.故选.7.【答案】1370000000 1.37×109−=−1π0=3(−)3–√2a =0−|a|−a 2−π0D x x x |x−2|=4x =6x =−2D 100+10060−60100+10060−60AA【考点】列代数式求值【解析】此题暂无解析【解答】解:∵,,∴.故选.8.【答案】D【考点】在数轴上表示实数数轴【解析】根据线段中点的性质,可得答案.【解答】解:,设点对应的实数为,则,所以.即点对应的实数是.故选.9.【答案】C【考点】整式的加减【解析】直接利用合并同类项法则计算得出答案.【解答】、与不是同类项,不能合并,故选项错误(1)、=,故选项正确(2)、与不是同类项,不能合并,故选项错误.故选:.10.【答案】Ca −b =3c +d =4(a +c)+(d −b)=a +c +d −b =(a −b)+(c +d)=3+4=7A BC =AB =+13–√C x +1=x−3–√3–√x =2+13–√C 2+13–√D B a 13b 13C −+a 2a 20D a 3a 2C【考点】规律型:数字的变化类【解析】根据题意可知,单项式的系数呈奇数排列,字母的次数呈周期排列,进而得出结果.【解答】解:根据题意可知,单项式的系数排列为:,单项式的字母的指数规律为:以一次,二次,二次循环,呈现周期排列,,故第个单项式为.故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】倒数【解析】此题暂无解析【解答】解:根据倒数的定义可知:的倒数为.故答案为:.12.【答案】【考点】多项式【解析】根据多项式的次数进行填空即可.【解答】解:∵多项式的最高此项是,∴多项式的次数是,故答案为.13.【答案】【考点】同类项的概念1,3,5,7,9,11,⋯2020÷3=673⋯⋯12020(2×2020−1)x =4039x C −13−3−13−1355−3+2y+1x 4x 3y 2x 2−3x 3y 25−3+2y+1x 4x 3y 2x 255【解析】此题暂无解析【解答】此题暂无解答14.【答案】【考点】非负数的性质:绝对值非负数的性质:偶次方【解析】本题主要考查非负数的性质.【解答】解:由题意得,解得,,故答案为:.15.【答案】【考点】规律型:图形的变化类【解析】根据已知图形得出数字变化规律,进而求出答案.【解答】解:第个“”需要火柴棍数量,第个“”需要火柴棍数量,第个“”需要火柴棍数量,摆出第个“”需要火柴棍的根数是.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:原式.原式3–√x−2=0,y+1=0x =2,y =−1∴=x−y −−−−−√3–√3–√4n+1∵1E 5=1+42E 9=1+2×43E 13=1+3×4⋯∴n E 4n+14n+1(1)=7−4−2−4−9=−12(2)=9−+2+414141838=9+612151.【考点】有理数的混合运算绝对值【解析】此题暂无解析【解答】解:原式.原式.17.【答案】解:原式.【考点】合并同类项【解析】这个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式.18.【答案】【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】解:化简原式∵,∴.∴原式19.=1512(1)=7−4−2−4−9=−12(2)=9−+2+414141838=9+612=1512=(4−2)+(−2x+4x)+3−1x 2x 2=2+2x+2x 2=(4−2)+(−2x+4x)+3−1x 2x 2=2+2x+2x 22015=(−−+2ab −−2+2ab)÷4ba 2b 2a 2b 2b 2=(−4+4ab)÷4bb 2=−b +ab −a =−2015a −b =2015=2015【答案】解:(千米),故最后一次收取包裹后在出发点的南方千米处.(千米),回到出发点共耗油:(毫升),,所以快递员在收完包裹后能回到出发点.【考点】正数和负数的识别有理数的加减混合运算有理数的混合运算【解析】(1)根据正、负数的定义来确定最后一次收取包裹后的位置;(2)在计算摩托车所走的路程时,要计算正数和负数的绝对值.【解答】解:(千米),故最后一次收取包裹后在出发点的南方千米处.(千米),回到出发点共耗油:(毫升),,所以快递员在收完包裹后能回到出发点.20.【答案】解:根据题意,小李所支付的费用为:(元).(元).答:小马应付的费用是元.【考点】列代数式列代数式求值【解析】(1)根据题意可以知道前千米支付元,千米到千米支付元,超过千米支付的费用为,从而可以求得问题的答案;(2)把小马乘坐的路程数据代入(1)的代数式可求小马应付的费用是多少;【解答】解:根据题意,小李所支付的费用为:(元).(元).答:小马应付的费用是元.21.(1)5+2+(−4)+(−3.5)+3+(−2.5)+6=5+2−4−3.5+3−2.5+6=6A 6(2)|5|+|2|+|−4|+|−3.5|+|3|+|−2.5|+|6|=5+2+4+3.5+3+2.5+6=26(26+6)×30=960960<1000(1)5+2+(−4)+(−3.5)+3+(−2.5)+6=5+2−4−3.5+3−2.5+6=6A 6(2)|5|+|2|+|−4|+|−3.5|+|3|+|−2.5|+|6|=5+2+4+3.5+3+2.5+6=26(26+6)×30=960960<1000(1)10+(5−3)×1.3+2.4(x−5)=0.6+2.4x (2)0.6+2.4×15=36.636.631035 1.3×(5−3)5 2.4(x−5)(1)10+(5−3)×1.3+2.4(x−5)=0.6+2.4x (2)0.6+2.4×15=36.636.6【答案】解:原式,由值与无关,可得,,解得,.原式,由知:,,∴原式.【考点】整式的加减整式的加减——化简求值【解析】根据题意合并同类项,得出同类项,的系数都为,进而求出即可.去括号合并整理,代入,的值计算即可.【解答】解:原式,由值与无关,可得,,解得,.原式,由知:,,∴原式.22.【答案】)=====.【考点】有理数的混合运算【解析】根据有理数的乘除法和加减法可以解答本题.【解答】)=====.23.【答案】(1)=(n+1)+(m−3)x+1x 2x n+1=0m−3=0m=3n =−1(2)=−2mn+2−2+4m+−2mn m 2n 2n 2=2−+4m−4mn m 2n 2(1)m=3n =−1=18−1+12+12=41(1)0(2)m n (1)=(n+1)+(m−3)x+1x 2x n+1=0m−3=0m=3n =−1(2)=−2mn+2−2+4m+−2mn m 2n 2n 2=2−+4m−4mn m 2n 2(1)m=3n =−1=18−1+12+12=41−−[(−3−×23)222−8.5]÷(−2−8−[9−4×−8.5]×4−8−[9−1−8.5]×4−8−(−0.5)×4−8+2−6−−[(−3−×23)222−8.5]÷(−2−8−[9−4×−8.5]×4−8−[9−1−8.5]×4−8−(−0.5)×4−8+2−6解:,.,∴这只蚂蚁所走的路程一共是个单位.①,,,故答案为:;;.②,,.∴的值不会随着时间的变化而改变.【考点】两点间的距离数轴【解析】此题暂无解析【解答】解:,.,∴这只蚂蚁所走的路程一共是个单位.①,,,故答案为:;;.②,,.∴的值不会随着时间的变化而改变.(1)m=−1+3=2n =2−4=−2(2)3+4=77(3)AC =1+1×4+2×4=13AB =5×4+3−2×4=15AB−AC =15−13=213152AC =1+1×t+2×t =1+3t AB =5t+3−2t =3t+3AB−AC =(3t+3)−(1+3t)=2AB−AC t (1)m=−1+3=2n =2−4=−2(2)3+4=77(3)AC =1+1×4+2×4=13AB =5×4+3−2×4=15AB−AC =15−13=213152AC =1+1×t+2×t =1+3t AB =5t+3−2t =3t+3AB−AC =(3t+3)−(1+3t)=2AB−AC t。
部编数学七年级下册专题07算术平方根的非负性(解析版)含答案
专题07 算术平方根的非负性【例题讲解】例1.已知a 、b 、c2+=c a b c ++的平方根为_________.例2.2|1|(1)0b c +++=,求a b c +-的平方根.【综合解答】1.设,A B 均为实数,且A B ==,A B 的大小关系是( )A .A B>B .A B =C .A B <D .A B³【答案】D【解析】【分析】根据算术平方根的定义得出A 是一个非负数,且m-3≥0,推出3-m≤0,得出B≤0,即可得出答案,【详解】解:∵A =∴A 是一个非负数,且m-3≥0,∴m≥3,∵B =,∵3-m≤0,即B≤0,∴A≥B ,故选:D .【点睛】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.2()240y -=,则22x y +的平方根是______.【答案】【解析】【分析】根据算术平方根以及完全平方式的非负性得出,x y 的值,然后求出22xy +的值,最后求出平方根即可.【详解】解:()240y +-=,∴50,40x y +=-=,∴5,4x y =-=,∴2222(5)4251641x y =-=+=++,∴22x y +的平方根是故答案为:【点睛】本题考查了算术平方根以及完全平方式的非负性、平方根,解题的关键是掌握非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.3.若()230x +=,则()2021x y +=______________.【答案】-1【解析】【分析】由平方与算术平方根的非负性解得x =-3,y =2,再代入计算即可.【详解】解:由题意得,3020,x y +=-=3,2x y \=-=()()20212021-32=-1x y \+=+故答案为:-1.【点睛】本题考查平方与算术平方根的非负性、有理数的乘方等知识,是基础考点,掌握相关知识是解题关键.4.若a __.【答案】2【解析】【分析】利用算术平方根的非负性,计算求值即可;【详解】解:,20a -£,∴a =0,∴=0+2,=2,故答案为:2;【点睛】此题主要考查了算术平方根:如果一个非负数b 的平方等于a ,那么b 叫做a 的算术平方根;非负数a a 叫做被开方数.5.若3y =,则xy =_________.【答案】18【解析】【分析】直接利用二次根式有意义的条件得出x ,y 的值进而得出答案.【详解】解:∴2﹣x ≥0,且x ﹣2≥0,解得:x =2,∴y =-3,∴31=2=8y x -.故答案为:18.【点睛】此题主要考查了二次根式有意义的条件和负指数幂法则,正确得出x 的值是解题关键.6.已知实数a 在数轴上的位置如图,则化简|1﹣_____.【答案】1-2a【解析】【详解】由图可知:10a -<<,∴10a ->,∴11()12a a a -=-+-=-.故答案为12a -.7.当x =______时,式子2018【答案】2017【解析】【分析】0³,然后求解即可.【详解】解:∵2018∴的值最小时,式子20180³,∴20170x -³,∴2017x ³,∴当2017x =时式子2018有最大值.故答案为:2017.【点睛】此题考查了算术平方根的非负性,当被减数为固定值时,要使差最大,则需使减数的值最小,解题的关键是熟练掌握算术平方根的非负性.8.已知a ,b ,c 满足2|(0a c +=.求a 、b 、c 的值【答案】a =5b ,c 【解析】【分析】利用绝对值非负性,算术平方根非负性,平方非负性可求得结果.【详解】解:∵|0a ³0³,2(0c ³且2|(0a c =,∴|=0a ,2(=0c ,即:a ,5=0b -,c ,解得:a =5b ,c 【点睛】本题主要考查的是非负性求值的应用,此类型题较为固定,同时也是常考点,掌握其解题步骤是解题关键.9.已知3y =,求(x +y )2022的值【答案】1【解析】【分析】根据二次根式的性质得到2x =,计算出1x y +=-,从而计算出最终的答案.【详解】∵3y +-∴2020x x -³ìí-³î得22x x ³ìí£î∴2x =∴33y +=-∴202220222022()(23)(1)1x y +=-=-=∴2022()1x y +=.【点睛】本题考查二次根式、幂运算的性质,解题的关键是熟练掌握二次根式、幂运算的相关知识.10.已知实数a 、b 、c |1|a +=(1)求证:b c =;(2)求a b c -++的平方根.【答案】(1)见解析(2)3±【解析】【分析】根据算术平方根的非负性,即可得证;(2)根据(1)的结论,以及非负数之和为0,求得,,a b c 的值,进而求得a b c -++的平方根.(1)证明:0³0,0,0b c c b -³-³,b c \=;(2)解:Q |1|a +=b c =,,1,4a b \=-=,4c b \==,1449a b c \-++=++=,9的平方根是3±.【点睛】本题考查了算术平方根的非负性,非负数之和为0,掌握非负数的性质以及算术平方根的非负性是解题的关键.115的最小值,并求出此时a 的值.【答案】3a =【解析】【分析】根据非负数的性质即可得到结论.【详解】解:0³55³5的最小值是5.此时30a -=,即3a =.【点睛】12.若a ,b 为实数,且b =【答案】-3【解析】【分析】根据二次根式的被开方数为非负数,得到相应的关系式求出a 、b 的值,然后代入求解.【详解】因为a ,b 为实数,且a 2-1≥0,1-a 2≥0,所以a 2-1=1-a 2=0.所以a =±1.又因为a +1≠0,所以a =1.代入原式,得b =12.所以3.【点睛】此题主要考查了二次根式的性质和意义,关键是利用被开方数为非负数的性质求出a 、b 的值.13.已知数a 满足2016a =,求22016a -.【答案】2017.【解析】【详解】试题分析:由二次根式的意义可得20170a -³,即2017a ³,由此可得20162016a a -=-,从而原等式化为:2016a a -=,由此可得220172016a -=,即220162017a -=;试题解析:由二次根式的意义可得20170a -³,即2017a ³,∴20162016a a -=-,∴原等式可化为:2016a a -=,2016=,∴220172016a -=,∴220162017a -=.14.已知a,b (0b -=,求a2005-b2006的值.【答案】-2【解析】【详解】试题分析:根据被开方数大于等于0,求出b 的取值范围,再根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.试题解析:解:由题意得:1﹣b ≥0,∴b ≤1,∴(10b +-=,由非负数的性质得:1+a =0,1﹣b =0,解得a =﹣1,b =1,∴a 2005﹣b 2006=(﹣1)2005﹣12006=﹣1﹣1=﹣2.15.已知实数,b ,c 满足a +=(2a b +的值.【答案】4【解析】【分析】根据二次根式的非负性求得b 的值,然后根据非负数的性质求得,a c 的值,最后代入代数式求解即可.【详解】解:∵a +=∴5050b b -³ìí-³î,5b \=,\a +=0,3,2a c \=-=,\(2a b +()23504=-+-=.【点睛】本题考查了二次根式的非负性,非负数的性质,掌握二次根式的非负性是解题的关键.。
培优专题3 非负数的性质及应用(含解答)-
培优专题3 非负数的性质及应用一个实数的绝对值、偶次方,一个非负数的偶次算术根(这里主要指算术平方根)都是非负数.非负数有一个重要性质:若几个非负数的和等于零,则只有在每个非负数均为零时,等式成立,这个性质应用特别广泛,它不但可以启迪我们的思维,还可以让我们感觉到数学变形的美妙.例1实数a 、b 、c 在数轴上对应的点如图3-1所示,化简a+│a+b ││b-c │. 分析 此题化简的关键是我们想办法根据a 、b 、c 在数轴上的位置,确定各自的性质,去掉绝对值符号和根号.解:∵a+b<0,c>0,b-c<0,∴原式=a-(a+b )-│c │+(b-c ).=a-a-b-c+b-c=2c .练习11.若a<0,且x ≤||a a ,那么化简│x+1│-│x-2│=________. A .1 B .-1 C .3 D .-32.已知a<0,ab<0=________. 3.已知abc ≠0,试求||a a +||b b +||c c 的值.例2设实数x、y、z满足x+y+z=4则x=_____,y=_______,z=_______.分析利用折项或添项配方的办法将条件转化为几个非负数之和为零的形式,即a+│b│+=0,再由几个非负数之和为零则每个非负数必须为零来解决.解:由原方程,得.[222,)2+)2+)2=0.解得:x=9,y=9,z=7.练习21.实数x、y、z满足x+y+z=________. A.6 B.12 C.14 D.202,(a≥b,c≥0),那么a+b的值是_________.A.-2 B.0 C.2 D.43.已知a、b、c、x、y、z是非零实数,且a2+b2+c2=x2+y2+z2=ax+by+cz,的值.例3.分析要解决没有明确条件限制的有关字母化简问题,•要充分挖掘题目中的隐含条0,-a3≥0.解:∵-a3≥0,∴a≤0.0,∴a≠0.∴a<0.∴原式.练习31=_________.2.已知1a-│a│=1,那么代数式1a+│a│的值为________.3例4若a、b满足│b│=7,则│b│的取值范围是_____.分析│b│的方程组,利用其有界性求出S的范围.解:,①│b│=S.②①×3+②×5得.①×2-②×3得19│b│=14-3S.由21501430SS+≥⎧⎨-≥⎩得:215143SS⎧≥-⎪⎪⎨⎪≤⎪⎩故-215≤S≤143.练习41.已知a、b、x、y满足y+=1-a2,│x-3│=y-1-b2,则2x+y+3a+b的值为_______.2.如果│x+2│+x-2=0,则x的取值范围是_________.3.求使72为自然数的整数a的值.例5 已知a<b<c,求y=│x-a│+│x-b│+│x-c│的最小值.分析由绝对值的几何意义可知:│x-a│+│x-b│+│x-c│的最小值的几何意义就是在数轴上,求到a、b、c所对应的三点距离之和最小的点所表示的数.解:设a、b、c、x在数轴上对应的点分别是A、B、C、X,则│x-a│、│x-b│、│x-c│分别表示线段AX、BX、CX的长,现在要求│x-a│、│x-b│、│x-c│之和的值最小,就是要在数轴上找一点X,使X到A、B、C三点的距离之和最小,•如图3-2.显然,当X点与B点重合时,(∵B点在A、C点之间),该距离和y最小.这时,y=│x-a│+│x-b│+│x-c│=│x-a│+│x-c│=x-a+c-x=-a+c.所以,y的最小值等于c-a.练习51.若x为有理数,求│x+23│+│x-23│的最小值.2.已知│x-1│+│x-5│=4,求x的取值范围.3.若x为有理数,求│x-1│+│x-2│+…+│x-1999│的最小值.答案:练习11.D23.∵abc≠0,∴a≠0,b≠0,c≠0.(1)若a、b、c都为正数时,原式=3;(2)若a、b、c中有两个正数时,原式=1;(3)若a、b、c都有一个正数时,原式=-1;(4)若a、b、c都为负数时,原式=-3.练习21.D 2.B3.∵a2+b2+c2=x2+y2+z2=ax+by+cz,∴a2+b2+c2+x2+y2+z2=2ax+2by+2cz.∴a2-2ax+x2+b2-2by+y2+c2-2cz+z2=0.∴(a-x)2+(b-y)2+(c-z)2=0.∴a-x=0,b-y=0,c-z=0.∴x=a,y=b,z=c.练习31.1 23.∵-a2≥0,∴a2≤0.∴a=0.∴原式.练习41.17 2.x≤23.设9-4a=m2(m为整数),于是,4a+m2=9.∵4a为偶数,9为奇数,∴m2必为奇数,即m必为奇数.又即7||2m->0.∴│m│<7.∴-7<m<7.∴m=±1,±3,±5.故a=0,2,4.练习51.432.1≤x≤53.设x在数轴上的对应点P0,而1,2,…,1999在数轴上对应点分别为P1,P2,…,P1999,•如图所示:则│x-1│+│x-2│+│x+3│+…+│x-1999│=P0P1+P0P2+P0P3+…+P0P1999.当P0运动到P1000,即P0与P1000重合时,P0P1+P0P2+P0P3+…+P0P1999最短,也就是│x-1│+│x-2│+│x-3│+│x-4│+…+│x-1999│有最小值,设这个最小值为S最小.则S最小=│1000-1│+│1000-2│+│1000-3│+…+│1000-1999│=999+998+997+…+2+1+0+1+2+…+998+999=2+999(9991)2⨯+=999×1000=999000.。
初一数学下册知识点《非负数的性质:算术平方根》150题及解析
