两种常用纤维素酶活力测定方法---滤纸酶活-CMC酶活
纤维素酶酶活的测定方法
检测分析纤维素酶酶活的测定方法河南省科学院生物研究所 刘德海 杨玉华 安明理河南省饲料产品质量监督检验站 陈小鸽 饲用纤维素酶在饲料工业中已普及应用,对其质量检测显得日益重要。
纤维素酶是一种复合酶,按作用底物的能力划分为两部分,一部分是对棉花纤维素能起催化水解作用的酶,称为C1酶;另一部分是对羧甲基纤维素钠(Na-CMC)起水解作用的酶,称为C x酶。
据此,一般采用两种测定方法,一种是适用于C X酶的CMC法,另一种是适用于C1酶的滤纸法。
下面就此两种方法作一介绍。
1 C MC(羧甲基纤维素)法1.1 材料1.1.1 饲用纤维素酶 由河南省科学院生物研究所提供。
1.1.2 试剂 磷酸氢二钠、柠檬酸、羧甲基纤维素、3,5-二硝基水杨酸、氢氧化钠、酒石酸钾钠、亚硫酸钠、苯酚。
1.1.3 仪器 721型分光光度计、恒温水浴锅、PHS-2酸度计、秒表。
1.1.4 试剂配制1.1.4.1 pH5.0柠檬酸缓冲液 制取0.2mol/L 磷酸氢二钠液(称取7.16g磷酸氢二钠溶解于蒸馏水中,定容至100mL)和0.1mol/L的柠檬酸液(称取2.1g柠檬酸溶解于蒸馏水中,定容至100 mL),取磷酸氢二钠液24.3mL、柠檬酸液25.7mL 混匀,用精密酸度计测至pH值为5.0。
1.1.4.2 羧甲基纤维素溶液 准确称取2.0g羧甲基纤维素钠盐溶于200mL水中,沸水浴中加热至溶化,过滤,取滤液100mL,加柠檬酸缓冲液20 mL、蒸馏水40mL,混匀,贮存于冰箱中备用。
1.1.4.3 3,5-二硝基水杨酸显色液 准确称取6.3g3,5-二硝基水杨酸置于2mol/L氢氧化钠262mL溶液中,然后加酒石酸钾钠的热溶液(182.0g酒石酸钾钠溶于500mL水中),再加5.0 g苯酚和5.0g亚硫酸钠,搅拌至溶解,冷却后定容至1000mL,贮于棕色瓶中置冰箱中备用。
1.1.4.4 0.1%标准葡萄糖溶液 准确称取经105℃烘至恒重的无水葡萄糖250.000mg,溶于蒸馏水中,定容至250mL。
纤维素酶的滤纸酶活和CMC酶活的测定
52
印染助剂
19 卷
2 结果与讨论
2. 1 显色剂的选择 本试验选用3 ,5 - 二硝基水杨酸 (DNS) ,在碱性
条件下 ,与还原糖反应 ,生成有色化合物 ,通过分光 光度计进行比色测定 ,确定低分子糖的量.
DNS 黄色试剂在碱性条件下与还原糖共热反应 生成的棕红色氨基化合物3 - 氨基 - 5 - 硝基水杨酸 为比色法的测定基础物.
以上职位人员要求作风正派 、责任心强 ,一经录用 ,待遇优厚 。欢迎条件合适者将个人简历 、
联系电话、地址连同近照一张、身份证及有关证书复印件寄 : 广东省汕头市潮汕路金园工业城五 A2 - 2 汕头市联胜化工厂有限公司收 ,邮编 :515021合则约见 ,来件资料负责保密 ,恕不退回 ,谢绝来访。
第 19 卷第 5 期 2002 年 10 月
印染助剂 TEXTILE AUXILIARIES
Vol . 19 No. 5 Oct. 2002
纤维素酶的滤纸酶活和 CMC 酶活的测定
张瑞萍
(南通工学院 , 江苏南通 226007)
摘 要 : 采用3 ,5 - 二硝基水杨酸 (DNS) 为显色剂 、滤纸或 CMC 为底物 ,测定纤维素酶的滤纸酶活 ( FPA) 和 CMC 酶活 (CMCA) .
作为底物的滤纸结构较为松散 ,可及区较多 ,非 还原性末端也较多 ,容易同时被 endo - 酶和 exo - 酶 降解 ,再由β - 葡萄糖苷酶分解成葡萄糖等还原糖 . 用比色法定量测定还原糖的生成量 ,可反映纤维素 酶的总酶活 FPA. 由于 exo - 酶对纤维素链的专一性 高 ,而 endo - 酶的专一性较低. 在降解羧甲基纤维素 ( CMC) 时 ,主要是反映 endo - 酶的活力.