初一数学下册知识点《非负数的性质:算术平方根》150题及解析副标题一、选择题(本大题共36小题,共108.0分)1.若与互为相反数,则的值为( )A. 3B. 4C. 6D. 9【答案】A【解析】【分析】本题考查了绝对值的非负性,二次根式的非负性,代数式的值,完全平方公式,相反数.根据相反数的定义得到|x2-4x+4|+=0,再根据非负数的性质得x2-4x+4=0,2x-y-3=0,然后利用完全平方公式变形得到(x-2)2=0,求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2-4x+4|+=0,∴|x2-4x+4|=0,=0,即(x-2)2=0,2x-y-3=0,∴x=2,y=1,∴x+y=3.故选A.2.若|3x-2y-1|+=0,则x,y的值为()A. B. C. D.【答案】D【解析】解:由题意可知:解得:故选:D.根据二元一次方程组的解法以及非负数的性质即可求出答案.本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.3.若|3-a|+=0,则a+b的值是()A. 2B. 1C. 0D. -1【答案】B【解析】解:由题意得,3-a=0,2+b=0,解得,a=3,b=-2,a+b=1,故选:B.根据几个非负数的和为0时,这几个非负数都为0列出算式求出a、b的值,计算即可.本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.4.若+|2a-b+1|=0,则(b-a)2015=( )A. -1B. 1C. 52015D. -52015【答案】A【解析】解:∵+|2a-b+1|=0,∴,解得:,则(b-a)2015=(-3+2)2015=-1.故选:A.利用非负数的性质列出方程组,求出方程组的解得到a与b的值,即可确定出原式的值.此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.5.已知等腰三角形的两边长分別为a、b,且a、b满足,则此等腰三角形的周长为( )A. 7或8B. 6或10C. 6或7D. 7或10【答案】A【解析】【分析】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选A.6.已知+|b+3|=0,则P(—a,—b)的坐标为()A. (2,3)B. (2,—3)C. (—2,3)D. (—2,—3)【答案】C【解析】【分析】本题考查了点的坐标,非负数的性质,正确求出a,b的值是解题的关键.先由+|b+3|=0,根据非负数的性质求出a=2,b=-3,进而求解即可.【解答】解:∵+|b+3|=0,∴a-2=0,b+3=0,∴a=2,b=-3,∴P(-a,-b)的坐标为(-2,3),故C正确.故选C.7.已知实数x,y满足(x-2)2+=0,则点P(x,y)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】本题考查了点的坐标:平面直角坐标系中的点的坐标与实数对一一对应,在第四象限,点的横坐标为正数,纵坐标为负数.也考查了非负数的性质.根据非负数的性质得到x-2=0,y+1=0,则可确定点P(x,y)的坐标为(2,-1),然后根据象限内点的坐标特点即可得到答案.【解答】解:∵(x-2)2+=0,∴x-2=0,y+1=0,∴x=2,y=-1,∴点P(x,y)的坐标为(2,-1),在第四象限.故选D.8.已知x,y为实数,且+(y+2)2=0,则y x的立方根是()A. B. -8 C. -2 D. ±2【答案】C【解析】【分析】此题主要考查了算术平方根的非负性和开立方运算以及偶次方的性质,正确得出x,y 的值是解题关键.直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案.【解答】解:∵+(y+2)2=0,∴x-3=0,y+2=0,解得:x=3,y=-2,则y x=(-2)3=-8,-8的立方根是:-2.故选C.9.若|3-a|+=0,则a+b的值是()A. -9B. -3C. 3D. 9【答案】B【解析】解:∵|3-a|+=0,∴3=a,b=-6,则a+b=-3.故选B.直接利用绝对值的性质以及二次根式的性质得出a,b的值,进而得出答案.此题主要考查了非负数的性质,正确得出a,b的值是解题关键.10.若+(y+2)2=0,则(x+y)2017=()A. -1B. 1C. 32017D. -32017【答案】A【解析】解:根据题意得x-1=0,y+2=0,解得x=1,y=-2,则原式=(-1)2017=-1.故选:A.根据非负数的性质列出算式,求出x、y的值,计算即可.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.11.已知x、y为实数,且+3(y-1)2=0,则x-y的值为()A. 3B. -3C. -1D. 1【答案】D【解析】解:∵且+3(y-1)2=0,∴x=2,y=1.∴x-y=2-1=1.故选:D.先依据非负数的性质求得x、y的值,再代入计算即可.本题主要考查的是非负数的性质、求得x、y的值是解题的关键.12.已知非零实数满足.则等于().A. -1B. 0C. 1D. 2【答案】C【解析】【分析】本题主要考查了算术平方根的性质和根据两个非负数之和等于0,求未知数的值,首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出+=0.这是两项非负数之和等于0.则可分别求出a和b的值.【解答】解:由题设知a≥3,所以,题设的等式为,于是a=3,b=-2,从而a+b=1.故选C.13.如果+(5-b)2=0,那么点A(a,b)关于原点对称的点A′的坐标为()A. (3,5)B. (3,-5)C. (-3,5)D. (5,-3)【答案】B【解析】【分析】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.根据非负数的和等于零,可得a,b的值,根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:由题意,得a+3=0,5-b=0,解得a=-3,b=5,即A(-3,5)关于原点对称的点A′的坐标为(3,-5),故选:B.14.已知a、b满足+|2b+1|=0,则+b的值是()A. B. 1 C. -1 D. 0【答案】D【解析】解:由题意得,a-=0,2b+1=0,解得,a=,b=-,则+b=-=0,故选:D.根据非负数的性质列出算式,求出a、b的值,根据平方根的概念计算即可.本题考查的是非负数的性质,掌握几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.15.已知+(b+)2=0,则a2016b2017的值是()A. 2B. -2C.D. -【答案】D【解析】解:由题意得,a-2=0,b+=0,解得a=2,b=-,所以,a2016b2017=22016(-)2017,=22016(-)2016×(-),=[2×(-)]2016×(-),=-.故选D.根据非负数的性质列方程求出a、b的值,然后代入代数式,再转化为同指数的幂的运算,然后根据积的乘方的性质进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.若+|x-3y-17|=0,则x,y的值分别为()A. x=8,y=-3B. x=7,y=7C. x=-8,y=3D. x=-7,y=-7【答案】A【解析】解:由题意得:,解得:,故选:A.根据已知等式,利用非负数的性质列出方程组,求出方程组的解即可得到x与y的值.此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.17.已知,则(a+b)2019的值为 ( )A. -1B. 1C. 0D. 2019【答案】A【解析】【分析】本题考查的是非负数的性质,熟知几个非负数的和为0时,每一项必为0是解答此题的关键.先根据非负数的性质求出a、b的值,再代入代数式进行计算即可.【解答】解:∵,∴a-2=0,b+3=0,∴a=2,b=-3,∴(a+b)2019= (2-3)2019 = (-1)2019=-1.故选A.18.已知实数a,b满足+|b-2|=0,那么点P(a,b)的坐标为()A. (-3,2)B. (-3,-2)C. (3,2)D. (3,-2)【答案】A【解析】解:∵+|b-2|=0,∴3+a=0,b-2=0,解得:a=-3,b=2,∴点P(a,b)的坐标为(-3,2),故选:A.根据算术平方根和绝对值具有非负性可得3+a=0,b-2=0,解可得a、b的值,进而可得P的坐标.此题主要考查了算术平方根,关键是掌握算术平方根和绝对值具有非负性.19.下列各式中没有意义的是()A. B. C. D.【答案】A【解析】【分析】本题考查了算术平方根的双重非负性和立方根的知识.根据算术平方根的性质和立方根的性质逐项判断即可.【解答】解:A.的被开方数-7<0,没有意义,故本选项正确;B.的被开方数0.01>0,有意义,故本选项错误;C.的被开方数(-3)2>0,有意义,故本选项错误;D.是开3次方,被开方数-8<0,有意义,故本选项错误;故选A.20.若x,y满足(x+2)2+=0,则的平方根是()A. ±4B. ±2C. 4D. 2【答案】B则=4的平方根是:±2.故选:B.直接利用偶次方的性质以及二次根式的性质得出x,y的值,进而利用平方根的定义得出答案.此题主要考查了算术平方根以及偶次方的性质,正确把握相关定义是解题关键.21.已知△ABC的三边为a,b,c,且a,b,c满足(a-6)2+|10-b|+=0,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 以上都有可能【答案】A【解析】解:∵(a-6)2+|10-b|+=0,∴a-6=0,10-b=0,c-8=0,∴a=6,b=10,c=8,∴a2+c2=b2,∴△ABC是直角三角形,故选:A.根据非负数的性质列出算式,求出a、b、c的值,根据勾股定理的逆定理得出直角三角形即可.本题考查了勾股定理的逆定理,绝对值、偶次方的非负性的应用,能灵活运用勾股定理的逆定理进行推理是解此题的关键.22.已知、为实数,且,则的值为()A. -1B. 1C. -3D. 3【答案】A【解析】【分析】本题考查了代数式求值、偶次幂和二次根式的非负性的知识点,准确确定出x、y的对应关系是解题的关键.根据偶次幂和二次根式的非负性求出x、y,然后代入代数式进行计算即可得解.【解答】解:∵,∴x-1=0,y-2=0,解得:x=1,y=2,把x=1,y=2代入x-y,得:1-2=-1,故选A.23.若+(y+2)2=0,则(y+x)2019等于()A. -1B. 1C. 32018D. -32018【答案】A∴x=1,y=-2,∴(y+x)2019=-1.故选:A.直接利用非负数的性质得出x,y的值,再利用有理数的乘方运算法则计算即可.此题主要考查了非负数的性质,正确得出x,y的值是解题关键.24.已知+|b-2|=0,那么(a+b)2009的值为()A. -1B. 1C. 52009D. -52009【答案】A【解析】【解答】解:根据题意得,3+a=0,b-2=0,解得a=-3,b=2,∴(a+b)2009=(-3+2)2009=-1.故选:A.【分析】根据非负数的性质列式求出a、b的值,再代入代数式进行计算即可求解.本题考查了算术平方根,绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是求解的关键.25.已知=0,则x+y的值为()A. 10B. -10C. -6D. 不能确定【答案】C【解析】解:∵=0,∴x-2=0,y+8=0,解得x=2,y=-8,∴x+y=2-8=-6.故选:C.先根据非负数的性质求出x、y的值,再求出x+y的值即可.本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键.26.当的值为最小时,的取值为()A. -1B. 0C.D. 1【答案】C【解析】【分析】本题考查的知识点有:二次根式的非负性,且有最小值,为0;没有最大值.根据二次根式的非负性可知≥0,由此得到4a+1=0为最小值,这样即可得出a的值.【解答】解:取最小值,即4a+1=0.得a=,故选C.27.若,则x,y的值为A. B. C. D.【答案】D【解析】【分析】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.根据二元一次方程组的解法以及非负数的性质即可求出答案.【解答】解:由题意可知:解得:故选D.28.如果,那么(xy)2019等于()A. 2019B. -2019C. 1D. -1【答案】D【解析】【分析】本题主要考查了绝对值和偶次方的非负性的运用和二次根式的运算,解答此题根据数的非负性可得关于x,y的方程,然后解之可得x,y的值,最后将x,y的值代入计算即可. 【解答】解:∵,由数的非负性可得:,解得:x=,y=,∴.故选D.29.若x,y为实数,且满足|x-1|+=0,则的算术平方根为( )A.4 B. 4 C. 2 D. 2【答案】C【解析】【分析】本题考查绝对值的非负性,算术平方根的非负性,算术平方根的定义,求代数式的值,关键是先根据绝对值的非负性,算术平方根的非负性求得x,y的值,再代入计算即可解答.【解答】解:因为|x-1|+=0,且|x-1|0,0,所以|x-1|=0,=0,所以x=1,y=15,==4,=2,所以的算术平方根为2.故选C.30.在平面直角坐标系中,点M(a,b)的坐标满足(a-3)2+=0,则点M在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】解:∵(a-3)2+=0,∴a=3,b=2,∴点M(3,2),故点M在第一象限.故选:A.直接利用偶次方的性质以及二次根式的性质得出a,b的值,进而确定其所在象限.此题主要考查了非负数的性质,正确得出a,b的值是解题关键.31.若满足,则的平方根是:A. B. C.4 D. 2【答案】B【解析】【分析】此题主要考查了算术平方根以及偶次方的性质,正确把握相关定义是解题关键.直接利用偶次方的性质以及二次根式的性质得出x,y的值,进而利用平方根的定义得出答案.【解答】解:∵,∴x=-2,y=18,则=4的平方根是:±2.故选B.32.若|x﹣2|+=0,则-xy的值为()A. ﹣8B. ﹣6C. 5D. 6【答案】D【解析】【分析】本题考查的是非负数的性质,一元一次方程的解法及代数式的求值.题目注重基础,比较简单.已知任何数的绝对值一定是非负数,二次根式的值一定是一个非负数,由于已知的两个非负数的和是0,根据非负数的性质得到这两个非负数一定都是0,从而得到一个关于x、y的方程组,解方程组就可以得到x、y的值,进而求出-xy的值.【解答】解:∵|x-2|≥0,≥0,而,∴x-2=0且y+3=0,∴x=2,y=-3,∴-xy=-2×(-3)=6.故选D.33.若,则点在第象限.A. 四B. 三C. 二D. 一【答案】D【解析】【分析】本题考查了非负数的性质及平面直角坐标系点的坐标特征,①非负数有最小值是零;②有限个非负数之和仍然是非负数;③有限个非负数的和为零,那么每一个加数也必为零.,初中范围内的非负数有:绝对值,算术平方根和偶次方.先根据非负数的性质求出x和y 的值,再根据平面直角坐标系点的坐标特征判断即可.【解答】解:∵,∴,解之得,∴点在第一象限.故选D.34.若x,y满足|x-3|+=0,则的值是()A. 1B.C.D.【答案】A【解析】解:∵|x-3|+=0,∴x-3=0,x+2y+1=0,解得:∴==1故选:A.根据非负数的性质,非负数之和等于0时,各项都等于0利用此性质列方程解决问题.此题考查了非负数的性质,熟练掌握运算法则是解本题的关键.35.已知+|b+3|=0,则P(-a,-b)的坐标为()A. B. C. D.【答案】C【解析】【分析】本题主要考查了算术平方根和绝对值的非负性的运用,坐标的确定,解答此题可先由数的非负性得到关于a,b的方程,然后解之即可求出a,b的值,从而可得点P的坐标. 【解答】解:∵,∴,解得:,∴点P的坐标为(-2,3),故选C.36.已知,则的值为( )A. 1B. -1C. 2017D. -2017【答案】A【解析】【分析】此题考查了解二元一次方程组,绝对值的非负性及算术平方根的非负性,有理数的乘方,熟练掌握运算法则是解本题的关键.根据非负数的性质列出方程组,求出方程组的解得到a与b的值,即可求出原式的值.【解答】解:∵,∴,解得:,则原式=(1-0)2017=1.故选A.二、填空题(本大题共58小题,共174.0分)37.若实数a、b满足|a+2|,则=______.【答案】1【解析】解:根据题意得:,解得:,则原式==1.故答案是:1.根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.38.若a,b,c为三角形的三边,且a,b满足,第三边c为奇数,则c=________.【答案】9【解析】【分析】本题主要考查了三角形三边关系以及非负数的性质,解题的关键是求出a和b的值,此题难度不大.先根据非负数的性质求出a和b的值,再根据三角形三边关系求出c的取值范围,进而求出c的值.【解答】解:∵a、b满足+(b-2)2=0,∴a-9=0,b-2=0,∴a=9,b=2,∵a、b、c为三角形的三边,∴7<c<11,∵第三边c为奇数,∴c=9.故答案为9.39.已知a、b满足(a-1)2+=0,则a+b=______.【答案】-1【解析】解:∵(a-1)2+=0,∴a=1,b=-2,∴a+b=-1.故答案为:-1.直接利用非负数的性质得出a,b的值,进而得出答案.此题主要考查了非负数的性质,正确得出a,b的值是解题关键.40.已知|2a+1|+=0,则ab= ______ .【答案】1【解析】【分析】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,2a+1=0,b+2=0,解得a=-,b=-2,所以,ab=(-)×(-2)=1.故答案为1.41.若|x2-16|+=0,则x+y=______.【答案】7或-1【解析】解:∵|x2-16|+=0,∴x2-16=0,y-3=0,解得x=±4,y=3,∴当x=4,y=3时,x+y=4+3=7;或当x=-4,y=3时,x+y=-4+3=-1.故答案为:7或-1.根据非负数的性质和算术平方根的概念求出x、y的值,代入代数式计算即可.本题考查了非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.42.已知+|3x+2y-15|=0,则的算术平方根为______.【答案】【解析】解:由题意得,x+3=0,3x+2y-15=0,解得x=-3,y=12,所以,==3,所以,的算术平方根为.故答案为:.根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据算术平方根的定义解答.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.43.若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为______ .【答案】(-3,-2)【解析】解:∵+(b+2)2=0,∴a=3,b=-2;∴点M(a,b)关于y轴的对称点的坐标为(-3,-2).先求出a与b的值,再根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出M的对称点的坐标.本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,也考查了非负数的性质.44.如果与(2x﹣4)2互为相反数,那么2x﹣y的平方根是____.【答案】±1【解析】【分析】此题主要考查了平方根以及算术平方根和偶次方的性质,正确得出x,y的值是解题关键.直接利用算术平方根以及偶次方的性质得出2x-y的值,进而得出答案.【解答】解:∵与互为相反数,∴,∴y-3=0,2x-4=0,解得:y=3,x=2,∴2x-y=1,∴2x-y的平方根是:±1.故答案为±1.45.已知,则b a+a c=________.【答案】11【解析】解:根据题意得:a-2=0,b+3=0,c-1=0,解得a=2,b=-3,c=1.则原式=9+2=11.故答案是:11.根据非负数的性质“非负数相加,和为0,这几个非负数的值都为0”求出a、b、c的值,再代入代数式求解.本题主要考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们的和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.46.若+|b+1|=0,则a-b=______.【答案】3【解析】【分析】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0是解题的关键.根据非负数的性质进行计算即可.【解答】解:∵+|b+1|=0,∴a-2=0,b+1=0,∴a=2,b=-1,∴a-b=2+1=3,故答案为3.47.已知(x-y+1)2+=0,则x+y的值为______.【答案】【解析】解:由题意可知:解得:∴x+y=故答案为:根据非负数的性质以及二元一次方程的解法即可求出答案.本题考查学生的计算能力,解题的关键是正确列出方程组,本题属于基础题型.48.若+|2a-b+1|=0,则(b-a)2016=______.【答案】1【解析】解:∵+|2a-b+1|=0,∴,解得:,则原式=1.故答案为:1.根据题意,利用非负数的性质列出方程组,求出方程组的解得到a与n的值,代入原式计算即可得到结果.此题考查了解二元一次方程组,以及非负数的性质,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.49.已知,则x-20172=_____________。
非负数的性质及应用--华师大版
化简 : a3 a a2
[一点就通]要解决没有明确条件限制的有关字母化简问题,要 充分挖掘题目中的隐含条件: a2 0,a3 0
化简 : a3 a a2
解 : a3 0 a 0
a2 0 a 0 a 0
原式 a2
a a a
a2
a a a 1
实数abc在数轴上对应的点如图所示,化简 a+ a+b c2 b c .
a
b
0
c
[一点就通]此题化简的关键是我们想办法根据a、b、c在数轴上 的位置,确定各自的性质,去掉绝对值符号和根号.