纤维素酶的检测方法新
纤维素酶的检测方法摘要:本文主要介绍了纤维素酶的降解原理,通过实验比较了四种常用纤维素酶的检测方法的稳定性,以及纤维素酶的发展前景,为纤维素酶的应用提供了进一步的参考价值。
关键词:纤维素酶酶活测定葡萄糖回归方程一、纤维素酶及其降解原理纤维素是高等植物细胞壁的主要成分,占植物总干重的30%-50%,是地球上分布最广,含量最丰富的可再生性碳源化合物,占地球总生物量的40%。
据报道,我国每年光作物秸秆,稻梗等含纤维素较丰富的物质就有5亿吨之多,全球每年通过光合作用产生的植物物质高达吨,其中尚有89%未被人们利用,而大量的秸秆,稻梗等含纤维素丰富的物质的利用率也很低。
大多采用燃烧的方式来处理,这样就造成了环境污染,破坏了土壤的理化性质和丧失了有机质成分。
所以,纤维素的充分利用与有效的转化对于解决当前的能源危机,粮食短缺,环境污染等有重大意义。
纤维素酶是分解纤维素的一类酶,它能将纤维素分解为葡萄糖,充分的利用了纤维素。
自1906年Sellieres 在蜗牛消化液中发现纤维素酶以来,纤维素酶的研究和应用受到了国内外学者的极大关注,取得了很大进展。
目前,国内外学者通过筛选产酶菌株来发酵产酶,再应用纤维素酶到食品,医药,饲料,洗涤等工业中,不仅解决了纤维素的再利用问题还取得了很可观的经济效益。
纤维素酶是由许多具有高协同作用的水解酶组成的。
习惯上将纤维素酶分成三种主要成分:内切酶(内切β-1,4-葡萄糖酶,也称Cx酶)、外切酶(外切β-1,4葡萄糖酶,也称C1酶)、β-1,4葡萄糖酶(即为纤维二糖酶)[1]。
C1酶主要作用于天然纤维素,使之转变为非结晶的纤维素。
Cx酶又分为Cx1酶和Cx2酶。
Cx1酶是一种内断型纤维素酶,它从水合非结晶纤维素分子内部作用于β-(1,4)糖苷键,生成纤维糊精和纤维二塘。
Cx2酶是一种外断型纤维素酶,它从水合性纤维素分子的非还原端作用于β-(1,4)糖背键,逐步切断β-(1,4)糖节键生成葡萄糖。
纤维素酶活力测定方法
纤维素酶活力测定方法纤维素酶活力测定方法很多,主要原因是纤维素酶种类繁多、来源很广,不同来源的纤维素酶其结构和功能相差很大,其次纤维素酶作用的底物比较复杂,反应产物不同,致使纤维素酶活力的测定方法复杂而不统一。
近年来随着多种交叉学科的快速发展,生物化学、分子生物学以及基因工程等相关领域的研究,促进了更多更新的纤维素酶活测定以及动力学研究方法的出现。
纤维素酶酶活测定方法——传统检测方法曾报道过传统纤维素酶测定方法很多,如微晶纤维素酶活测定方法、滤纸酶活(FPA)测定方法、水杨什酶活测定方法、、染色纤维素法、滤纸崩溃法、棉线切断法、梭甲基纤维素钠盐(CMC-Na)酶活性测定方法、棉花糖法、CMC粘度降低法、荧光定糖法平板法。
纤维素酶系总的糖化能力的测定常见有三种一是通过测定荧光物质的荧光强度的大小,来计算其还原糖含量的荧光法,其主要是根据还原糖与反应液生成荧光物质。
二是滤纸酶活(FPA)测定法,纤维素酶系总的糖化能力,通过以滤纸为底物经纤维素酶水解后生成的还原糖的量表征,因为滤纸是聚合度和结晶度都居“中等”的纤维性材料。
三是滤纸崩溃法,以滤纸完全崩溃为粉末状所需的时间来表征纤维素酶的活力,在容器内加入缓冲液和适当稀释的酶液,放入一定尺寸的滤纸条,一定温度条件下反复振荡。
外切葡萄糖什酶活力的测定有棉花糖化法方法和微晶纤维素酶活测定方法两种。
两者均采用DNS显色法,通过计算还原糖的量来表征外切葡萄糖什酶活力,主要是利用纤维素酶降解微晶纤维素、棉。
纤维素酶中内切葡萄糖什酶对CMC-Na有降解能力,因此内切葡萄糖什酶活力的表征主要为CMC-Na酶活性测定方法。
用标准葡萄糖溶液作标准曲线,通过DNS 法显色,针对内切葡萄糖什酶与CMC-Na降解生成的葡萄糖等还原糖,以每分钟生成相当于1 I} mol的葡萄糖所需酶量定义为一个酶活性单位,使用分光光度计测其吸光度。
B一葡萄糖什酶活性的测定常用方法有三种:一是将它们衍生为无荧光的底物,因为伞形酮(7一羚基香豆素)与4一甲基伞形酮具有强烈荧光的特点,使用荧光法进行测定;二是Banish和Swiain法,它以水杨什作底物,使释放出来的水杨醇显色(或DNS显色),酶解产物用4一氨基安替比林作显色剂,再用分光光度法比色测定;三是以对一硝基苯一I}一葡萄糖什为底物进行酶解,底物水解后释放出的配基对硝基苯酚可直接在100}120nm波长范围内测定。
[知识]两种常用纤维素酶活力测定方法---滤纸酶活-CMC酶活
检测纤维素酶酶活力—滤纸酶活力(FPA)滤纸酶活力代表了纤维素酶的三种酶组分协同作用后的总酶活。
采用3,5一二硝基水杨酸法测定酶活:(简称DNS法)1、原理:纤维素经纤维素酶水解后生成还原糖,还原糖能将3,5一二硝基水杨酸中硝基还原成氨基,溶液变为橙色的氨基化合物,即:3一氨基一5二硝基水杨酸,在一定的还原糖浓度范围内,橙色的深度与还原糖的浓度成正比,据此可以推算出纤维素酶的活力。
2、采用的滤纸酶活单位定义:滤纸酶活反映了纤维素酶的3种水解酶,即内切型葡聚糖酶、外切型葡聚糖酶和β葡聚糖苷酶组成的诱导复合酶系的协同水解纤维素能力。
是该菌株整个纤维素酶系的酶活力水平的综合体现。
代表了纤维素酶的三种酶组分协同作用后的总酶活。
在此滤纸酶活单位定义为:以滤纸为底物,在一定反应条件(pH4.8,50℃,恒温lh)下,以水解反应中,1ml纤维素酶液1min催化纤维素生成lug葡萄糖为1个滤纸酶活单位,以U表示。
3、滤纸酶活力(FPA)的测定:①取0.5ml适当稀释的酶液,加入PH值为4.8,0.1mol/L的乙酸-乙酸钠缓冲液lml或柠檬酸-柠檬酸钠缓冲液lml;②再加入50±0.5mg滤纸(1cmx6cm)一条,于50℃保温酶解反应1小时,(先预热5分钟);③加入DNS显色液3ml(标准曲线用量是1.5ml),放入已沸腾的水中沸水浴lOmin,流水冷却后在540nm下测吸光度;④同时用100℃煮沸lOmin后失活的酶液做对照,扣除本底;⑤根据吸光度从葡萄糖标准曲线中查出相应的葡萄糖含量,根据生成的葡萄糖克数计算出酶活值。
滤纸酶活按下面公式计算:X=(WxNxlOOO)/(TxM)X:为滤纸酶酶活力,单位U/mL。
W:为从葡萄糖标准曲线中查得的葡萄糖的浓度。
N:为酶液稀释总倍数。
T:为反应时间。
M:为样品的体积。
4、葡萄糖标准曲线绘制方法标准曲线绘制:取25ml具塞刻度试管6支,加入1.0 mg /ml的葡萄糖标准溶液0.0、0.4、0.8、1.2、1.6、2.0ml,加蒸馏水2.0、1.6、1.2、0.8、0.4、0.0ml,加DNS试剂1.5 ml,混匀后在沸水浴中加热5分钟,取出立即用冷水冷却,用水定容至25 ml,摇匀,测吸光度A,以吸光度为纵坐标,葡萄糖的含量为横坐标,绘制标准曲线。
四种纤维素酶酶活测定方法的比较
检测分析
食品研究与开发
!""#$%&’$!($)*$+
!!"
[!] 值为纵坐标, 绘制标准曲线 。 "#$#$#$ 酶活测定方法的比较 配制不同浓度的标准酶液: 用去离子水 "%% &’ 来溶解 "%% &( 纤维素酶 (!"%%% )* ) , 配制成 " &( + 酶液。测定时分别吸取 , &’ %#" &’ %#$ &’, %#, &’, %#! &’, %#- &’, %#. &’ 上 述 酶 液 用 水 补 足 至 " &’, 即为不同浓度的酶液。 (/01) 测定方法 "#$#$#$#" 滤纸酶活 滤纸是聚合度和结晶度都居 “中 等 ” 的纤维性 材料, 以其为底物经纤维素酶水解后生成还原糖的 量来表征纤维素酶系总的糖化能力的方法, 此方法 应用广泛, 它反映了 三 类 酶 组 分 的 协 同 作 用 , 统称 滤纸酶活 2/34567 08967 1:53;35< , /01=。 方法:取 " &’ 酶液加 " &’ %#" &>4 ・ ’?"、 9@ !#. 的醋酸缓冲液, 预热到 -% A, 加入 " 条 "B. :& 新华 滤纸 2-%C" &(=, 沸水浴灭活 -% A 保温 " D。取出, ,冷却至室温,用 试剂显色后稀释 &3E , &’ FGH , 倍, 测 IF 值2-$% E&=。IF 值越大, 说明该菌株的酶 ["] 。 活力越强 酶活力计算: 从标准曲线中查出葡萄糖 !&>4 数; 葡萄糖量 酶活力2J + &’=K
两种常用纤维素酶活力测定方法滤纸酶活-CMC酶活
检测纤维素酶酶活力—滤纸酶活力(F PA)滤纸酶活力代表了纤维素酶的三种酶组分协同作用后的总酶活。
采用3,5一二硝基水杨酸法测定酶活:(简称DNS法)1、原理:纤维素经纤维素酶水解后生成还原糖,还原糖能将3,5一二硝基水杨酸中硝基还原成氨基,溶液变为橙色的氨基化合物,即:3一氨基一5二硝基水杨酸,在一定的还原糖浓度范围内,橙色的深度与还原糖的浓度成正比,据此可以推算出纤维素酶的活力。
2、采用的滤纸酶活单位定义:滤纸酶活反映了纤维素酶的3种水解酶,即内切型葡聚糖酶、外切型葡聚糖酶和β葡聚糖苷酶组成的诱导复合酶系的协同水解纤维素能力。
是该菌株整个纤维素酶系的酶活力水平的综合体现。
代表了纤维素酶的三种酶组分协同作用后的总酶活。
在此滤纸酶活单位定义为:以滤纸为底物,在一定反应条件(pH4.8,50℃,恒温lh)下,以水解反应中,1ml纤维素酶液1mi n催化纤维素生成lu g葡萄糖为1个滤纸酶活单位,以U表示。
3、滤纸酶活力(F PA)的测定:①取0.5ml适当稀释的酶液,加入PH值为4.8,0.1mol/L的乙酸-乙酸钠缓冲液l ml或柠檬酸-柠檬酸钠缓冲液lml;②再加入50±0.5mg滤纸(1cmx6c m)一条,于50℃保温酶解反应1小时,(先预热5分钟);③加入DNS显色液3ml(标准曲线用量是1.5ml),放入已沸腾的水中沸水浴l Omin,流水冷却后在540nm下测吸光度;④同时用100℃煮沸lOmi n后失活的酶液做对照,扣除本底;⑤根据吸光度从葡萄糖标准曲线中查出相应的葡萄糖含量,根据生成的葡萄糖克数计算出酶活值。
滤纸酶活按下面公式计算:X=(WxNxlO OO)/(TxM)X:为滤纸酶酶活力,单位U/mL。
纤维素酶活力的测定方法
纤维素酶活力的测定方法纤维素是一种多糖,由若干葡萄糖分子通过β-1,4-糖苷键连接形成,具有结构特殊,难于降解的特点。
纤维素酶是能够降解纤维素的酶,广泛存在于微生物、植物和动物体内。
测定纤维素酶活力的方法因纤维素酶的种类及应用领域不同而有所区别,常用的方法包括酚-硫酸法、精胱酸法、流变法、荧光法等。
下面将介绍其中几种常用的方法。
一、酚-硫酸法酚-硫酸法是用于测定纤维素酶活力的经典方法之一、其原理是:纤维素酶通过水解纤维素生成还原糖,而还原糖可以与试剂酚和硫酸反应产生可测定的颜色。
具体步骤如下:1.准备试剂:将1%酚(重量/体积)和10%硫酸(体积/体积)混合,剧烈振荡。
2.取一个容量瓶,加入待测纤维素酶样品、适量的底物纤维素和适量的缓冲液(常用pH5.0的酸性缓冲液)。
3.进行恒温反应:将试剂和底物溶液在适当的温度下进行恒温反应。
4.终止反应:在特定的时间点,取出反应溶液,加入刚刚准备好的酚-硫酸试剂,充分混匀。
5.酚-硫酸试剂与还原糖反应产生胶体,表现为紫褐色。
通过比色计或分光光度计测定产生的胶体的吸光度,根据标准曲线或已知纤维素酶活力的对照样品,计算出待测样品的纤维素酶活力。
二、精胱酸法精胱酸法是另一种常用的测定纤维素酶活力的方法。
其原理是:纤维素酶通过水解纤维素生成还原糖,而还原糖可以与精胱酸反应产生尿糖胺,尿糖胺与酚胺反应形成可测定的色素。
具体步骤如下:1.准备试剂:将精胱酸磷酸缓冲液(常用pH4.8)和4-氨基安替比林(ABTS)或3,3'-二氮杂联苯基过氧化物(DPPH)溶液混合,剧烈振荡。
2.取一个容量瓶,加入待测纤维素酶样品、适量的底物纤维素和适量的缓冲液。
3.进行恒温反应:将试剂和底物溶液在适当的温度下进行恒温反应。
4.终止反应:在特定的时间点,取出反应溶液,加入刚刚准备好的精胱酸试剂,充分混匀。
5.精胱酸试剂与还原糖反应产生色素,根据色素的吸光度,通过分光光度计测定产生的色素的吸光度,根据标准曲线或已知纤维素酶活力的对照样品,计算出待测样品的纤维素酶活力。
纤维素酶活力的测定
目的本检测方法是用来确定本公司纤维素酶类的催化活性。
本方法适用于各种固体和液体纤维素酶制剂。
说明本方法适合于纤维素类酶的质量分析和质量控制领域。
但不是本公司产品及其它公司产品的绝对活力的预测,而各种酶制剂的最终的酶活力在良好的实验操作下仍可发挥出更好的催化活力。
原理纤维素被纤维素酶水解最终降解生成β-葡萄糖。