实数abc在数轴上对应的点如图所示,化简 a+ a+b c2 b c .
a
b
0
c
解: a+b<0,c>0,b-c<0,
abx
c
ABX
C
已知a b c,求y x a x b x c 的最小值.
x
abx
c
ABX
C
显然,当X 点与B点重合时,
( B点在A、C之间), 该距离和y是最小.
这时,y= x-a x b x c
xa xc
xacx a c 所以, y的最小值等于c a.
[一点就通]由绝对值的几何意义可知: x a x b x c 的 最小值的几何意义就是在数轴上,求到a、b、c所对应的三点 距离之和最小的点所表示的数.
已知a b c,求y x a x b x c 的最小值.
解 : 设a、b、c、x在数轴上对应的点分别是A、B、C、X, 则 x-a 、x b 、x c 分别表示线段AX、BX、CX的长, 现在要求 x-a 、x b 、x c 之和的值最小,就是要在数 轴上找一点X ,使X到A、B、C三点的距离之和最小, 如图:
实数知识点总复习含答案解析
【解析】
【分析】
由于 ,于是 ,10与9的距离小于16与10的距离,可得答案.
【详解】
由于 ,于是 ,10与9的距离小于16与10的距离,可得答案.
解:∵ ,
∴ ,
10与9的距离小于16与10的距离,
∴与 最接近的是3.
故选:A.
【点睛】
本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.
【答案】B
【解析】
分析:直接利用2< <3,进而得出答案.
详解:∵2< <3,
∴3< +1<4,
故选B.
点睛:此题主要考查了估算无理数的大小,正确得出 的取值范围是解题关键.
10.若 则 的值是()
A.2 B、1 C、0 D、
【答案】B
【解析】
试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B.
【详解】
,
∴25的算术平方根是:5.
故答案为:5.
【点睛】
本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.
19.估计 的值是在()
A.5和6之间B.6和7之间C.7和8之间D.8和9之间
【答案】B
【解析】
解:由于16<19<25,所以4< <5,因此6< +2<7.故选B.
点睛:本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.
4.在-3.5, ,0, ,- ,- ,0.161161116…(相邻两个6之间依次多一个1)中,无理数有()
A.1个B.2个C.3个D.4个
【答案】C
非负数的性质:绝对值
⾮负数的性质:绝对值默认标题-2012年2⽉14⽇⼀、选择题(共18⼩题)1、若a,b,c均为整数,且|a﹣b|2001+|c﹣a|2000=1,则|a﹣c|+|c﹣b|+|b﹣a|的值为()A、1B、2C、3D、20012、已知a、b都是有理数,且|a﹣1|+|b+2|=0,则a+b=()A、﹣1B、1C、3D、53、若|x﹣3|+|y+2|=0,则|x|+|y|的值是()A、5B、1C、2D、04、若|a|+|b|=0,则a与b的⼤⼩关系是()A、a=b=0B、a与b互为相反数C、a与b异号D、a与b不相等5、如果|a﹣|+|b﹣1|=0,那么a+b等于()A、﹣B、C、D、16、已知a、b、c都是负数,且|x﹣a|+|y﹣b|+|z﹣c|=0,则xyz是()A、负数B、⾮负数C、正数D、⾮正数7、对任意有理数a,在式⼦1﹣|a|,|a+1|,|﹣1|+a,|a|+1中,取值不为0的是()A、|a|+1B、1﹣|a|8、在式⼦|x+1|+|x+2|+|x+3|+|x+4|中,⽤不同的x值代⼊,得到对应的值,在这些对应值中,最⼩的值是()A、1B、2C、3D、49、任意有理数a,式⼦1﹣|a|,|a+1|,|﹣a|+a,|a|+1中,值不为0的是()A、1﹣|a|B、|a+1|C、|﹣a|+aD、|a|+110、设y=|x﹣1|+|x+1|,则下⾯四个结论中正确的是()A、y没有最⼩值B、只有⼀个x使y取最⼩值C、有限个x(不⽌⼀个)y取最⼩值D、有⽆穷多个x使y取最⼩值11、如果a、b表⽰的是有理数,并且|a|+|b|=0,那么()A、b互为相反数B、a=b=0C、a和b符号相反D、a,b的值不存在12、如果|a3﹣b3|=﹣|a|3+b3,那么下列不等式中成⽴的是()A、a>bB、a<bC、a≥bD、a≤b13、已知x为实数,且|3x﹣1|+|4x﹣1|+|5x﹣1|+…+|17x﹣1|的值是⼀个确定的常数,则这个常数是()A、5B、10C、15D、7514、若x表⽰有理数,则|x|+x的值为()A、正数B、⾮正数15、任何⼀个有理数的绝对值⼀定()C、不⼤于0D、不⼩于016、如果|a|+|b|=0则a与b的⼤⼩关系⼀定是()A、a=b=0B、a与b不相等C、a与b互为相反数D、a与b异号17、⾮负数是()A、正数B、零C、正数和零D、⾃然数18、已知:|2x﹣3|+|y+2|=0,⽐较x,y的⼤⼩关系,正确的⼀组是()A、x<yB、x>yC、x=yD、与x,y的取值有关,⽆法⽐较⼆、填空题(共6⼩题)19、(2011?河北)若|x﹣3|+|y+2|=0,则x+y的值为_________.20、如果|a|+|b﹣1|=0,则a+b=_________.21、若|a﹣4|+|b+5|=0,则a﹣b=_________.22、若|2﹣x|+|y﹣3|=0,则x=_________,y=_________.23、若|a+1|与|b﹣2|互为相反数,则a b=_________.24、若|x+3|+|y﹣2|=0,则x+y=_________.三、解答题(共6⼩题)25、附加题:(1)已知|a﹣2|+|b+6|=0,则a+b=_________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.26、若|x﹣1|+|y+2|=0,求x+y的值.27、已知|2﹣b|与|a﹣b+4|互为相反数,求ab﹣2007的值.28、已知|a﹣2|+|3b﹣1|+|c﹣4|=0,求a+6b+2c的值.29、(1)已知|x﹣5|=3,求x的值;(2)已知n=4,且|x﹣5|+|y﹣2n|=0,求x﹣y+8的值.30、已知,|a+3.5|+|b﹣9|+|c﹣13.5|=0,则ab+c=_________答案与评分标准⼀、选择题(共18⼩题)1、若a,b,c均为整数,且|a﹣b|2001+|c﹣a|2000=1,则|a﹣c|+|c﹣b|+|b﹣a|的值为()A、1B、2C、3D、2001考点:绝对值;⾮负数的性质:绝对值。
第一章 有理数 考点6 非负数的性质:绝对值(解析板)
第一章有理数(解析板)6、非负数的性质:绝对值知识点梳理1.非负数的性质:绝对值在实数范围内,任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.2.非负数的性质:算术平方根(1)非负数的性质:算术平方根具有非负性.(2)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0利用此性质列方程解决求值问题.同步练习一.选择题(共9小题)1.若|a+1|+|b﹣2|+|c+3|=0,则(a﹣1)(b+2)(c﹣3)的值是()A.﹣48B.48C.0D.无法确定【考点】非负数的性质:绝对值.【分析】直接利用绝对值的性质得出a,b,c的值,进而得出答案.【解答】解:∵|a+1|+|b﹣2|+|c+3|=0,∴a=﹣1,b=2,c=﹣3,∴(a﹣1)(b+2)(c﹣3)=﹣2×4×(﹣6)=48.故选:B.【点评】此题主要考查了非负数的性质,正确掌握绝对值的性质是解题关键.2.已知|x﹣2|+|y﹣1|=0,则x﹣y的相反数为()A.﹣1B.1C.3D.﹣3【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:根据题意得:x﹣2=0,y﹣1=0,解得:x=2,y=1,则x﹣y=2﹣1=1,所以x﹣y的相反数为﹣1.故选:A.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.3.已知|a+2|+|b﹣3|=0,则a﹣b的值是()A.﹣1B.1C.﹣5D.5【考点】非负数的性质:绝对值.【分析】首先根据非负数的性质可求出a、b的值,进而可求出a、b的差.【解答】解:∵|a+2|+|b﹣3|=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3;因此a﹣b=﹣2﹣3=﹣5.故选:C.【点评】本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.4.若m是有理数,则|m|﹣m一定是()A.零B.非负数C.正数D.非正数【考点】非负数的性质:绝对值.【分析】根据负数的绝对值是它的相反数,0的绝对值是0,可得答案.【解答】解:m是有理数,则|m|﹣m一定是0或正数,故选:B.【点评】本题考查了绝对值,注意非负数的绝对值是它的相反数.5.若|x+2|+|y﹣3|=0,则x+y的值是()A.1B.﹣1C.5D.﹣5【考点】非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:因为|x+2|+|y﹣3|=0,所以x+2=0,y﹣3=0,解得x=﹣2,y=3,所以,x+y=﹣2+3=1.故选:A.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.|a﹣2|+|b+1|=0,则(a+b)2等于()A.﹣1B.1C.0D.﹣2【考点】非负数的性质:绝对值.【分析】直接利用绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵|a﹣2|+|b+1|=0,∴a﹣2=0,b+1=0,∴a=2,b=﹣1,∴(a+b)2=(2﹣1)2=1.故选:B.【点评】此题主要考查了绝对值,正确得出a,b的值是解题关键.7.已知2020|a+1|与2021|b+3|互为相反数,则a﹣b的值为()A.﹣1B.﹣2C.4D.2【考点】非负数的性质:绝对值.【分析】根据相反数的定义列出算式,根据非负数的性质求出a、b的值,代入计算即可.【解答】解:因为2020|a+1|与2021|b+3|互为相反数,所以2020|a+1|+2021|b+3|=0,所以a+1=0,b+3=0,解得,a=﹣1,b=﹣3,则a﹣b=﹣1﹣(﹣3)=2,故选:D.【点评】本题考查的是非负数的性质,掌握当几个非负数或式的绝对值相加和为0时,则其中的每一项都必须等于0是解题的关键.8.已知|x﹣2|+=0,则点P(x,y)在直角坐标系中()A.第一象限B.第二象限C.第三象限D.第四象限【考点】非负数的性质:绝对值;非负数的性质:算术平方根;坐标确定位置.【分析】根据非负数的性质列式求出x、y的值,从而得到点P的坐标,再根据坐标位置的确定即可解答.【解答】解:根据题意得,x﹣2=0,y+3=0,解得x=2,y=﹣3,∴点P的坐标是(2,﹣3),∴点P位于第四象限.故选:D.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.9.若|a﹣2019|与|b﹣2020|互为相反数,则a﹣b=()A.1B.﹣1C.4029D.﹣4029【考点】非负数的性质:绝对值.【分析】由非负数的性质可知a=2019,b=2020,然后求得a﹣b的值即可.【解答】解:∵|a﹣2019|与|b﹣2020|互为相反数,∴|a﹣2019|+|b﹣2020|=0.∴a﹣2019=0,b﹣2020=0,∴a=2019,b=2020.∴a﹣b=2019﹣2020=﹣1.故选:B.【点评】本题主要考查的是非负数的性质,掌握非负数的性质是解题的关键.二.填空题(共18小题)10.式子|m﹣3|+6的值随着m的变化而变化,当m=3时,|m﹣3|+6有最小值,最小值是6.【考点】非负数的性质:绝对值.【分析】直接利用绝对值的性质分析得出答案.【解答】解:式子|m﹣3|+6的值随着m的变化而变化,当m=3时,|m﹣3|+6有最小值,最小值是:6.故答案为:3,6.【点评】此题主要考查了绝对值,正确把握绝对值的性质是解题关键.11.若|3x﹣2|与|y﹣1|互为相反数,则xy=.【考点】非负数的性质:绝对值.【分析】利用非负数的性质求出x与y的值,代入所求式子计算即可求出值.【解答】解:∵|3x﹣2|+|y﹣1|=0,∴x=,y=1,所以xy=,故答案为:【点评】此题考查非负数的性质,关键是利用非负数的性质求出x与y的值.12.已知|a+2|+|b﹣1|=0,则a+b=﹣1.【考点】非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后相加即可得解.【解答】解:根据题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,所以,a+b=﹣2+1=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.13.若|a﹣4|+|b+5|=0,则a﹣b=9.【考点】非负数的性质:绝对值.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a、b的值,再代入所求代数式即可.【解答】解:依题意得:a﹣4=0,b+5=0,∴a=4,b=﹣5.a﹣b=4+5=9.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.14.若|x﹣6|+|y+5|=0,则x+y=1.【考点】非负数的性质:绝对值.【分析】根据绝对值的非负性分别求出x、y,计算得到答案.【解答】解:∵|x﹣6|+|y+5|=0,∴x﹣6=0,y+5=0,解得,x=6,y=﹣5,则x+y=1,故答案为:1.【点评】本题考查的是非负数的性质,掌握绝对值的非负性是解题的关键.15.若|x+2|+|y﹣5|=0,则x+y=3.【考点】非负数的性质:绝对值.【分析】根据绝对值的非负性可得x+2=0,y﹣5=0,再解方程即可.【解答】解:∵|x+2|+|y﹣5|=0,∴x+2=0,y﹣5=0,解得:x=﹣2,y=5,∴x+y=﹣2+5=3,故答案为:3.【点评】此题主要考查了非负数的性质,关键是掌握绝对值具有非负性.16.若|m+3|与|5﹣n|互为相反数,则mn=﹣15.【考点】非负数的性质:绝对值.【分析】根据互为相反数两数之和为0列出等式,利用非负数的性质列出方程,求出方程的解得到m与n的值,即可求出mn的值.【解答】解:∵|m+3|与|5﹣n|互为相反数,即|m+3|+|5﹣n|=0,∴m+3=0,5﹣n=0,解得:m=﹣3,n=5,则mn=﹣15,故答案为:﹣15.【点评】此题考查了解二元一次方程组,以及非负数的性质:绝对值,熟练掌握运算法则是解本题的关键.17.若|a﹣2|+|b+3|=0,那么a+b=﹣1.【考点】非负数的性质:绝对值.【分析】由非负数的性质可知;a﹣2=0,b+3=0,从而可求得a=2,b=﹣3,然后利用有理数的加法法则计算即可.【解答】解:∵|a﹣2|+|b+3|=0,∴a﹣2=0,b+3=0.∴a=2,b=﹣3.∴a+b=2+(﹣3)=﹣1.故答案为:﹣1.【点评】本题主要考查的是非负数的性质和有理数的加法,掌握非负数的性质是解题的关键.18.若|x+2|+|y﹣3|=0,则2x﹣y=﹣7.【考点】非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣3=0,解得x=﹣2,y=3,所以,2x﹣y=2×(﹣2)﹣3=﹣4﹣3=﹣7.故答案为:﹣7.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.若|m﹣2|+|n+3|=0,则2n﹣3m=﹣12.【考点】非负数的性质:绝对值.【分析】根据非负数的性质得到算式,求出m、n的值,代入代数式计算即可.【解答】解:由题意得,m﹣2=0,n+3=0,解得,m=2,n=﹣3,则2n﹣3m=﹣12,故答案为:﹣12.【点评】本题考查的是非负数的性质,掌握有限个非负数的和为零,那么每一个加数也必为零是解题的关键.20.如果|a﹣1|+|b+2|=0,那么a+b=﹣1.【考点】非负数的性质:绝对值.【分析】先根据绝对值的性质求出a、b的值,进而可得出结论.【解答】解:∵|a﹣1|+|b+2|=0,∴a﹣1=0,b+2=0,解得a=1,b=﹣2,∴a+b=1﹣2=﹣1.故答案为:﹣1.【点评】本题考查的是非负数的性质,熟知任意一个数的绝对值都是非负数是解答此题的关键.21.若|x|=2,则x=±2;已知|a﹣2|与|b﹣3|互为相反数,则3a+2b的值12.【考点】非负数的性质:绝对值.【分析】根据绝对值的意义解答;根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列式求出a、b,然后代入代数式进行计算即可得解.【解答】解:∵|x|=2,∴x=±2;∵|a﹣2|与|b﹣3|互为相反数,∴|a﹣2|+|b﹣3|=0,∴a﹣2=0,b﹣3=0,解得a=2,b=3,所以,3a+2b=3×2+2×3=6+6=12.故答案为:±2,12.【点评】本题考查了绝对值的意义,非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.22.若|x﹣2|+|y+3|=0,则x﹣y=5.【考点】非负数的性质:绝对值.【分析】直接利用绝对值的性质得出x﹣2=0,y+3=0,进而得出x,y的值,即可得出答案.【解答】解:∵|x﹣2|+|y+3|=0,∴x﹣2=0,y+3=0,解得:x=2,y=﹣3,故x﹣y=2﹣(﹣3)=5.故答案为:5.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.23.若|a+1|与|b﹣2|互为相反数,则b﹣2a=4.【考点】非负数的性质:绝对值.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列式求出a、b的值,然后相减即可得解.【解答】解:∵|a+1|与|b﹣2|互为相反数,∴|a+1|+|b﹣2|=0,∴a+1=0,b﹣2=0,解得a=﹣1,b=2,所以b﹣2a=2﹣2×(﹣1)=2+2=4.故答案为:4.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.24.若|x﹣2|与|y+1|互为相反数,则xy=﹣2.【考点】非负数的性质:绝对值.【分析】根据相反数的概念列出等式,根据绝对值的非负性分别求出x、y,计算即可.【解答】解:由题意得,|x﹣2|+|y+1|=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,则xy=﹣2,故答案为:﹣2.【点评】本题考查的是非负数的性质、相反数的概念、有理数的乘法,掌握绝对值的非负性是解题的关键.25.|x﹣3|+|y+2|=0,则x﹣y=5.【考点】非负数的性质:绝对值.【分析】根据非负数的性质可求出x、y的值,再将它们代入代数式中求解即可.【解答】解:根据题意得:,解得:,则x﹣y=3﹣(﹣2)=5.故答案是:5.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.26.若|a+2|+|b﹣3|=0,则a﹣b=﹣5.【考点】非负数的性质:绝对值.【分析】首先根据非负数的性质可求出a、b的值,进而可求出a、b的差.【解答】解:∵|a+2|+|b﹣3|=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3;∴a﹣b=﹣2﹣3=﹣5.故答案为:﹣5.【点评】本题考查了非负数的性质,解答此题的关键是掌握几个非负数的和为0时,这几个非负数都为0.27.已知a,b为有理数,且|a+1|+|2013﹣b|=0,则a b=﹣1.【考点】非负数的性质:绝对值.【分析】根据两个绝对值的和为0,可得每个绝对值为0,再根据绝对值,可得a,b的值,可得答案.【解答】解:|a+1|+|2013﹣b|=0,∴a+1=0,2013﹣b=0,a=﹣1,b=2013,∴a b=(﹣1)2013=﹣1,故答案为:﹣1.【点评】本题考查了非负数的性质:绝对值,两个绝对值的和为0,可得每个绝对值为0是解题关键.三.解答题(共9小题)28.如果|x﹣2|+|y+8|=0,求x﹣y的值.【考点】非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣2=0,y+8=0,解得x=2,y=﹣8,所以,x﹣y=2﹣(﹣8)=2+8=10.即x﹣y的值是10.