鉴于纤维素结构的复杂性,没有任何一种酶能将纤维素彻底水解。
1950 年Reese提出了C1-Cx概念。
C1是一水解因子,作用于纤维素的结晶区(如棉花纤维即为高度结晶性纤维),使氢键破裂,呈无定形可溶态,成为长链纤维素分子。
再由Cx最终催化形成还原性单糖。
而Cx通常包括:(1)内切葡萄糖苷酶(endo-1,4-β-D-glucanase,EC3.2.1.4,简称EG)。
这类酶随机水解β-1,4-糖苷键,将长链纤维素分子(羧甲基纤维素钠(CMC)即为人工合成的一种线形纤维素钠盐)截短。
(2)外切葡萄糖苷酶(exo-1,4-β-D-glucanase,EC3.2.1.91),又称纤维二糖水解酶(cellobiohydrolase,简称CBH)。
这类酶作用于β-1,4-糖苷键,每次切下一个纤维二糖分子。
(3)β-葡萄糖苷酶(β-glucosidase,EC3.2.1.21,简称BG),这类酶将纤维二糖(水杨素即为葡萄糖苷键连接的纤维二糖)水解成葡萄糖分子。
据上述理论,分别设计以滤纸(filter paper)、棉球、CMC、水杨素为底物,分别衡量纤维素的总体酶活性(FPA)、C1、Cx、Cb酶活性。
将底物水解后释放还原性糖(以葡萄糖计)与3,5-二硝基水杨酸(DNS)反应产生颜色变化,这种颜色变化与葡萄糖的量成正比关系,即与酶样品中的酶活性成正比。
通过在550nm的光吸收值查对标准曲线(以葡萄糖为标准物)可以确定还原糖产生的量,从而确定出酶的活力单位。
纤维素酶类活性的定义Ⅰ 1g酶粉(1ml酶液)于50℃pH4.8条件下,每分钟水解1×6cm的滤纸(FPA)产生1μg还原糖(以葡萄糖计)的酶量定义为1个FPA酶活力单位。
纤维素酶的三种活力测定方法
纤维素酶的三种活力测定方法纤维素酶是一种广泛存在于自然界中的酶类,具有重要的降解纤维素的功能。
对于工业生产、环境保护及生物能源等领域都有着极为广泛的应用。
因此,纤维素酶的测定方法也越来越受到研究者的关注。
本文将针对纤维素酶的三种活力测定方法进行详细介绍。
一、滴定法滴定法是最为简单、传统的纤维素酶活力测定方法。
其操作步骤相对较简单,但由于其受试物中的葡萄糖数量较小,因此准确度不如其他测定方法。
滴定法的具体操作步骤如下:1.采用苯酚褐或者硫酸铜-硫氰化钾将葡萄糖转化为光滑葡萄糖2.使用离子交换树脂净化试样3.通过酸水解,将可分离出的光滑葡萄糖转化为葡萄糖4.通过NaOH溶液中添加试样,测定试样所需要的NaOH溶液的体积二、反向相色谱法反向相色谱法是一种基于色谱技术的测定方法。
比滴定法更加准确且可靠。
反向相色谱法可以通过改变样品与固相载体的交互时间,实现对样品组分的分离。
其操作步骤如下:1.使用有机溶剂混合纤维素样品2.净化溶液,分离部分有机溶剂和水3.试样在反向相色谱柱上,随柱子流动4.通过检测器检测滴量,确定样品的浓度三、淀粉-纤维素显色法淀粉-纤维素显色法是一种基于酶法和化学显色技术结合的测定方法。
其同时测定酶反应的数量和反应的速率,可以获得相对准确的数据。
具体操作过程如下:1.样品中的淀粉与纤维素同时与碘反应2.通过求字头光度的变化及测试时间的变化,测定酶的活力3.以酶动力学为基础,通过数据分析得到相应的酶反应速率总结起来,以上三种方法均可用于纤维素酶的活力测定。
针对不同的需求,可以选择适当的方法进行测定。
其中,受试物的纯度和净化程度是影响精度的关键因素,因此在测定前要进行适当的纯化。
在生产过程中,可以选择淀粉-纤维素显色法作为主要测定方法,以保证产物质量的稳定性和可控性。
纤维素酶活力测定方法
5
塞 妒 蕾
0
5
图2葡萄糖标准曲线
2.5底物的选择对酶活力的影响 目前理论认为,大多数由微生物产生的纤维素酶 是一个多组分酶系,主要含有三种组分:内切pl,4一葡 聚糖酶、外切8 1,4一葡聚糖酶和p—l,4葡萄糖苷酶。其 中,内切(endo一)酶能进攻纤维素大分子链的中间部 位,任意地切断大分子,而生成较短的链;而外切 (”m)酶仅从纤维索大分子链的非还原性末端切下 一个个纤维二糖;6-葡萄糖苷酶则把低分子葡聚糖催
I。=(0.83:
1),杰能科:PLUS I。一(0.67;1)。这与不同酶的
I。,PLUS L一1:
我们选择三种酸性纤维素酶,分别以滤纸和CMC 为底物,其酶括力(FPA和CMC…)的测试数据结果如
表l所示。
表1不同酶种的滤纸酶活(FPA)和CMC酶活(CMC。。)
结论
从表l可知,CMCase和FpA两种酶活的大小顺 序是:杰能科>NOVO L>PLUS L。这几种酶的内切 酶活(CMC。)较高,且比总酶活(FPA)大,几乎相差一 个数量级,这说明酶对水溶性底物有很高的活力.而滤 纸与酶属多相催化,酶也是高分子物,所以反应的空间 阻碍较大,这也表明了吸附对酶的活性部位与纤维素 分子链段的结合及催化均有很大影响。 2.6纤维素酶活与织物酶减量率的关系 用这几种酶对织物进行整理,织物的减量率与酶 种及酶量的关系如图3所示。从图3可看出,当三种酶 的用量分别为2%、4%、6%、8%、lO%(owf)时,对 应的减量率的比值平均(杰能科:NOVO
2墨::!!:竺!:
==兰2兰垒竺竺竺
《藏蠹j
摘
纤维素酶活力测定方法
张瑞萍 南通工学院(226007)
要用DNS为显色剂,分别以滤纸和CMC为底物,“滤纸糖酶括性(FPA)和羧甲基纤维索酶活性(CMCm)表征
纤维素酶活的测定(IUAPC推荐方法)
纤维素酶活力的测定1试剂1.1缓冲溶液乙酸-乙酸钠缓冲液(0.1mol/L,pH 4.8)柠檬酸-柠檬酸钠缓冲液(0.1mol/L,pH 4.8)1.2DNS试剂DNS试剂:取7.5g 3,5-二硝基水杨酸,14.0g氢氧化钠,充分溶解于煮沸冷却后的去离子水中,加入酒石酸钾钠216.0g,苯酚5.5mL,偏重亚硫酸钠6.0g,完全溶解后,定容至1L,室温下储存于棕色瓶中。
1.3葡萄糖检测试剂R1试剂:苯酚,10.6mmol/L,pH 7.0。
R2试剂:磷酸盐缓冲液,70mmol/L;4-氨基安替比林,0.8mmol/L;葡萄糖氧化酶,>10U/mL;氧化物酶,>1U/mL。
R1试剂和R2试剂在使用前等量混合均匀即可使用,混合液室温下放置时间不宜超过12h,否则就会因变色而失效。
1.4考马斯亮蓝试剂考马斯亮蓝G-250(CBB-G250)试剂按照传统的Brandford法制备:准确称取0.100±0.0001CBB-G250溶于50mL乙醇(95%,v/v)中,然后加入100mL磷酸(85%,w/v),将溶液转移至1L容量瓶,用去离子水定容,最后将染料溶液用滤纸过滤后,4℃下储存于棕色瓶中。
2仪器和设备2.1分析天平:感量0.0001g2.2精密pH计:精确至0.012.3磁力加热搅拌器2.4紫外可见分光光度计,购自美国安捷伦公司,可在数秒内快速扫描波长200-1000nm范围的吸收值,配置1cm石英比色皿2.5电热恒温水浴锅:30-100℃2.6移液器:量程为1000μL-5000μL,200-1000μL,20-100μL,0-10μL各1支,均购自芬兰大龙(Dragon)公司3纤维素酶活力测定按照IUAPC推荐的方法(Ghose,1987)分析纤维素酶的滤纸酶活、CMC酶活和β-葡萄糖苷酶活。
3.1滤纸酶活测定纤维素酶滤纸酶活的方法如下:(1)将Whatman No 1或国产相同等级的滤纸(新华1号滤纸)裁剪为1.0×6.0cm2(约50mg)的滤纸条,折成扇形,置于一个25mL的具塞比色管中;(2)加入1.0mL柠檬酸-柠檬酸钠缓冲溶液(0.05mol/L,pH 4.8)预热至50℃;(3)然后加入0.5mL适当稀释的酶液,要求至少有两个稀释梯度最终释放的葡萄糖的量分别略高于和略低于2.0mg,并在50℃保温1h;(4)分别以不加滤纸和不加酶的试样作为空白,在相同条件下保温;(5)反应结束后加入3.0mLDNS试剂,煮沸5min后,在冷水浴中快速冷却,用去离子水定容至25mL,摇匀;(6)置于紫外可见分光光度计上测波长540nm处的吸收值,并根据葡萄糖-DNS工作曲线计算1h释放的葡萄糖的量,按下式计算纤维素酶的滤纸酶活:滤纸酶活(PFU·mL-1)=0.37×释放2.0mg葡萄糖所需酶的稀释度(3-1)3.2羧甲基纤维素(CMC)酶活测定羧甲基纤维素CMC酶活的方法如下:(1)使用柠檬酸-柠檬酸钠缓冲溶液(0.05mol/L,pH 4.8)配制质量浓度为2%的羧甲基纤维素(简写成CMC,取代度接近0.7)溶液;(2)在25mL的具塞比色管中加入0.5mL适当稀释的酶液,要求至少两个稀释梯度最终释放葡萄糖的量分别略高于和略低于0.5mg,然后在50℃下保温5-10min;(3)加入0.5mL羧甲基纤维素CMC溶液,混合均匀后在50℃下保温30min;(4)加入3.0mLDNS试剂以结束反应,煮沸5min后,在冷水浴中快速冷却,用去离子水定容至25mL,摇匀;(5)置于紫外可见分光光度计上测波长540nm处的吸收值,并根据葡萄糖-DNS工作曲线计算释放的葡萄糖的量,按下式计算纤维素酶的CMC酶活:CMC酶活(IU ·mL-1)=0.185×释放0.5mg葡萄糖所需酶的稀释度(3-2)3.3纤维二糖酶活(β-葡萄糖苷酶活力)测定纤维二糖酶活力的方法如下:(1)用乙酸-乙酸钠缓冲溶液(0.05mol/L,pH 4.8)配制浓度为15mmol/L的纤维二糖标准溶液,仅在测试前配制新鲜溶液;(2)将酸用乙酸-乙酸钠缓冲溶液稀释至一系列浓度,保证有两个稀释梯度在反应结束后分别释放略高于和略低于1.0mg的葡萄糖;(3)在试管中加入1.0mL稀释的酶液,加热至50℃后,再加入1.0mL纤维二糖标准溶液,并在50℃保温30min;(4)反应结束后在沸水浴中煮沸5min,冷却,用葡萄糖氧化酶-过氧化物酶法测定葡萄糖的量;(5)分别以不加底物和不加酶的试样作为空白,计算释放1mg葡萄糖所需的酶的稀释度,并按下式计算酶的活力:β-葡萄糖苷酶活力(IU ·mL-1)=0.0926×释放1.0mg葡萄糖所需酶的稀释度(3-3)4葡萄糖含量的快速测定(1)准备测试液,即将R1试剂和R2试剂在使用前等量混合均匀;(2)将待测试样适当稀释,使最终紫外分光光度及记录的信号值在0.1-0.8之间,测试结果葡萄糖浓度应低于28mmol/L;(3)在5mL塑料离心管中先后加入2mL测试液和10μL待测液,37℃水浴中保温15min;(4)待显红色后,置于紫外分光光度计中测量505nm处的吸收值,室温下显色的试样可稳定2h;(5)以去离子水代替待测液,与测试液混合后,作为空白样;(6)使用标准的葡萄糖试剂建立校正曲线。
纤维素酶活力测定方法
印 染 (0 2N . ) 2 0 o 8 w w. d n.c i c f o n.c n
。
’
纤 维 素 酶 活 力 测 定 方 法
张 瑞 萍 南 通 工 学 院 ( 2 0 7 260)
. > . > .<> .< > . > .<> . < < <
j06/『 gl
・
…
0 g/ 8 t
} 10 / j ・ . g i
I 2 I I g, _
i 1 4 I g
1 2 F A 滤 纸 酶 活 力 和 C C 酶 活 力 的测 定 . P M
1 g/ 6 LI
2 g 0 L
取 适 当稀 释 的 酶 液 , 别 以滤 纸 或 1 的 CMC溶 分
酶 活 可 定 义 为 : 毫 升酶 液 1mi 每 n产生 1mg葡 萄
糖为一个单位 ( 。 )
1 3 针 织 物 酶 减 量 率 的 测 定 .