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.29.若|x﹣2|+2|y+3|+3|z﹣5|=0.计算:(1)x,y,z的值.(2)求|x|+|y|﹣|z|的值.【考点】非负数的性质:绝对值.【分析】(1)根据非负数的性质“三个非负数相加,和为0,这三个非负数的值都为0”列出三元一次方程组,即可解出x、y、z的值;(2)将(1)中求出的x、y、z的值分别代入,先根据绝对值的性质去掉绝对值的符号,再运用有理数加法法则计算即可.【解答】解:(1)由题意,得,解得.即x=2,y=﹣3,z=5;(2)当x=2,y=﹣3,z=5时,|x|+|y|﹣|z|=|2|+|﹣3|﹣|5|=2+3﹣5=0,即|x|+|y|﹣|z|的值是0.【点评】本题主要考查了非负数的性质,解题的关键是掌握非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.30.已知|3x﹣2|+|y﹣4|=0,求|6x﹣y|的值.【考点】非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,3x﹣2=0,y﹣4=0,解得x=,y=4,所以,|6x﹣y|=|6×﹣4|=|4﹣4|=0,即|6x﹣y|的值是0.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.31.红武发现:如果|x|+|y|=0,那么x=y=0.他的理由如下:∵|x|≥0,|y|≥0且|x|+|y|=0,∴|x|=0,|y|=0,∴x=0,y=0.请根据红武的方法解决下面的问题:已知|m﹣4|+|n|=0,求m+n的值并说明理由.【考点】非负数的性质:绝对值.【分析】直接利用非负数的性质得出m,n的值进而得出答案.【解答】解:∵|m﹣4|+|n|=0,∴|m﹣4|=0,|n|=0∴m=4,n=0,故m+n=4.【点评】此题主要考查了非负数的性质,正确得出m,n的值是解题关键.32.已知|a+3|+|b﹣5|=0,x,y互为相反数,求3(x+y)﹣a+2b的值.【考点】非负数的性质:绝对值.【分析】根据非负数的性质得出a,b的值,再代入计算即可.【解答】解:∵|a+3|≥0,|b﹣5|≥0且|a+3|+|b﹣5|=0,∴|a+3|=0,|b﹣5|=0即:a+3=0,b﹣5=0,∴a=﹣3,b=5又∵x、y互为相反数,∴x+y=0,∴原式=3×0﹣(﹣3)+2×5=13.【点评】本题考查了非负数的性质,掌握互为相反数的两数之和为0,是解题的关键.33.若|x﹣1|+|y+2|=0,求x﹣y的相反数.【考点】非负数的性质:绝对值.【分析】先根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值,再代入x﹣y中求值,最后根据相反数的定义求出x﹣y的相反数.【解答】解:∵|x﹣1|+|y+2|=0,∴x﹣1=0,y+2=0,解得x=1,y=﹣2,∴x﹣y=1﹣(﹣2)=3,∴x﹣y的相反数是﹣3.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.34.若a、b、c为有理数,且|a+1|+|b+2|+|c+3|=0,求(a﹣1)×(b+2)×(c﹣3)的值.【考点】非负数的性质:绝对值.【分析】根据已知等式,利用非负数的性质求出a,b,c的值,即可确定出(a﹣1)×(b+2)×(c﹣3)的值.【解答】解:∵|a+1|+|b+2|+|c+3|=0,∴a+1=0,b+2=0,c+3=0,∴a=﹣1,b=﹣2,c=﹣3,∴(a﹣1)×(b+2)×(c﹣3)=﹣2×0×(﹣6)=0.【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.35.若|x﹣1|+|y+2|=0,求(x﹣1)(y+2)的值.【考点】非负数的性质:绝对值.【分析】根据绝对值得出x﹣1=0,y+2=0,再代入求值即可.【解答】解:∵|x﹣1|+|y+2|=0,∴x﹣1=0,y+2=0,∴(x﹣1)(y+2)=0.【点评】本题考查了绝对值,有理数的乘法,整体思想的应用是本题的关键.36.已知|2a+b|与互为相反数.(1)求2a﹣3b的平方根;(2)比较a+与|b+|大小,并说明理由.【考点】非负数的性质:绝对值;非负数的性质:算术平方根.【分析】(1)先由|2a+b|与互为相反数,列出等式,再根据绝对值和算术平方根的非负性得出a和b的值,然后计算2a﹣3b的平方根即可;(2)将a和b的值分别代入a+与|b+|,然后用“作差法“比较大小即可.【解答】解:(1)∵|2a+b|与互为相反数,∴|2a+b|+=0,∴2a+b=0,3b+12=0,解得:b=﹣4,a=2,∴2a﹣3b=4+12=16,∴2a﹣3b的平方根是±4;(2)∵a=2,b=﹣4,∴a+=2+,|b+|=|﹣4+|=4﹣,∵2+﹣(4﹣)=2+﹣4+=+﹣2>0,∴2+>4﹣,∴a+>|b+|.【点评】本题考查了相反数的意义、绝对值和算术平方根的非负性、求平方根及实数的大小比较等基础知识,熟练掌握相关运算法则是解题的关键。
初中数学重点梳理:非负数
非负数知识定位知道常见的几种非负数,偶次根式,绝对值,二次方程有根的判别系数,常见的题型主要是利用非负数的性质建立方程,不等式,从而求值或证明。
知识梳理非负数:正数和零统称为非负数1、几种常见的非负数(1)实数的绝对值是非负数,即|a|≥0在数轴上,表示实数a的点到原点的距离叫做实数a的绝对值,用|a|来表示设a为实数,则绝对值的性质:①绝对值最小的实数是0②若a与b互为相反数,则|a|=|b|;若|a|=|b|,则a=±b③对任意实数a,则|a|≥a,|a|≥-a④|a·b|=|a|·|b|,(b≠0)⑤||a|-|b||≤|a±b|≤|a|+|b|(2)实数的偶次幂是非负数如果a为任意实数,则≥0(n为自然数),当n=1时,≥0(3)算术平方根是非负数,即≥0,其中a≥0.算术平方根的性质:(a≥0)=2、非负数的性质(1)有限个非负数的和、积、商(除数不为零)是非负数(2)若干个非负数的和等于零,则每个加数都为零(3)若非负数不大于零,则此非负数必为零3、对于形如的式子,被开方数必须为非负数;例题精讲◆专题一:利用非负数的性质解题: 【试题来源】【题目】已知实数x 、y 、z 满足,求x +y +z 的平方根。
【答案】0 【解析】∵,∴.∵|x-y|>=0, , ,∴解得x +y +z =0所以求x +y +z 的平方根为0 【知识点】非负数 【适用场合】当堂例题 【难度系数】2【试题来源】【题目】已知()0446222=+-+++y xy x y x ,则的值为______________;【答案】2【解析】(x+y-6)²≥0, 2244y xy x +- ≥0,(x+y-6)²+ 2244y xy x +- =0,两个非负数的和为0,只能都是0.所以x+y-6 =0,x²-4xy+4y²=(x-2y)²=0, 即x+y-6 =0, x-2y =0, 解得x=4,y=2. ∴x-y=2,【知识点】非负数 【适用场合】当堂练习题 【难度系数】3【试题来源】 【题目】若,的值【答案】【解析】解:因为,所以,从而.所以【知识点】非负数 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】设a 、b 、c 是实数,若,求a 、b 、c 的值【答案】1130===c ,b ,a 【解析】,,,,,【知识点】非负数 【适用场合】当堂练习题 【难度系数】3◆专题二:对于 的应用【试题来源】【题目】已知x 、y 是实数,且 ;【答案】81 【解析】根据题意32112+-+-=x x y ,知012≥-x 且021≥-x ,所以21=x ,y=381=y x【知识点】非负数 【适用场合】当堂例题 【难度系数】3【试题来源】 【题目】已知、、适合关系式:y x y x z y x z y x --+-+=-++--+20152015223 ,求z y x -+3 的平方根。
2022-2023学年北师大版八年级数学上册《第2章实数》章末综合知识点分类练习(附答案)
2022-2023学年北师大版八年级数学上册《第2章实数》章末综合知识点分类练习(附答案) 一.平方根1.已知一个数的平方根是2a +5与﹣3a +25,求这个数.2.(1)若5a +1和a ﹣19是数m 的两个不同的平方根,求m 的值. (2)如果y =+3,试求2x +y 的值.二.算术平方根3.已知实数a ,b ,c 满足:b =+4,c 的平方根等于它本身.求的值.4.若一正数x 的平方根是2a ﹣1和﹣a +2, 是5的算术平方根,求x +5y 的平方根.三.非负数的性质:算术平方根 5.已知:(x +2)2与互为相反数,求(x +y )2018的平方根.6.若+(1﹣y )2=0.(1)求x ,y 的值; (2)求+++…+()()202220221++y x 的值.四.立方根 7.已知M =是m +3的算术平方根,N =是n ﹣2的立方根,求:M ﹣N 的值的平方根. 五.计算器—数的开方8.(1)观察下表,你能得到什么规律?n 0.008 8 8000 80000000.2220200(2)请你用计算器求出精确到0.001的近似值,并利用这个近似值根据上述规律,求出和的近似值.六.无理数9.在实数:3.14159,,1.010010001…,,0,,中,无理数有()A.1个B.2个C.3个D.4个七.实数10.把下列各数填在相应的大括号里:﹣(﹣2)2,,﹣0.101001,﹣|﹣2|,﹣0.,0.202002…,,0,负整数集合:(…);负分数集合:(…);无理数集合:(…).八.实数的性质11.若|a|=,则﹣的相反数是.12.已知|x﹣1|=,求实数x的值.九.实数与数轴13.如图1,已知在数轴上有A、B两点,点A表示的数是﹣6,点B表示的数是9.点P 在数轴上从点A出发,以每秒2个单位的速度沿数轴正方向运动,同时,点Q在数轴上从点B出发,以每秒3个单位的速度在沿数轴负方向运动,当点Q到达点A时,两点同时停止运动.设运动时间为t秒.(1)AB=;t=1时,点Q表示的数是;当t=时,P、Q两点相遇;(2)如图2,若点M为线段AP的中点,点N为线段BP中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长;(3)如图3,若点M为线段AP的中点,点T为线段BQ中点,则点M表示的数为;点T表示的数为;MT=.(用含t的代数式填空)十.实数大小比较14.先填写表,通过观察后再回答问题:a…0.00010.01110010000……0.01x1y100…(1)表格中x=,y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=8.973,若=897.3,用含m的代数式表示b,则b=;(3)试比较与a的大小.十一.估算无理数的大小15.阅读下面文字,然后回答问题.大家知道是无理数,而无理数是无限不循环小数,所以的小数部分我们不可能全部写出来,由于的整数部分是1,将减去它的整数部分,差就是它的小数部分,因此的小数部分可用﹣1表示.由此我们得到一个真命题:如果=x+y,其中x是整数,且0<y<1,那么x=1,y=﹣1.请解答下列问题:(1)如果=a+b,其中a是整数,且0<b<1,那么a=,b=;(2)如果﹣=c+d,其中c是整数,且0<d<1,那么c=,d=;(3)已知2+=m+n,其中m是整数,且0<n<1,求|m﹣n|的值.十二.实数的运算16.(π﹣1)0+(﹣)﹣1+|5﹣|﹣2.17.(1)计算:(2)求x的值:(x﹣5)3=﹣8十三.二次根式的定义18.已知是整数,则满足条件的最小正整数n是.十四.二次根式有意义的条件19.使在实数范围内有意义,则实数x的取值范围是.20.已知:a、b、c是△ABC的三边长,化简.十六.最简二次根式21.在二次根式,,,,,,中,最简二次根式有个.十七.二次根式的乘除法22.化简:(b<0).十八.化简分母中的二次根式23.计算:=.24.阅读下面计算过程:==﹣1;==﹣;==﹣2.求:(1)的值.(2)(n为正整数)的值.(3)+++…+的值.十九.可以合并的二次根式25.若最简二次根式与是可以合并的二次根式,则a的值为.26.若最简二次根式和是可以合并的二次根式.(1)求x,y的值;(2)求的值.二十.二次根式的加减法27.计算:+的结果为.28.化简.29.化简:()2﹣=.二十二.二次根式的化简求值30.若x,y是实数,且y=++,求(x+)﹣(+)的值.参考答案一.平方根1.解:∵一个数的平方根是2a+5与﹣3a+25,∴2a+5+(﹣3a+25)=0,解得a=30,∴2a+5=2×30+5=65,∴这个数是:652=4225.2.解:(1)∵5a+1和a﹣19是数m的两个不同的平方根,∴5a+1+a﹣19=0,解得a=3,所以,5a+1=3×5+1=16,m=162=256;(2)由题意得,x2﹣4≥0且4﹣x2≥0,所以,x2≥4且x2≤4,所以,x2=4,解得x=±2,又∵x+2≠0,∴x≠﹣2,所以,x=2,y=3,所以,2x+y=2×2+3=7.二.算术平方根3.解:∵﹣(a﹣3)2≥0,∴a=3把a代入b=+4得:∴b=4∵c的平方根等于它本身,∴c=0∴=.4.解:∵一正数x 的平方根是2a ﹣1和﹣a +2, ∴2a ﹣1﹣a +2=0,解得:a =﹣1. ∴2a ﹣1=﹣3, ∴x =(﹣3)2=9. ∵是5的算术平方根,∴3×9﹣2y ﹣9=2,解得:y =8. ∴x +5y =49.∴x +5y 的平方根是±7. 三.非负数的性质:算术平方根 5.解:因为:(x +2)2与互为相反数,所以:(x +2)2+=0,又因为:(x +2)2≥0,≥0, 所以 x +2=0,x +2y =0, 所以x =﹣2,y =1, 所以(x +y )2018=1,所以(x +y )2018的平方根是±1. 6.解:(1)根据题意得,解得;(2)原式=+++…+202320241=1﹣+﹣+﹣+…+20231﹣20241=1﹣20241=20242023. 四.立方根 7.解:∵M =是m +3的算术平方根,∴m ﹣4=2,解得m=6,∴M==3;∵N=是n﹣2的立方根,∴2m﹣4n+3=3,即12﹣4n+3=3,解得n=3,∴N==1,∴M﹣N=3﹣1=2,∴M﹣N的值的平方根是±.五.计算器—数的开方8.解:(1)被开方数的小数点每向右(左)移动3位,立方根的小数点向相同的方向移动1位;(2)∵,∴,.六.无理数9.解:3.14159,=4,0,是有理数,1.010010001…,﹣,是无理数,共有3个,故选:C.七.实数10.解:在﹣(﹣2)2,,﹣0.101001,﹣|﹣2|,﹣0.,0.202002…,,0,中,负整数集合是:(﹣(﹣2)2,﹣|﹣2|,…);负分数集合是:(﹣0.101001,﹣0.,…);无理数集合是:(0.202002…,,…).八.实数的性质11.解:∵|a|=,∴a2=6,∴﹣=﹣=﹣2,﹣2的相反数是2.故本题的答案是2.12.解:∵|x﹣1|=,∴x﹣1=±.解得:x=+1或x=﹣+1.∴x的值为1﹣或1+.九.实数与数轴13.解:(1)AB=9﹣(﹣6)=15,t=1时,BQ=3,OQ=6,设t秒后相遇,由题意(2+3)t=15,t=3,故答案为15,6,3(2)答:MN长度不变,理由如下:∵M为AP中点,N为BP中点∴MP=AP,NP=BP,∴MN=MP+NP=(AP+BP)=AB=7.5.(3)则点M表示的数为t﹣6;点T表示的数为9﹣t;MT=15﹣t;故答案为t﹣6,9﹣t,15﹣t;十.实数大小比较14.解:(1)x=0.1,y=10;(2)①根据题意得:≈31.6;②根据题意得:b=10000m;(3)当a=0或1时,=a;当0<a<1时,>a;当a>1时,<a,故答案为:(1)0.1;10;(2)①31.6;②10000m十一.估算无理数的大小15.解:(1)∵=a+b,其中a是整数,且0<b<1,2<<3,∴a=2,b=﹣2;(2)∵﹣=c+d,其中c是整数,且0<d<1,2<<3,﹣3<﹣<﹣2,∴c=﹣3,d=3﹣;(3)∵2+=m+n,其中m是整数,且0<n<1,∴m=4,n=﹣2,则|m﹣n|=|4﹣+2|=6﹣.故答案为:2,﹣2;﹣3,3﹣,6﹣.十二.实数的运算16.解:(π﹣1)0+(﹣)﹣1+|5﹣|﹣2=1﹣2+3﹣5﹣2=﹣6+.17.解:(1)原式=5﹣4+2=3;(2)开立方得:x﹣5=﹣2,解得:x=3.十三.二次根式的定义18.解:∵8=22×2,∴n的最小值是2.故答案为:2.十四.二次根式有意义的条件19.解:由题意,得3﹣x≥0,且x≠0,解得x≤3且x≠0,故答案为:x≤3且x≠0.十五.二次根式的性质与化简20.解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.十六.最简二次根式21.解:,是最简二次根式,故答案为:2.十七.二次根式的乘除法22.解:∵由二次根式的性质可得a<0,b<0,∴原式=•(﹣b)•(a)÷3=﹣3a2b÷3=﹣3a2b×(﹣)=a2b2×=ab.十八.化简分母中二次根式23.解:原式===3.故答案为:3.24.解:(1)==﹣;(2)==﹣;(3)+++…+=(﹣1)+(﹣)+(2﹣)+…+(10﹣)=10﹣1=9.十九.可以合并的二次根式25.解:∵最简二次根式与是可以合并的二次根式,∴2a﹣3=5,解得:a=4.故答案为:4.26.解:(1)根据题意知,解得:;(2)当x=4、y=3时,===5.二十.二次根式的加减法27.解:原式=+=+2=.故答案为:.28.解:=﹣=﹣=﹣=+4﹣﹣1=3.二十一.二次根式的混合运算29.解:根据题意得3﹣x≥0,解得x≤3,所以原式=3﹣x﹣=3﹣x﹣(3﹣x)=0.故答案为0.二十二.二次根式的化简求值30.解:∵x,y是实数,且y=++,∴4x﹣1≥0且1﹣4x≥0,解得:x=,∴y=,∴(x+)﹣(+)的值.=2x+2﹣x﹣5=x﹣3=﹣3=﹣.。
2019中考数学专题练习-绝对值的非负性(含解析)
2019中考数学专题练习-绝对值的非负性(含解析)一、单选题1.如果有理数x、y满足|x﹣1|+|x+y|=0,那么xy的等于()A. -1B.±1C.1D.22.已知a为实数,则下列四个数中一定为非负数的是()A.aB.-aC.D.3.已知a、b都是有理数,且|a﹣1|+|b+2|=0,则a+b=()A. -1B.1C.3D.54.式子|x-1|+2取最小值时,x等于()A.0B.1C.2D.35.在有理数中,绝对值等于它本身的数有()A.一个B.两个C.三个D.无数个6.若|a|+|b|=0,则a与b的大小关系是()A.a=b=0B.a与b互为相反数C.a与b异号D.a与b不相等7.﹣|﹣a|是一个()A.正数B.正数或零C.负数D.负数或零8.若|x+2|+|y-3|=0,则x-y的值为()A.5B. -5C.1或-1D.以上都不对9.若|x﹣1|+|y+2|=0,则(x+1)(y﹣2)的值为()A. -8B. -2C.0D.810.若|x+2|+|y﹣3|=0,则x﹣y的值为()A.5B.﹣5C.1或﹣1D.以上都不对11.若m是有理数,则|m|﹣m一定是()A.零B.非负数C.正数D.非正数12.下列代数式中,值一定是正数的是()A.+mB.﹣mC.|m|D.|m|+113.若,则的值为()A. B. C. D.14.若∣x-1∣+∣y+2∣+∣z-3∣=0.则(x+1)(y-2)(z+3)的值为()A.48B. - 48C.0D.xyz15.若|x+1|+|y+3|=0,那么x﹣y等于()A.4B.0C.﹣4D.216.如果|x﹣1|+|y+2|+|z﹣3|=0,则(x+1)(y﹣2)(z+3)的值是()A.48B.﹣48C.0D.xyz17.﹣7的绝对值是()A.﹣7B.7C.﹣D.二、填空题18.若|x+2|+|y﹣3|=0,则x+y=________,x y=________.19.当b为________时,5﹣|2b﹣4|有最大值.20.若|a﹣6|+|b+5|=0,则a+b的值为________.21.已知|a|+|b|+|c|=0,则a=________,b=________,c=________.22.若|x﹣3|+|y+2|=0,则|x|+|y|=________23.若|2+a|+|3﹣b|=0,则ab=________.24.若|x﹣2y+1|+|x+y﹣5|=0,则x=________,y=________.25.若|x﹣1|+|y+3|=0,则x﹣y=________.若|a|=21,|b|=27,且a>b,则a﹣b=________.三、解答题26.已知|x﹣2|与|y+5|互为相反数,求x﹣y的值.27.若|a+2|+|b﹣1|=0,求2b﹣a的值.28.已知,求x,y的值。
数学2020年春季人教版教案 7年级-4 非负数的性质及应用
又-<,-<-,∴x=,y=或-.
当x=,y=时,x+y=+;当x=,y=-时,x+y=-,
故x+y的值为+或-.
5. 解:由条件,得a-1=0,ab-2=0,∴a=1,b=2,
∴原式==1-=.
练习册答案:
1. B
2. A
3. B
4. 1
5. 1
师:这个式子满足非负数的性质吗?思考一下,然后和同桌讨论一下.
2.教师指定学生汇报讲解,其他学生指正并补充.
生:由算术平方根的被开方数大于等于0可知1-y≥0,所以(1-y)≥0,这样就可以根据非负数的性质求解了……
答案:
解:∵-(y-1)=0,
∴+(1-y)=0.
∵1-y≥0,∴(1-y)≥0.
根据非负数的性质得x+1=0,1-y=0,
播放导入.
师:怎么样?大家来尝试一下?
生:……
师:合理的运用数学知识,可以有效的帮助我们减少损失,今天我们来学习非负数的性质的应用.
回顾
非负数:
定义:正数和零叫做非负数(记为a≥0).
常见非负数:|a|,a²,(a≥0).
性质:若几个非负数的和为0,则这几个数都为0.
二、合作探究
(一)探究类型之一 算术平方根的被开方数的非负性
生2:我们没有求x和y而是用第二个式子乘2减去第一个式子,这样就得到了关于x+y和m的关系,然后把x+y=199整体代入求出m的值.
答案:
解:∵x-199+y≥0,且199-x-y≥0,即x-199+y≤0,
∴x-199+y=0,∴x+y=199,
2023年湖南省湘潭市中考数学试卷(含答案)032049
2023年湖南省湘潭市中考数学试卷试卷考试总分:112 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1. 下列图案是历届冬奥会会徽图案上的一部分图形,其中不是轴对称图形的是 A. B. C. D.2. 若在实数范围内有意义,则的取值范围是( )A.B.C.D.3. 下列计算正确的是( )A.B.C.D.4. 某快递员五月份送餐统计数据如下表:送餐距离小于等于公里大于公里占比送餐费元单元单则该快递员五月份平均每单送餐费是( )A.元()x−2−−−−−√x x ≥2x ≤2x >2x <2⋅=a 2a 3a 6=()a 23a 5=(a )b 32a 2b 6÷a =a 6a 63370%30%4/6/5D.不能确定5. 菱形的两条对角线的长分别为和,那么边长是( )A.B.C.D.6. 在平面直角坐标系中,点,在同一个反比例函数图象上,则的值是( )A.B.C.D.7. 一个圆锥的底面半径为,母线长为,则此圆锥的侧面展开图的圆心角是 A.B.C.D.8. 东胜到呼市相距千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的倍.从东胜到呼市的时间缩短了小时.设列车提速后所需时间为小时,根据题意,可列方程 A.B.C.D.二、 多选题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )9. 如图,在中,弦所对的圆周角=,=,=,则度数为( )A.B.60cm 80cm 60cm50cm40cm80cmA(8,−3)B(4,a)a 3−32−6−3526()180∘150∘120∘90∘234 2.21.2x ()−=1.2234x 2342.2x =×2.2234x+1.2234x −=1.22342.2x 234x ×2.2=234x+1.2234x⊙O AB ∠C 45∘AB BC 1∠A 30∘36∘10. 已知二次函数的图象如图所示,对称轴为直线,且过点,则下列结论正确的是( )A.B.方程的两个根是,C.D.三、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )11. 请写出绝对值小于的所有负整数________.12. 若,为实数,且,则的值为________.13. 如图,在中,以点为圆心,任意长为半径作弧,交射线于点,交射线于点,再分别以、为圆心,的长为半径作弧,两弧在的内部交于点,作射线,若,,则点到的距离为________.14. 七巧板被西方人称为“东方魔板”.下面的两幅图是由同一副七巧板拼成的.已知七巧板拼成的正方形的边长为,则“一帆风顺”图中阴影部分的面积为________.四、 解答题 (本题共计 10 小题 ,每题 7 分 ,共计70分 )15. 解不等式组:并把解集在数轴上表示出来.16. 先化简,再求值:,其中.y =a +bx+c x 2x =1(3,0)abc <0a +bx+c =0x 2=−1x 1=3x 22a +b =04a +2b +c <05–√a b =0(a −2+|−16|)2b 2b +43a −b ∠MON O OM A ON B A B OA ∠MON C OC OA =5AB =6B AC 4 (x+1)≤1,①131−x <2.②(+)÷2x+2−4x+4x 2−4x 2x−2x+2x =417. 如图,已知在直角梯形中,,,,垂足为,联结,作,交边于点.求证:;若,求证:.18. “共和国勋章”是中华人民共和国的最高荣誉勋章,在年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士,如图是四位院士(依次记为,,,)为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上,,,四个标号,然后背面朝上放置,搅匀后每个同学可以从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料制作小报,请用列表法或画树状图的方法,求小明和小华查找同一位院士资料的概率.19. 为了解某校八年级学生运篮球过障碍物的成绩情况,随机抽查了部分同学的成绩(满分为分,成绩取整数),规定:等次(分~分);等次(分~分);等次(分~分);等次(分以下),并根据调查结果制作了如下的频数分布图表(不完整):请根据图表信息解答问题:表中的________,_______,_______;并补全频数分布直方图;这组数据的中位数落在________等次,众数落在________等次;若该校八年级有学生名,请估计运篮球过障碍物成绩在分以上的学生人数.20. “人说山西好风光,地肥水美五谷香”.山西复杂的地形、多样的气候、丰富的杂粮品种资源,使山西成为“小杂粮王国”.某杂粮经销商对本地购买袋以上杂粮的客户有两种销售方案(客户只能选择其中一种方案):方案:每袋元,由经销商免费送货;方案:每袋元,客户需支付运费元.请分别写出按方案,方案购买该杂粮的应付款(元)与购买量(箱)之间的函数表达式;某单位计划购买该经销商的杂粮,选择哪种方案更省钱?21. 如图,在平面直角坐标系中,的三个顶点分别是,,.ABCD AD//BC ∠ABC =90∘AE ⊥BD E CE EF ⊥CE AB F (1)△AEF ∽△BEC (2)AB =BC AF =AD 2019A B C D A B C D 15A 12.515B 10.512.5C 8.510.5D 8.5(1)m=n =p =(2)(3)20008.520A 30B 26200(1)A B y x (2)△ABC A(−3,2)B(0,4)C(0,2)作关于点对称;平移,若点的对应点的坐标为,画出平移后对应的;若将绕某一点旋转可以得到,请直接写出旋转中心的坐标.22. 如图,某小区宿舍楼甲楼坐落在正南正北方向,楼高.现在要在甲楼后面盖一座乙楼,冬天太阳最低时的正午时刻,若两楼相距,则甲楼的影子将落在乙楼上.若使甲楼的影子刚好不影响乙楼的采光,那么两楼的距离应是多少米?23. 如图,是的中线,是线段上一点(不与点重合).交于点,,连接.(1)如图,当点与重合时,求证:四边形是平行四边形;(2)如图,当点不与重合时,(1)中的结论还成立吗?请说明理由.(3)如图,延长交于点,若,且=,求的度数. 24. 如图,在平面直角坐标系中,为坐标原点,直线与轴交于点,于轴交于点,抛物线经过、两点,与轴交于另一点.求抛物线的解析式;点是第二象限抛物线上的一个动点,连接、、和,当时,求点的坐标;在的条件,过点作,交的延长线于点,点是第三象限抛物线上的一个动点,(1)△ABC C △C A 1B 1(2)△ABC A A 2(0,−4)△A 2B 2C 2(3)△C A 1B 1△A 2B 2C 216m 20m 6m AM △ABC D AM A DE//AB AC F CE//AM AE 1D M ABDE 2D M 3BD AC H BH ⊥AC BH AM ∠CAM O y =−x−3x A y C y =+bx+c x 2A C x B (1)(2)D AD BD CD BC =S △ACD 38S 四边形ACBD D (3)(2)D DE ⊥BC CB E P点关于点的对称点为点,连接并延长与抛物线在、之间的部分交于点,当时,求的长.P B Q QE A D F ∠DEF +∠BPC =∠DBE EF参考答案与试题解析2023年湖南省湘潭市中考数学试卷试卷一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1.【答案】D【考点】轴对称图形【解析】结合轴对称图形的概念求解即可.【解答】解:沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,不是轴对称图形.故选.2.【答案】A【考点】二次根式有意义的条件【解析】二次根式有意义,被开方数为非负数,即,解不等式求的取值范围.【解答】解:要使在实数范围内有意义,则,解得.故选.3.【答案】C【考点】同底数幂的乘法同底数幂的除法幂的乘方与积的乘方【解析】此题暂无解析A,B,C D D x−2≥0x x−2−−−−−√x−2≥0x ≥2A【解答】解:,故错误;,故错误;,故正确;,故错误.故选.4.【答案】B【考点】加权平均数【解析】利用所占的百分比乘以送餐的价格之和进行求解即可.【解答】解:该快递员五月份平均每单送餐费是:(元).故选.5.【答案】B【考点】菱形的性质【解析】由菱形的性质以及两条对角线长可求出其边长.【解答】解:∵菱形的两条对角线长分别为和,∴该菱形的边长为.故选.6.【答案】C【考点】反比例函数图象上点的坐标特征【解析】设出反比例函数,再根据已知条件求出函数表达式,即可求解.【解答】解:设反比例函数为,∵过,⋅=≠a 2a 3a 5a 6A =≠()a 23a 6a 5B =(a )b 32a 2b 6C ÷a =a 6a 5D C 4×70%+6×30%=4.6B 60cm 80cm =503+40202−−−−−−−−√(cm)B y =k xy =k x A(8,−3)3=k∴,∴,反比例函数为,∵过,∴.故选.7.【答案】B【考点】几何体的展开图弧长的计算【解析】利用底面周长展开图的弧长可得.【解答】解:,解得.故选.8.【答案】D【考点】由实际问题抽象出分式方程【解析】此题暂无解析【解答】解:根据题意得,提速之前的时间为:,故可列方程组为:.故选.二、 多选题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )9.【答案】∵∠AOB =2∠ACB =90°,OA =OB ,∴△AOB 是等腰直角三角形,∴OB =OA =【考点】圆周角定理【解析】此题暂无解析−3=k 8k =−24y =−24x y =−24x B(4,a)a =−=−6244C =2π×=526nπ180n =150∘B x+1.2×2.2=234x+1.2234xD【解答】此题暂无解答10.【答案】A,B,C【考点】抛物线与x 轴的交点二次函数图象上点的坐标特征二次函数图象与系数的关系【解析】由抛物线对称轴的位置确定的符号,由抛物线与轴的交点在轴上方得,则可对进行判断,根据抛物线的对称性得到抛物线与轴的另一个交点为 ,则可对进行判断,由对称轴可对进行判断,由当时,函数值大于,则有,于是可对进行判断.【解答】解:,抛物线与轴的交点在轴上方,.对称轴为直线,,,故正确;,抛物线过点,二次函数图象的对称轴是直线,抛物线与轴的另一个交点为,方程的两个根是,,故正确;,对称轴为直线,,,故正确;,当时,,,故错误.综上所述,正确结论的序号是.故选.三、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )11.【答案】和【考点】估算无理数的大小【解析】找出绝对值小于的所有负整数得出答案.【解答】绝对值小于的所有负整数是12.【答案】ab y x c >0①x (−1,0)②③x =204a +2b +c <0④A ∵y x ∴c >0∵x =−=1b 2a ∴ab <0∴abc <0A B ∵(3,0)x =1∴x (−1,0)∴a +bx+c =0x 2=−1x 1=3x 2B C ∵x =1∴x =−=1b 2a ∴2a +b =0C D ∵x =2y >0∴4a +2b +c >0D ABC ABC −1−25–√5–√【考点】非负数的性质:绝对值非负数的性质:偶次方【解析】此题暂无解析【解答】解:∵,∴解得∴.故的值是.故答案为:.13.【答案】【考点】作图—基本作图角平分线的性质【解析】根据题意,作出合适的辅助线,然后根据角平分线的性质、等腰三角形的性质和勾股定理可以求得点到的距离,本题得以解决.【解答】解:由题意可得,为的角平分线,∵,平分,∴,设与交于点,作于点,∵,,,,∴,=,,∴,∵.∴,解得,.故答案为:.2=0(a −2+|−16|)2b 2b +4 a −2=0,−16=0,b 2b +4≠0,{a =2,b =4,3a −b =6−4=23a −b 22245B AC OC ∠MON OA =OB OC ∠AOB OC ⊥AB OC ABD BE ⊥AC E AB =6OA =5AC =OA OC ⊥AB AC =5∠ADC 90∘AD =3CD =4=AB ⋅CD 2AC ⋅BE 2=6×425×BE 2BE =24524514.【答案】【考点】正方形的性质七巧板【解析】因为“一帆风顺”图中阴影部分是正方形中“”的部分的三角形,是等腰直角三角形,根据直角边为,即可求出面积为.【解答】解:由图可知“一帆风顺”图中阴影部分是正方形中“”的部分的三角形,是等腰直角三角形,因为直角边为,所以面积为:.故答案为.四、 解答题 (本题共计 10 小题 ,每题 7 分 ,共计70分 )15.【答案】解:解不等式①得:,解不等式②得:,不等式组的解集在数轴上表示如下:∴不等式组的解集是.【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】【解答】解:解不等式①得:,解不等式②得:,不等式组的解集在数轴上表示如下:∴不等式组的解集是.16.【答案】5212212×2×2=2122x ≤2x >−1−1<x ≤2x ≤2x >−1−1<x ≤2[+]⋅(x−2)2解:原式.当,原式.【考点】分式的化简求值【解析】此题暂无解析【解答】解:原式.当,原式.17.【答案】证明:∵,,∴,∴.∵,∴,∴,∴.∵,∴.∵,∴,∴,∴.∵,∴,∵,,∴,∴,∴,∴.∵,∴.【考点】相似三角形的判定与性质【解析】=[+]⋅2x+2(x−2)2(x+2)(x−2)x+2x−2=[+]⋅2x+2x−2x+2x+2x−2=⋅x x+2x+2x−2=x x−2x =4==244−2=[+]⋅2x+2(x−2)2(x+2)(x−2)x+2x−2=[+]⋅2x+2x−2x+2x+2x−2=⋅x x+2x+2x−2=x x−2x =4==244−2(1)AD//BC ∠ABC =90∘∠BAD =90∘∠ABD+∠ADB =90∘AE ⊥BD ∠AEB =90∘∠ABD+∠BAE =90∘∠ADB =∠BAE ∠ADB =∠DBC ∠BAE =∠DBC EF ⊥CE ∠FEC =90∘∠AEF =∠BEC △AEF ∽△BEC (2)△AEF ∽△BEC =AF BC AE BE ∠AEB =∠BAD ∠ABE =∠DBA △ABE ∽△DBA =AE DA BE BA =AE BE AD AB =AF BC AD AB AB =BC AF =AD此题暂无解析【解答】证明:∵,,∴,∴.∵,∴,∴,∴.∵,∴.∵,∴,∴,∴.∵,∴,∵,,∴,∴,∴,∴.∵,∴.18.【答案】解:由题意画树状图如下:共有种等可能的结果,其中小明和小华查找同一位院士资料的有种结果,∴小明和小华查找同一位院士资料的概率为.【考点】列表法与树状图法【解析】此题暂无解析【解答】解:由题意画树状图如下:共有种等可能的结果,其中小明和小华查找同一位院士资料的有种结果,∴小明和小华查找同一位院士资料的概率为.19.(1)AD//BC ∠ABC =90∘∠BAD =90∘∠ABD+∠ADB =90∘AE ⊥BD ∠AEB =90∘∠ABD+∠BAE =90∘∠ADB =∠BAE ∠ADB =∠DBC ∠BAE =∠DBC EF ⊥CE ∠FEC =90∘∠AEF =∠BEC △AEF ∽△BEC (2)△AEF ∽△BEC =AF BC AE BE ∠AEB =∠BAD ∠ABE =∠DBA △ABE ∽△DBA =AE DA BE BA =AE BE AD AB =AF BC AD AB AB =BC AF =AD 164=41614164=41614,,,要求运篮球过障碍物成绩在分以上的学生,即求不是等次的学生,则根据成绩频数分布表可得名学生成绩在分以上的人数有:名.答:若该校八年级有学生名,则运篮球过障碍物成绩在分以上的学生人数为名.【考点】众数中位数频数(率)分布直方图频数(率)分布表用样本估计总体【解析】此题暂无解析【解答】解:,,,补全的频数分布直方图如下:故答案为:;;.由的频数分布直方图可知,本组数据的总数为,则中位数为第个和第个数据的平均数,即中位数为,落在等次;再从频率分布直方图可得,最高的为数据出现次数最多的,则众数为,也落在等次;故答案为:;.要求运篮球过障碍物成绩在分以上的学生,即求不是等次的学生,则根据成绩频数分布表可得名学生成绩在分以上的人数有:名.答:若该校八年级有学生名,则运篮球过障碍物成绩在分以上的学生人数为名.20.【答案】解:..由,得,解得.由,得,解得.由,得,解得.∴两种方案是针对本地购买袋以上的客户,∴,答:当时,选择方案更省钱,当时,选择方案和方案都一样,当时,选择方案更省钱.10150.3B B (3)8.5D 20008.52000×(1−0.1)=180020008.51800(1)m=×20=100.20.4p =1−0.2−0.4−0.1=0.3n =×5=15p 0.110150.3(2)(1)502526=2020+202B 20B B B (3)8.5D 20008.52000×(1−0.1)=180020008.51800(1)=30x y A =26x+200y B (2)=y A y B 30x =26x+200x =50>y A y B 30x >26x+200x >50<y A y B 30x <26x+200x <5020x >20x >50B x =50A B 20<x <50A一次函数的应用【解析】无无【解答】解:..由,得,解得.由,得,解得.由,得,解得.∴两种方案是针对本地购买袋以上的客户,∴,答:当时,选择方案更省钱,当时,选择方案和方案都一样,当时,选择方案更省钱.21.【答案】解:如图所示.如图所示.旋转中心的坐标为.【考点】中心对称作图-平移变换坐标与图形变化-旋转【解析】根据旋转进行求解即可.根据旋转进行求解即可.【解答】解:如图所示.如图所示.