在 实 验 过 程 中发 现 , 物 特 别 是 滤 纸 , 含 有 一 定 底 也 的还原糖 , 碱性 的 D 在 NS试 剂 中也 会 发 色 。 且 , 验 而 试 所 用 的纤 维 素 酶 是 一 种 工 业 级 的 复 合 酶 , 种 不 同 , 品 其 本 身 含 糖 量 也 不 同 。 了 排 除 这 类 还 原 糖 的干 扰 , 比 为 参 溶 液 取 失 活后 的 酶 、 物 、 底 DNS等 共 热 的 反 应 物 。 2 4 葡 萄 糖 标 准 曲线 .
糖 酶 活 力 ) C C ( 甲基 纤 维 素 酶 酶 活 力 ) 本 文 和 M 羧 。
D NS( 色 ) 黄
3氨 基 一一 基 水 杨 酸 ( 红 色 ) - 5硝 棕
四种纤维素酶酶活测定方法的比较
四种纤维素酶酶活测定方法的比较一、本文概述纤维素酶是一类能够水解纤维素链中β-1,4-糖苷键的酶类,它们在生物降解纤维素以及纤维素类物质的转化利用中发挥着至关重要的作用。
由于纤维素酶在纺织、造纸、生物燃料、食品工业等多个领域的广泛应用,对其酶活性的准确测定就显得尤为重要。
本文旨在比较四种常用的纤维素酶酶活测定方法,包括滤纸酶活法、羧甲基纤维素钠(CMC)酶活法、对硝基苯酚纤维二糖法(pNPC)和荧光底物法,以期为读者提供一个全面而深入的理解,帮助研究者根据实验需求选择合适的测定方法。
本文将首先简要介绍纤维素酶的重要性和应用领域,然后详细阐述这四种酶活测定方法的原理、操作步骤、优缺点以及适用范围。
通过对比这些方法的灵敏度、准确性、重现性、操作简便性等方面,我们将为读者提供一个清晰的方法选择指南。
本文还将讨论影响酶活测定准确性的因素,并提出相应的改进措施,以期提高纤维素酶酶活测定的准确性和可靠性。
我们将对纤维素酶酶活测定方法的未来发展趋势进行展望,以期为相关领域的研究和应用提供参考和借鉴。
二、方法介绍纤维素酶是一种能够水解纤维素链中β-1,4-糖苷键的酶类,其酶活测定对于了解纤维素酶的性质、优化酶的生产工艺以及评估其在各种工业应用中的效率至关重要。
目前,常见的纤维素酶酶活测定方法主要包括滤纸酶活测定法、羧甲基纤维素钠(CMC)酶活测定法、还原糖法以及荧光底物法。
滤纸酶活测定法:此方法是基于纤维素酶对滤纸的水解能力。
在一定条件下,纤维素酶将滤纸水解成还原糖,通过比色法或滴定法测定还原糖的含量,从而推算出纤维素酶的活性。
该方法操作简单,但受滤纸质量、实验条件等因素影响,结果可能存在一定误差。
羧甲基纤维素钠(CMC)酶活测定法:该方法以羧甲基纤维素钠为底物,通过测定酶解后释放的还原糖量来计算纤维素酶的活性。
该方法具有底物纯度高、反应条件易控制等优点,因此在许多研究中得到广泛应用。
然而,CMC与天然纤维素的结构差异可能导致测定的酶活与实际应用中的酶活不完全一致。
纤维素酶活力的测定方法
纤维素酶活力的测定方法纤维素酶活力的测定方法1 原理纤维素酶是一种复合酶。
酶系包括外切B-1.4-葡聚糖酶(ExoB-1.4glucanase,EC3.2.1.9)内切B-1.4葡聚糖酶(Endoβ-1.4-glucanase,EC1.2.1.4)和纤维二糖酶。
纤维素酶在一定温度和PH条件下,将纤维素酶底物(滤纸或羟甲基纤维素钠)水解,释放出还原糖。
在碱性,煮沸条件下,3.5-二硝基水杨酸(DNS试剂)与还原糖发生显色反应,其颜色的深浅与还原糖(与葡萄糖汁)含量成正比。
通过在540nm测定吸光度,可得到产生还原糖的量,计算出纤维素酶的FPA酶和CMCA酶活力,以此代表纤维素酶的酶活力。
2 操作A.FPA酶A.1绘制标准曲线按表1规定的量,分别吸取葡萄糖标准使用溶液、缓冲溶液和DNS试剂加入各管中,混匀。
表1葡萄糖标准曲线管号葡萄糖标准使用溶液缓冲液吸取量DNS试剂吸取量ml 浓度mg/ml 吸取量ml 0 0.0 0.00 2.0 3.01 1.0 0.50 1.5 3.02 1.5 0.50 1.5 3.03 2.0 0.50 1.5 3.04 2.5 0.50 1.5 3.05 3.0 0.50 1.5 3.06 3.5 0.50 1.5 3.0将标准管同时置于沸水浴中,反应10min。
取出,迅速冷却至室温。
用水定容至25ml,盖塞,混匀。
用10mm比色杯,在分光光度计波长540nm处测量吸光度。
以葡萄糖量为横坐标,以吸光度为纵坐标,绘制标准曲线,获得线性回归方程。
线性回归系数应在0.9990以上时方可使用(否则须重做)。
A.2 样品的测定A.2.1待测酶液的制备称取固体酶样1g,精确至0.1mg(或吸取液体酶样1ml,精确至0.01ml),用水溶解,磁力搅拌混匀,准确稀释定容(使试样液与空白液的吸光度之差恰好落在0.3-0.4范围内),放置10min,待测。
A.2.2 滤纸条的准备----将待用滤纸放入(硅胶)干燥器中平衡24h----将水分平衡后的滤纸制成宽1cm、质量为(50±0.5)mg的滤纸条,折成M型,备用。