(1)=30x y A =26x+200y B (2)=y A y B 30x =26x+200x =50>y A y B 30x >26x+200x >50<y A y B 30x <26x+200x <5020x >20x >50B x =50A B 20<x <50A (1)△C A 1B 1(2)△A 2B 2C 2(3)(,−1)32(−,−1)32(1)△C A 1B 1(2)△A 2B 2C 2旋转中心的坐标为.22.【答案】【考点】解直角三角形的应用【解析】此题暂无解析【解答】此题暂无解答23.【答案】∵,∴=,∵,∴=,∵是的中线,且与重合,∴=,∴,∴=,∵,∴四边形是平行四边形;结论成立,理由如下:如图,过点作交于,∵,∴四边形是平行四边形,∴=,且,由(1)知,=,,∴,=,∴四边形是平行四边形;如图取线段的中点,连接,∵=,∴是的中位线,∴,,∵,且=,∴,,∴=.(3)(,−1)3232mDE//AB ∠EDC ∠ABM CE//AM ∠ECD ∠ADB AM △ABC D M BD DC △ABD ≅△EDC AB ED AB//ED ABDE 2M MG//DECE G CE//AM DMGE ED GM ED//GM AB GM AB//GM AB//DE AB DE ABDE 3CH I MI BM MC MI △BHC MI //BH MI =BH 12BH ⊥AC BH AMMI =AM 12MI ⊥AC ∠CAM 30∘【考点】四边形综合题【解析】(1)先判断出=,进而判断出,即可得出结论;(2)先判断出四边形是平行四边形,借助(1)的结论即可得出结论;(3)先判断出,,进而利用直角三角形的性质即可得出结论.【解答】∵,∴=,∵,∴=,∵是的中线,且与重合,∴=,∴,∴=,∵,∴四边形是平行四边形;结论成立,理由如下:如图,过点作交于,∵,∴四边形是平行四边形,∴=,且,由(1)知,=,,∴,=,∴四边形是平行四边形;如图取线段的中点,连接,∵=,∴是的中位线,∴,,∵,且=,∴,,∴=.∠ECD ∠ADB △ABD ≅△EDC DMGE MI //BHMI =BH 12DE//AB ∠EDC ∠ABM CE//AM ∠ECD ∠ADB AM △ABC D M BD DC △ABD ≅△EDC AB ED AB//ED ABDE 2M MG//DECE G CE//AM DMGE ED GM ED//GM AB GM AB//GM AB//DE AB DE ABDE 3CH I MI BM MC MI △BHC MI //BH MI =BH 12BH ⊥AC BH AM MI =AM 12MI ⊥AC ∠CAM 30∘24.【答案】解:∵直线与轴交于点,与轴交于点,∴.∵经过,两点,∴解得∴抛物线的解析式为.过点作轴于点,交直线于点,于点,设.∵轴,∴∵,∴,∵,∴∵轴,∴.∴轴,∴,∴,∴,令,解得,∴.∵,∴∴∵,∴,解得(舍)∴.(1)y =−x−3x A y C A(−3,0),C(0,−3)y =+bx+c x 2A C {9−3b +c =0,c =−3,{b =2,c =−3.y =+2x−3x 2(2)D DK ⊥x K AC C DH ⊥AC H D(t,+2t−3)t 2DK ⊥x G(t,−t−3),DG =(+2t−3)−(−t−3)=+3t.t 2t 2A(−3,0),C(0,−3)OA =OC =3∠AOC =90∘∠OAC =∠ACO =,AC ==3.45∘O +O A 2C 2−−−−−−−−−−√2–√DK ⊥x ∠DKO =∠COK =90∘DK//y ∠DGH =∠OCA =45∘DH =DG ⋅sin =DG =(+3t)45∘2–√22–√2t 2=AC ⋅DH =×3×(+3t)=+S △ACD 12122–√2–√2t 232t 2t 92+2x−3=0x 2=−3,=1x 1x 2B(1,0),AB =4D(t,+2t−3)t 2DK =+2t−3.t 2=+=×4(+2t−3)+×S 四边形ACBD S △ABC S △ABD 12t 2124×3=2+4t.t 2=S △ACD 38S 四边形ACBD +t =(2+4t)32t 29238t 2=−4,=0t 1t 2D(−4,5)过点作轴于点,过点,轴于点,过点,轴于点,延长交于,由知,∴∵,∴,,∴∵,∴,∴∴∴,即,∴∵,∴∵轴,∴.∵,∴∴.∴,∵、关于点对称,∴,∵,∴,∴∴.∵,∴ ∴ ∴∴,∴ .∵ ,∴,∴ .∵,∴,∴.∵ ,∴.∵轴,∴ ,∴.设,∴解得.∴.∵,∴轴.∵,∴轴.∴,令,解得,∴.(3)D DM ⊥y M P PN ⊥x N E ER ⊥x R DE PQ T (2)t =−4DH =(+3t)=2.2–√2t 22–√D(−4,5),C(0,−3)DM =4,CM =8CD ==4D +C M 2M 2−−−−−−−−−−−√5–√sin ∠ACD ===.DH CD 22–√45–√10−−√10B(1,0)OB =1BC ==,sin ∠OCB ==.O +O B 2C 2−−−−−−−−−−√10−−√OB BC 110−−√∠ACD =∠OCB.∠ACD+∠OCD =∠OCB+∠OCD ∠ACO =∠DCE =45∘CE =CD ⋅sin =2.45∘10−−√BC =10−−√BE =BC =.10−−√ER ⊥x ∠ERB =∠COB =90∘∠EBR =∠CBO,BC =BE △OBC ≅△RBE.OB =BR =1,OC =ER =3E(2,3)P Q B PB =BQ BC =BE,∠PBC =∠QBE △PBC ≅△QBE.∠BPC =∠Q.EQ//CP ∠DEF +∠BPC =∠DBE,∠DEF =∠QET,∠BPC =∠Q ∠QET +∠Q =∠DBE.∠BTE =∠DBE.DE ⊥BC.∠BED =90∘∠DBE+∠BDE =90∘∠BTE =∠DBE ∠BTE+∠BDE =90∘∠DBT =90∘D(−4,5),B(1,0)DK =BK =5∠KDB =∠DBK =45∘∠DBT =90∘∠PBK =45∘PN ⊥x ∠PBK =∠BPN =45∘BN =PN P (m,+2m−3)m 21−m=−−2m+3.m 2=−2,=1m 1m 2P(−2,−3)C(0,−3)PC//x EQ//CP EQ//x ==3y E y F +2x−3=3x 2=−1,=−−1x 17–√x 27–√F (−−1,3)7–√∵,∴【考点】二次函数综合题【解析】此题暂无解析【解答】解:∵直线与轴交于点,与轴交于点,∴.∵经过,两点,∴解得∴抛物线的解析式为.过点作轴于点,交直线于点,于点,设.∵轴,∴∵,∴,∵,∴∵轴,∴.∴轴,∴,∴,∴,令,解得,∴.∵,∴∴∵,∴,解得(舍)∴.E(2,3)EF =2−(−−1)=3+.7–√7–√(1)y =−x−3x A y C A(−3,0),C(0,−3)y =+bx+c x 2A C {9−3b +c =0,c =−3,{b =2,c =−3.y =+2x−3x 2(2)D DK ⊥x K AC C DH ⊥AC H D(t,+2t−3)t 2DK ⊥x G(t,−t−3),DG =(+2t−3)−(−t−3)=+3t.t 2t 2A(−3,0),C(0,−3)OA =OC =3∠AOC =90∘∠OAC =∠ACO =,AC ==3.45∘O +O A 2C 2−−−−−−−−−−√2–√DK ⊥x ∠DKO =∠COK =90∘DK//y ∠DGH =∠OCA =45∘DH =DG ⋅sin =DG =(+3t)45∘2–√22–√2t 2=AC ⋅DH =×3×(+3t)=+S △ACD 12122–√2–√2t 232t 2t 92+2x−3=0x 2=−3,=1x 1x 2B(1,0),AB =4D(t,+2t−3)t 2DK =+2t−3.t 2=+=×4(+2t−3)+×S 四边形ACBD S △ABC S △ABD 12t 2124×3=2+4t.t 2=S △ACD 38S 四边形ACBD +t =(2+4t)32t 29238t 2=−4,=0t 1t 2D(−4,5)过点作轴于点,过点,轴于点,过点,轴于点,延长交于,由知,∴∵,∴,,∴∵,∴,∴∴∴,即,∴∵,∴∵轴,∴.∵,∴∴.∴,∵、关于点对称,∴,∵,∴,∴∴.∵,∴ ∴ ∴∴,∴ .∵ ,∴,∴ .∵,∴,∴.∵ ,∴.∵轴,∴ ,∴.设,∴解得.∴.∵,∴轴.∵,∴轴.∴,令,解得,∴.(3)D DM ⊥y M P PN ⊥x N E ER ⊥x R DE PQ T (2)t =−4DH =(+3t)=2.2–√2t 22–√D(−4,5),C(0,−3)DM =4,CM =8CD ==4D +C M 2M 2−−−−−−−−−−−√5–√sin ∠ACD ===.DH CD 22–√45–√10−−√10B(1,0)OB =1BC ==,sin ∠OCB ==.O +O B 2C 2−−−−−−−−−−√10−−√OB BC 110−−√∠ACD =∠OCB.∠ACD+∠OCD =∠OCB+∠OCD ∠ACO =∠DCE =45∘CE =CD ⋅sin =2.45∘10−−√BC =10−−√BE =BC =.10−−√ER ⊥x ∠ERB =∠COB =90∘∠EBR =∠CBO,BC =BE △OBC ≅△RBE.OB =BR =1,OC =ER =3E(2,3)P Q B PB =BQ BC =BE,∠PBC =∠QBE △PBC ≅△QBE.∠BPC =∠Q.EQ//CP ∠DEF +∠BPC =∠DBE,∠DEF =∠QET,∠BPC =∠Q ∠QET +∠Q =∠DBE.∠BTE =∠DBE.DE ⊥BC.∠BED =90∘∠DBE+∠BDE =90∘∠BTE =∠DBE ∠BTE+∠BDE =90∘∠DBT =90∘D(−4,5),B(1,0)DK =BK =5∠KDB =∠DBK =45∘∠DBT =90∘∠PBK =45∘PN ⊥x ∠PBK =∠BPN =45∘BN =PN P (m,+2m−3)m 21−m=−−2m+3.m 2=−2,=1m 1m 2P(−2,−3)C(0,−3)PC//x EQ//CP EQ//x ==3y E y F +2x−3=3x 2=−1,=−−1x 17–√x 27–√F (−−1,3)7–√∵,∴E(2,3)EF =2−(−−1)=3+.7–√7–√。
03填空题知识点分类-广东省省卷五年(2017-2021)中考数学真题分类汇编(含答案,32题)
03填空题知识点分类一.平方根(共1小题)1.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x= .二.非负数的性质:算术平方根(共2小题)2.(2020•广东)若+|b+1|=0,则(a+b)2020= .3.(2018•广东)已知+|b﹣1|=0,则a+1= .三.实数大小比较(共1小题)4.(2017•广东)已知实数a,b在数轴上的对应点的位置如图所示,则a+b 0.(填“>”,“<”或“=”)四.代数式求值(共2小题)5.(2020•广东)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为 .6.(2017•广东)已知4a+3b=1,则整式8a+6b﹣3的值为 .五.同类项(共1小题)7.(2020•广东)如果单项式3x m y与﹣5x3y n是同类项,那么m+n= .六.整式的混合运算—化简求值(共1小题)8.(2019•广东)已知x=2y+3,则代数式4x﹣8y+9的值是 .七.因式分解-提公因式法(共2小题)9.(2020•广东)分解因式:xy﹣x= .10.(2020•宿迁)分解因式:a2+a= .八.因式分解-运用公式法(共1小题)11.(2019•云南)分解因式:x2﹣2x+1= .九.分式的化简求值(共1小题)12.(2021•广东)若x+=且0<x<1,则x2﹣= .一十.负整数指数幂(共1小题)13.(2019•广东)计算:20190+()﹣1= .一十一.解二元一次方程组(共1小题)14.(2021•广东)二元一次方程组的解为 .一十二.一元二次方程的定义(共1小题)15.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为 .一十三.反比例函数图象上点的坐标特征(共1小题)16.(2018•广东)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x 轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为 .一十四.二次函数图象与几何变换(共1小题)17.(2021•广东)把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为 .一十五.平行线的性质(共1小题)18.(2019•广东)如图,已知a∥b,∠1=75°,则∠2= .一十六.多边形内角与外角(共2小题)19.(2019•广东)一个多边形的内角和是1080°,这个多边形的边数是 .20.(2017•广东)一个n边形的内角和是720°,则n= .一十七.平行四边形的性质(共1小题)21.(2021•广东)如图,在▱ABCD中,AD=5,AB=12,sin A=.过点D作DE⊥AB,垂足为E,则sin∠BCE= .一十八.圆周角定理(共1小题)22.(2018•广东)同圆中,已知所对的圆心角是100°,则所对的圆周角是 .一十九.点与圆的位置关系(共2小题)23.(2021•广东)在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB =45°,则线段CD长度的最小值为 .24.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为 .二十.切线的性质(共1小题)25.(2018•广东)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为 .(结果保留π)二十一.扇形面积的计算(共1小题)26.(2021•广东)如图,等腰直角三角形ABC中,∠A=90°,BC=4.分别以点B、点C为圆心,线段BC长的一半为半径作圆弧,交AB、BC、AC于点D、E、F,则图中阴影部分的面积为 .二十二.圆锥的计算(共1小题)27.(2020•广东)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m.二十三.作图—基本作图(共1小题)28.(2020•广东)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为 .二十四.利用轴对称设计图案(共1小题)29.(2019•广东)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是 (结果用含a,b代数式表示).二十五.翻折变换(折叠问题)(共1小题)30.(2017•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为 .二十六.解直角三角形的应用-仰角俯角问题(共1小题)31.(2019•广东)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是 米(结果保留根号).二十七.概率公式(共1小题)32.(2017•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是 .参考答案与试题解析一.平方根(共1小题)1.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x= 2 .【解析】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.二.非负数的性质:算术平方根(共2小题)2.(2020•广东)若+|b+1|=0,则(a+b)2020= 1 .【解析】解:∵≥,|b+1|≥0,+|b+1|=0,∴a﹣2=0,a=2,b+1=0,b=﹣1,∴(a+b)2020=1.故答案为:1.3.(2018•广东)已知+|b﹣1|=0,则a+1= 2 .【解析】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.三.实数大小比较(共1小题)4.(2017•广东)已知实数a,b在数轴上的对应点的位置如图所示,则a+b > 0.(填“>”,“<”或“=”)【解析】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离小,∴|a|<|b|,∴a+b>0.故答案为:>.四.代数式求值(共2小题)5.(2020•广东)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为 7 .【解析】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.6.(2017•广东)已知4a+3b=1,则整式8a+6b﹣3的值为 ﹣1 .【解析】解:∵4a+3b=1,∴8a+6b﹣3=2(4a+3b)﹣3=2×1﹣3=﹣1;故答案为:﹣1.五.同类项(共1小题)7.(2020•广东)如果单项式3x m y与﹣5x3y n是同类项,那么m+n= 4 .【解析】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.六.整式的混合运算—化简求值(共1小题)8.(2019•广东)已知x=2y+3,则代数式4x﹣8y+9的值是 21 .【解析】解:∵x=2y+3,∴x﹣2y=3,则代数式4x﹣8y+9=4(x﹣2y)+9=4×3+9=21.故答案为:21.七.因式分解-提公因式法(共2小题)9.(2020•广东)分解因式:xy﹣x= x(y﹣1) .【解析】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).10.(2020•宿迁)分解因式:a2+a= a(a+1) .【解析】解:a2+a=a(a+1).故答案为:a(a+1).八.因式分解-运用公式法(共1小题)11.(2019•云南)分解因式:x2﹣2x+1= (x﹣1)2 .【解析】解:x2﹣2x+1=(x﹣1)2.九.分式的化简求值(共1小题)12.(2021•广东)若x+=且0<x<1,则x2﹣= ﹣ .【解析】解:∵0<x<1,∴x<,∴x﹣<0,∵x+=,∴(x+)2=,即x2+2+=,∴x2﹣2+=﹣4,∴(x﹣)2=,∴x﹣=﹣,∴x2﹣=(x+)(x﹣)=×(﹣)=﹣,故答案为:﹣.一十.负整数指数幂(共1小题)13.(2019•广东)计算:20190+()﹣1= 4 .【解析】解:原式=1+3=4.故答案为:4.一十一.解二元一次方程组(共1小题)14.(2021•广东)二元一次方程组的解为 .【解析】解:,①×2﹣②,得:3y=﹣6,即y=﹣2,将y=﹣2代入②,得:2x+(﹣2)=2,解得:x=2,所以方程组的解为.故答案为.一十二.一元二次方程的定义(共1小题)15.(2021•广东)若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为 x2﹣2=0(答案不唯一) .【解析】解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,∴满足条件的方程可以为:x2﹣2=0(答案不唯一),故答案为:x2﹣2=0(答案不唯一).一十三.反比例函数图象上点的坐标特征(共1小题)16.