纤维素酶活力的测定方法
纤维素酶活力的测定方法1 原理纤维素酶是一种复合酶。
酶系包括外切B-1.4-葡聚糖酶(ExoB-1.4glucanase,EC3.2.1.9)内切B-1.4葡聚糖酶(Endoβ-1.4-glucanase,EC1.2.1.4)和纤维二糖酶。
纤维素酶在一定温度和PH条件下,将纤维素酶底物(滤纸或羟甲基纤维素钠)水解,释放出还原糖。
在碱性,煮沸条件下,3.5-二硝基水杨酸(DNS试剂)与还原糖发生显色反应,其颜色的深浅与还原糖(与葡萄糖汁)含量成正比。
通过在540nm测定吸光度,可得到产生还原糖的量,计算出纤维素酶的FPA酶和CMCA酶活力,以此代表纤维素酶的酶活力。
2 操作A.FPA酶A.1绘制标准曲线按表1规定的量,分别吸取葡萄糖标准使用溶液、缓冲溶液和DNS试剂加入各管中,混匀。
表1葡萄糖标准曲线管号葡萄糖标准使用溶液缓冲液吸取量 DNS试剂吸取量ml 浓度mg/ml 吸取量ml 0 0.0 0.00 2.0 3.01 1.0 0.50 1.5 3.02 1.5 0.50 1.5 3.03 2.0 0.50 1.5 3.04 2.5 0.50 1.5 3.05 3.0 0.50 1.5 3.06 3.5 0.50 1.5 3.0将标准管同时置于沸水浴中,反应10min。
取出,迅速冷却至室温。
用水定容至25ml,盖塞,混匀。
用10mm比色杯,在分光光度计波长540nm处测量吸光度。
以葡萄糖量为横坐标,以吸光度为纵坐标,绘制标准曲线,获得线性回归方程。
线性回归系数应在0.9990以上时方可使用(否则须重做)。
A.2 样品的测定A.2.1待测酶液的制备称取固体酶样1g,精确至0.1mg(或吸取液体酶样1ml,精确至0.01ml),用水溶解,磁力搅拌混匀,准确稀释定容(使试样液与空白液的吸光度之差恰好落在0.3-0.4范围内),放置10min,待测。
A.2.2 滤纸条的准备----将待用滤纸放入(硅胶)干燥器中平衡24h----将水分平衡后的滤纸制成宽1cm、质量为(50±0.5)mg的滤纸条,折成M型,备用。
饲用纤维素酶活力的测定方法
物的吸光系数最大,因此一般在 520 纳米处检测 OD 值的变化。这种测定方法的优势在于他利用了一种
据催化反应的类型和结构特性不同,将其主要分为 以下三类:①葡聚糖内切酶(β-1,4- 葡聚糖酶,EC
商品化的,易获得且易被纤维素酶作用的底物。滤纸 酶法测定结果的可靠性主要受到以下因素的影响:
3.2.1.4),这类酶随机水解纤维素分子内部的非结晶 区,将长链纤维素分解为不同长度的非还原性末端
普遍的方法。滤纸法测定纤维素酶组分总活力见表 1,通常采用柠檬酸钠溶液作为缓冲溶液,在反应体
的酶活方法之间是相互联系的和复杂的,使得确定 酶活力测定的标准化方法非常困难,但是国际纯粹
系 内 的 终 浓 度 常 为 0.05 摩 尔 / 升 ,pH 值 主 要 在 4.8~5.5 之间。反应体系内滤纸为 Whatman 1 号,常用
羧甲基纤维素法测定内切葡聚糖酶酶活力,见 别如磷酸钾缓冲溶液的 pH 值则为 6.2。底物羧甲基
表 2 羧甲基纤维素酶活法测定内切葡聚糖酶活力
纤维素酶来源
反应缓冲溶液
名称
浓度 /(mol/L)
pH值
底物
反应温度 反应时间 波长 /nm
/℃
/min
T.K.Ghose
柠檬酸钠
0.05
4.8
2%羧甲基纤维素钠
素转化成葡萄糖和其他可溶性糖。因此,早在 20 世 纪 50 年代,就开始了对纤维素酶和相关的多糖酶的
物。由 IUPAC 发酵委员创立的 Whatman 1 号滤纸作 为底物的滤纸测定法是测定纤维素酶组分总活力最
研究。纤维素酶的生物技术应用于动物饲料开始于 二十世纪八十年代。尽管测定纤维素酶系的多种酶
与应用化学联合会(IUPAC)发酵委员会基于交换想 大小为 1.0×6.0 厘米(约等于 50 毫克)。测定反应 法和比较结果,1987 年发表了纤维素酶的测定方法。 一般在 37~50℃进行。在 540 纳米处棕红色氨基化合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
检测纤维素酶酶活力—滤纸酶活力(FPA)
滤纸酶活力代表了纤维素酶的三种酶组分协同作用后的总酶活。
采用3,5一二硝基水杨酸法测定酶活:(简称DNS法)
1、原理:纤维素经纤维素酶水解后生成还原糖,还原糖能将3,5一二硝基水杨酸中硝基还原成氨基,溶液变为橙色的氨基化合物,即:3一氨基一5二硝基水杨酸,在一定的还原糖浓度范围内,橙色的深度与还原糖的浓度成正比,据此可以推算出纤维素酶的活力。
2、采用的滤纸酶活单位定义:
滤纸酶活反映了纤维素酶的3种水解酶,即内切型葡聚糖酶、外切型葡聚糖酶和β葡聚糖苷酶组成的诱导复合酶系的协同水解纤维素能力。
是该菌株整个纤维素酶系的酶活力水平的综合体现。
代表了纤维素酶的三种酶组分协同作用后的总酶活。
在此滤纸酶活单位定义为:以滤纸为底物,在一定反应条件(pH4.8,50℃,恒温lh)下,以水解反应中,1ml纤维素酶液1min催化纤维素生成lug葡萄糖为1个滤纸酶活单位,以U表示。
3、滤纸酶活力(FPA)的测定:
①取0.5ml适当稀释的酶液,加入PH值为4.8,0.1mol/L的乙酸-乙酸钠缓冲液lml或柠檬酸-柠檬酸钠缓冲液lml;
②再加入50±0.5mg滤纸(1cmx6cm)一条,于50℃保温酶解反应1小时,(先预热5分钟);
③加入DNS显色液3ml(标准曲线用量是1.5ml),放入已沸腾的水中沸水浴lOmin,流水冷却后在540nm下测吸光度;
④同时用100℃煮沸lOmin后失活的酶液做对照,扣除本底;
⑤根据吸光度从葡萄糖标准曲线中查出相应的葡萄糖含量,根据生成的葡萄糖克数计算出酶活值。
滤纸酶活按下面公式计算:
X=(WxNxlOOO)/(TxM)
X:为滤纸酶酶活力,单位U/mL。
W:为从葡萄糖标准曲线中查得的葡萄糖的浓度。
N:为酶液稀释总倍数。
T:为反应时间。
M:为样品的体积。
4、葡萄糖标准曲线绘制方法
标准曲线绘制:取25ml具塞刻度试管6支,加入1.0 mg /ml的葡萄糖标准溶液0.0、0.4、0.8、1.2、1.6、2.0ml,加蒸馏水2.0、1.6、1.2、0.8、0.4、0.0ml,加DNS试剂1.5 ml,混匀后在沸水浴中加热5分钟,取出立即用冷水冷却,用水定容至25 ml,摇匀,测吸光度A,以吸光度为纵坐标,葡萄糖的含量为横坐标,绘制标准曲线。
5、3,5二硝基水杨酸(DNS)试剂
称取6.3克3,5-二硝基水杨酸用水溶解,加入21.0克NaOH,182克酒石酸钾钠,加500ml 水,加热溶解后再加入5.0克重蒸酚和5.0克亚硫酸钠,搅拌溶解,冷却,定容至1000ml,存于棕色瓶中,放置7天后使用。
纤维素酶活力的测定——CMC糖化力法
1、定义:1毫升液体酶(或1克固体酶粉),在40℃pH﹦4.6条件下,每分钟水解羧甲基
纤维素钠(CMC-Na),产生1.0ug的葡萄糖,即为1个酶活单位,以u/g(u/ml)表示。
2、原理:
CMC-Na在纤维素酶的作用下,水解产生纤维寡糖、纤维二糖、葡萄糖等还原糖,还原糖能将3,5﹣二硝基水杨酸中的硝基还原成橙黄色的氨基化合物,在540nm波长下测定吸光度值A,吸光度与酶活成正比。
CMC-Na糖化力主要代表内切β-1.4-葡聚糖的活力。
3、试剂:
3.1 0.1mol/LpH﹦
4.6醋酸﹣醋酸钠缓冲溶液:将49.0ml0.2mol/L醋酸钠溶液和
51.0ml0.2mol/L醋酸溶液混合后加100ml蒸馏水。
注意:0.2mol/L醋酸钠溶液:称取27.22g结晶乙酸钠(AR)定容至1000ml。
0.2mol/L醋酸溶液:称取冰乙酸(AR)11.5ml定容至1000ml。
3.2 3,5二硝基水杨酸(DNS)试剂:称取6.3克3,5-二硝基水杨酸用水溶解,加入
21.0克NaOH,182克酒石酸钾钠,加500ml水,加热溶解后再加入5.0克重蒸酚和5.0
克亚硫酸钠,搅拌溶解,冷却,定容至1000ml,存于棕色瓶中,放置7天后使用。
3.3 葡萄糖标准溶液(1.0mg /ml):称取1.000克葡萄糖(AR)(105℃干燥至恒重)用
蒸馏水溶解后定容至1000ml,冰箱保存备用。
3.4 羧甲基纤维素钠溶液:称2.0gCMC-Na溶于200 ml蒸馏水中,加醋酸缓冲溶液
100 ml,混匀后存于冰箱内备用。
配后隔天使用。
4、分析步骤:
4.1标准曲线绘制:取25ml具塞刻度试管6支,加入1.0 mg /ml的葡萄糖标准溶液0.0、0.4、
0.8、1.2、1.6、2.0ml,加蒸馏水2.0、1.6、1.2、0.8、0.4、0.0ml,加DNS试剂1.5 ml,混
匀后在沸水浴中加热5分钟,取出立即用冷水冷却,用水定容至25 ml,摇匀,测吸光度A,以吸光度为纵坐标,葡萄糖的含量为横坐标,绘制标准曲线。
4.2 待测酶液制备:准确称取酶粉1.0克置研钵中,加入pH4.6的醋酸缓冲溶液少量溶解,
研细,将上清液小心倾入25ml刻度试管中,沉渣再加入少量缓冲液,如此捣研3-4次,最后全部移入试管中并定容至25ml,摇匀,过滤,滤液待测。
4.3 测定:取1.5mlCMC-Na溶液与0.5ml适当稀释的酶液于25ml试管中,40℃水浴保温
30min后立即加1.5mlDNS显色剂,沸水浴煮沸5min,取出立即冷却,用水定容25ml,在540nm测吸光度As。
空白样:先加1.5mlDNS试剂,后加0.5ml待测酶液,与1.5mlCMC-Na溶液,于25ml试管中,沸水浴煮沸5min,冷却后用水定容25ml,在540nm测吸光度Ack。
⊿A=As-Ack 根据⊿A从标准曲线上查得葡萄糖含量P。
5.4 计算
酶活力(u/g)=P*K*1000/0.5*30 k:稀释倍数。
吸光度0 0.084 0.240 0.537 0.789 1.055 浓度mg/ml 0 0.125 0.25 0.5 0.75 1。