(2018•广东)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x 轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为 (2,0) .【解析】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A3(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);以此类推…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).一十四.二次函数图象与几何变换(共1小题)17.(2021•广东)把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为 y=2x2+4x .【解析】解:把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:y=2(x+1)2+1﹣3,即y=2x2+4x故答案为y=2x2+4x.一十五.平行线的性质(共1小题)18.(2019•广东)如图,已知a∥b,∠1=75°,则∠2= 105° .【解析】解:∵直线c直线a,b相交,且a∥b,∠1=75°,∴∠3=∠1=75°,∴∠2=180°﹣∠3=180°﹣75°=105°.故答案为:105°一十六.多边形内角与外角(共2小题)19.(2019•广东)一个多边形的内角和是1080°,这个多边形的边数是 8 .【解析】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.20.(2017•广东)一个n边形的内角和是720°,则n= 6 .【解析】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.一十七.平行四边形的性质(共1小题)21.(2021•广东)如图,在▱ABCD中,AD=5,AB=12,sin A=.过点D作DE⊥AB,垂足为E,则sin∠BCE= .【解析】解:如图,过点B作BF⊥EC于点F,∵DE⊥AB,AD=5,sin A==,∴DE=4,∴AE==3,在▱ABCD中,AD=BC=5,AB=CD=12,∴BE=AB﹣AE=12﹣3=9,∵CD∥AB,∴∠DEA=∠EDC=90°,∠CEB=∠DCE,∴tan∠CEB=tan∠DCE,∴===,∴EF=3BF,在Rt△BEF中,根据勾股定理,得EF2+BF2=BE2,∴(3BF)2+BF2=92,解得,BF=,∴sin∠BCE===.故答案为:.一十八.圆周角定理(共1小题)22.(2018•广东)同圆中,已知所对的圆心角是100°,则所对的圆周角是 50° .【解析】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.一十九.点与圆的位置关系(共2小题)23.(2021•广东)在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB =45°,则线段CD长度的最小值为 .【解析】解:如图所示.∵∠ADB=45°,AB=2,作△ABD的外接圆O(因求CD最小值,故圆心O在AB的右侧),连接OC,当O、D、C三点共线时,CD的值最小.∵∠ADB=45°,∴∠AOB=90°,∴△AOB为等腰直角三角形,∴AO=BO=sin45°×AB=.∵∠OBA=45°,∠ABC=90°,∴∠OBE=45°,作OE⊥BC于点E,∴△OBE为等腰直角三角形.∴OE=BE=sin45°•OB=1,∴CE=BC﹣BE=3﹣1=2,在Rt△OEC中,OC===.当O、D、C三点共线时,CD最小为CD=OC﹣OD=.故答案为:.24.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为 2﹣2 .【解析】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.(也可以用DE≥BD﹣BE,即DE≥2﹣2确定最小值)故答案为2﹣2.二十.切线的性质(共1小题)25.(2018•广东)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为 π .(结果保留π)【解析】解:连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.二十一.扇形面积的计算(共1小题)26.(2021•广东)如图,等腰直角三角形ABC中,∠A=90°,BC=4.分别以点B、点C为圆心,线段BC长的一半为半径作圆弧,交AB、BC、AC于点D、E、F,则图中阴影部分的面积为 4﹣π .【解析】解:等腰直角三角形ABC中,∠A=90°,BC=4,∴∠B=∠C=45°,∴AB=AC=BC=2∵BE=CE=BC=2,∴阴影部分的面积S=S△ABC﹣S扇形BDE﹣S扇形CEF=2﹣×2=4﹣π,故答案为4﹣π.二十二.圆锥的计算(共1小题)27.(2020•广东)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m.【解析】解:如图,连接OA,OB,OC,则OB=OA=OC=1m,因此阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:m,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=(m),故答案为:.二十三.作图—基本作图(共1小题)28.(2020•广东)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为 45° .【解析】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.二十四.利用轴对称设计图案(共1小题)29.(2019•广东)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是 a+8b (结果用含a,b代数式表示).【解析】解:方法1、如图,由图可得,拼出来的图形的总长度=5a+4[a﹣2(a﹣b)]=a+8b故答案为:a+8b.方法2、∵小明用9个这样的图形(图1)拼出来的图形∴口朝上的有5个,口朝下的有四个,而口朝上的有5个,长度之和是5a,口朝下的有四个,长度为4[b﹣(a﹣b)]=8b﹣4a,即:总长度为5a+8b﹣4a=a+8b,故答案为a+8b.二十五.翻折变换(折叠问题)(共1小题)30.(2017•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为 .【解析】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.二十六.解直角三角形的应用-仰角俯角问题(共1小题)31.(2019•广东)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是 (15+15) 米(结果保留根号).【解析】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15;可得CE=BE×tan45°=15米.在Rt△ABE中,∠ABE=30°,BE=15,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15米.答:教学楼AC的高度是(15)米.二十七.概率公式(共1小题)32.(2017•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是 .【解析】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:。
初中数学中的“非负数”问题正规版
初中数学中的“非负数”问题(可以直接使用,可编辑优秀版资料,欢迎下载)初中数学中的三个“非负数”问题巴州区大和小学李平:636031我们知道:绝对值、偶次方、二次根式都是一个“非负数,即≥0,≥0(n为整数)、。
我们称其具有非负性。
这三条性质常作为求解很多实数问题的隐含条件,对于解答“0+0=0”形的代数问题非常重要,要求学生要熟练掌握。
一、绝对值的非负性例1若m、n满足,则-m·n= 。
解:∵,又∴3m-6=0n+4=0∴m=2n=-4∴—mn=-2×(-4)=8。
例2若,求:的值解:∵,又∴a-1=0ab-2=0∴a=1b=2原式===1-=二、偶次幂的非负性例3已知,求:⑴;⑵解:∵,又∴x-2=03-y=0∴x=2y=3∴⑴==8⑵=三、二次根式的非负性例4 已知+=0,求x,y的值.分析:因为≥0,≥0,根据几个非负数之和等于0,则每个非负数都等于0,可知,从而,解之,得x=-1,y=4.例5 若实数a、b满足+=0,则2b-a+1=___.分析:因为≥0,≥0,故由非负数的性质,得,两式相加,即得2b-a+1=0.例6 已知实a满足,求a-2021的值.解:由a-20210,得a2021。
故已知式可化为a-2021+=a,∴=2021,两边平方并整理,得:a-2021=2021.例7 在实数范围内,求代数式的值.解:考虑被开方数,得从而,又,故=0,x=4.∴原式=1.例8 设等式=在实数范围内成立,其中a、x、y是两两不同的实数,求的值.解:由a(x-a)≥0及x-a≥0得a≥0;由a(y-a)≥0及a-y≥0得a≤0,故a=0,从而已知式化为,x=-y≠0,故原式==.由上面八道例题,我们可以看出:绝对值、偶次幂、二次根式的非负性通常都是作为隐含条件出现的。
解答这类问题的一般思路是:①先根据绝对值、偶次幂、二次根式的非负性,求出有关字母的值;②再将所求得的字母值代入相应的代数式。
2022-2023学年吉林省某校初二(上)期中考试数学试卷(含答案)063352
2022-2023学年吉林省某校初二(上)期中考试数学试卷试卷考试总分:95 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1. 如图所示的图案中,轴对称图形的个数是( )A.B.C.D.2. 长度分别为,,的三条线段首尾连接能组成一个三角形,则的值可以是( )A.B.C.D.3. 如图,从下列四个条件:①;②;③;④中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )A.B.C.D.4. 如图,在平面直角坐标系中,正方形的顶点在双曲线上,点,在轴上,延长至,使 ,连接交轴于点,连接,则的面积为 ( )A.B.C.D.123415x x 4567BC =C B ′AC =C A ′∠CA =∠CB A ′B ′AB =A ′B ′1234ABCD A y =(x >0)12x C D x BC P BC =2PC PD y F CF △DCF 34565. 如图,,若,,,则 A.B.C.D.6. 以下列各组线段长为边,能组成三角形的是( )A.,,B.,,C.,,D.,,二、 填空题 (本题共计 1 小题 ,共计5分 )7. (5分) 在中,,,,在上取一点,使,过点作交的延长线于点,若,则________.三、 解答题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )8. 求下列多边形的内角和:(1)六边形;(2)从一个多边形的一个顶点引出的各条对角线将这个多边形分成了六个三角形;(3)一个正多边形的一个内角是它某个外角的倍.9. 如图,在中,是高,=,是外角的平分线,平分交于点,若=,求的度数.10. 先化简,再求值:,其中;,其中.11. 如图点,在线段上,,,.求证:.△ABC ≅△ADE ∠B =80∘∠C =35∘∠EAC =40∘∠DAC =()25∘30∘35∘40∘1cm 2cm 3cm2cm 3cm 8cm5cm 12cm 6cm4cm 6cm 9cmRt △ABC ∠ACB =90∘BC =2cm CD ⊥AB AC E EC =BC E EF ⊥AC CD F EF =5cm AE =cm 5△ABC AD ∠DAC 10∘AE ∠BAC BF ∠ABC AE F ∠ABC 46∘∠AFB (1)2−4m+1−2(+2m−)m 2m 212m=−1(2)5x −[2y−(2y−3x )]y 2x 2x 2y 2(x−2+|y+1|)2=0E F BC BE =CF AB =CD AF =DE ∠A =∠D12. 如图,在边长为个单位的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的.画出绕点顺时针旋转度的图形.画出关于轴对称的(点,,的对应点分别为,,);将向下平移个单位,再向右平移个单位,得到(点,,的对应点分别为,,,画出平移后的.13. 某风景区改建时,需测量湖两岸游船码头,间的距离,于是工作人员在的垂线上取两点,,使.再过点作出的垂线,并在上找一点,使,,在同一直线上,这时测得的长就是的距离,请说明理由.14. 如图,在等边三角形内有一点,且 , ,,求的度数和等边三角形的边长.15. 如图,,,平分,交于点,于,线段上一点,且.证明:.16. 如图,点,,在直线上,分别以,为边向直线同侧作正五边形 和正六边形,和相交于点.求.17. 如图,,分别为,的中点,于点,于点.112×12△ABC (1)△ABC A 90△A ′B ′C ′(2)△ABC x △DEF A B C D E F (3)△DEF 24△GHI D E F G H I △GHI A B AB AF E D ED =AE D AF OD OD C B E C CD AB ABC P PA =2PB =3–√PC =1∠BPC ABC Rt △ABC ∠B =90∘AD ∠BAC BC D DF ⊥AC F AB E DE =DC BE =CF A B F l AB BF l ABCDE BFGHMN CD MN O ∠NOC A B CD CE AE ⊥CD A BD ⊥CE B(1)求证:=;(2)求的度数. 18. 如图,已知为的直径,,是的弦,是的切线,切点为,,,的延长线相交于点.求证:是的切线;若,,求的半径.19. 如图,在平面直角坐标系中,,,为线段的中点,连接,,,将延长一倍至点,过点作交的延长线于点,连接.试判断四边形的形状,并说明理由;求证:;已知抛物线经过点且顶点为,是抛物线对称轴上的一个动点.①求此抛物线的解析式;②若以,,为顶点的三角形与 相似,请直接写出点的坐标.CD EC ∠AEC AB ⊙O AD BD ⊙O BC ⊙O B OC//AD BA CD E (1)DC ⊙O (2)AE =1ED =3⊙O A(−2,−1)B(3,−1)E AB OA OB OE AO C C CD//BO EO D BC (1)OBCD (2)∠A+∠OBA =45∘(3)D E P E D P △OAB P参考答案与试题解析2022-2023学年吉林省某校初二(上)期中考试数学试卷试卷一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1.【答案】B【考点】轴对称图形【解析】根据轴对称图形的概念对各图形分析判断即可得解.【解答】解:如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形叫做轴对称图形.第一个图形不是轴对称图形;第二个图形是轴对称图形;第三个图形是轴对称图形;第四个图形不是轴对称图形.综上所述,轴对称图形的个数是个.故选.2.【答案】B【考点】三角形三边关系【解析】根据三角形的三边关系:①两边之和大于第三边,②两边之差小于第三边即可得到答案.【解答】解:因为能组成一个三角形,所以,所以.故选.3.【答案】B【考点】全等三角形的性质与判定【解析】根据全等三角形的判定定理,可以推出当①②③为条件,④为结论时 ,根据判断出,根据全等三角形的性质得出;当①②④为条件,③为结论时:由判断出,根据全等三角形的性质得出2B 5−1<x <5+14<x <6B SAS △A'CB'≅△ACB AB =A'B'SSS △A'CB'≅△ACB, 从而得出.【解答】解:当①②③为条件,④为结论时:∵,∴,即,∵,,∴,∴;当①②④为条件,③为结论时:∵,,,∴,∴,∴,即.若②③④为条件,通过两边及其一边的对角无法判定三角形相似,从而无法得出结论.故选.4.【答案】A【考点】等边三角形的性质与判定全等三角形的性质与判定【解析】【解答】解:设,由得,即,∴.∵正方形,∴.∴.∴.即=.∴.故选.5.【答案】A【考点】全等三角形的性质【解析】根据三角形内角和定理求出,根据全等得出,即可得出答案.∠A'CB'=∠ACB ∠A'CA =∠B'CB ∠CA =∠CB A ′B ′∠CA+∠AC =∠CB+∠AC A ′B ′B ′B ′∠C =∠ACB A ′B ′BC =C B ′AC =C A ′△C ≅△ACB(SAS)A ′B ′AB =A ′B ′BC =C B ′AC =C A ′AB =A ′B ′△C ≅△ACB(SSS)A ′B ′∠C =∠ACB A ′B ′∠C −∠AC =∠ACB−∠AC A ′B ′B ′B ′∠CA =∠CB A ′B ′B AD =BC =CD =a y =12x A(,a)12a OD =12a CP =BC =12a 2ABCD ∠DCP =90∘CP//OF =OD CD OF CP OF =⋅CP OD CD 6a =OF ⋅CD =⋅⋅a =3S △DCF 12126a A ∠BAC ∠DAE =∠BAC =65∘【解答】解:∵,,∴.∵,∴.∵,∴.故选.6.【答案】D【考点】三角形三边关系【解析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】、=,选项错误;、,选项错误;、,选项错误;、,正确.二、 填空题 (本题共计 1 小题 ,共计5分 )7.【答案】【考点】全等三角形的性质与判定【解析】根据直角三角形的两锐角互余的性质求出,然后利用“角边角”证明和全等,根据全等三角形对应边相等可得,再根据,代入数据计算即可得解.【解答】解:∵,∴,∵,∴,∴(等角的余角相等),在和中,,∴,∴,∵,,,∴.故答案为:.三、 解答题 (本题共计 12 小题 ,每题 5 分 ,共计60分 )∠B =80∘∠C =35∘∠BAC =−∠B−∠C =180∘65∘△ABC ≅△ADE ∠DAE =∠BAC =65∘∠EAC =40∘∠DAC =−=65∘40∘25∘A A 1+28B 3+2<6C 5+6<12D 2+6>93∠ECF =∠B △ABC △FCE AC =EF AE =AC −CE ∠ACB =90∘∠ECF +∠BCD =90∘CD ⊥AB ∠BCD+∠B =90∘∠ECF =∠B △FCE △ABC∠ECF =∠B EC =BC ∠ACB =∠FEC =90∘△ABC ≅△FCE(ASA)AC =EF AE =AC −CE BC =2cm EF =5cm AE =5−2=3cm 38.【答案】【考点】多边形内角与外角【解析】此题暂无解析【解答】此题暂无解答9.【答案】∵是高,∴=,∴==,又=,∴=,∴=,∵是外角的平分线,∴==,∵平分,∴==,∴==.【考点】三角形内角和定理三角形的外角性质【解析】根据直角三角形的性质求出的度数,得到的度数,根据邻补角的性质求出的度数,根据角平分线的定义求出的度数,根据三角形的外角的性质计算即可.【解答】∵是高,∴=,∴==,又=,∴=,∴=,∵是外角的平分线,∴==,∵平分,∴==,∴==.AD ∠ADB 90∘∠BAD −∠ABC 90∘44∘∠DAC 10∘∠BAC 54∘∠MAC 126∘AE ∠BAC ∠MAE ∠MAC 63∘BF ∠ABC ∠ABF ∠ABC 23∘∠AFB ∠MAE−∠ABF 40∘∠BAD ∠BAC ∠CAM ∠MAE AD ∠ADB 90∘∠BAD −∠ABC 90∘44∘∠DAC 10∘∠BAC 54∘∠MAC 126∘AE ∠BAC ∠MAE ∠MAC 63∘BF ∠ABC ∠ABF ∠ABC 23∘∠AFB ∠MAE−∠ABF 40∘10.【答案】解:原式.当时,原式.原式.又,则,,故原式.【考点】整式的加减——化简求值去括号与添括号非负数的性质:绝对值非负数的性质:偶次方【解析】根据整式的加减法则进行化简再把数值代入化简后的整式中计算即可求解;根据整式的加减法则进行化简再把数值代入化简后的整式中计算即可求解.【解答】解:原式.当时,原式.原式.又,则,,故原式.11.【答案】证明:∵,∴,即,在和中,∴,∴.【考点】全等三角形的性质与判定【解析】先求出,再利用“边边边”证明和全等,然后利用全等三角形对应角相等证明即可.【解答】(1)=2−4m+1−2−4m+1m 2m 2=−8m+2m=−1=8+2=10(2)=5x −2y+2y−3x y 2x 2x 2y 2=2xy 2(x−2+|y+1|)2=0x=2y=−1=2×2×(−1=4)2(1)(2)(1)=2−4m+1−2−4m+1m 2m 2=−8m+2m=−1=8+2=10(2)=5x −2y+2y−3x y 2x 2x 2y 2=2xy 2(x−2+|y+1|)2=0x=2y=−1=2×2×(−1=4)2BE =CF BE+EF =CF +EF BF =CE △ABF △DCE BF =CE,AB =CD,AF =DE,△ABF ≅△DCE(SSS)∠A =∠D BF =CE △ABF △DCE证明:∵,∴,即,在和中,∴,∴.12.【答案】解:如图所示,即为所求.如图所示,即为所求.如图所示,即为所求.【考点】平移的性质作图-轴对称变换作图-旋转变换【解析】此题暂无解析【解答】解:如图所示,即为所求.如图所示,即为所求.如图所示,即为所求.13.【答案】证明:∵,,∴,又∵,,∴,所以.BE =CF BE+EF =CF +EF BF =CE △ABF △DCE BF =CE,AB =CD,AF =DE,△ABF ≅△DCE(SSS)∠A =∠D (1)△A ′B ′C ′(2)△DEF (3)△GHI (1)△A ′B ′C ′(2)△DEF (3)△GHI AB ⊥AD CD ⊥AD ∠A =∠CDE =90∘ED =AE ∠AEB =∠CED △ABE ≅△CED(ASA)AB =CD【考点】全等三角形的性质与判定全等三角形的应用【解析】已知等边及垂直,在直角三角形中,可考虑证明三角形全等,从而推出线段相等.【解答】证明:∵,,∴,又∵,,∴,所以.14.【答案】解:是等边三角形,,将绕点逆时针旋转得出,如图,,,,,,,是等边三角形,,,,,,,则是直角三角形;;过点作,交的延长线于点,,,由勾股定理得,,,由勾股定理得:.【考点】勾股定理旋转的性质等边三角形的性质【解析】此题暂无解析【解答】解:是等边三角形,AAS AB ⊥AD CD ⊥AD ∠A =∠CDE =90∘ED =AE ∠AEB =∠CED △ABE ≅△CED(ASA)AB =CD ∵△ABC ∴∠ABC =60∘△BPC B 60∘△ABP ′2∴A =CP =1P ′B =BP =P ′3–√∠PBC =∠BA P ′∠A B =∠BPC P ′∵∠PBC +∠ABP =∠ABC =60∘∴∠AB +∠ABP =∠BP =P ′P ′60∘∴△B P P ′∴P =P ′3–√∠B P =P ′60∘∵A =1P ′AP =2∴A +P =A P ′2P ′2P 2∴∠A P =P ′90∘△P A P ′∴∠BPC =∠A B =+=150⋅P ′90∘60∘B BM ⊥AP ′AP ′M ∴∠M B =P ′30∘BM =3–√2M =P ′32∴AM =1+=3252AB ==A +B M 2M 2−−−−−−−−−−−√7–√∵△ABC,将绕点逆时针旋转得出,如图,,,,,,,是等边三角形,,,,,,,则是直角三角形;;过点作,交的延长线于点,,,由勾股定理得,,,由勾股定理得:.15.【答案】证明:∵,∴,∵,平分,∴,,∴在和中,∴,∴.∵,,在和中,∴,∴.【考点】全等三角形的性质与判定角平分线的性质【解析】此题暂无解析【解答】证明:∵,∴,∵,平分,∴,,∴在和中,∴∠ABC =60∘△BPC B 60∘△ABP ′2∴A =CP =1P ′B =BP =P ′3–√∠PBC =∠BA P ′∠A B =∠BPC P ′∵∠PBC +∠ABP =∠ABC =60∘∴∠AB +∠ABP =∠BP =P ′P ′60∘∴△B P P ′∴P =P ′3–√∠B P =P ′60∘∵A =1P ′AP =2∴A +P =A P ′2P ′2P 2∴∠A P =P ′90∘△P A P ′∴∠BPC =∠A B =+=150⋅P ′90∘60∘B BM ⊥AP ′AP ′M ∴∠M B =P ′30∘BM =3–√2M =P ′32∴AM =1+=3252AB ==A +B M 2M 2−−−−−−−−−−−√7–√DF ⊥AC ∠DFA =∠DFC =90∘∠B =90∘AD ∠BAC ∠B =∠DFA =90∘∠BAD =∠FAD Rt △BAD Rt △FAD ∠DBA =∠DFA,∠BAD =∠FAD,AD =AD,Rt △CDF ≅Rt △EDB(AAS)DB =DF ∠B =∠DFC =90∘DE =DC Rt △CDF Rt △EDB {CD =DE,DF =BD,Rt △CDF ≅Rt △EDB(HL)BE =CF DF ⊥AC ∠DFA =∠DFC =90∘∠B =90∘AD ∠BAC ∠B =∠DFA =90∘∠BAD =∠FAD Rt △BAD Rt △FAD∴,∴.∵,,在和中,∴,∴.16.【答案】解:在正五边形中,每个内角的度数为.∴.同理可得正六边形每个内角的度数为.∴,,∴,∴.【考点】多边形的内角和【解析】此题暂无解析【解答】解:在正五边形中,每个内角的度数为.∴.同理可得正六边形每个内角的度数为.∴,,∴,∴.17.【答案】连接∵,分别为,的中点,于点,于点,∴==,∵==,∴为等边三角形.∴=.∴==.【考点】线段垂直平分线的性质∠DBA =∠DFA,∠BAD =∠FAD,AD =AD,Rt △CDF ≅Rt △EDB(AAS)DB =DF ∠B =∠DFC =90∘DE =DC Rt △CDF Rt △EDB {CD =DE,DF =BD,Rt △CDF ≅Rt △EDB(HL)BE =CF ABCDE (5−2)×180∘5=108∘∠C =108∘BFGHMN 120∘∠N =120∘∠NBA=−∠NBF 180∘=−180∘120∘=60∘∠CBN=∠CBA−∠NBA =−108∘60∘=48∘∠NOC =−−360∘108∘−120∘48∘=84∘ABCDE (5−2)×180∘5=108∘∠C =108∘BFGHMN 120∘∠N =120∘∠NBA=−∠NBF 180∘=−180∘120∘=60∘∠CBN=∠CBA−∠NBA =−108∘60∘=48∘∠NOC =−−360∘108∘−120∘48∘=84∘DEA B CD CE AE ⊥CD A BD ⊥CE B CD CE DE CD CE DE △CDE ∠C 60∘∠AEC −∠C 90∘30∘【解析】此题暂无解析【解答】此题暂无解答18.【答案】证明:如图,连接.∵,∴,.又∵,∴,∴.在和中,∴,∴.∵是的切线,∴,∴.又∵是的半径,∴是的切线.解:设的半径为,则,.是的切线,,,即,解得,的半径为.【考点】全等三角形的性质与判定切线的判定勾股定理切线的性质【解析】首选连接,易证得然后由全等三角形的对应角相等,求得可证得直线是的切线;设的半径为,则,在中,利用勾股定理列出方程,求解即可.【解答】证明:如图,连接.(1)DO OC//AD ∠DAO =∠COB ∠ADO =∠COD OA =OD ∠DAO =∠ADO ∠COD =∠COB △COD △COB OD =OB ,∠COD =∠COB ,OC =OC,△COD ≅△COB(SAS)∠CDO =∠CBO BC ⊙O ∠CBO =90∘∠CDO =∠CBO =90∘OD ⊙O DC ⊙O (2)⊙O R OD =R OE =OA+AE =R+1∵DC ⊙O ∴∠EDO =90∘∴E +O =O D 2D 2E 2+=(R+132R 2)2R =4∴⊙O 4(1)OD △COD ≅△COB(SAS)∠CDO =90∘CD ⊙O (2)⊙O R OE =R+1Rt △ODE (1)DO∵,∴,.又∵,∴,∴.在和中,∴,∴.∵是的切线,∴,∴.又∵是的半径,∴是的切线.解:设的半径为,则,.是的切线,,,即,解得,的半径为.19.【答案】解:四边形是平行四边形.理由如下:∵,为线段的中点,∴是的中位线,∴,即.又∵,∴四边形是平行四边形.证明:设交轴于点,过点作,垂足为,∴,∴.∴.∴,.∴.∴,.在和中,∴.∴,.∵,OC//AD ∠DAO =∠COB ∠ADO =∠COD OA =OD ∠DAO =∠ADO ∠COD =∠COB △COD △COB OD =OB ,∠COD =∠COB ,OC =OC,△COD ≅△COB(SAS)∠CDO =∠CBO BC ⊙O ∠CBO =90∘∠CDO =∠CBO =90∘OD ⊙O DC ⊙O (2)⊙O R OD =R OE =OA+AE =R+1∵DC ⊙O ∴∠EDO =90∘∴E +O =O D 2D 2E 2+=(R+132R 2)2R =4∴⊙O 4(1)OBCD AO =OC E AB OE △ABC OE//BC OD//BC DC//BO OBCD (2)AB y F C CH ⊥AB H OF//CH △AOF ∽△ACH ===AO AC OF CH AF AH 12CH =2OF =2AH =2AF =4BH =AB−AH =5−4=1CH =AF =2OF =BH =1△AOF △CBH AF =CH,∠AFO =∠CHB =,90∘OF =BH,△AOF ≅△CBH(SAS)CB =OA =OC ∠A =∠BCH ∠A+∠ACH =90∘∴.∴,∴是等腰直角三角形,∴,∴.解:①∵四边形是平行四边形,∴且.∵,,∴由平移可得.又∵是的中点,∴,∵,∴.∵为该抛物线的顶点,∴设该抛物线的解析式为.把代入抛物线的解析式,得,∴.②过作于,∵,,∴,,∵,且和都是锐角,∴,如图,当时,,即,∴,∴点的纵坐标为,∴点的坐标为;如图,当时,,即,∴,∴点的纵坐标为,∴点的坐标为,∠ACH+∠BCH =90∘∠OCB =90∘△OCB ∠COB =45∘∠A+∠ABO =45∘(3)ODCB BC//OD BC =OD B(3,−1)C(2,1)D(−1,2)E AB AE =EB =AB =1252B(3,−1)E(,−1)12E y =a −1(x−)122D(−1,2)a =43y =−1=−x−43(x−)12243x 24323D DG ⊥EP G DG =1+=1232EG =2+1=3DE ===D +E G 2G 2−−−−−−−−−−√(+32)232−−−−−−−−√35–√2tan ∠DEG ===DG EG 32312tan ∠OAM ==OM AM 12∠DEG ∠OAM ∠DEG=∠OAM 3△EPD ∽△AOB =EP AO DE AB =EP 5–√35√25EP =32P 12P (,)12124△OAB ∽△DEP =AB EP OA DE =5EP 5–√35√2EP =152P 132P (,)12132,)11,)113∴点的坐标为或.【考点】平行四边形的判定相似三角形的性质与判定全等三角形的性质与判定三角形的外角性质待定系数法求二次函数解析式平行四边形的性质勾股定理解直角三角形【解析】暂无暂无暂无【解答】解:四边形是平行四边形.理由如下:∵,为线段的中点,∴是的中位线,∴,即.又∵,∴四边形是平行四边形.证明:设交轴于点,过点作,垂足为,∴,∴.∴.∴,.∴.∴,.在和中,∴.∴,.∵,∴.∴,∴是等腰直角三角形,∴,∴.解:①∵四边形是平行四边形,∴且.P (,)1212(,)12132(1)OBCD AO =OC E AB OE △ABC OE//BC OD//BC DC//BO OBCD (2)AB y F C CH ⊥AB H OF//CH △AOF ∽△ACH ===AO AC OF CH AF AH 12CH =2OF =2AH =2AF =4BH =AB−AH =5−4=1CH =AF =2OF =BH =1△AOF △CBH AF =CH,∠AFO =∠CHB =,90∘OF =BH,△AOF ≅△CBH(SAS)CB =OA =OC ∠A =∠BCH ∠A+∠ACH =90∘∠ACH+∠BCH =90∘∠OCB =90∘△OCB ∠COB =45∘∠A+∠ABO =45∘(3)ODCB BC//OD BC =OD∵,,∴由平移可得.又∵是的中点,∴,∵,∴.∵为该抛物线的顶点,∴设该抛物线的解析式为.把代入抛物线的解析式,得,∴.②过作于,∵,,∴,,∵,且和都是锐角,∴,如图,当时,,即,∴,∴点的纵坐标为,∴点的坐标为;如图,当时,,即,∴,∴点的纵坐标为,∴点的坐标为,∴点的坐标为或.B(3,−1)C(2,1)D(−1,2)E AB AE =EB =AB =1252B(3,−1)E(,−1)12E y =a −1(x−)122D(−1,2)a =43y =−1=−x−43(x−)12243x 24323D DG ⊥EP G DG =1+=1232EG =2+1=3DE ===D +E G 2G 2−−−−−−−−−−√(+32)232−−−−−−−−√35–√2tan ∠DEG ===DG EG 32312tan ∠OAM ==OM AM 12∠DEG ∠OAM ∠DEG=∠OAM 3△EPD ∽△AOB =EP AO DE AB =EP 5–√35√25EP =32P 12P (,)12124△OAB ∽△DEP =AB EP OA DE =5EP 5–√35√2EP =152P 132P (,)12132P (,)1212(,)12132。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非负数的性质专题训练
1
│1+y│=0,则x2+y2=_______.
2.若(
)2
=0,试解关于x的方程(a+2)x+b2=a-1.
3.若2│x-y│
2-z+
1
4
=0,求x+y+z的值.
4
x+y+1)2
5.若a2+b2-2a-4b+5=0
.
数学中国,lhnen整理- 1 -
6.若
的值.
7.若2
=x+y+z,求x、y、z的值.
8.已知a、b、c为实数,且ax2+bx+c=0.
│a-2│
(c+3)2=0,求4x2-10x的值.
9
2+
2
1
b
+2=4,求:a+
1
a
+b+
1
b
的值.
答案:
数学中国,lhnen整理- 2 -
1.10
9
点拨:由于非负数都不小于0.
所以:若n个非负数的和为0,则这n•个非负数均为0,
初中阶段常见的非负数形式有:a2n,│a
(a≥0).
0,│1+y│≥0
+│1+y│=0,
所以3x-1=0,且1+y=0,即x=1
3
,y=-1.
所以x2+y2=(1
3
)2+(-1)2=
1
9
+1=
10
9
.
2.解:(
2≥0
≥0,且(
)2
=0.
所以
,2a+6=0,即
,a=-3.
原方程可化为:(-3+2)x+
)2=-3-1,-x+2=-4,x=6.
3.解:原等式可变形为:2│x-y│
(z-
1
2
)2=0.
因为│x-y│≥0
0,(z-
1
2
)2≥0.
所以
0,
20,
1
0.
2
x y
y z
z
⎧
⎪-=
⎪
+=
⎨
⎪
⎪-=
⎩
解得x=-
1
4
,y=-
1
4
,z=
1
2
.
所以x+y+z=-1
4
-
1
4
+
1
2
=0.
点拨:题目把非负数的性质与解方程联系起来,利用非负数的性质求出x、y、•z的值,进而求代数式的值.
4
+(x+y+1)2=0,
即│x-y+2│+(x+y+1)2=0.
因为│x-y+2│,(x+y+1)2≥0,
所以x+y+1=0,且x-y+2=0,解得x=-
3
2
,y=
1
2
.
数学中国,lhnen整理- 3 -
.
x+y+1)2都是非负数,它们互为相反数,则它们都是0,所以x+y+1=0且x-y+2=0,求出x、y的值,即可得出本题的结论.
5.解:因为a2+b2-2a-4b+5=0,
所以a2+b2-2a-4b+1+4=0,即(a-1)2+(b-2)2=0,
所以a=1,b=2
.
点拨:所给的条件等式中并非全都是非负数,所以把常数项5拆成了1和4,进而构造两个完全平方式,出现了非负数,使题目顺利地得以解决.•题目中采用的这种拆项配完全平方的方法是同学们必须要掌握的.
6.解:依题意,x>0,y>0,所以
,可化为
)2
2=0
-)2=0,所以x=y.
3
4
x
x
==
3
4
.
点拨:由所求的代数式可知,x、y不能同时为0,又因为xy>0,所以x、y•只能同号,当x、y 同负时,条件等式的左边为负数,等式不会成立,所以x、y是两个正数.那么,等式左边的代数式可化为一个完全平方式,进而找到x到y的关系.即x=y,然后把这一条代入所求代数式,进行化简计算,明确x、y的取值范围很重要,它是解此题的关键.
7.解:依题意:x≥0,y≥1,z≥2.
因为2
=x+y+z,
所以
.
)2
+1+
)2
+1+
)2
.
-1)2+
)2+
)2=0
-1=0
-1=0.
解得x=1,y=2,z=3.
数学中国,lhnen整理- 4 -
点拨:题目的条件等式中并没有出现完全平方式,因此要对条件等式进行变形,•使之出现右边为0,左边为几个非负数的和的形式,进而利用非负数的性质求出x、•y、z的值,在去括号,移项后,仍没有出现所需的非负数形式,故用添常数项的方法,在等式的左边构造出了三个完全平方式,进而求出了x、y、z的值.•本题的添拆项是难点所在,同学们要认真学习,牢牢掌握.
8.解:因为│a-2│
(c+3)2=0,
所以a-2=0,a+b-c=0,c+3=0.
即a=2,c=-3,b=-5,依题意:2x2-5x-3=0,
即2x2-5x=3,所以4x2-10x=2(2x2-5x)=2×3=6.
点拨:在利用非负数的性质求出a、b、c的值之后,ax2+bx+c=0就变成了一个关于x的方程,由于我们暂时不会解这种方程,所以采用了整体代入的方法,即使我们在学习了下一章后,这种方法仍要比求值代入的方法简便、快捷.
9
+b2+
2
1
b
+2=4,
b2+
2
1
b
-2=0.
即|a+
1
a
|2+(b-
1
b
)2=0,所以a+
1
b
=0,b-
1
b
=0.
因为(b-
1
b
)2=b2+
2
1
b
-2=(b+
1
b
)2-4=0.
所以(b+
1
b
)2=4,b+
1
b
=±2.
所以a+
1
a
+b+
1
b
=±2.
点拨:由非负数的性质可知a+
1
a
=0,b-
1
b
=0.因此,利用条件,求b+
1
b
成了解题的关键,利
用完全平方公式的变形求值是同学们应掌握的解题技巧.
数学中国,lhnen整理- 5 -。